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Abstract
We prove that the duality operator preserves the Frobenius–Schur indicators of

characters of connected reductive groups of Lie type with connected center. This
allows us to extend a result of D. Prasad which relates the Frobenius–Schur indi-
cator of a regular real-valued character to its central character. We apply these re-
sults to compute the Frobenius–Schur indicators of certainreal-valued, irreducible,
Frobenius-invariant Deligne–Lusztig characters, and theFrobenius–Schur indicators
of real-valued regular and semisimple characters of finite unitary groups.

1. Introduction

Given a finite groupG, and an irreducible finite dimensional complex representa-
tion (� , V) of G with character� , it is a natural question to ask what smallest field
extension ofQ is necessary to define a matrix representation corresponding to (� , V).
If Q(�) is the smallest extension ofQ containing the values of� , then theSchur index
of � over Q may be defined to be the smallest degree of an extension ofQ(�) over
which (� , V) may be defined. One may also consider the Schur index of� over R,
which is 1 if (� , V ) may be defined overR(�), and 2 if it is not. If� is a real-valued
character, then the Schur index of� over R indicates whether (� , V) may be defined
over the real numbers. The Brauer–Speiser Theorem states that if � is a real-valued
character, then the Schur index of� over Q is either 1 or 2, and if the Schur index
of � over R is 2, then the Schur index of� overQ is 2.

As finite groups of Lie type are of fundamental importance in the theory of finite
groups, it is of interest to understand the Schur indices over Q of their complex repre-
sentations. In work of Gow and Ohmori [10, 11, 12, 19, 20], theSchur indices overQ
of many irreducible characters of finite classical groups are determined. For the char-
acters which are not covered by methods of Gow and Ohmori, it seems that the com-
putation of the Schur index overQ is significantly more difficult. One example is that
of the special linear group, which was completed by Turull [24]. Through methods de-
veloped by Lusztig, Geck, and Ohmori, the Schur index of unipotent characters have
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been completely determined [16, 8, 9, 21, 17, 18]. From all ofthe evidence which is
known, it has been conjectured that the Schur index overQ of any irreducible character
of a finite group of Lie type is at most 2.

A somewhat more manageable problem is to find the Schur index over R of real-
valued characters of finite groups of Lie type. Because of theBrauer–Speiser theorem,
this is directly related to the question of the Schur index over Q. In many cases of
classical groups, the Schur index overR of real-valued characters is completely known,
as in [13]. The Schur index overR can also be obtained from the Schur index overQ, as in [10, 19]. In many of the examples in [10, 19], the Schur index overR of a
character is related to the value of its central character ata particular element. In [23],
Prasad studies the relationship between the Schur index over R and the central charac-
ter of a representation of a connected reductive group of Lietype. In particular, it is
proven in [23] that in the case that the underlying algebraicgroup has connected center,
there is always a central element whose value on a central character of a real-valued
character indicates the Schur index overR, when that real-valued character appears in
the Gelfand–Graev character.

The organization and main results of this paper are as follows. In Section 2, we
gather results on real-valued characters and real representations of finite groups. In Sec-
tion 3, the main result is Theorem 3.2, where we prove that theFrobenius–Schur in-
dicator (and thus the Schur index overR) of a character is preserved under the duality
operator. In Section 4, we apply Theorem 3.2 to extend the result of Prasad in [23],
in Theorem 4.2. Finally, in Section 5, we use Theorem 4.2 to compute the Frobenius–
Schur indicator of certain Frobenius-invariant Deligne–Lusztig characters (Theorem 5.1),
and the Frobenius–Schur indicators of regular and semisimple characters of finite unitary
groups (Theorem 5.2).

2. Frobenius–Schur indicators and real representations

Let G be a finite group, and let (� , V) be an irreducible complex representation
of G, with character� . Frobenius and Schur defined"(�) D 1=jGj∑g2G �(g2), called
the Frobenius–Schur indicatorof � , or of � , which they proved takes only the values
1, �1, or 0, and takes the value�1 if and only if � is real-valued. We also write"(�) D "(�). Frobenius and Schur further proved that"(�) D 1 exactly when� is a
real representation, that is, when we can choose a basis forV such that the matrix rep-
resentation corresponding to� with respect to this basis has image in GL(n,R). When"(�) D 1, we say that� is an orthogonalrepresentation, and when"(�) D �1, we say� is a symplecticrepresentation (and also that the character of� is an orthogonal or
a symplectic character, respectively).

Now let � be an irreducible character of a finite groupG, and suppose"(�) D 0.
Then � C � is a real-valued character ofG, and is in fact the character of a real
representation ofG, and this real representation is irreducible as a real representation
(since its only complex irreducible subrepresentations are not real). Similarly, if is
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an irreducible character ofG such that"( ) D �1, then 2 is the character of a real
representation (by taking the direct sum of a matrix representation corresponding to 
and its conjugate), and this real representation is irreducible as a real representation.
In particular, this gives us a basis of characters of real representations, as follows.

Lemma 2.1. Let G be a finite group. If� is the character of a real representa-
tion of G, then� can be written uniquely as a non-negative integer linear combination
of characters of the form: � where � is an irreducible character and"(�) D 1, 2 
where is an irreducible character and"( ) D �1, and �C � where� is an irredu-
cible character and"(�) D 0.

We may take advantage of the parity implications in Lemma 2.1, as in the following.

Lemma 2.2. Suppose that� is an irreducible complex character of a finite group
G, and is an integer linear combination of characters of real representations. Then"(�) D 1.

Proof. Let� D∑

i ai �i , whereai 2 Z and each�i is the character of a real repre-
sentation. Writing each�i as a decomposition of characters of irreducible complex repre-
sentations, the total number of characters such that"( ) D 0 or "( ) D �1 appearing
is even, from Lemma 2.1. Since� is irreducible, we must have"(�) D 1.

Finally, we note the following useful fact, which follows from the definition of
restriction and induction. If� is a representation ofG with character� , and � is a
representation of a subgroupH of G with character , we write� jH for the restriction
of � to H , with character� jH , and�G for the induced representation of� to G, with
character G.

Lemma 2.3. Let G be a finite group and H a subgroup of G. If� is a real rep-
resentation of G, then the restriction� jH is a real representation of H. If� is a real
representation of H, then the induced representation�G is a real representation of G.

3. The duality operator and the Frobenius–Schur indicator

In this section, we first letG be a finite group,P a subgroup ofG, and N a
normal subgroup ofP. Given a character� of G, we define a character ofP by
truncation with respect toN, defined in [1, 5, 15]. In particular, the characterTP=N(�)
is defined to be the character ofP obtained by first restricting� to P, and then taking
the sum of irreducible constituents of� jP which are characters of representations such
that N acts trivially. By extending the definition linearly, we have thatTP=N maps class
functions of G to class functions ofP. Note that sinceN is acting trivially, we may
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also viewTP=N(�) as a class function onP=N. In terms of character values, we have
the formula

(3.1) TP=N(�)(h) D 1jNj
∑

x2N

�(xh), h 2 P.

As the next result states, truncation preserves the property of being the character of a
real representation.

Lemma 3.1. If � is the character of a real representation of G, then TP=N(�) is
the character of a real representation of P.

Proof. First, the restriction� jP is the character of a real representation ofP, by
Lemma 2.3. Now consider the irreducible constituents of� jP which are characters of
representations such thatN acts trivially. If � is the character of such a representation,
and "(� ) D 0, then certainlyN� is also such a character. Because� jP is the character
of a real representation, the irreducible characters of P such that"( ) D �1 must
occur with even multiplicity as constituents of� jP, by Lemma 2.1. Thus, such char-
acters must appear with even multiplicity inTP=N(�). It follows from Lemma 2.1 that
TP=N(�) is the character of a real representation ofP.

Let Fq be a finite field ofq elements, whereq is a power of the primep, and
let NFq be a fixed algebraic closure ofFq. Now let G be a connected reductive group
over NFq which is defined overFq and which has connected center, and letF be the
corresponding Frobenius map. LetW be the Weyl group ofG, whereW D hsi j i 2 I i,
and let� be the permutation of the indexing setI which is induced by the action of
the Frobenius mapF . For any�-stable subsetJ � I , let PJ be the parabolic subgroup
of G corresponding toWJ D hsj j j 2 Ji, and letNJ be the unipotent radical ofPJ .
Let PJ D PF

J and NJ D NF
J be the corresponding parabolic and unipotent subgroups

of the finite groupG D GF D G(Fq). Define the following operator� on the set of
virtual characters ofG:

�� D ∑

J�I�(J)DJ

(�1)jJ=�j(TPJ=NJ (�))G.

The operator� and its properties were studied in [1, 2, 3, 5, 15]. In particular, if � is
an irreducible character ofG, then��� is an irreducible character ofG. By a slight
abuse of notation, we let��� denote the appropriate sign taken to get an irreducible
character. Another important property of� is as follows, which is why� is called the
duality operator.
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Theorem 3.1 (Alvis, Curtis, Kawanaka). The map� 7! �� is an order 2 isom-
etry of the virtual characters of G, so that ��� D � and h� ,  i D h��,  �i for all
virtual characters� ,  of G.

It follows from the definition of� that it preserves real-valued characters, since
(� )� D ��. We now prove the result that duality in fact preserves the property of being
the character of a real representation, or preserves the Frobenius–Schur indicator.

Theorem 3.2. Let � be an irreducible character of GD G(Fq). Then "(�) D"(���).

Proof. Since (�)� D ��, and ��� D � , it is enough to show that if"(�) D 1,
then "(���) D 1. So, suppose that� is an irreducible character ofG corresponding
to a real representation ofG. From Lemma 3.1, it follows thatTPJ=NJ (�) is the char-
acter of a real representation ofPJ for each PJ , and so each induced representation
(TPJ=NJ (�))G is the character of a real representation ofG, by Lemma 2.3. Now, in
the sum

�� D ∑

J�I�(J)DJ

(�1)jJ=�j(TPJ=NJ (�))G,

each induced character is the character of a real representation. So, the irreducible
character��� is the integer linear combination of characters of real representations.
By Lemma 2.2, we have"(���) D 1.

Recall that the Gelfand–Graev character ofG, which we will denote by0, is the
character of the representation obtained by inducing a non-degenerate linear character
from the unipotent subgroup ofG up to G (see [4, Section 8.1] for a full discussion).
A regular character ofG is defined as an irreducible character ofG which appears as a
constituent of0. It is well known that the Gelfand–Graev character has a multiplicity-
free decomposition into irreducible characters ofG. We define the virtual character4
of G to be the dual of0, that is,4D 0�. A semisimplecharacter ofG may be defined
as an irreducible character� of G such thath4, �i ¤ 0. Equivalently, a semisimple
character ofG may be defined to be an irreducible character with the property that its
average value on regular unipotent elements is nonzero. In the case thatp is a good
prime for G (see [4, Section 1.14] for a definition), the semisimple characters ofG are
exactly those for which the degree is not divisible byp.

The duality operator maps a regular character ofG to plus or minus a semisimple
character, and a semisimple character ofG to plus or minus a regular character (see
[4, Section 8.3]). This gives us the following corollary of Theorem 3.2.
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Corollary 3.1. The number of orthogonal(respectively, symplectic) regular char-
acters of GD G(Fq) is equal to the number of orthogonal(respectively, symplectic)
semisimple characters of G.

4. Central characters

For an irreducible representation� , with character� , of a finite group, let!� , or!� , denote the central character of� given by Schur’s lemma.
As in the previous section, here we letG be a connected reductive group overNFq with connected center, which is defined overFq with Frobenius mapF . In [23,

Theorem 3], D. Prasad obtains the following result connecting the Frobenius–Schur in-
dicator of a regular character ofG to the value of the central character at a specific
element.

Theorem 4.1 (Prasad). Let G be a connected reductive group overNFq which is
defined overFq, with Frobenius map F, and such that the center Z(G) is connected.

Then there exists an element z in the center ofGF D G such that for any real-valued
regular character� of G, we have"(�) D !� (z).

We now prove that the central character!� , like the Frobenius–Schur indicator, is
preserved under the duality operator.

Lemma 4.1. Let � be an irreducible character of GD GF . Then!� D !��� .
Proof. First,Z(G) is contained in any Borel subgroupB of G, sinceB is a max-

imal closed connected solvable subgroup ofG. So, Z(G) is contained in any parabolic
subgroupP of G. It follows that Z(G)F is contained in any of the parabolic subgroups
PJ of G D GF . By [4, Proposition 3.6.8],Z(G)F D Z(GF ), and so the center of
G D GF is contained in every parabolic subgroup ofG. Now, if z 2 Z(G), and PJ

is a parabolic subgroup ofG, then it follows from applying Equation (3.1) that

TP=N(�)(z) D !� (z)TP=N(�)(1).

When evaluating��(z), we may factor out!� (z) from each term in the sum, and ob-
tain ��(z) D !� (z)��(1). It immediately follows that!��� D !� .

Theorem 3.2 and Lemma 4.1 immediately imply that the Prasad’s theorem (The-
orem 4.1) may be extended to semisimple characters. We may extend the result even
further as follows. LetG be a connected reductive group overNFq which is defined overFq, with corresponding Frobenius mapF , so thatG is also defined overFqr for any
positive integerr , with Frobenius mapF r Then GF r D G(Fqr ) is the set ofFqr -points
of G, and GF � GF r

.
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In order to further extend Theorem 4.1, we briefly summarize the main idea of its
proof as it appears in [23]. LetB be a Borel subgroup ofG which is defined overFq

(and thus defined overFqr for any r � 1), let T be a maximal torus ofG contained
in B which is defined overFq, and letN be the unipotent radical ofB. Through [23,
Theorem 2], the proof of Theorem 4.1 is reduced to proving theexistence of an elem-
ent s 2 T(Fq) such thats acts by�1 on all of the simple root spaces ofN. This is
proven in [23, Theorem 3], and the elements has the property thats2 D z2 Z(G(Fq)),
where z is the element of Theorem 4.1. We make note of the fact that this same
s which acts by�1 on all of the simple root spaces ofN satisfiess 2 T(Fqr ), and
s2 D z 2 Z(G(Fq)) � Z(G(Fqr )). Thus, the central element obtained when applying
Theorem 4.1 toG(Fq) is the same central element obtained when applying Theorem4.1
to G(Fqr ) for any positive integerr . From this observation, along with Lemma 4.1, we
obtain the following generalization of Theorem 4.1.

Theorem 4.2. Let G be a connected reductive group overNFq with connected cen-
ter, which is defined overFq with Frobenius map F, and is thus defined overFqr

with Frobenius map Fr for any positive integer r . Then there exists an element z2
Z(G(Fq)) such that for any real-valued regular or semisimple character � of G(Fqr ),
we have"(�) D !� (z).

5. Applications

5.1. Frobenius-invariant Deligne–Lusztig characters. For a connected reduc-
tive group G over NFq with connected center, defined overFq with Frobenius mapF ,
consider anF-rational maximal torusT of G, and let � W T(Fq) ! C� be a charac-
ter. Let RT,� be the Deligne–Lusztig virtual character associated with the pair (T, �),
which is a virtual character of the groupG(Fq), originally constructed in [6] (see also
[4, 7]). By [4, Corollary 7.3.5],�RT,� is an irreducible character ofG(Fq) if and only
if � is in general position, that is, if� is not fixed by any non-identity element of the
Weyl group W(T)F . Again, we use� to mean the correct sign is chosen to have an
irreducible character. We need the following result.

Lemma 5.1. Let RT,� be a Deligne–Lusztig virtual character ofG(Fq). Then for
any central element z2 Z(G(Fq)), we have RT,� (z) D �(z)RT,� (1).

Proof. Since any central element is semisimple and is contained in every torus,
then by applying the character value formula for Deligne–Lusztig characters on semi-
simple elements given in [4, Proposition 7.5.3], we have

RT,� (z) D "T"GjTF jjGF jp
∑

g2GF

�(z) D "T"GjGF jp0jTF j �(z),
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where "G and "T denote�1 to the relative ranks ofG and T, respectively (see [4,
p. 197] for a definition). From the formula forRT,� (1) given in [4, Theorem 7.5.1], we
obtain RT,� (z) D �(z)RT,� (1).

If T is an F-rational maximal torus ofG, we now consider a character2W T(Fq2)!C�, and the Deligne–Lusztig characterRT,2 of G(Fq2). A class function� of G(Fq2)
is Frobenius-invariantif � Æ F D � , that is, if �(F(g)) D �(g) for every g 2 G(Fq2).
Let NmFq2=Fq (or simply Nm when the fields are clear from the context) denote the norm
map ofFq2 down toFq, so that Nm(x) D x � F(x) for any x 2 Fq2. Then Nm may be
extended to any abelian subgroup ofG(Fq2). By [14, Lemma 6.9],�RT,2 is an irredu-
cible Frobenius-invariant Deligne–Lusztig character ofG(Fq2), if and only if 2 D � Æ
NmFq2=Fq , for some character� W T(Fq)! C such that�RT,� is an irreducible Deligne–
Lusztig character ofG(Fq).

If RT,� is any Deligne–Lusztig character ofGF , then its conjugate is given by
RT, N� , from [4, Proposition 7.2.3]. If we assume that�RT,� is an irreducible Deligne–

Lusztig character ofGF , then it follows from [4, Theorems 7.3.4 and 7.3.8] that it is
real-valued if and only if there is an element of the Weyl group W(T)F whose action
maps� to N� . We now have the following result.

Theorem 5.1. Let G be a connected reductive group overNFq with connected cen-
ter, which is defined overFq with Frobenius map F, and so defined overFq2 with the
map F2. Let�RT,� be an irreducible real-valued Deligne–Lusztig character of G(Fq).
Let 2 D � ÆNmW T(Fq2)! C�. Then�RT,2 is an irreducible, real-valued, Frobenius-
invariant, Deligne–Lusztig character ofG(Fq2), such that"(�RT,2) D 1.

Proof. Let us denote� D �RT,2, and  D �RT,� . First, irreducible Deligne–
Lusztig characters are both regular and semisimple, and so by Theorem 4.2, there exists
an elementz 2 Z(G(Fq)) such that"( ) D ! (z). By Lemma 5.1, we have! (z) D�(z), and so�(z) D �1. By the discussion in the paragraph preceding this Lemma,
since2D � ÆNm, � D�RT,2 is a Frobenius-invariant irreducible character ofG(Fq2).
Since�RT,� is assumed to be real-valued, there is an elementw 2 W(T)F such that
the action ofw takes� to N� . Sincew is F-invariant,w acts on2 as follows, where
t 2 T(Fq2):

2(wtw�1) D �(wNm(t)w�1) D N�(Nm(t)) D N2(t).

Since the action ofw 2W(T)F �W(T)F2
takes2 to N2, then� is real-valued. So, by

Theorem 4.2,"(�) D !� (z), and by Lemma 5.1,!� (z) D 2(z). Now we have

"(�) D 2(z) D �(Nm(z)) D �(z � F(z)).

Sincez 2 Z(G(Fq)), then Nm(z) D z2, and so we finally have"(�) D �(z)2 D 1, since�(z) D �1.
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5.2. Finite unitary groups. We now letG D GL(n, NFq). Considering elements
of G as invertiblen-by-n matrices with entries fromNFq, for g D (ai j ) 2 G, define Ng
by Ng D (aq

i j ), and let tg D (a j i ) denote the transpose map. We now define a Frobenius
map F on G by

F(g) D






1
...

1







t Ng�1







1
...

1






.

Then the group ofFq-points of G is defined to be the finite unitary group, which we

denote byGF D U(n, Fq). We comment that if we define the Frobenius mapQF byQF(g) D t Ng�1, then in factG QF � GF , but we choose the Frobenius mapF so that, in
particular, the standard Borel subgroup ofG is stable underF .

The center of U(n,Fq) is the set of all scalar matrices of the form� I such that� 2NFq and �qC1 D 1, and so� 2 Fq2. As already noted, the standard Borel subgroupB0,
consisting of upper triangular matrices, is anF-rational subgroup ofG, and contains
the maximally split standard torusT0, consisting of diagonal matrices, which is also
F-rational. It may be directly checked that if� 2 F�q2, then in the case thatn is even,
the element

sD diag(�, ��q, : : : , �, ��q)

satisfiess 2 TF
0 . Finally, we letN0 denote the unipotent radical of the standard Borel

subgroupB0.
In the following, part (1) follows directly from [19, Theorem 7 (ii)], but we also

give a proof below.

Theorem 5.2. Let � be a real-valued semisimple or regular character ofU(n, Fq).
Then:
(1) If n is odd or q is even, then"(�) D 1.
(2) If n is even and q� 1 (mod 4),then"(�) D !� (�I ).
(3) If n is even and q� 3 (mod 4),then"(�) D !� (� I ), where� D t2 and t 2 Fq2 is
such that tqC1 D �1.
It follows from (2) and (3) that if n is even and q is odd, then"(�) D !� (z), where z is
a multiplicative generator for the center ofU(n, Fq).

Proof. For each part, we apply Theorem 4.2 along with the proof of Theorem 4.1,
as discussed in the paragraph preceding Theorem 4.2. We mustfind an elements 2 TF

0

such thats acts by�1 on each of the simple root spaces ofN0, and then we take
zD s2 as the central element in Theorem 4.2. In this case, this means we must find
an s such that, for everyh 2 N0, if h D (ai j ) and shs�1 D (bi j ), then bi ,iC1 D �ai ,iC1

for 1� i � n� 1.
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In part (1), first consider the case thatq is even. Since we are in characteristic 2,
the elementss and z may be taken to be the identity, and hence"(�) D 1. Now, if n
is odd (andq is odd or even), we lets be the element

sD diag(�1, 1,: : : , 1,�1) 2 TF
0 .

Then conjugation bys on any element ofG sends each superdiagonal entry to its nega-
tive, as desired. So,s2 D 1, and "(�) D 1 for any regular or semisimple real-valued
character� .

In case (2), whenn is even andq � 1 (mod 4), if we let
 2 Fq be such that
 2 D �1, then we let

sD diag(
 , �
 , : : : , 
 , �
 ).

Then s 2 TF
0 , and s has the desired property. Sinces2 D �I , the result follows.

Finally, in case (3), whenn is even andq � 3 (mod 4), first lett 2 Fq2 such
that tqC1 D �1. Such an element exists since the polynomialxqC1 C 1 is a factor of
xq2�1 � 1, which splits completely overFq2. Now, t�q D �t , and so if

sD diag(t , �t , : : : , t , �t),

then s 2 TF
0 , and s again acts as�1 on each of the simple root spaces ofN0. Letting� D t2, the desired central element iszD � I .

For the last statement, ifq � 1 (mod 4), thenz(qC1)=2 D �I , where (q C 1)=2 is
odd. Thus we have"(�) D !� (�I ) D !� (z). If q � 3 (mod 4), then the element�
has orderqC1, sozD � I is a multiplicative generator for the center of U(n, Fq), and
again"(�) D !� (z).

We remark that Theorem 5.2 cannot be extended to all characters of U(n, Fq). For
example, there exist unipotent characters of U(n, Fq) such that"(�) D �1, while every
unipotent character satisfies!� (�I )D 1. We also note that in all of the examples given
in [12, 13, 23], the central element which may be used to find the Frobenius–Schur
indicator of a real-valued regular character (or in some cases, any character) is either
I or �I . Case (3) of Theorem 5.2 seems to be the first example given forwhich such
a central element is not�I .

We now apply Theorem 5.2 to obtain results on the Schur indices of real-valued
regular and semisimple characters of U(n,Fq). For an irreducible character� of a finite
group, and a fieldK of characteristic 0, letmK (�) denote the Schur index of� with
respect toK . Let Qp denote the field ofp-adic rationals, wherepD char(Fq), and letQp(�) denote the completion ofQ(�) at a prime ofQ(�) lying abovep. We conclude
with the following.
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Corollary 5.1. Let� be a real-valued semisimple or regular character ofU(n,Fq).
Then we have:
(1) If q is even or n is odd, them mQ(�) D 1.
(2) Assume that q is odd and n is even, and let z be a generator for the center of
U(n,Fq). If !� (z)D 1, then mQ(�)D 1. If !� (z)D �1, then mQ(�)DmR(�)D 2, and

mQp(�) D {1 if [Qp(�) W Qp] is even,
2 if [Qp(�) W Qp] is odd.

Proof. This follows directly from Theorem 5.2 and [19, pp. 448–450]. See also
[22, Theorem 4].
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