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Abstract

We prove that the duality operator preserves the FrobeSicisar indicators of
characters of connected reductive groups of Lie type withneated center. This
allows us to extend a result of D. Prasad which relates thédmias—Schur indi-
cator of a regular real-valued character to its central attar. We apply these re-
sults to compute the Frobenius—Schur indicators of cemaahvalued, irreducible,
Frobenius-invariant Deligne—Lusztig characters, and Rhebenius—Schur indicators
of real-valued regular and semisimple characters of finitiéaty groups.

1. Introduction

Given a finite groupG, and an irreducible finite dimensional complex representa-
tion (w, V) of G with charactery, it is a natural question to ask what smallest field
extension ofQ is necessary to define a matrix representation correspgndirfr, V).

If Q(x) is the smallest extension @ containing the values of, then theSchur index
of x over @ may be defined to be the smallest degree of an extensia@(gj over
which (7, V) may be defined. One may also consider the Schur index ofer R,
which is 1 if (v, V) may be defined oveR(x), and 2 if it is not. If x is a real-valued
character, then the Schur index gfover R indicates whethern(, V) may be defined
over the real numbers. The Brauer—Speiser Theorem staesfth is a real-valued
character, then the Schur index gfover Q is either 1 or 2, and if the Schur index
of x overR is 2, then the Schur index of overQ is 2.

As finite groups of Lie type are of fundamental importancelia theory of finite
groups, it is of interest to understand the Schur indices @Q&f their complex repre-
sentations. In work of Gow and Ohmori [10, 11, 12, 19, 20], 8ehur indices ove)
of many irreducible characters of finite classical groups @etermined. For the char-
acters which are not covered by methods of Gow and Ohmorgdins that the com-
putation of the Schur index ove® is significantly more difficult. One example is that
of the special linear group, which was completed by Turudl][2ZThrough methods de-
veloped by Lusztig, Geck, and Ohmori, the Schur index of ot@pt characters have
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been completely determined [16, 8, 9, 21, 17, 18]. From althef evidence which is
known, it has been conjectured that the Schur index @@f any irreducible character
of a finite group of Lie type is at most 2.

A somewhat more manageable problem is to find the Schur index® of real-
valued characters of finite groups of Lie type. Because ofBttaier—Speiser theorem,
this is directly related to the question of the Schur indeera®. In many cases of
classical groups, the Schur index ow®rof real-valued characters is completely known,
as in [13]. The Schur index ovéR can also be obtained from the Schur index over
Q, as in [10, 19]. In many of the examples in [10, 19], the Schatek overR of a
character is related to the value of its central character garticular element. In [23],
Prasad studies the relationship between the Schur indexRoend the central charac-
ter of a representation of a connected reductive group oftyjie. In particular, it is
proven in [23] that in the case that the underlying algebgaaup has connected center,
there is always a central element whose value on a centrahaea of a real-valued
character indicates the Schur index o®erwhen that real-valued character appears in
the Gelfand—Graev character.

The organization and main results of this paper are as fellolm Section 2, we
gather results on real-valued characters and real repgeders of finite groups. In Sec-
tion 3, the main result is Theorem 3.2, where we prove thatRtebenius—Schur in-
dicator (and thus the Schur index ouR} of a character is preserved under the duality
operator. In Section 4, we apply Theorem 3.2 to extend theltre$ Prasad in [23],
in Theorem 4.2. Finally, in Section 5, we use Theorem 4.2 topge the Frobenius—
Schur indicator of certain Frobenius-invariant Delignesktig characters (Theorem 5.1),
and the Frobenius—Schur indicators of regular and semisiofparacters of finite unitary
groups (Theorem 5.2).

2. Frobenius—Schur indicators and real representations

Let G be a finite group, and letz(, V) be an irreducible complex representation
of G, with charactery. Frobenius and Schur definefr) = 1/|G| dee x(g?), called
the Frobenius—Schur indicatoof =, or of x, which they proved takes only the values
1, -1, or 0, and takes the valu&l if and only if x is real-valued. We also write
e(m) = e(x). Frobenius and Schur further proved th#t) = 1 exactly whenr is a
real representation, that is, when we can choose a baslé frch that the matrix rep-
resentation corresponding to with respect to this basis has image in @LR). When
e(r) = 1, we say thatr is anorthogonalrepresentation, and wheifr) = —1, we say
 is a symplecticrepresentation (and also that the characterraé an orthogonal or
a symplectic character, respectively).

Now let x be an irreducible character of a finite gro@® and suppose(x) = 0.
Then x + X is a real-valued character @&, and is in fact the character of a real
representation of5, and this real representation is irreducible as a real septation
(since its only complex irreducible subrepresentatiores raot real). Similarly, ify is
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an irreducible character d& such thats(y) = —1, then 3/ is the character of a real
representation (by taking the direct sum of a matrix repried®n corresponding tgr
and its conjugate), and this real representation is iribtlias a real representation.
In particular, this gives us a basis of characters of realesgmtations, as follows.

Lemma 2.1. Let G be a finite group. Ify is the character of a real representa-
tion of G, then y can be written uniquely as a non-negative integer linear lomation
of characters of the form6 where @ is an irreducible character anad(9) = 1, 2y
wherey is an irreducible character and(y) = —1, and n + 77 wheren is an irredu-
cible character ande(n) = 0.

We may take advantage of the parity implications in Lemma &slin the following.

Lemma 2.2. Suppose thay is an irreducible complex character of a finite group
G, and is an integer linear combination of characters of reapmesentations. Then

e(x) =1

Proof. Letx =Y, a6, wherea € Z and eacly, is the character of a real repre-
sentation. Writing each; as a decomposition of characters of irreducible complererep
sentations, the total number of charactérsuch that(y) = 0 ore(y) = —1 appearing
is even, from Lemma 2.1. Singeis irreducible, we must havg(x) = 1. O

Finally, we note the following useful fact, which followsofn the definition of
restriction and induction. lfr is a representation o5 with charactery, and p is a
representation of a subgrowp of G with character/, we write |y for the restriction
of 7 to H, with charactery|y, and p® for the induced representation pfto G, with
charactery .

Lemma 2.3. Let G be a finite group and H a subgroup of G.xfis a real rep-
resentation of Gthen the restrictionz |y is a real representation of H. Ip is a real
representation of Hthen the induced representatigi¥ is a real representation of G.

3. The duality operator and the Frobenius—Schur indicator

In this section, we first lelG be a finite group,P a subgroup ofG, and N a
normal subgroup ofP. Given a characteyy of G, we define a character dP by
truncation with respect toN, defined in [1, 5, 15]. In particular, the charact®&,n(x)
is defined to be the character Bf obtained by first restricting to P, and then taking
the sum of irreducible constituents gf which are characters of representations such
that N acts trivially. By extending the definition linearly, we leathatTp,n maps class
functions of G to class functions ofP. Note that sinceN is acting trivially, we may
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also view Tp,n(x) as a class function oR/N. In terms of character values, we have
the formula

(3.0) Ten(O) = o > x(ch), e P.

xeN

As the next result states, truncation preserves the propdrbeing the character of a
real representation.

Lemma 3.1. If x is the character of a real representation of, @en To/n(x) is
the character of a real representation of P.

Proof. First, the restrictiory |p is the character of a real representationRaf by
Lemma 2.3. Now consider the irreducible constituentsyd which are characters of
representations such that acts trivially. If & is the character of such a representation,
and e(¢) = 0, then certainlyZ is also such a character. Becaygl is the character
of a real representation, the irreducible charactgref P such thate(y) = —1 must
occur with even multiplicity as constituents gflp, by Lemma 2.1. Thus, such char-
acters must appear with even multiplicity p,n(x). It follows from Lemma 2.1 that
Te,n(x) is the character of a real representationRof ]

Let Fy be a finite field ofq elements, where is a power of the primep, and
let IF‘q be a fixed algebraic closure @;. Now let G be a connected reductive group
over Fy which is defined ovelF; and which has connected center, and Fetoe the
corresponding Frobenius map. L&t be the Weyl group ofs, whereW = (5 |i € 1),
and letp be the permutation of the indexing sktwhich is induced by the action of
the Frobenius mag-. For anyp-stable subsed C I, let P; be the parabolic subgroup
of G corresponding toV; = (s; | j € J), and letN; be the unipotent radical d?;.
Let P; = P| and N; = N be the corresponding parabolic and unipotent subgroups
of the finite groupG = GF = G(Fq). Define the following operatok on the set of
virtual characters of:

XT= D (=1 (Ten, (x))C.
JClI
p(3)=J

The operator« and its properties were studied in [1, 2, 3, 5, 15]. In palécuif x is

an irreducible character db, then+x* is an irreducible character @&. By a slight
abuse of notation, we let x* denote the appropriate sign taken to get an irreducible
character. Another important property fis as follows, which is whyx is called the
duality operator
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Theorem 3.1 (Alvis, Curtis, Kawanaka). The mapy — x* is an order2 isom-
etry of the virtual characters of Gso that x** = x and (x, ¥) = (x*, v*) for all
virtual charactersy, v of G.

It follows from the definition of« that it preserves real-valued characters, since
()" = x*. We now prove the result that duality in fact preserves thoperty of being
the character of a real representation, or preserves theefius—Schur indicator.

Theorem 3.2. Let x be an irreducible character of G= G(Fy). Thene(x) =
e(£x").

Proof. Since %)* = x*, and x** = g, it is enough to show that it(x) = 1,
thene(+x*) = 1. So, suppose that is an irreducible character d& corresponding
to a real representation @&. From Lemma 3.1, it follows thalp,,n,(x) is the char-
acter of a real representation &f for each P;, and so each induced representation
(Te, N, (x))€ is the character of a real representationGf by Lemma 2.3. Now, in
the sum

Xt =D (DA (Te, i, (X)),
Jcl
p(J)=J
each induced character is the character of a real repréisentaSo, the irreducible
charactertx* is the integer linear combination of characters of real esentations.
By Lemma 2.2, we have(dx*) = 1. ]

Recall that the Gelfand—Graev character@f which we will denote byl", is the
character of the representation obtained by inducing adegenerate linear character
from the unipotent subgroup @& up to G (see [4, Section 8.1] for a full discussion).
A regular character ofG is defined as an irreducible character@fwhich appears as a
constituent ofT". It is well known that the Gelfand—Graev character has a ipliglity-
free decomposition into irreducible charactersGf We define the virtual charactel
of G to be the dual of", that is, E =T'*. A semisimplecharacter ofG may be defined
as an irreducible character of G such that(Eg, x) # 0. Equivalently, a semisimple
character ofG may be defined to be an irreducible character with the prppast its
average value on regular unipotent elements is nonzerohdrcase thap is a good
prime for G (see [4, Section 1.14] for a definition), the semisimple abters ofG are
exactly those for which the degree is not divisible py

The duality operator maps a regular charactezofo plus or minus a semisimple
character, and a semisimple characterGfto plus or minus a regular character (see
[4, Section 8.3]). This gives us the following corollary ohdorem 3.2.
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Corollary 3.1. The number of orthogongrespectivelysymplecti¢ regular char-
acters of G= G(Fy) is equal to the number of orthogoné@lespectively symplectiy
semisimple characters of G.

4. Central characters

For an irreducible representation with charactery, of a finite group, letw,, or
w,, denote the central character ofgiven by Schur's lemma.

As in the previous section, here we I& be a connected reductive group over
Fy with connected center, which is defined od& with Frobenius mapF. In [23,
Theorem 3], D. Prasad obtains the following result conngcthe Frobenius—Schur in-
dicator of a regular character @ to the value of the central character at a specific
element.

Theorem 4.1 (Prasad). Let G be a connected reductive group ovf which is
defined overFy, with Frobenius map Fand such that the center (&) is connected.
Then there exists an element z in the centeG6f= G such that for any real-valued
regular charactery of G, we haves(x) = w,(2).

We now prove that the central charactey, like the Frobenius—Schur indicator, is
preserved under the duality operator.

Lemma 4.1. Let x be an irreducible character of G= GF. Thenw, = w.,-.

Proof. First,Z(G) is contained in any Borel subgroup of G, sinceB is a max-
imal closed connected solvable subgroup&fSo, Z(G) is contained in any parabolic
subgroupP of G. It follows that Z(G)F is contained in any of the parabolic subgroups
P; of G = G". By [4, Proposition 3.6.8],Z(G)F = Z(G"), and so the center of
G = GF is contained in every parabolic subgroup & Now, if z € Z(G), and P,
is a parabolic subgroup d&, then it follows from applying Equation (3.1) that

Te/n(X)(2) = 0, (D Te/n(X)(D).

When evaluatingy *(z), we may factor outw,(z) from each term in the sum, and ob-
tain x*(2) = w,(2)x*(1). It immediately follows thatv, - = w,. ]

Theorem 3.2 and Lemma 4.1 immediately imply that the Prast@orem (The-
orem 4.1) may be extended to semisimple characters. We ntapdexhe result even
further as follows. LeG be a connected reductive group olgrwhich is defined over
Fq, with corresponding Frobenius mdp, so thatG is also defined oveFy for any
positive integerr, with Frobenius mag=" ThenG"" = G(Fy) is the set ofFg -points
of G, andG" c G™'.
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In order to further extend Theorem 4.1, we briefly summariee rmain idea of its
proof as it appears in [23]. LeéB be a Borel subgroup o& which is defined oveff
(and thus defined oveFy for anyr > 1), let T be a maximal torus of5 contained
in B which is defined oveify, and letN be the unipotent radical d8. Through [23,
Theorem 2], the proof of Theorem 4.1 is reduced to provingekistence of an elem-
ents € T(Fq) such thats acts by—1 on all of the simple root spaces &f. This is
proven in [23, Theorem 3], and the elemeanhas the property tha? = z € Z(G(Fq)),
where z is the element of Theorem 4.1. We make note of the fact that shime
s which acts by—1 on all of the simple root spaces of satisfiess € T(Fq), and
=ze Z(G(Fg)) € Z(G(Fy)). Thus, the central element obtained when applying
Theorem 4.1 td5(Fy) is the same central element obtained when applying Thedrém
to G(Fq ) for any positive integer. From this observation, along with Lemma 4.1, we
obtain the following generalization of Theorem 4.1.

Theorem 4.2. LetG be a connected reductive group ouigy with connected cen-
ter, which is defined oveify with Frobenius map F and is thus defined ovelF
with Frobenius map F for any positive integer r. Then there exists an elemesrt z
Z(G(IFg)) such that for any real-valued regular or semisimple chagact of G(Fy ),
we haves(x) = w,(2).

5. Applications

5.1. Frobenius-invariant Deligne—Lusztig characters. For a connected reduc-
tive group G over Fy with connected center, defined oV with Frobenius mapF,
consider anF-rational maximal torusT of G, and leto: T(Fy) — C* be a charac-
ter. Let Rry be the Deligne—Lusztig virtual character associated whith pair T, 0),
which is a virtual character of the grou(Fy), originally constructed in [6] (see also
[4, 7]). By [4, Corollary 7.3.5],=Ry ¢ is an irreducible character @&(F,) if and only
if 6 is in general position, that is, # is not fixed by any non-identity element of the
Weyl group W(T)F. Again, we usex to mean the correct sign is chosen to have an
irreducible character. We need the following result.

Lemma 5.1. Let Ry, be a Deligne—Lusztig virtual character @&(F,). Then for
any central element g Z(G(Fq)), we have R(z) = 0(2)Rr4(1).

Proof. Since any central element is semisimple and is costiain every torus,
then by applying the character value formula for Delignesdtig characters on semi-
simple elements given in [4, Proposition 7.5.3], we have

ETEG 8T8G|GF|D/
Rro(2) = TG, >0 = TQ(Z),
p geGF
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where eg and er denote—1 to the relative ranks oG and T, respectively (see [4,
p.197] for a definition). From the formula fdRr 4(1) given in [4, Theorem 7.5.1], we
obtain Rr 4(2) = 0(2) Rr »(1). O

If T is anF-rational maximal torus o6, we now consider a charactér. T(F.) —
C>, and the Deligne—Lusztig charact® ¢ of G(Fy2). A class functiony of G(Fg2)
is Frobenius-invariantif x o F = x, that is, if x(F(9)) = x(g) for every g € G(FFy2).
Let NmJqu/Fq (or simply Nm when the fields are clear from the context) dertbé norm
map of Fz down toFg, so that Nmg) = x - F(x) for any x € Fg.. Then Nm may be
extended to any abelian subgroup®fF,:). By [14, Lemma 6.9] =Ry e is an irredu-
cible Frobenius-invariant Deligne—Lusztig characterGiffy.), if and only if ® =6 o
Nquz/]Fq, for some charactef: T(Fy) — C such thatt Ry is an irreducible Deligne—
Lusztig character oG(Fy).

If Rrp is any Deligne—Lusztig character @F, then its conjugate is given by
Rr 5, from [4, Proposition 7.2.3]. If we assume th&tRy  is an irreducible Deligne—
Lusztig character ofGF, then it follows from [4, Theorems 7.3.4 and 7.3.8] that it is
real-valued if and only if there is an element of the Weyl grat/(T)F whose action
mapsé to §. We now have the following result.

Theorem 5.1. LetG be a connected reductive group oy with connected cen-
ter, which is defined oveFy with Frobenius map Fand so defined oveFy. with the
map F2. Let £Rr, be an irreducible real-valued Deligne—Lusztig charactérGiFy).
Let ® = 6 oNm: T(Fg2) — C*. ThenXRr e is an irreducible real-valued Frobenius-
invariant, Deligne—Lusztig character dB(FF,2), such thate(=Rre) = 1.

Proof. Let us denotgr = £Rr e, andy = =Ry . First, irreducible Deligne—
Lusztig characters are both regular and semisimple, angy Stheorem 4.2, there exists
an elementz € Z(G(Fy)) such thate(y) = wy(2). By Lemma 5.1, we havey,(z) =
0(2), and sof(z) = +1. By the discussion in the paragraph preceding this Lemma,
since® =60 oNm, x = =R e is a Frobenius-invariant irreducible characterGyfF?).
Since +Rr 4 is assumed to be real-valued, there is an elemert W(T)F such that
the action ofw takes6 to 6. Sincew is F-invariant, w acts on® as follows, where
t € T(Fg):

Owtw 1) = owNmt)w ) = 4(Nm()) = O(t).

Since the action ofv € W(T)F c W(T)"’ takes® to O, thenx is real-valued. So, by
Theorem 4.2¢(x) = wy(2), and by Lemma 5.1p,(2) = ©(2). Now we have

e(x) = 0(2) = 0(Nm(2)) = 0(z- F(2)).

Sincez € Z(G(Fy)), then Nmg) = z%, and so we finally have(x) = 6(2)? = 1, since
0(2) = £1. ]
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5.2. Finite unitary groups. We now letG = GL(n, ]Fq). Considering elements
of G as invertiblen-by-n matrices with entries fronF,, for g = (a;) € G, defineg
by g = (aﬂ), and let'g = (a;i) denote the transpose map. We now define a Frobenius
map F on G by

1 1

F(g) = o gt
1 1

Then the group offy-points of G is defined to be the finite unitary group, which we
denote byGF = U(n, Fq). We comment that if we define the Frobenius miapby

F(g) ='g7%, then in factG" =~ G, but we choose the Frobenius m&pso that, in
particular, the standard Borel subgroup @&fis stable under~.

The center of Uf,Fy) is the set of all scalar matrices of the fornh such thatx €
Fq and a9t =1, and sox € Fq2. As already noted, the standard Borel subgr@sp
consisting of upper triangular matrices, is &narational subgroup ofs, and contains
the maximally split standard torus,, consisting of diagonal matrices, which is also
F-rational. It may be directly checked thatdf e Foer then in the case that is even,
the element

s=diagl, ™9, ..., o, a7

satisfiess € Tg. Finally, we letNy denote the unipotent radical of the standard Borel
subgroupBg.

In the following, part (1) follows directly from [19, Theame 7 (ii)], but we also
give a proof below.

Theorem 5.2. Let x be a real-valued semisimple or regular characterd(n, Fy).
Then
(1) If nis odd or q is eventhene(x) = 1.
(2) Ifnis even and g= 1 (mod 4),thene(x) = w,(—1).
(3) If nis even and g= 3 (mod 4),thens(x) = w,(B1), whereg =t and te F is
such that §+1 = —1.
It follows from(2) and (3) that if n is even and q is oddhene(x) = w,(2), where z is
a multiplicative generator for the center &f(n, Fy).

Proof. For each part, we apply Theorem 4.2 along with the fopbdheorem 4.1,
as discussed in the paragraph preceding Theorem 4.2. Wefimiistn elemenst e Tg
such thats acts by—1 on each of the simple root spaces N§, and then we take
z = §? as the central element in Theorem 4.2. In this case, this sna@nmust find
an s such that, for evenh € Ny, if h = (&;) and shs?t = (bij), thenb; i1 = —a& 41
forl1<i<n-1.
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In part (1), first consider the case thatis even. Since we are in characteristic 2,
the elements and z may be taken to be the identity, and hengg) = 1. Now, if n
is odd (andq is odd or even), we les be the element

s=diag-1,1,...,1,-1)eT§.

Then conjugation by on any element oG sends each superdiagonal entry to its nega-
tive, as desired. Sas? = 1, ande(x) = 1 for any regular or semisimple real-valued
charactery.

In case (2), whem is even andq = 1 (mod 4), if we lety € Fy be such that
y2 = —1, then we let

s =diagly, —y,..., v, —¥)-

Thens e Tg, ands has the desired property. Sineé= —I, the result follows.

Finally, in case (3), whem is even andg = 3 (mod 4), first lett € Fp such
that t9+1 = —1. Such an element exists since the polynonxat! 4+ 1 is a factor of
x%~1_ 1, which splits completely oveFg.. Now, t79 = —t, and so if

s = diagt, —t, ..., t, —t),

thens € T{, ands again acts as-1 on each of the simple root spacesNy. Letting
B = t?, the desired central element is= gl .

For the last statement, i = 1 (mod 4), thenz9+1/2 = —|  where § + 1)/2 is
odd. Thus we have(x) = w,(—l) = w,(2). If g =3 (mod 4), then the elemertt
has orderg + 1, soz = g1 is a multiplicative generator for the center ofrilJfy), and
againe(x) = w,(2).

We remark that Theorem 5.2 cannot be extended to all chasaotdJ(n, Fy). For
example, there exist unipotent characters ofi, ;) such thate(x) = —1, while every
unipotent character satisfies (—1) = 1. We also note that in all of the examples given
in [12, 13, 23], the central element which may be used to firel Fnobenius—Schur
indicator of a real-valued regular character (or in some=gaany character) is either
| or —I. Case (3) of Theorem 5.2 seems to be the first example givewHah such
a central element is notl.

We now apply Theorem 5.2 to obtain results on the Schur isdafereal-valued
regular and semisimple characters ohlKg). For an irreducible character of a finite
group, and a field of characteristic 0, letnk (x) denote the Schur index of with
respect toK. Let Q, denote the field ofp-adic rationals, wherg = charfy), and let
Qp(x) denote the completion d@(x) at a prime ofQ(x) lying above p. We conclude
with the following.
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Corollary 5.1. Let x be a real-valued semisimple or regular charactertdh, Fy).
Then we have
(1) If g is even or n is oddthem mg(x) = 1.
(2) Assume that q is odd and n is eyaand let z be a generator for the center of
u(n,Fy). If w,(2) =1, then my(x) = 1. If ,(2) = -1, then ny(x) = Mr(x) = 2, and

|1t [Qp(x): Qp] is even
me(X)_[Z if [QZ(x):Qz] is odd

Proof. This follows directly from Theorem 5.2 and [19, pp84450]. See also
[22, Theorem 4]. O
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