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Abstract
We determine the location of all of the zeros of certain Poincaré series associated

with the Fricke groups0�0 (2) and0�0 (3) in their fundamental domains by applying
and extending the method of F.K.C. Rankin and H.P.F. Swinnerton-Dyer ([9]).

1. Introduction

F.K.C. Rankin and H.P.F. Swinnerton-Dyer considered the problem of locating the
zeros of the Eisenstein seriesEk(z) in the standard fundamental domainF [9]. They
proved that all of the zeros ofEk(z) in F are on the unit circle. They also stated to-
wards the end of their study that “This method can equally well be applied to Eisenstein
series associated with subgroup of the modular group.” However, it seems unclear how
generally this claim holds.

Furthermore, R.A. Rankin considered the same problem for certain Poincaré se-
ries associated with SL2(Z) [8]. He also applied the method of F.K.C. Rankin and
H.P.F. Swinnerton-Dyer, and proved that all of the zeros of certain Poincaré series inF also lie on the unit circle. Also, there are some families of modular forms and func-
tions which have similar location of the zeros [4].

Subsequently, T. Miezaki, H. Nozaki, and the present author considered the same
problem for Fricke groups0�0 (2) and0�0 (3) (See [5], [7]), which are commensurable
with SL2(Z). For a fixed primep, we define0�0 (p) WD 00(p)[00(p)Wp, where00(p)

is a congruence subgroup of SL2(Z) and Wp WD
(

0 �1=ppp
p 0

)

. Let E�
k, p(z) be the

Eisenstein series associated with0�0 (p), and the region

F�(p) WD {jzj > 1p
p

,
�1

2
6 Re(z) 6 0

} [ {jzj > 1p
p

, 06 Re(z) < 1

2

}

be a fundamental domain for0�0 (p) for p D 2, 3. The authors applied the method
of F.K.C. Rankin and H.P.F. Swinnerton-Dyer to the Eisenstein series associated with0�0 (2) and0�0 (3). We proved that all of the zeros ofE�

k, p(z) in F�(p) lie on the arc
A�

p WD F�(p) \ {jzj D 1=pp} for p D 2, 3 [6].
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Let

(1) G�
k, p(zI R) WD 1

2

∑

(c,d)D1
pjc

R(e2� i  z)

(czC d)k
C 1

2

∑

(c,d)D1
pjc

R(e2� i  (�1=(pz)))

(d
p

pz� c=pp)k

be a Poincaré series associated with0�0 (p) where R(t) is a suitably chosen rational

function of t . Here,  is an element of00(p) which satisfies D (

a b
c d

)

for the

integersc, d and some integersa, b, and is such that

 zD azC b

czC d
.

In the present paper, we consider the same problem for certain Poincaré series for0�0 (2) and0�0 (3). We apply both the method of F.K.C.Rankin and H.P.F. Swinnerton-Dyer,
and also the method of R.A. Rankin. The dimension of cusp forms for0�0 (p) of weightk
is denoted byl . We prove the following theorems:

Theorem 1.1. Let k > 4 be an even integer, and m be a non-negative integer.
Then all of the zeros(i.e. k((pC 1)=24)Cm zeros) of G�

k, p(zI t�m) in F�(p) lie on the
arc A�p for p D 2, 3.

Theorem 1.2. Let k> 4 be an even integer, and let m6 l be a positive integer.
Then G�k, p(zI tm) has at least k((pC 1)=24)�m zeros on the arc A�p and at least one
zero at1 for p D 2, 3.

Note thatG�
k, p(zI t�0) D E�

k, p(z).
Furthermore, if a modular form for0�0 (p) of weight k has N zeros andP poles

in F�(p), then

(2) N � P D k(pC 1)

24
(See [9]).

In Theorem 1.1,G�
k, p(zI t�m) has m poles at1. On the other hand, in Theorem 1.2,

G�
k, p(zI tm) has no poles and hask((pC1)=24) zeros in total, thus the location ofm�1

zeros is unclear.

2. Distribution of the zeros of modular functions

As is well known, there are two interesting series of modularfunctions for SL2(Z),
for which all of the zeros are on the lower arcs of the fundamental domainF , and with
different distributions for the zeros of the two series. They are the Eisenstein seriesEk

and the Hecke type Faber polynomialsFm.
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For the former, in the paper of F.K.C. Rankin and H.P.F. Swinnerton-Dyer [9], it
was shown that

(3) eik�=2Ek(ei � ) D 2 cos

(

k�
2

)C R1

which is real for all� 2 [�=2, 2�=3] and also thatjR1j < 2 for all k > 12. If cos(k�=2)
is C1 or �1, theneik�=2Ek(ei � ) is positive or negative, respectively. Thus, the distribu-
tion of the zeros of the Eisenstein series resembles a uniform distribution with argu-
ment� on the lower arc ofF .

On the other hand, for the latter, T. Asai, M. Kaneko, and H. Ninomiya proved that

(4) Fm(ei � ) D 2e2�m sin� cos(2�m cos�)C R2

which is real for all� 2 [�=2, 2�=3] and they showed also thatjR2j < 2e2�m sin� for
all m> 0 [1]. Thus, the distribution of the zeros resembles a uniform distribution with
real part sin� on the lower arc ofF .

Now, we consider the Poincaré series (cf. Eq. (1)):

(5) Gk(zI t�m) WD 1

2

∑

(c,d)D1

R(e2� i  z)

(czC d)k
.

In the paper of R.A. Rankin [8], it was shown that

(6) eik�=2Gk(ei � I t�m) D 2e2�m sin� cos

(

k�
2
� 2�m cos�)C R3

which is real for all� 2 [�=2, 2�=3] and also thatjR3j < 2e2�m sin� for all k > 4 and
m> 0. Then, Rankin proved that all of the zeros ofGk(zI t�m) are on the lower arc ofF .

Note that Gk(zI t0) D Ek(z) and G0(zI t�m) D Fm(z). Furthermore, ifk is large
enough compared withm, then the distribution of zeros ofGk(zI t�m) resembles that
of Ek(z). On the other hand, ifm is large enough compared withk, then the distri-
bution resembles that ofFm(z). Thus, the Poincaré seriesGk(zI t�m) “fill the space of
two modular functions discretely”. For example, we consider the following sequence
of modular forms:

(7) G12l (zI t0), G12(l�1)(zI t�1), G12(l�2)(zI t�2), : : : , G0(zI t�l ).

The number of zeros of each function is equal tol , and all of the zeros are on the
lower arc ofF .
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For the Fricke groups0�0 (2) and0�0 (3), the distributions of zeros are similar. In
fact, we have the following relations:

eik�=2E�
k, p

(

ei �p
p

) D 2 cos

(

k�
2

)C R1,

Fm, p

(

ei �p
p

) D 2e(2=pp)�m sin� cos

(

2p
p
�m cos�)C R2,

eik�=2G�
k, p

(

ei �p
p
I t�m

) D 2e(2=pp)�m sin� cos

(

k�
2
� 2p

p
�m cos�)C R3,

and it has been shown that all the zeros of the functions are onthe lower arcs ofF�(p)
for the Eisenstein seriesE�

k, p (cf. [6]), the Hecke type Faber polynomialsFk,2 (cf. [2]),
and the Poincaré seriesG�

k, p (cf. the present paper).

REMARK 2.1. W. Duke and P. Jenkins considered certain weakly holomorphic
modular forms fk,m for SL2(Z). If we assume thatk > 4 and m > 0 then fk,m is a
modular function of weightk and with m poles at1. They proved that all the zeros
of the function are on the lower arc ofF . Note that we have the following relation:

eik�=2 fk,m(ei � ) D 2e2�m sin� cos

(

k�
2
� 2�m cos�)C R.

Thus, the distribution of the zeros is similar to that of the Poincaré seriesGk(zI t�m).
However, unfortunately, for0�0 (2) and0�0 (3), not all of the zeros of the function

fk,m are on the lower arc ofF�(p). H. Tokitsu observed it by numerical calculation
[10], and he proved that ifm is large enough then all of the zeros offk,m are on the
lower arc.

3. General theory

Let �0,2 WD 3�=4, �0,3 WD 5�=6, and �1,p WD �=2 for p D 2, 3, and let�p WD
ei �0,p=pp. We denote byvq( f ) the order of a modular functionf at a pointq. We
have the following propositions: (See [6])

Proposition 3.1. Let k> 4 be an even integer. For every function f which is a
modular form for0�0 (p), we have

(8)
vi =pp( f ) > sk (sk D 0, 1 such that2sk � k (mod 4)),

v�p( f ) > tk (06 tk < 12=(pC 1) such that�2tk � k (mod 24=(pC 1))).

Furthermore, letl be the dimension of cusp forms for0�0 (p) of weight k; then we
have l D bk((pC 1)=24)� t=4, where t D 0 or 2, such thatt � k (mod 4).
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Following the methods in [9] and [8], we define

(9) F�
k, p(� I R) WD eik�=2G�

k, p

(

ei �p
p
I R).

Then, we have

F�
k, p(� I R) D 1

2

∑

(c,d)D1
pjc

R(e2� i  (ei �=pp))

((c=pp)ei �=2C de�i �=2)k
C 1

2

∑

(c,d)D1
pjc

R(e2� i  (�(e�i �=pp)))

((c=pp)e�i �=2 � dei �=2)k
,

which is real for every� 2 [�1,p, �0,p].
Furthermore, we can write

(10) F�
k, p(� I R) D 2 Re g�k, p(� I R)C F�0

k, p(� I R),

where F�0
k, p consists of all of the terms of the seriesF�

k, p which satisfyc2 C d2 > 2,
and where

g�k, p(� I R) D eik�=2R(e2� i (ei �=pp)).

Let p be the locus ofe2� i (ei �=pp) as � increases from 2�1,p � �0,p to �0,p, and let

r j , p WD je2� i (ei � j , p=pp)j for j D 0, 1. Then, the curvep begins at�r0,p, passes through
r1,p, and returns to�r0,p following a clockwise rotation. Assume that the functionR
has no zero or pole onp, and that it hasNp zeros andPp poles in the regionDp ,
the interior ofp. Then, by the Argument Principle, we have

(11) n0 � n1 D Pp � Np ,

wheren0 and n1 are integers such that

argg�k, p(�1,pI R) D �(n1C k

4

)

, argg�k, p(�0,pI R) D �(n0C k�0,p

2�
)

.

Suppose that the Poincaré seriesG�
k, p(zIR) hasNR zeros andPR poles inF�(p). Then

(12) NR � PR D k(pC 1)

24
.

DEFINITION 3.1 (PropertyPk, p). We shall say that the functionR has Prop-
erty Pk, p if
(i) R is a real rational function,
(ii) all of the poles of R lie in Dp ,
(iii) l > Np � Pp , and
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(iv)

(13) jF�0
k, p(� I R)j < 2jR(e2� i (ei �=pp))j

for every � 2 [�1,p, �0,p].

Here, condition (iv) is equivalent to condition (iv)0: the inequality(13) holds for
every point� 2 [�1,p, �0,p] which satisfies

(14) argg�k, p(� I R) � 0 (mod�).

We call such a point aninteger point of g�k, p.
We then have the following theorem: (See Theorem 1 and 2 of [8])

Proposition 3.2. Suppose that the function R has Property Pk, p. Then the Poincaré
series G�k, p(zI R) has at least NR � Np zeros on the arc A�p for p D 2, 3. In particular,
if R does not vanish inDp , then all of the zeros of G�k, p(zI R) lie on A�p.

Note that we can prove the above theorem with condition (iv)0 replacing condi-
tion (iv).

We would like to put condition (13) of PropertyPk, p into another form. We define
the following bounds:

MR, p WD sup{jR(e2� i  (ei �=pp))jI �1,p 6 � 6 �0,p,  2 00(p) n 01},(15)

�k, p WD sup















∑

(c,d)D1
pjc,c¤0

(

c2

p
C d2C 2p

p
cd cos�)�k=2I �1,p 6 � 6 �0,p















.(16)

Then the condition

(17) MR, p�k, p < 2jR(e2� i (ei �=pp))j
is sufficient to imply condition (13). Then, we have only to prove the above inequality
instead of condition (13).

This idea is due to R.A. Rankin [8].
However, it is difficult to apply this method to the cases of0�0 (2) and 0�0 (3).

For example, ifR(t) D t�m for a positive integerm, then we haveMR, p D r �m
0,p and

jR(e2� i (ei �=pp))j > r �m
0,p . Moreover, we have�k,2 > 2 and �k,3 > 4. Thus, we are un-

able to prove Theorem 1.1 in this way, nor Theorem 1.2. We mustconsider a certain
extension of this method, observing some terms of the seriesin detail.
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4. Applications

The point in the previous section is that there exist some pairs (c, d) such that
c2=p C d2 C (2=pp)cd cos�0,p D 1. For the casep D 2, the pair satisfyingc2=2C
d2 C (2=p2)cd cos�0,2 D 1 is (c, d) D �(2, 1), then D �S2 D �( 1 0

2 1

)

, which is

shown in the term of the Poincaré series. For the other casep D 3, such pairs are

given by (c, d) D �(3, 1) [in which case D �S3 D �( 1 0
3 1

)

] and (c, d) D �(3, 2)

[in which case D �S�1
3 T D �( �1 �1

3 2

)

]. Note that “c2=pCd2C (2=pp)cdcos� <
1, � < �0,p for the above pairs (c, d).”

Now, we can write

F�
k,2(� I R) D 2 Re g�k,2(� I R)C 2 Re h�k,2(� I R)C F�00

k,2(� I R),(18)

F�
k,3(� I R) D 2 Re g�k,3(� I R)C 2 Re h�k,3(� I R)C 2 Re h�0k,3(� I R)C F�00

k,3(� I R)(19)

where F�00
k, p consists of all terms of the seriesF�00

k, p which satisfyc2 C d2 > 2 and are
not equal to the above pairs, and where

h�k, p(� I R) D R(e2� i Sp(ei �=pp))

(
p

pei �=2C e�i �=2)k
, h�0k,3(� I R) D R(e2� i (�S�1

3 T)(ei �=p3))

(
p

3ei �=2C 2e�i �=2)k
.

Instead ofMR, p, we define

MR,2
0 WD sup{jR(e2� i  (ei �=p2))jI �1,2 6 � 6 �0,2,  2 00(2) n (01 [ 01S2)},(20)

MR,3
0 WD sup{jR(e2� i  (ei �=p3))jI �1,3 6 � 6 �0,3,  2 00(3) n (01 [ 01S3 [ 01S�1

3 T)}.

(21)

Moreover, since

Im ( ei �p
p

) D 1p
p

sin�
c2 pC d2C 2

p
pcdcos� ,

2c2 C d2 C 2
p

2cd cos� > p2 sin� , and 3c2 C d2 C 2
p

3cd cos� > 2 sin� , we haveje2� i  (ei �=pp)j > r0,p. Then, we have

MR,2
0 D sup{jR(t)jI e�p2�=3 6 jt j 6 1},

MR,3
0 D sup{jR(t)jI e��=(2p3) 6 jt j 6 1}.
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On the other hand, for�k, p, since (c2=p C d2 C (2=pp)cd cos�)�k=2 C (c2=p C
d2 � (2=pp)cd cos�)�k=2 is monotonically increasing in� , we have

�k, p D ∑

(c,d)D1
pjc,c¤0

(

c2

p
C d2C cd

)�k=2 D ∑

(c,d)D1
pd,c¤0

(c2 pC cdpC d2)�k=2

6 ∑

(c,d)D1

(c2 pC cdpC d2)�k=2 � 2.

In addition, since we have 2c2 C 2cd C d2 D c2 C (c C d)2 and 3c2 C 3cd C d2 D
c2C c(cC d)C (cC d)2, we can regard these series as the Epstein zeta-function. We
therefore have the following bounds:

�k,2 6 4� (k=2)Z4(k=2)� (k)
� 2, �k,3 6 6� (k=2)Z3(k=2)� (k)

� 2,

where� is the Riemann zeta-function andZ3 and Z4 are the DirichletL-series

Z3(s) WD 1� 2�sC 4�s � 5�sC 7�s � 8�sC � � � ,
Z4(s) WD 1� 3�sC 5�s � 7�sC 9�s � 11�sC � � � .

Furthermore, if 2c2C2cdCd2 D 2, then (c, d)D�(1, 0),�(1,�2). These pairs satisfy
(c, d) D 1, but they do not satisfy 2 d. In addition, by using the bounds

� (x) 6 1C 2�x C 3�x C 4�x C 5�x C 51�x

x � 1
,

Z4(x) 6 1� 3�x C 5�x, {� (2x)}�1 6 1� 2�2x,

we have

�k,2� 2� 4� 2�k=2 6 5�k=2(5C 10

k � 2

)

for k > 4.

Then, we define

(22) Æk,2 WD 5�k=2(5C 10

k � 2

)

.

Similarly, we define

(23) Æk,3 WD














7�k=2(14C 14

k � 2

)

for k > 4

7�k=2(13C 14

k � 2

)

for k > 12

.

Finally, we have

jF�00
k, pj < MR, p

0Æk, p.
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Now, we define the following condition instead of “PropertyPk, p”:

DEFINITION 4.1 (PropertyPk, p
0). We shall say that the functionR has Prop-

erty Pk, p
0 if

(i) R is a real rational function,
(ii) all of the poles of R lie in Dp ,
(iii) l > Np � Pp , and
(iv-i) we have

jRe h�k,2(� I R)j C 1

2
MR,2

0Æk,2 < jR(e2� i (ei �=p2))j,(24)

jRe h�k,3(� I R)j C jRe h�0k,3(� I R)j C 1

2
MR,3

0Æk,3 < jR(e2� i (ei �=p3))j(25)

for every integer point� 2 [�1,p, �0,p) for p D 2, 3, respectively, and
(iv-ii) we have

(26) Sign(F�
k, p(�0,pI R)) D Sign(Re g�k, p(�0,pI R))

if �0,p is an integer point.

To prove Theorem 1.1 and 1.2, we consider the following theorem instead of Prop-
osition 3.2, where the point is to use PropertyPk, p

0.
Theorem 4.1. Suppose that the function R has Property Pk, p

0. Then the Poincaré
series G�k, p(zIR) has at least NR�Np zeros on the arc A�p for pD 2, 3. In particular,
if R does not vanish inDp , then all of the zeros of G�k, p(zI R) lie on A�p.

5. Proof of Theorem 1.1

5.1. Preliminaries. Let k > 4 andm> 0 be integers, and letR(t)D t�m. Then,
it is clear thatR satisfies the conditions (i), (ii), and (iii) of PropertyPk, p

0. Further-
more, we havePp D m, Np D 0, and NR � Np D k((pC 1)=24)Cm.

To prove thatR satisfies condition (iv-i) of PropertyPk, p
0, it is sufficient to prove

the inequalities (24) and (25) for every� 2 [�1,p, �0,p� x] for certain x such that every
integer point is included in the interval. The first step is toconsider how smallx
should be.

When p D 2, and whenk � 4 (mod 8), thenk D 8l C 4 and

argg�k,2(�0,2I R) D (3

8
kCm

)� D (3l CmC 1C 1

2

)� .
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Thus, the last integer point is the point�0,p � x such that

argg�k,2(�0,2� xI R) D (3l CmC 1C 1

2

)� � �
2

.

In addition, we have

argg�k,2(�0,2� xI R) > argg�k,2(�0,2I R) � (kC 8m

2

)

x.

Thus, x 6 �=(kC 8m) is sufficient. Similarly, whenk � 6, 0, and 2 (mod 8), we have
x 6 �=(2(k C 8m)), 2�=(k C 8m), and 3�=(2(k C 8m)), respectively. So for this case,
the boundx 6 �=(2(kC 8m)) is sufficient.

Similarly, when p D 3, and whenk � 4, 6, 8, 10, 0, and 2 (mod 12), we have
x 6 t�=(kC 6m), where t D 4=3, 1, 2=3, 1=3, 2, and 5=3, respectively. In conclusion,
the boundx 6 �=(3(kC 6m)) is sufficient. Note thatx 6 2�=(3(kC 6m)) is sufficient
if k ¥ 10 (mod 12).

Furthermore, we havejR(e2� i (ei �=pp))j D e(2=pp)�m sin� ; we define

G WD e�p2�m sin� jh�k,2(� I R)j,
G1 WD e�(2=p3)�m sin� jh�k,3(� I R)j, G2 WD e�(2=p3)�m sin� jh�0k,3(� I R)j.

Then, we will show the following lemma in the following sections:

Lemma 5.1. (i) We have

GC 1

2
MR,2

0Æk,2e
��m < 1 for every � 2 [�1,2, �0,2� �

2(kC 8m)

]

,(27)

G1C G2C 1

2
MR,3

0Æk,3e
��m < 1 for every � 2 [�1,3, �0,3� x0],(28)

where x0 D �=(3(k C 6m)) when k� 10 (mod 12)and x0 D 2�=(3(k C 6m)) when
k ¥ 10 (mod 12).
(ii) We have

(29) Sign(F�
k, p(�0,pI R)) D Sign(Re g�k, p(�0,pI R))

if k � 0 (mod 8) for the case of pD 2, and if k� 0 (mod 12)for the case of pD 3.

When we have proved the lemma above, then we can show that the function R
satisfies PropertyPk, p

0. Thus, we can prove Theorem 1.1.
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5.2. The casep D 2. We have MR,2
0 D e(

p
2=3)�m and (1=2)MR,2

0Æk,2e��m 6
0.038003: : : for k > 4 andm > 1.

Furthermore,

G D Exp[�2�m sin�(
p

2C 2 cos�)=(3C 2
p

2 cos�)]

(3C 2
p

2 cos�)k=2 .

For � 2 [�1,2, �0,2� �=(2(kC 8m))], we have

Exp

[�2�m sin�(
p

2C 2 cos�)

3C 2
p

2 cos�
]

6 Exp

[�20

13
�m sin

( �
2(kC 8m)

)] 6 Exp

[�(99=130)�2

(k=m)C 8

]

,

which is monotonically increasing ink=m. We also have

3C 2
p

2 cos

(�0,2� �
2(kC 8m)

) > 1C � 1

1C 8m=k 1

k
.

Put s WD k=m. For 06 s6 100, we have

G 6 Exp

[�(99=130)�2

sC 8

] 6 0.93277: : : .
On the other hand, if 1006 s, we have 1C �(1=(1C 8m=k))(1=k) > 2k=2 and

G 6 1

2
Exp

[�(99=130)�2

sC 8

] 6 1

2
.

Then, (i) of Lemma 5.1 follows.
On the other hand, whenk � 0 (mod 8), we can writek D 8l , and we have

Re g�8l ,2(�0,2I R) D e�m cos((3l Cm)�),

Re h�8l ,2(�0,2I R) D e�m cos((l �m)�).

Note that the signs of the two terms above are in agreement. Furthermore, we have

jF�00
8l ,2(�0,2I R)j � jRe g�8l ,2(�0,2I R)j.

Thus, we can show Lemma 5.1.
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5.3. The casepD3. We haveMR,3
0De(1=(2p3))�m. Let D WD (1=2)MR,3

0Æk,3e��m.
Firstly, we have

G1 D Exp[�2�m sin�(
p

3C 2 cos�)=(4C 2
p

3 cos�)]

(4C 2
p

3 cos�)k=2 ,

G2 D Exp[�4�m sin�(
p

3C 2 cos�)=(7C 4
p

3 cos�)]

(7C 4
p

3 cos�)k=2 .

For k > 4, we haveD D 0.061157: : : .
When k D 4, we have

G1C G2 6 Exp

[�5

6
�m sin

(

4�
3(4C 6m)

)]C Exp

[�10

7
�m sin

(

4�
3(4C 6m)

)]

,

where the right-hand side is monotonically decreasing inm and is less than 1�D when
mD 1.

When 66 k 6 32 andk ¥ 10 (mod 12) (i.e.k ¤ 10, 22), we have

G1C G2

6 Exp

[�5

3
�m sin

(�0,3� 2�
3(kC 6m)

)(p
3C 2 cos

(�0,3� 2�
3(kC 6m)

))]

C Exp

[�20

7
�m sin

(�0,3� 2�
3(kC 6m)

)(p
3C 2 cos

(�0,3� 2�
3(kC 6m)

))]

DW f1(k, m),

where f1(k, m) is monotonically decreasing inm. Moreover, we haveG1CG2CD < 1
for m6 6 and f1(k, 7)C D < 1 by numerical calculation.

For k > 10, we haveD D 0.000078006: : : .
When k D 10, we haveG1C G2C D < 1 for m6 12 and

G1C G2

6 Exp

[�1000

511
�m sin

(�0,3� �
3(10C 6m)

)(p
3C 2 cos

(�0,3� 2�
3(10C 6m)

))]

C Exp

[�1000

261
�m sin

(�0,3� �
3(10C 6m)

)(p
3C 2 cos

(�0,3� 2�
3(10C 6m)

))]

,

where the right-hand side is monotonically decreasing inm and is less than 1�D when
mD 13.
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When k D 22, we haveG1C G2C D < 1 for m 6 26 and

G1C G2

6 Exp

[�200

101
�m sin

(�0,3� �
3(22C 6m)

)(p
3C 2 cos

(�0,3� 2�
3(22C 6m)

))]

C Exp

[�200

51
�m sin

(�0,3� �
3(22C 6m)

)(p
3C 2 cos

(�0,3� 2�
3(22C 6m)

))]

,

where the right-hand side is monotonically decreasing inm and is less than 1�D when
mD 27.

For k > 34, we haveD D 3.8242: : : � 10�15.
When k > 34, for � 2 [�1,3, �0,3� �=(3(kC 6m))], we have

Exp

[�2�m sin�(
p

3C 2 cos�)

4C 2
p

3 cos�
]

6 Exp

[�125

131
�m sin

( �
3(kC 6m)

)] 6 Exp

[�(333=1048)�2

(k=m)C 6

] DW A1

(

k

m

)

,

Exp

[�4�m sin�(
p

3C 2 cos�)

7C 4
p

3 cos�
]

6 Exp

[�250

137
�m sin

( � t

kC 6m

)] 6 Exp

[�(333=548)�2

(k=m)C 6

] DW A2

(

k

m

)

.

We also have

4C 2
p

3 cos

(�0,3� �
3(kC 6m)

) > 1C �p
3

(

1

1C 6m=k
)

1

k
DW B1

(

k

m

)

,

7C 4
p

3 cos

(�0,3� �
3(kC 6m)

) > 1C 2�p
3

(

1

1C 6m=k
)

1

k
DW B2

(

k

m

)

.

Put s WD k=m. Then we haveG1 C G2 6 A1(s)B1(s)�k=2 C A2(s)B2(s)�k=2. Here,
A1, A2, B1, and B2 are monotonically increasing ins. Then, fors1 6 s6 s2, we have
G1CG2 6 A1(s2)B1(s1)�k=2C A2(s2)B2(s1)�k=2. The algorithm is as follows, similar to
that for the casep D 2:

For s1 6 s6 s2, we determinea1 anda2 so thatB1(s1) > a2=k
1 and B2(s1) >

a2=k
2 , respectively. Then, we have only to show that

1

a1
A1(s2)C 1

a2
A2(s2) < 1� D.
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We have the following result:

s1 s2 a1 a2 (1=a1)A1(s2)C (1=a2)A2(s2)
0 7=20 1 1 0.99914: : :

7=20 51=50 21=20 109=100 0.99968: : :
51=50 241=100 57=50 31=25 0.99940: : :

241=100 551=100 129=100 29=20 0.99989: : :
551=100 76=5 153=100 173=100 0.99932: : :

76=5 451 189=100 52=25 0.99998: : :
451 1 239=200 62=25 0.82163: : :

Finally, whenk � 0 (mod 12), we can writek D 12l 0, and we have

Re g�12l 0,3(�0,3I R) D e(1=p3)�m cos((5l 0 Cm)�),

Re h�12l 0,3(�0,3I R) D e(1=p3)�m cos((3l 0 �m)�),

Re h�012l 0,3(�0,3I R) D e(1=p3)�m cos((�l 0 Cm)�).

Here, the signs of above three terms are in agreement. Furthermore, we have

jF�00
12l 0,3(�0,3I R)j � jRe g�12l 0,3(�0,3I R)j.

In conclusion, we can show Lemma 5.1.

6. Proof of Theorem 1.2

6.1. Preliminaries. Let k > 4 andm> 0 be integers, and letR(t)D tm. Then, it
is clear thatR satisfies the conditions (i), (ii), and (iii) of PropertyPk, p

0. Furthermore,
we havePp D 0, Np D m, and NR� Np D k((pC 1)=24)�m. We may assume that
k((pC 1)=24)> l > m > 1.

Similarly to the previous section, we consider a certain number x for the interval
[�1,p, �0,p � x] in which every integer point is included. We have

argg�k, p(�0,p � xI R) > argg�k, p(�0,pI R) � k

2
x.

Thus, when p D 2, the boundx 6 �=(2k) is sufficient. Whenp D 3 and k ¥ 10
(mod 12), the boundx 6 2�=(3k) is sufficient.

On the other hand, ifk ¥ 10 (mod 12), we need to consider a stricter numberx
for calculation. We may assume thatx 6 �=33 andk > 22, in which case we have

argg�k,3(�0,3� xI R) > argg�k,3(�0,3I R) � (k

2
� 9m

5

)

x,
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and so we may assumex D �=(3(k � (18=5)m)).
Furthermore, we havejR(e2� i (ei �=pp))j D e�(2=pp)�m sin� , so we define

G WD e
p

2�m sin� jh�k,2(� I R)j,(30)

G1 WD e(2=p3)�m sin� jh�k,3(� I R)j, G2 WD e(2=p3)�m sin� jh�0k,3(� I R)j.(31)

Then, we will show the following lemma in order to prove Theorem 1.2:

Lemma 6.1. (i) We have

GC 1

2
MR,2

0Æk,2e
p

2�m < 1 for every � 2 [�1,2, �0,2� �
2(kC 8m)

]

,(32)

G1C G2C 1

2
MR,3

0Æk,3e
(2=p3)�m < 1 for every � 2 [�1,3, �0,3� x0],(33)

where x0 D 2�=(3k) when k¥ 10 (mod 12)and x0 D �=(3(k � (18=5)m)) when k�
10 (mod 12).
(ii) We have

(34) Sign(F�
k, p(�0,pI R)) D Sign(Re g�k, p(�0,pI R))

if k � 0 (mod 8) for the case of pD 2, and if k� 0 (mod 12)for the case of pD 3.

6.2. The casep D 2. We haveMR,2
0 D 1 and

(35)
1

2
Æk,2e

�p2�m 6 1

2
e�p2�(1

5
e
p

2�=4)k=2(
5C 10

k � 2

) 6 0.00062185: : :
for k > 16 because (1=5)e

p
2�=4 < 1 andk > 8(mC 1).

Furthermore,

G D Exp[2�m sin�(
p

2C 2 cos�)=(3C 2
p

2 cos�)]

(3C 2
p

2 cos�)k=2 .

For � 2 [�1,2, �0,2� �=(2k)], we have

1

3C 2
p

2 cos(�0,2� �=(2k))
6 1

1C �=k ,

p
2 sin

(�0,2� �
2k

) 6 1C �
2k

,

p
2C 2 cos(�0,2� �=(2k))p

2
6 (11=20)�

k
.
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We also have

3C 2
p

2 cos

(�0,2� �
2k

) > 1C �
k
> 42=k,

and so

G 6 1

4
e(11=10)�2(m=k) 6 1

4
e(11=80)�2 D 0.97119: : : .

Finally, whenk � 0 (mod 8), we can writek D 8l to yield

Re g�8l ,2(�0,2I R) D e��m cos((3l �m)�),

Re h�8l ,2(�0,2I R) D e��m cos((l Cm)�).

Here, the signs of above two terms are in agreement. Furthermore, we have

jF�00
8l ,2(�0,2I R)j � jRe g�8l ,2(�0,2I R)j.

Hence, Lemma 6.1 follows.

6.3. The casep D 3.

6.3.1. Preliminaries. We haveMR,3
0 D 1 and

1

2
Æk,3e

�(2=p3)�m 6 1

2
e�(2=p3)�(1

7
e2�=(3p3)

)k=2(
13C 84

k � 2

)

6 0.0034216: : : DW D

for k > 12 because we have (1=7)e2�=(3p3) < 1 andk > 6(mC 1).
We have

G1 D Exp[2�m sin�(
p

3C 2 cos�)=(4C 2
p

3 cos�)]

(4C 2
p

3 cos�)k=2 ,

G2 D Exp[4�m sin�(
p

3C 2 cos�)=(7C 4
p

3 cos�)]

(7C 4
p

3 cos�)k=2 .

6.3.2. The casek ¥ 10 (mod 12). We may assume thatx D 2�=(3k) andk > 12.
For 126 k 6 40, we have

G1C G2 < ((G1C G2)j�D�0,3�(2=3)�=k)jmDk=6,

and we can show the right-hand side is less than 1� D by numerical calculation.
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For k > 42, we have

G1 6 Exp[(29=40)�2m=k]

(1C 2
p

3�=(3k))k=2 ,

G2 6 Exp[(29=20)�2m=k]

(1C 4
p

3�=(3k))k=2 ,

1C 2
p

3�=(3k) > (28=5)2=k, and 1C 4
p

3�=(3k) > 272=k. Thus, we have

G1C G2 6 5

28
e29�2=240C 1

27
e29�2=120D 0.99074: : : .

6.3.3. The casek � 10 (mod 12). When k D 22, 34, 46, and 58, we havem6
(k � 10)=6, and we can calculate (G1 C G2)j�D�0,3��=(3(k�(18=5)m)) < 1 � D for each
k and m.

When k > 70, for � 2 [�1,3, �0,3� �=(3(k � (18=5)m))], we have

Exp

[

2�m sin�(
p

3C 2 cos�)

4C 2
p

3 cos�
] 6 Exp

[

(28=75)�2

(k=m) � 18=5
] DW A1

(

k

m

)

,

Exp

[

4�m sin�(
p

3C 2 cos�)

7C 4
p

3 cos�
] 6 Exp

[

(56=75)�2

(k=m) � 18=5
] DW A2

(

k

m

)

.

We also have

4C 2
p

3 cos

(�0,3� �
3(k � (18=5)m)

) > 1C �p
3

1

1� (18=5)m=k 1

k
DW B1

(

k

m

)

,

7C 4
p

3 cos

(�0,3� �
3(k � (18=5)m)

) > 1C 2�p
3

1

1� (18=5)m=k 1

k
DW B2

(

k

m

)

.

Following the procedure in the previous section, we puts WD k=m. A1, A2, B1,
and B2 are monotonically decreasing ins. Then, fors1 6 s6 s2, we haveG1CG2 6
A1(s1)B1(s2)�k=2C A2(s1)B2(s2)�k=2. The algorithm is as follows:

For s1 6 s6 s2, we determinea1 anda2 so thatB1(s2) > a2=k
1 and B2(s2) >

a2=k
2 , respectively. Then, we have only to show that

1

a1
A1(s1)C 1

a2
A2(s1) < 1� D.
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We have the following result:

s1 s2 a1 a2 (1=a1)A1(s1)C (1=a2)A2(s1)
6 25=4 79=10 55 0.97955: : :

25=4 20=3 67=10 41 0.99298: : :
20=3 22=3 28=5 29 0.97504: : :
22=3 35=4 9=2 19 0.97512: : :
35=4 13 17=5 11 0.98174: : :
13 1 12=5 29=5 0.99424: : :

6.3.4. The casek � 0 (mod 12) and� D �0,3. We can writekD 12l 0, and then
we have

Re g�12l 0,3(�0,3I R) D e�(1=p3)�m cos((5l 0 �m)�),

Re h�12l 0,3(�0,3I R) D e�(1=p3)�m cos((3l 0 Cm)�),

Re h�012l 0,3(�0,3I R) D e�(1=p3)�m cos((�l 0 �m)�).

Here, the signs of above three terms are in agreement. Furthermore, we have

jF�00
12l 0,3(�0,3I R)j � jRe g�12l 0,3(�0,3I R)j.

In conclusion, we have been able to show Lemma 6.1.

REMARK 6.1. Note that the location ofm � 1 zeros is unclear (cf. the end of
Section 1).

When l 6 1, i.e. “when p D 2, and 46 k 6 14, k D 18”, and “when p D 3, and
46 k 6 10, k D 14”, then we havem� 16 0, thus we can prove that all of the zeros
of G�

k, p(zI tm) in F�(p) are on the arcA�
p for p D 2, 3 andm6 l .

When pD 2, k D 16 andmD 2, we can prove that one more zero lies onA�
2 by

numerical calculation. Thus we can prove that all of the zeros of G�
16,2(zI tm) in F�(2)

lie on A�
2 for m6 2. Similarly, whenpD 3 andk D 12, we can also prove that all of

the zeros ofG�
12,3(zI tm) in F�(3) lie on A�

3 for m6 2 by numerical calculation.
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