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Abstract
The based loop space homology of a special family of homogeneous spaces, flag

manifolds of connected compact Lie groups is studied. First, the rational homology
of the based loop space on a complete flag manifold is calculated together with its
Pontrjagin structure. Second, it is shown that the integralhomology of the based
loop space on a flag manifold is torsion free. This results in adescription of the
integral homology. In addition, the integral Pontrjagin structure is determined.
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1. Introduction

A complete flag manifoldof a compact connected Lie groupG is a homogeneous
spaceG=T , where T is a maximal torus inG. In this paper we study the integral
Pontrjagin homology of the based loop space on a complete flagmanifold G=T .

Compact homogeneous spaces, in particular, flag manifolds play a significant role
in many areas of physics and mathematics, such as theory of characteristic classes of
fibre bundles, representation theory, string topology and quantum physics. Still there
are only few homogeneous spaces for which the integral homology ring of their based
loop spaces is known. Some of them are classical simple Lie groups, spheres, and
complex projective spaces.
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The motivation for our study comes from Borel’s work [2] in which he described
the family of compact homogeneous spaces whose cohomology ring is torsion free. In
particular, homogeneous spacesG=U where rankGD rankU stand out as homogeneous
spaces which behave nicely under application of algebraic topological techniques. In
this case Sullivan minimal model theory together with the Milnor–Moore theorem can
be employed to calculate the rational homology ring of theirbased loop spaces. As
one of the main results of our paper (see Theorem 2.1) we provethat the homology
of the based loop space on a complete flag manifold is torsion free.

Furthermore, we explicitly calculate the integral Pontrjagin homology ring of the
loop spaces on the complete flag manifolds of simple compact Lie groupsSU(nC 1),
Sp(n), SO(2n C 1), SO(2n), G2, F4 and E6 (see Theorems 4.1, 4.2, 4.3, 4.4, 4.5,
4.6, 4.7).

It is a classical result (see for example [3], or [5]) that thehomology of the
e-connected component�0G of the loop space onG is torsion free for any compact
connected Lie groupG. Thus by the use of rational calculations, we show that there
is a split extension of algebras

1! H�(�0GI Z)! H�(�(G=T)I Z)! H�(T I Z)! 1

and describe the integral Pontrjagin ring structure on�(G=T) for a simple compact
Lie group G.

Throughout the paper, the loop space on a topological space will mean a based
loop space.

2. Torsion in the homology of loop spaces

We start by recalling some well known facts about the (co)homology of classical
simple compact Lie groups and their based loop spaces (see for example [10]). It is a
classical result that for any compact connected Lie groupG of rank n,

H�(GIQ) �∧(z1, : : : , zn), H�(�0GIQ) � Q[b1, : : : , bn]

where deg(zi ) D 2ki � 1 and deg(bi ) D 2ki � 2 for 1� i � n, andki are the exponents
of the groupG. For simple compact Lie groups, these exponents are established.

For G D SU(nC 1) or G D Sp(n), the integral homology ofG and�G is torsion
free and it is given by

H�(GI Z) �∧(x1, : : : , xn), H�(�GI Z) � Z[y1, : : : , yn]

where deg(xi ) D 2ki �1, and deg(yi ) D 2ki �2 for 1� i � n. Under the rationalisation
the integral generatorsx1, : : : , xn and y1, : : : , yn are mapped onto the rational generators
z1, : : : , zn and b1, : : : , bn, respectively.
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For G D SO(2n C 1) or G D SO(2n), the integral homology ofG and �G has
2-torsion.

Borel [2, Proposition 29.1] proved that the homology of a flagmanifold G=T is
torsion free for the classical Lie groupsG and for G D G2 or F4. Using Morse theory,
it is proved in [4] that this is true for any compact connectedLie group.

Our first result states that the complete flag manifold of a compact connected Lie
group behaves nicely with respect to the loop space homologyfunctor.

Theorem 2.1. The homology of the based loop space on the complete flag mani-
fold of a compact connected Lie group is torsion free.

We will first show that to prove the theorem it is enough to consider the case when
G is a simple, compact Lie group.

Proposition 2.2. The loop space on the flag manifold of a compact, connected
Lie group G decomposes into a product of the loop spaces on flagmanifolds of simple,
compact Lie groups.

Proof. It is a classical result (see Onishchik [12]) that a compact connected Lie
group G can be decomposed into a locally direct product of connectedsimple normal
subgroups. That is,G D G1 � � � Gk, where Gi is a simple, connected Lie group or a
torus, 1� i � k, such that

dim Gi \ (G1 � � � Gi�1 � GiC1 � � � Gk) D 0.

Let QG be G1 � � � � � Gk and p W QG ! G defined by p(g1, : : : , gk) D g1 � � � gk. Since
Ker pD⋃n

iD1 Gi \ (G1 � � � OGi � � �Gk), we obtain that Kerp is discrete or in other words

p W QG! G is a covering. Thus Kerp is contained in the centerZ( QG) of QG. Let T D
T1�� � ��Tk be a maximal torus inQG, whereTi is a maximal torus inGi for 1� i � k.
Then Kerp � T and therefore

G1=T1 � � � � � Gk=Tk D QG=T D ( QG=Ker p)=T D G=T .

Hence

�(G=T) ' �(G1=T1) � � � � ��(Gk=Tk).

Proof of Theorem 2.1. LetG be a compact connected Lie group andT its max-
imal torus. We have that the complete flag manifoldG=T for any compact connected
Lie groupG is homeomorphic to the complete flag manifoldQG=T of its universal coverQG. Therefore, we may assumeG to be simply connected. ForG simply connected, it
is classical result (see for example [13]) that�(G=T) has the same homotopy type as
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�(G) � T . To verify this notice that related to the principal fibration as topological
spaces. ForG a simple, compact, simply connected Lie group, it is a classical result
that the integral homology of�G is torsion free. Now using homotopy splitting of�(G=T), we conclude that the homology of�(G=T) is torsion free in this case. The
statement of the theorem now follows readily from Proposition 2.2.

3. Rational homology

In this section we calculate the rational homology ring of the loop space on a flag
manifold by looking separately at each simple Lie group.

To calculate the rational homology of the based loop space ona complete flag
manifold of a classical simple Lie group we will apply Sullivan minimal model theory.
Let us start by recalling the key constructions and setting the notation related to the
Sullivan minimal model and rational homology of loop spaceswhich we are going to
use in the subsequent sections.

3.1. Rational homology of loop spaces.Let M be a simply connected topo-
logical space with the rational homology of finite type. Let�D (3V ,d) be a Sullivan
minimal model for M. Then dW V ! 3�2V can be decomposed asd D d1Cd2C� � � ,
where di W V ! 3�iC1V . In particular, d1 is called thequadratic part of the differ-
ential d.

The homotopy Lie algebraL of � is defined in the following way. Define a graded
vector spaceL by requiring that

sLD Hom(V , Q)

where as usual the suspensionsL is defined by (sL)i D (L)i�1. We can define a pairingh I i W V � sL! Q by hvI sxi D (�1)degvsx(v) and extend it to (kC 1)-linear maps

3kV � sL� � � � � sL! Q
by letting

hv1 ^ � � � ^ vkI sxk, : : : , sx1i D∑

�2Sk

�� hv� (1)I sx1i � � � hv� (k)I sxki
whereSk is the symmetric group onk letters andv� (1)^ � � �^v� (k) D ��v1^ � � �^vk. It
is important to notice thatL inherits a Lie bracket [ , ]W L � L ! L from d1 uniquely
determined by

(1) hvI s[x, y]i D (�1)degyC1hd1vI sx, syi for x, y 2 L, v 2 V .

Denote byL the Lie algebra (L, [ , ]).
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Recall that the graded Lie algebraL M D (��(�M) 
 QI [ , ]) is called thera-
tional homotopy Lie algebra of M. The commutator [ , ] is given by the Samelson
product. There is an isomorphism between the rational homotopy Lie algebraL M and
the homotopy Lie algebraL of �. Using the theorem in the Appendix of Milnor and
Moore [9], it follows that

H�(�MIQ) � UL

whereUL is the universal enveloping algebra forL. Further on,

UL � T(L)=hxy� (�1)degx degyyx� [x, y]i.
For a more detailed account of this construction see for example [7], Chapters 12 and 16.

As the notion of formality will be important for our calculation we recall it here.

DEFINITION 3.1. A commutative cochain algebra (A, d) satisfying H0(A) D Q
is formal if it is weakly equivalent to the cochain algebra (H (A), 0).

Thus (A, d) and a path connected topological spaceX are formal if and only if their
minimal Sullivan models can be computed directly from theircohomology algebras.

REMARK 3.2. There are some known cases of topological spaces for which a
minimal model can be explicitly computed and formality proved. Some of them, that
are important for us in this work, are the spaces that have so called “good cohomology”
in terminology of [1]. Namely, topological spaceX is said to have good cohomology if

H�(XIQ) � Q[u1, : : : , un]=hP1, : : : , Pki
where the polynomialsP1, : : : , Pk form the regular sequence inQ[u1, : : : , un], or in other
words, the idealhP1, : : : , Pki is a Borel ideal inQ[u1, : : : , un]. In this case Bousfield
and Gugenheim [1] proved that the minimal model ofX is given by

�(X) D Q[u1, : : : , un] 
∧(v1, : : : , vk)

where deg(vi ) D deg(Pi ) � 1 for 1� i � k, and the differentiald is given by

d(ui ) D 0, d(v j ) D Pj .

3.2. The loop space on a complete flag manifold.In this section we calculate
the rational homology of the loop space on the complete flag manifold of a simple
Lie group.

Recall from Borel [2, Section 26] that the rational (as well as integral) cohomology
of SU(nC1)=Tn is the polynomial algebra onnC1 variables of degree 2 quotient out
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by the ideal generated by the symmetric functions in these variables

H�(SU(nC 1)=TnIQ) � Q[u1, : : : , unC1]=hSC(u1, : : : , unC1)i.
It is important to note that the idealhSC(u1, : : : , unC1)i is a Borel ideal. As a conse-
quence, by Remark 3.2,SU(nC 1)=Tn is formal. Thus the minimal model forSU(nC
1)=Tn is the minimal model for the commutative differential graded algebra (H�(MIQ),
d D 0) and it is given by� D (3V , d), where

V D (u1, : : : , un, v1, : : : , vn)

and deg(uk) D 2, deg(vk) D 2kC 1 for 1� k � n.
The differentiald is defined by

(2) d(uk) D 0, d(vk) D n
∑

iD1

ukC1
i C (�1)kC1

(

n
∑

iD1

ui

)kC1

.

It is easy to see that the quasi isomorphismf W � D (3V , d)! (H�(MIQ), d D 0) is
given by the following rule

ui 7! ui , vi 7! 0 for 1� i � n.

Theorem 3.1. The rational homology ring of the loop space on the flag manifold
SU(nC 1)=Tn is
(3)

H�(�(SU(nC 1)=Tn)IQ)

� (T(a1, : : : , an)=ha2
k D apaq C aqap j 1� k, p, q � n, p ¤ qi)
Q[b2, : : : , bn]

where the generators ai are of degree1 for 1 � i � n, and the generators bk are of
degree2k for 2� k � n.

Proof. The underlying vector space of the homotopy Lie algebraL of � is given by

L D (a1, : : : , an, b1, : : : , bn)

where deg(ak) D 1, deg(bk) D 2k for 1� k � n.
In order to define Lie brackets we need the quadratic partd1 of the differential in

the minimal model. In this case, using the differentiald defined in (2), the quadratic
part d1 is given by

d1(ul )D0 for 1� l �n, d1(v1)D2
n
∑

iD1

u2
i C2

∑

i< j

ui u j , d1(vk)D0 for k¤1.
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For dimensional reasons, we have

[ak, bl ] D [bk, bl ] D 0 for 1� k, l � n.

By the defining property of the Lie bracket stated in (1), we have

hv1I s[ak, ak]i D 〈2∑ u2
i C 2

∑

ui u j I sak, sak

〉 D 2hu2
kI sak, saki D 4

and

hv1I s[ak, al ]i D 2hukul I sak, sal i D 2 for k ¤ l

resulting in the commutators

[ak, al ] D 2b1 for k ¤ l ,

and

[ak, ak] D 4b1.

Therefore in the tensor algebraT(a1, : : : , an, b1, : : : , bn), the Lie brackets above induce
the following relations

akal C al ak D 2b1 for 1� k, l � n, k ¤ l ,

a2
k D 2b1 for 1� k � n,

akbl D bl ak for 1� k, l � n,

bkbl D bl bk for 1� k, l � n.

Thus

(4) UL � (T(a1, : : : , an)=ha2
k D apaq C aqapi)
Q[b2, : : : , bn].

This proves the theorem.

The rational cohomology rings for the flag manifoldsSO(2n C 1)=Tn � Spin(2n C
1)=Tn, SO(2n)=Tn � Spin(2n)=Tn, andSp(n)=Tn (see for example Borel [2, Section 26])
are given by

H�(SO(2nC 1)=TnIQ) � H�(Sp(n)=TnIQ) � Q[u1, : : : , un]=hSC(u2
1, : : : , u2

n)i,
H�(SO(2n)=TnIQ) � Q[u1, : : : , un]=hSC(u2

1, : : : , u2
n), u1 � � � uni

whereui is of degree 2 for 1� i � n.
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By Remark 3.2, all the above mentioned complete flag manifolds are formal and
therefore their minimal Sullivan model is the minimal modelfor their cohomology al-
gebra with the trivial differential.

Proceeding in the same way as in the previous theorem, we obtain the following
results.

Theorem 3.2. The rational homology ring of the loop space on SO(2nC 1)=Tn

and Sp(n)=Tn is given by

(5)

H�(�(SO(2nC 1)=Tn)IQ) � H�(�(Sp(n)=Tn)IQ)

� (T(a1, : : : , an)

/〈

a2
1 D � � � D a2

n,
akal D �al ak for k ¤ l

〉)
Q[b2, : : : , bn]

where the generators ai are of degree1 for 1 � i � n, and the generators bk are of
degree4k � 2 for 2� k � n.

Proof. We give just an outline of the proof as it is similar to the proof of The-
orem 3.1. The minimal model forSO(2nC 1)=Tn is given by� D (3V , d), where

V D (u1, : : : , un, v1, : : : , vn),

and deg(uk) D 2, deg(vk) D 4k � 1 for 1� k � n.
The differentiald is given by

(6) d(uk) D 0, d(vk) D n
∑

iD1

u2k
i for 1� k � n.

Therefore the underlying vector space of the homotopy Lie algebraL of � is

L D (a1, : : : , an, b1, : : : , bn)

where deg(ak) D 1, deg(bk) D 4k � 2 for 1� k � n, and the quadratic partd1 of the
differential d is given by

d1(ul ) D 0 for 1� l � n, d1(v1) D n
∑

iD1

u2
i , d1(vk) D 0 for k � 2.

The induced Lie brackets onL are equal to

[ak, bl ] D [bk, bl ] D 0 for 1� k, l � n,

[ak, ak] D 2b1 for 1� k � n,

[ak, al ] D 0 for k ¤ l .
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This implies the following relations inUL:

a2
k D b1 for 1� k � n,

akal C al ak D 0 for k ¤ l ,

akbl D bl ak for 1� k, l � n,

bkbl D bl bk for 1� k, l � n.

The theorem follows now at once knowing thatH�(�(SO(2nC 1)=Tn)IQ) � UL.

Theorem 3.3. The rational homology ring of the loop space on SO(2n)=Tn for
n > 2 is given by

H�(�(SO(2n)=Tn)IQ)

� (T(a1, : : : , an)

/〈

a2
1 D � � � D a2

n,
akal D �al ak for k ¤ l

〉)
Q[b2, : : : , bn�1, bn]

where the generators ai are of degree1 for 1� i � n, the generators bk are of degree
4k � 2 for 2� k � n� 1, and the generator bn is of degree2n� 2.

Proof. To be reader friendly we outline a proof. The minimal model forSO(2n)=Tn

is given by� D (3V , d), where

V D (u1, : : : , un, v1, : : : , vn�1, vn),

and deg(uk) D 2, deg(vk) D 4k � 1 for 1� k � n� 1 and deg(vn) D 2n� 1.
The differentiald is given by

(7) d(uk) D 0, d(vk) D n
∑

iD1

u2k
i and d(vn) D u1 � � � un.

Hence the underlying vector space of the homotopy Lie algebra L of � is

L D (a1, : : : , an, b1, : : : , bn�1, bn)

where deg(ak) D 1, deg(bk) D 4k � 2 for 1� k � n � 1, deg(bn) D 2n � 2, and the
quadratic partd1 of the differentiald is given by

d1(ul ) D 0 for 1� l � n, d1(v1) D n
∑

iD1

u2
i , d1(vk) D 0 for 2� k � n.
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The induced Lie brackets onL are equal to

[ak, bl ] D [bk, bl ] D 0 for 1� k, l � n,

[ak, ak] D 2b1 for 1� k � n,

[ak, al ] D 0 for k ¤ l ,

and thus inUL:

a2
k D b1 for 1� k � n,

akal C al ak D 0 for k ¤ l ,

akbl D bl ak for 1� k, l � n,

bkbl D bl bk for 1� k, l � n.

Since H�(�(SO(2n)=Tn)IQ) � UL, we have proved the theorem.

In the theorems that follow we compute the rational homologyrings of the based
loop space on the complete flag manifolds of the exceptional Lie groupsG2, F4 and
E6. We refer to [6] and [11] for the Weyl group invariant polynomials which we use
for the descriptions of the rational cohomology rings of thecomplete flag manifolds
of these groups. We want also to emphasize that the rational,as well as the integral,
cohomology rings of the flag manifoldsG2=T2, F4=T4 and E6=T6 are thoroughly dis-
cussed in [15].

Theorem 3.4. The rational homology ring of the loop space on G2=T2 is given by

H�(�(G2=T2)IQ) � (T(a1, a2)=ha1a2C a2a1 D a2
1 D a2

2i)
Q[b5]

wheredegb5 D 10, and dega1 D dega2 D 1.

Proof. Recall that

H�(G2=T2IQ) � Q[u1, u2, u3]=hP1, P2, P6i
where P1 D∑3

iD1 u1, P2 D∑3
iD1 u2

i , P6 D∑3
iD1 u6

i and degu1 D degu2 D degu3 D 2.
Therefore the minimal model is3V D 3(u1, u2, v1, v5) where degv1 D 3, degv5 D
11, and the differentiald is given by d(u1) D d(u2) D 0, d(v1) D 2(u2

1 C u2
2 C u1u2),

d(v5) D u6
1C u6

2C (u1C u2)6. Thus

d1(u1) D d1(u2) D d1(v5) D 0, d1(v1) D 2(u2
1C u2

2C u1u2).
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In the homotopy Lie algebraL D (a1, a2, b1, b5) the induced commutator relations are
given by

[ai , b j ] D 0 for i D 1, 2, j D 1, 5, [bi , b j ] D 0 for i , j D 1, 5,

[a1, a2] D 2b1, [a1, a1] D [a2, a2] D 4b1.

Hence the following relations inUL hold:

ai b j � b j ai D 0 for i D 1, 2, j D 1, 5,

b1b5 D b5b1,

a1a2C a2a1 D 2b1,

a2
1 D a2

2 D 2b1.

Theorem 3.5. The rational homology ring of the loop space on F4=T4 is given by

H�(�(F4=T4)IQ)

� (T(a1, a2, a3, a4)

/〈

a2
1 D � � � D a2

4,
ai a j D �a j ai for i ¤ j

〉)
Q[b5, b7, b11]

wheredegai D 1 for 1� i � 4, degb5 D 10, degb7 D 14, and degb11D 22.

Proof. The rational cohomology algebra ofF4=T4 is

H�(F4=T4IQ) � Q[u1, u2, u3, u4]=hP2, P6, P8, P12i
where degui D 2 for 1� i � 4, and

Pk D uk
1C uk

2C uk
3C uk

4C 1

2kC1
(�u1� u2� u3� u4)k

for k D 2, 6, 8, 12. For degree reasons, the only relevant generator for determiningd1

is P2 D 3(u2
1C u2

2C u2
3C u2

4). Therefore we have

V D (u1, u2, u3, u4, v2, v6, v8, v12), where degvk D 2k � 1

and the quadratic part ofd is given by

d1(ui ) D 0 for 1� i � 4, d1(v j ) D 0 for j D 6, 8, 12,

and

d1(v2) D 3(u2
1C u2

2C u2
3C u2

4).

This determines the homotopy Lie algebra

L D (a1, a2, a3, a4, b1, b5, b7, b11)
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where degai D 1, degb1 D 2, degb5 D 10, degb7 D 14, and degb11D 22 with the Lie
brackets given by

[ai , b j ] D [bl , b j ] D 0 for 1� j � 4 and j , l D 1, 5, 7, 11,

[ai , a j ] D 0 for i ¤ j ,

[ai , ai ] D 6b1 for 1� i � 4.

This implies that inUL for every possiblei and j , ai and b j commute as well asbi

and b j does. Also the additional relations inUL hold:

a2
1 D a2

2 D a2
3 D a2

4 D 3b1, and ai a j C a j ai D 0 for i ¤ j .

The statement of the theorem now follows directly.

Theorem 3.6. The rational homology ring of the loop space on E6=T6 is given by

H�(�(E6=T6)IQ)

� (T(a1, : : : , a5, a)

/〈

a2 D a2
k D apaq C aqap for 1� k, p, q � 5, p ¤ q

aai D �ai a for 1� i � 5

〉)


Q[b4, b5, b7, b8, b11],

wheredegai D 1 for 1� i � 5, dega D 1, and degb j D 2 j for j D 4, 5, 7, 8, 11.

Proof. The rational cohomology ofE6=T6 is

H�(E6=T6IQ) � Q[u1, u2, u3, u4, u5, u6, u]=hP1, P2, P5, P6, P8, P9, P12i
where degui D 2 for 1� i � 6, degu D 2, and

Pk D 6
∑

iD1

(ui � u)k C ∑

1�i< j�6

(�1)k(ui C u j )
k

for k D 2, 5, 6, 8, 9, 12, andP1 D∑6
iD1 ui . It follows that

V D (u1, u2, u3, u4, u5, u, v2, v5, v6, v8, v9, v12)

and d1 is determined only by

P2 D 12

(

u2
1C � � � C u2

5C u2C ∑

1�i< j�5

ui u j

)

.
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In a similar fashion as before we obtain that

L D (a1, a2, a3, a4, a5, a, b1, b4, b5, b7, b8, b11),

where degai D dega D 1 for 1� i � 5, and degb j D 2 j for j D 1, 4, 5, 7, 8, 11. The
commutators are

[ai , a]D [ai , b j ]D [a, b j ]D [bl , b j ]D0 for 1� i �5 and j , l D1, 4, 5, 7, 8, 11,

[ai , a j ]D12b1 for 1� i , j �5, i ¤ j , and [ai , ai ]D [a, a]D24b1 for 1� i �5.

The last three commutator relations imply the following relations inUL:

a2 D a2
i D akal C al ak D 12b1 for 1� i , l , k � 5, k ¤ l .

This directly implies the statement of the theorem.

4. Integral Pontrjagin homology

In this section we study the integral Pontrjagin ring structure of�(G=T), whereG
is a simple Lie group. We make use of the rational homology calculations for�(G=T)
from the previous section and the results from [3], [11] and [16] on integral homology
of the identity component�0G of the loop space onG. Recall thatH�(�0GIQ) is
primitively generated for a compact connected Lie groupG.

4.1. The integral homology of�(SU(nC 1)=Tn).

Theorem 4.1. The integral Pontrjagin homology ring of the loop space on SU(nC
1)=Tn is

H�(�(SU(nC 1)=Tn)I Z)

� (T(x1, : : : , xn)
 Z[y1, : : : , yn])

/〈

x2
k D xpxq C xqxp D 2y1

for 1� k, p, q � n, p ¤ q

〉

where the generators x1, : : : , xn are of degree1, and the generators yi are of degree
2i for 1� i � n.

Proof. It is well known that ifG is a simply connected Lie group, then�2(G=T) �Zdim T and�3(G=T) � Z. Let

W W �2(G=T)
 �2(G=T)! �3(G=T)

denote the pairing given by the Whitehead product. In what follows, we identifyH1(T ,Z)
with �2(G=T) and H2(�G, Z) with �3(G=T) via natural homomorphisms. Thus since
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there is no torsion in homology, and using the rational homology result (3), we obtain
that there is a split extension of algebras

1! H�(�SU(nC 1)I Z)! H�(�(SU(nC 1)=Tn)I Z)! H�(TnI Z)! 1

with the extension given by [�, �] D W(�, �) 2 H2(�SU(n C 1)I Z), where �, � 2
H1(TnI Z).

We explain the extension of the algebra in more detail. Notice that there is a
monomorphism of two split extensions of algebras

1 !
!

H�(�SU(nC 1)I Z) !
!

H�(�(SU(nC 1)=Tn)I Z) !
!

H�(TnI Z) !
!

1

!
1 !H�(�SU(nC 1)IQ) !H�(�(SU(nC 1)=Tn)IQ) !H�(TnIQ) !1.

Denote byNc2, : : : , NcnC1 the universal transgressive generators inH�(SU(nC1)IZ) which
map to the symmetric polynomialsc2 D ∑

1�i< j�nC1 xi x j , : : : , cnC1 D x1 � � � xnxnC1

generatingH�(BSU(nC 1)I Z). The elementsx1, : : : , xn, xnC1 are the integral gener-
ators of H�(TnIZ) and

∑nC1
iD1 xi D 0. Now let y1, : : : , yn be the integral generators of

H�(�SU(nC1)IZ) obtained by the transgression of the elements fromH�(SU(nC1)IZ)
which are the Poincare duals ofNc2,:::, NcnC1. Further, the subspace of primitive elements
in H�(�SU(nC 1)I Z) is spanned by the elements�1, : : : , �n which can be expressed
in terms of y1, : : : , yn using the Newton formula

(8) �k D k�1
∑

iD1

(�1)i�1�k�i yi C (�1)k�1kyk, 1� k � n.

The integral elements�1, : : : , �n rationalise to the elementsb1, : : : , bn 2 H�(�SU(nC
1)IQ). The generatorsa1, : : : , an in H�(TnIQ) are the rationalised images of the inte-
gral generatorsx1, : : : , xn in H�(TnIZ). To decide the integral extension, we consider
the rational Pontrjagin ring structure (3) of�(SU(n C 1)=Tn). Looking at the above
commutative diagram of the algebra extensions, we concludethat the integral elements

xkxl C xl xk � 2�1 for 1� k, l � n, k ¤ l ,

x2
k � 2�1 for 1� k � n,

xk�l � �l xk for 2� k, l � n,

�k�l � �l�k for 2� k, l � n

from H�(�(SU(nC 1)=Tn)I Z) map to zero inH�(�(SU(nC 1)=Tn)IQ). As the map
between the algebra extensions is a monomorphism, we conclude that these integral
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elements are zero. Using that there is no torsion in homologyand Newton formula (8),
we have

xkxl C xl xk D 2y1 for 1� k, l � n, k ¤ l ,

x2
k D 2y1 for 1� k � n,

xk yl � yl xk D 0 for 2� k, l � n,

yk yl � yl yk D 0 for 2� k, l � n

which completely describes the integral Pontrjagin ring of�(SU(n C 1)=Tn) and fin-
ishes the proof.

4.2. The integral homology of�(Sp(n)=Tn).

Theorem 4.2. The integral Pontrjagin homology ring of the based loop space on
Sp(n)=Tn is

H�(�(Sp(n)=Tn)I Z)

� (T(x1, : : : , xn)

/〈

x2
1 D � � � D x2

n,
xkxl D �xl xk for k ¤ l

〉)
 Z[y2, : : : , yn]

where the generators x1, : : : , xn are of degree1, and the generators yi are of degree
4i � 2 for 2� i � n.

Proof. The proof is analogous to the proof of Theorem 4.1. Denote by Nc1, : : : , Ncn

the universal transgressive generators inH�(Sp(n)IZ) which map to the generatorsc1D
∑n

iD1 x2
i , : : : , cn D x2

1 � � � x2
n of H�(BSp(n)I Z). Let y1, : : : , yn be the generators in

H�(�Sp(n)I Z) obtained by the transgression of the elements inH�(Sp(n)I Z) which
are the Poincare duals ofNc1, : : : , Ncn. Recall from [3] that the subspace of the primitive
elements inH�(�Sp(n)I Z) is spanned by the elements�1, : : : , �n given by

(9) �k D k�1
∑

iD1

(�1)i�1�k�i yi C (�1)k�1kyk, 1� k � n.

The integral elements�1, : : : , �n rationalise to the generatorsb1, : : : , bn of H�(�Sp(n)IQ)
given in (5). The generatorsa1,: : : ,an of H�(TnIQ) are the rationalised images of the inte-
gral generatorsx1,:::, xn in H�(TnIZ). Therefore we conclude that inH�(�(Sp(n)=Tn)IZ)
the following integral elements are zero:

xkxl C xl xk � �1 for 1� k, l � n, k ¤ l ,

x2
k � �1 for 1� k � n,

xk�l � �l xk for 2� k, l � n,

�k�l � �l�k for 2� k, l � n.
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Since there is no torsion in homology, going back to Newton formula (9), we ob-
tain the same relations betweeny1, : : : , yn and x1, : : : , xn which determine the integral
Pontrjagin ring structure on�(Sp(n)=Tn).

4.3. The integral homology of�(SO(2n)=Tn) and �(SO(2nC1)=Tn). As men-
tioned before,SO(m) is not simply connected and the cohomology ofSO(m) and the
homology of�SO(m) are not torsion free, namely, they have 2-torsion. Nevertheless,
sinceSO(m)=T � Spin(m)=T , whereT is a maximal torus, the rational homology cal-
culations enable us to prove the following.

Theorem 4.3. The integral Pontrjagin homology ring of the based loop space on
SO(2nC 1)=Tn is given by

H�(�(SO(2nC 1)=Tn)I Z) � (T(x1, : : : , xn)
 Z[y1, : : : , yn�1, 2yn, : : : 2y2n�1])=I

where I is generated by

x2
1 � y1, x2

i � x2
iC1 for 1� i � n� 1,

xkxl C xl xk for k ¤ l ,

y2
i � 2yi�1yiC1C � � � � 2y2i for 1� i � n� 1,

where degxi D 1 for 1 � i � n, degyi D 2i for 1 � i � 2n � 1, deg 2yi D 2i for
n � i � 2n� 1, and y0 D 1.

REMARK 4.1. Before proving Theorem 4.3, let us recall the ring structure of
H�(�0SO(2n C 1)I Z). It is proved in [3] that the algebraH�(�0SO(2n C 1)I Z) is
generated by the classesy1, : : : , yn�1, 2yn, : : : , 2y2n�1 which satisfy the relations

y2
i � 2yi�1yiC1C 2yi�2yiC2 � � � � � 2y2i D 0 for 1� i � n� 1

where degyi D 2i for 1� i � n� 1, deg 2yi D 2i for n � i � 2n� 1, andy0 D 1. For
[(nC1)=2] � i � n�1, these relations express 2y2i in terms ofy1,:::, yn�1, 2yn,:::, 2y2i�1

and thus eliminate 2y2i as generators. For 1� i � [(nC 1)=2] � 1, the relations above
imply new relations on the generatorsy2i , that is, 2y2i D �(y2

i � 2yi�1yiC1 C � � � �
2y1y2i�1). This implies that the elementsy2i for 1 � i � [(n C 1)=2] � 1 are gener-
ators only in the homology of�0SO(2nC 1) with coefficients where 2 is not invertible.
Consider the rational elementspk defined by the recursion formula

(10) pk � pk�1y1C � � � � kyk D 0 for 1� k � 2n� 1 where p0 D 1.

The relations inH�(�0SO(2nC 1)IZ) imply that only p1, p3, : : : , p2n�1 are non zero.
According to [3] the elementsp1, p3, : : : , p2[n=2]�1, 2p2[n=2]C1, : : : , 2p2n�1 span the sub-
space of primitive elements inH�(�0SO(2nC 1)I Z). These elements are obtained by
transgressing the elements inH�(SO(2n C 1)I Z) which are the Poincare duals of the
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universal transgressive generatorsN�1, : : : , N�n in H�(SO(2n C 1)I Z). The generatorsN�1, : : : , N�n map to the symmetric polynomials�i (x2
1, : : : , x2

n) for 1� i � n generating the
free part inH�(BSO(2nC1)IZ). In this way we see thatp1, p3,:::, 2p2[n=2]C1,:::, 2p2n�1

rationalise to the rational generatorsbi in H�(�0SO(2nC 1)IQ) (see Theorem 3.2).

REMARK 4.2. If we denote the generators ofH�(�0SO(2nC1)IZ) by y1,:::, yn�1,
yn, : : : , y2n�1, then the relations are slightly more complicated and they are given by

y2
i C 2

min{i ,n�1�i }
∑

kD1

(�1)k yi�kyiCk C i
∑

kDn�i

(�1)k yi�k yiCk D 0

where 1� i � n� 1.

Proof. Recall thatSO(2nC 1)=Tn � Spin(2nC 1)=Tn implying that�(SO(2nC
1)=Tn) � �(Spin(2nC 1)=Tn). It is known that�Spin(2nC 1) � �0SO(2nC 1), see
for example [10]. Consider the morphism of two extensions ofalgebras

H�(�0SO(2nC 1)I Z) !
!

H�(�(SO(2nC 1)=Tn)I Z) !
!

H�(TnI Z)

!
H�(�0SO(2nC 1)IQ) !H�(�(SO(2nC 1)=Tn)IQ) !H�(TnIQ).

By Remark 4.1, we have that all the generatorsb1, : : : , bn of H�(�0SO(2nC1)IQ) are
in the rationalisation of the integral elementsp1, p3, : : : , p2[n=2]�1, 2p2[n=2]C1, : : : , 2p2n�1

of H�(�0SO(2n C 1)I Z). Since the map between two algebra extensions is a mono-
morphism, we conclude that inH�(�(SO(2nC 1)=Tn)I Z) the following relations hold

xkxl C xl xk D p1 for 1� k, l � n, k ¤ l ,

x2
k D p1 for 1� k � n,

xk p2l�1 D p2l�1xk for 2� k, l � n,

p2k�1 p2l�1 D p2l�1 p2k�1 for 2� k, l � n

as these elements map to zero inH�(�(SO(2nC1)=Tn)IQ). Note thatp1 D y1, which
gives thaty1 D x2

1 in H�(�(SO(2nC 1)=Tn)I Z).
The fact that differs this case from the case ofSU(n C 1) or Sp(n) is that these

integral elementsp1, : : : , 2p2n�1 that map onto rational generators, do not produce all
the generators inH�(�0SO(2nC1)IZ). Nevertheless, since there is no torsion in hom-
ology, we can also deduce from the rational homology calculations that there is a split
extension of algebras

1! H�(�0SO(2nC 1)I Z)! H�(�(SO(2nC 1)=Tn)I Z)! H�(T I Z)! 1.

We have thaty2i�1 survive as the generators inH�(�(SO(2nC 1)=Tn)IZ) for 2� i � n
using the relations coming fromH�(�0SO(2nC1)IZ) and the fact that the integral elem-
ents p3, : : : , 2p2n�1 rationalise to the generatorsb2, : : : , bn in H�(�(SO(2nC1)=Tn)IQ).
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Therefore, in order to verify the above splitting we need to show that the generatorsy2i

for 1� i � [(nC1)=2] in H�(�0SO(2nC1)IZ) survive as generators inH�(�(SO(2nC
1)=Tn)IZ). We prove this by induction oni . If y2 is not a generator inH�(�(SO(2nC
1)=Tn)I Z), then it can be expressed as

y2 D �x4
1 C

n
∑

iD2

�i x
3
1xi C ∑

2�i< j�n

i j x
2
1xi x j C ∑

1�i< j<k<l�n

Æi jkl xi x j xkxl ,

where �, �i , i j , Æi jkl are integers. On the other hand, inH�(�0SO(2n C 1)I Z) we
have that 2y2 D y2

1 which translates to 2y2 D x4
1 in H�(�(SO(2n C 1)=T)I Z). This

implies that�i D i j D Æi jkl D 0, and 2� D 1, which is impossible since� is an inte-
ger. In the same way, assuming thaty2i for 1 � i � k < [(nC 1)=2] are generators in
H�(�(SO(2nC 1)=Tn)IZ), we prove thaty2(kC1) is a generator as well. If it were not,
we would have

y2(kC1) D �y2
kC1C P(x1, : : : , xn, y2, : : : , y2kC1)

where� 2 Z and P is a polynomial with integer coefficients which does not contain
y2

kC1. On the other hand, in the relation 2y2(kC1) D �(y2
kC1� 2yk ykC2� � � � � 2y1y2kC1)

in H�(�0SO(2nC1)IZ), when translating toH�(�(SO(2nC1)=Tn)IZ) we have by the
inductive hypothesis thaty2

kC1 can not be eliminated. This implies that the coefficient� satisfies 2� D �1 which is impossible.
We are left with a verification of the commutator relations inH�(�(SO(2n C

1)=Tn)IZ). Since 2y2D x4
1, we have 2y2xi D x4

1xi D xi x4
1 D 2xi y2, that is, y2xi D xi y2.

Now by induction onk, we prove thatykx j D x j yk for an arbitrary yk. For k odd,
relation (10) together with the inductive hypothesis givesthat xi for 1 � i � n com-
mutes with yk. Let k be even. Since degyi is even for anyi , each monomial in
the polynomial P(x1, : : : , xn, y2, : : : , yk�1) D 2yk contains even number of generators
x1, : : : , xn. Using now the inductive hypothesis, we have that everyxi commutes with
P and thus withyk.

Theorem 4.4. The integral Pontrjagin homology ring of the based loop space on
SO(2n)=Tn is given by

H�(�(SO(2n)=Tn)I Z)

� (T(x1, : : : , xn)
 Z[y1, : : : , yn�2, yn�1C z, yn�1 � z, 2yn, : : : , 2y2(n�1)])=I

where I is generated by

x2
1 � y1, x2

i � x2
iC1 for 1� i � n� 1,

xkxl C xl xk for k ¤ l ,

y2
i � 2yi�1yiC1C 2yi�2yiC2 � � � � � 2y2i for 1� i � n� 2,

(yn�1C z)(yn�1 � z) � 2yn�1ynC1C � � � � 2y2(n�1),
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where degxi D 1 for 1 � i � n, degyi D 2i for 1 � i � n � 2, deg(yn�1 C z) D
deg(yn�1 � z) D 2(n� 1), deg 2yi D 2i for n � i � 2(n� 1) and y0 D 1.

REMARK 4.3. Recall from [3] that the algebraH�(�0SO(2n)IZ) is generated by
the elementsy1, : : : , yn�2, yn�1C z, yn�1� z, 2yn, : : : , 2y2(n�1) which satisfy the relations

y2
i � 2yi�1yiC1C 2yi�2yiC2 � � � � � 2y2i D 0 for 1� i � n� 2,

(yn�1C z)(yn�1 � z) � 2yn�1ynC1C � � � � 2y2(n�1) D 0.

As in previous case, these relations eliminate 2y2i as generators for [(nC 1)=2] � i �
n � 2, while for 1� i � [(n C 1)=2] � 1, they induce new relations ony2i implying
that y2i are generators only in the homology of�0SO(2n) with coefficients where 2 is
not invertible. The subspace of primitive elements inH�(�0SO(2n)I Z) is spanned by
the elementsp1, p3, : : : , pn�2, 2z, 2pn, : : : , 2p2(n�1)�1 for n odd and by the elements
p1, p3, : : : , pn�1, 2z, 2pnC1, : : : , 2p2(n�2)C1 for n even. These primitive generators are
obtained by transgressing the elements inH�(SO(2n)I Z) which are the Poincare duals
of the universal transgressive generatorsN�1, : : : , N�n�1, N� in H�(SO(2n)I Z). The gen-
erators N�1, : : : , N�n�1, N� map to the polynomials�i (x2

1, : : : , x2
n) for 1 � i � n � 1 and� D x1 � � � xn which generate the free part inH�(BSO(2n)I Z).

Proof. The proof is analogous to the proof of Theorem 4.3.

4.4. The integral homology of�(G2=T2).

Theorem 4.5. The integral Pontrjagin homology ring of�(G2=T2) is given by

H�(�(G2=T2)I Z)

� (T(x1, x2)
 Z[y1, y2, y5])=hx1x2C x2x1 D x2
1 D x2

2 D 2y1, 2y2 D x4
1i,

wheredegx1 D degx2 D 1, degy2 D 4, and degy5 D 10.

REMARK 4.4. The integral homology algebra of�G2 has the following form [3]:

H�(�G2I Z) D Z[y1, y2, y5]=h2y2 � y2
1i,

with degy1 D 2, degy2 D 4, and degy5 D 10.

Proof. Consider a morphism of two extensions of algebras

H�(�G2I Z) !
!

H�(�(G2=T2)I Z) !
!

H�(T2I Z)

!
H�(�G2IQ) !H�(�(G2=T2)IQ) !H�(T2IQ).
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In H�(�G2IQ) the generatorsb1 andb5 are the rationalisations of the integral elements
y1 and y5 in H�(�G2IZ). It follows that the relations betweenx1, x2 and betweeny1,
y5 in H�(�(G2=T2)IZ) are lifted from the relations on their rationalisations. We further
show that there is a split extensions of algebras

1! H�(�G2I Z)! H�(�(G2=T2)I Z)! H�(T2I Z)! 1.

To deduce the splitting above, we use that there is no torsionin the corresponding
homologies. We first need to show that the generatory2 2 H�(�G2I Z) survives as a
generator inH�(�(G2=T2)I Z). If it were not, we would have thaty2 D �x4

1 C �x3
1x2,

and that 2y2 D x4
1 using the relations inH�(�G2I Z). This would imply that 2� D

1 which is impossible since� is an integer. Since 2y2 D x4
1 and there is no torsion

in homology, using already established relations, we get that y2 commutes with other
generators inH�(�(G2=T2)I Z).

4.5. The integral homology of�(F4=T4).

Theorem 4.6. The integral Pontrjagin homology ring of�(F4=T4) is given by

H�(�(F4=T4)I Z)

� (T(x1, x2, x3, x4)
 Z[y1, y2, y3, y5, y7, y11])=I

where ID hx2
i D 3y1, 1� i � 4, xi x j D x j xi , i ¤ j , 2y2 D x4

1, 3y3 D x2
1 y2i, where

degxi D 1 for 1� i � 4, and degyi D 2i for i D 2, 3, 5, 7, 11.

REMARK 4.5. The integral homology algebraH�(�F4I Z) is computed in [16]
and it is given by

H�(�F4I Z) D Z[y1, y2, y3, y5, y7, y11]=hy2
1 � 2y2, y1y2 � 3y3i.

Proof. As in the previous cases, we first prove that there is a split extension of
algebras

1! H�(�F4I Z)! H�(�(F4=T4)I Z)! H�(T4I Z)! 1.

Since there is no torsion in homology, the rational homologycalculations for�(F4=T4)
gives that it is enough to prove thaty2 and y3 survive as generators inH�(�(F4=T4)I Z).
If y2 were not a generator inH�(�(F4=T4)IZ), we would havey2 D �x4

1C∑4
iD2�i x3

1xi C
∑

2�i< j�4 �i j x2
1xi x j C �x1x2x3x4 for some�, �i , �i j , � 2 Z. On the other hand, the re-

lation 2y2 D y2
1 from H�(�F4I Z) becomes 2y2 D x4

1 in H�(�(F4=T4)I Z). This implies
that 2� D 1 which is impossible. In the similar way we prove thaty3 is also a gener-
ator in H�(�(F4=T4)I Z). If it were not, we would havey3 D �x6

1 C ∑4
iD2 �i x5

1xi C
∑

2�i< j�4 x4
1xi x j C �x3

1x2x3x4 C Æx2
1 y2 C ∑

1�i< j�4 Æi j xi x j y2. From H�(�F4I Z), we

also have that 3y3 D x2
1 y2. This together leads to 3Æ D 1 which is impossible.
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4.6. The integral homology of�(E6=T6).

REMARK 4.6. The integral homology algebraH�(�E6I Z) is described in [11]
and it is given by

H�(�E6I Z) � Z[y1, y2, y3, y4, y5, y7, y8, y11]=hy2
1 � 2y2, y1y2 � 3y3i,

where degyi D 2i for i D 1, 2, 3, 4, 5, 7, 8, 11.

Using the same argument as for the previous cases, we deduce the integral Pontrjagin
homology of the based loop space onE6=T6.

Theorem 4.7. The integral Pontrjagin homology ring of�(E6=T6) is given by

H�(�(E6=T6)I Z)

� (T(x1, x2, x3, x4, x5, x6)
 Z[y1, y2, y3, y4, y5, y7, y8, y11])=I

where ID hx2
k D xpxq C xqxp D 12y1 for 1� k, p, q � 6, 2y2 D x4

1, 3y3 D x2
1 y2i and

wheredegxi D 1 for 1� i � 6, and degyi D 2i for i D 2, 3, 4, 5, 7, 8, 11.
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460 J. GRBIĆ AND S. TERZIĆ

[11] M. Nakagawa:The space of loops on the exceptional Lie group E6, Osaka J. Math.40 (2003),
429–448.

[12] A.L. Onishchik: Topologiya Tranzitivnykh Grupp Preobrazovanii (Topology of Transitive Trans-
formation Groups), Fizmatlit “Nauka”, Moscow, 1995, (Russian).

[13] L. Smith: Cohomology of�(G=U ), Proc. Amer. Math. Soc.19 (1968), 399–404.
[14] S. Terzíc: Real cohomology of generalized symmetric spaces, Fundam. Prikl. Mat.7 (2001),

131–157, (Russian).
[15] H. Toda and T. Watanabe:The integral cohomology ring ofF4=T and E6=T, J. Math. Kyoto

Univ. 14 (1974), 257–286.
[16] T. Watanabe:The homology of the loop space of the exceptional group F4, Osaka J. Math.15

(1978), 463–474.

Jelena Grbíc
School of Mathematics
University of Manchester
Manchester M13 9PL
United Kingdom
e-mail: jelena.grbic@manchester.ac.uk

Svjetlana Terzíc
Faculty of Science
University of Montenegro
Podgorica
Montenegro
e-mail: sterzic@ac.me


