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Abstract
This is the first of a series of papers which will be devotedhe $tudy of the
extendedG-actions on torus manifoldsM?", T"), whereG is a compact, connected
Lie group whose maximal torus i8". The goal of this paper is to characterize co-
dimension 0 extende@-actions up to essential isomorphism. For technical regson
we do not assume that torus manifolds are omnioriented. Tdia nesult of this pa-

per is as follows: a homogeneous torus manifbld’ is (weak equivariantly) diffeo-
morphic to a product of complex projective spadqsCP(I) and quotient spaces of
a product of sphereé]_[ $M) /A with standard torus actions, wherkis a subgroup
of [] Z, generated by the antipodal involutions &". In particular, if the homo-
geneous torus manifol?" is a compact (non-singular) toric variety or a quasitoric
manifold, thenM?" is just a product of complex projective spaddsCP(l).

1. Introduction

A torus manifoldis an even dimensional oriented manifdwf" acted on by a half-
dimensional torus’" with non-empty fixed point set: typical examples are the demp
projective space&CP(n) and the even dimensional sphe8& equipped with the natural
TM-actions. As is well known, the naturd@l”-action onCP(n) is induced from the tran-
sitive U (n + 1)-action (orPU(n + 1)-action) onCP(n), that is, thisT"-action extends to
a U(n + 1)-action orPU(n + 1)-action (see Example 2.2). Moreover, there is a similar
property for theT"-action onS* (see Example 2.3). So we can naturally ask which
torus manifolds possess suektended actionfthe exact definition is in Section 2.1). In
a series of papers we focus on this extension problem of tactisns on torus mani-
folds.

This problem is reminiscent of the study of automorphismugeo of toric vari-
eties by Demazure in [5], where a toric variety is a normal algabrzariety V on
which an algebraic torusCf*)" acts with a dense orbit (see [6]). We note that a com-
pact non-singular toric variety is a torus manifold by riesitng its (C*)"-action to a
Tn-action ((C*)" contains the topological torug" = (SH)" as its maximal compact
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subgroup). The automorphism growut(V) of V contains C*)" and the action of
Aut(V) restricted to C*)" coincides with the original@*)"-action onV. Hence, we
can regard Demazure’s study as the study of the extensidsigpnoof (C*)"-actions
on toric varieties. In fact the notion of torus manifold (amitary toric manifoldin the
earlier terminology) was introduced by Hattori and Masud#8inl1] as a far-reaching
topological generalization of compact non-singular torarieties. Consequently, our
extension problem may be interpreted as the topologicaimerof Demazure’'s work.
(From this point we assume our groups in this paper are alwaygact.)

In a series of papers, we will study extend8ehctions. In particular, in the present
paper and the next papers, we will characterize exter@eattions which have co-
dimension 0 (i.e.G acts transitively) and 1 principal orbits up ¢éssential isomorphism
(i.e., the induced effective actions are same: see Sectibn e often call a torus
manifold on whichG acts transitively ahomogeneous torus manifold-or technical
reasons, in this paper, we do not assume that torus maniém&l®mnioriented.

Let Z, be defined aglom 1, —lom+1} € O(2m; + 1), and letPU(x) be a pro-
jective unitary group (see Example 2.23Qx) a special orthogonal groupQ(x) an
orthogonal group. Our main result (Theorem 3.4) is as falow

Theorem 1. Suppose a torus manifoldM?", T") extends to a transitive G-actipn
where G is a compagctonnected Lie group whose maximal torus & Then(M?", G)
is essentially isomorphic to

a b 2m;  a b
<]‘[ CP(l;) x HJ:lTS, []PUGi + 1) x [ sa2m; + 1)),
i=1 i=1 j=1

where A can be any subgroup qﬂﬁ.’:l Zy, and T2, PU(l; + 1) x ]_[tj’:l SQ2m; + 1)
acts on[]%; CP(l;) x ]_['J?:l ™M /A in the natural way and Y7, I + Z?Zl mj = n.
Furthermore M?" is orientable if and only ifA ¢ SQ2my + - - - + 2my, + b).

We also have the following result (see Corollary 3.9):
Corollary 2. Suppose a compachon-singular toric variety or a quasitoric man-

ifold (M2", T") extends to a transitive G-actipwhere G is a compagtconnected Lie
group whose maximal torus is"T Then(M?", G) is essentially isomorphic to

<H cP(li), [TPUli + 1)>,

i=1 i=1

where} 2 I = n.
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Here, aT"-manifold M?" is called aquasitoric manifoldover a simple polytope
P" if the following two conditions are satisfied (see [3})4]

(1) the T"-action islocally standard that is, locally modelled by the standard action
on C™;

(2) there is the orbit projection map: M?" — M2"/T" = P" constant onT"-orbits
which maps everk-dimensional orbit to a point in the interior éédimensional face
of P", k=0,...,n.

Quasitoric manifolds were defined by Davis and Januszkiewi a topological coun-
terpart of projective, non-singular toric varieties in.[4)e note that every smooth pro-
jective toric variety is a quasitoric manifold (e.g. [3, @ter 5]). From our main result
Theorem 1, we may conclude that if a compact, non-singuldec i@riety has a tran-
sitive G-action, then this manifold is a product @fP(l)’s (Corollary 2). Hence, such
manifolds are projective toric varieties; thus, they arsoajuasitoric manifolds.

The organization of this paper is as follows. In Section 2,finst set up some no-
tation and basic facts. Next we prove our main result Theddedn that is, we charac-
terize homogeneous torus manifol@s'H in Section 3. A key lemma for this charac-
terization is Lemma 3.2, as well as the classification resfutimply connected, simple
Lie groups and their maximal rank maximal connected sulggda classical Lie the-
ory proved in [1]. Finally, we remark that our methods, intmalar Lemma 3.2, do
not work for otherT-manifolds in Section 4.

2. Preliminaries to the characterization

In this section, we recall some fundamental results. Wet stdh recalling some
basic notation associated to a torus manifold and an exte@daction.

2.1. Basic notations and examples.A torus manifoldis a Z-dimensional,
closed, connected, smooth manifdd®® (= M) with smooth, finite kernel action of
an n-dimensional torusT" = (SH" (= T) such thatMT # @ (see Section 2.4 for the
kernel of an action). LeMT denote theT -fixed point set. Automatically, every fixed
point is isolated, because dimht = 2dimT and T acts onM with finite kernel.

REMARK 2.1. In the paper [8], the definition of torus manifolds ined the
choice of orientations of manifolt and itscharacteristic submanifoldsalled anomni-
orientationon M. Because we will classify extended actions up to essestahdrphism
in this paper, we do not need to choose an omniorientationVon Moreover, the
T-action onM does not need to be effective.

1Dpavis and Januszkiewicz use the term “toric manifold” in, [8it in this paper we use the term
“quasitoric manifold” in [3] because we would like to reserthe use of the term “toric manifold” to
mean a “non-singular toric variety”.
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Let o: T" x M2 — M?" be aT"-action onM?". Assume that a compact, con-
nected Lie groupG hasT" as its maximal torus subgroup. If there exists an action
®: G x M? - M?" such that the restricted"-action ®|rn = is the giveng, then
we call ® an extended G-actiomf (M?", T"), and we also denot® as (M?", G). If
a principal G-orbit is of codimensiork, we call M?", G) a codimension k extended
G-actionof (M2", T"). Here, the integek satisfies 0< k < n. BecauseM and G are
compact, if M?", G) is a codimension 0 extende8-action then theG-action onM?"
is transitive andM?" is a homogeneous manifold. The following three examples are
standard and important.

EXAMPLE 2.2. If the T"-actiong: T" x CP(n) — CP(n) on CP(n) is defined by

o((t1, ..., t), [z0; za5 - -5 2n]) = [205 t124; - - - 5 taZn),

where (1,...,t,) € T" and [zo; z3;- - - ; zn] € CP(n), then we can easily check that this
is a torus manifold whose fixed points ame 1) points:

[1;0;---;0],[0;10;---;0],...,[0;---;0; 1]

Considering the abov@&" as the diagonal subgroup &f(n + 1) with a unit in the
(1, 1)-entry, this action extends to the transitivén + 1)/Z(U(n + 1))-action, where
Z(U(n + 1)) is the center oJ(n + 1). Therefore CP(n), U(n + 1)/Z(U(n + 1)) =
(CP(n), PU(n+ 1)) is a codimension 0 extended action of the torus manifol((), T").
Remark thattU(n + 1) = U(n + 1)/Z(U(n + 1)) ~ SUn + 1)/Zn+1 = SUnNn + 1) has
T" as its maximal torus subgroup, whe@& ~ G’ meansG and G’ are isomorphic,
G ~ G’ meansG andG’ have a same Lie algebra, afig.,; is the center oSUn+1).

EXAMPLE 2.3. Assume thél"-actiong: T"x " - S on " C R @R =
R+ is defined as follows: first we identiff " with SQ2)" ¢ SQ2n); and nextT"
acts onR?" by the restriction of the natur&@Q(2n)-action onR?". Then we can easily
check that this is a torus manifold whose fixed points are Ztpoithe north pole
(0,...,0,1) and the south pole (0,,0,—1) of S*". Moreover this action extends to the
SQ(2n)-action whose orbits are principal orbi®&" (codimension 1 orbits) and two
singular orbits which are the 2 fixed points of tfié-action. Therefore ", SQ(2n)) is
a codimension 1 extended action of the torus manif&d,(T"). Remark that &", T")
also extends to a codimension 0 extended act®f, SQ(2n + 1)).

EXAMPLE 2.4. In the above Example 2.8 c R?"*! has a free involution by
—lony1 € O(2n+1), wherelyny 1 is the identity element in the orthogonal gro@g2n +
1). Now we define the manifol&P(2n) by S"/Z,, whereZ, = {lon41, —lons1). Be-
cause theT"-action onS? commutes with theZ,-action, we can define @"-action
on RP(2n) induced by theT"-action onS?". Moreover, the twoT"-fixed points on
S, the north and south poles, go to the same poirRR{2n) under theZ,-quotient,
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and this point is the unique fixed point of thi&"-action onRP(2n). We can easily
check RP(2n), TM) is effective, becauseSt", T") is effective andT" N Zy = {lony1).
Therefore, RP(2n), T") is a torus manifold; however, we remark thRP(2n) is a
non-orientable manifold. Furthermore, we have tHaP(@2n), T") has a codimension
1 extended actionRP(2n), SQ(2n)) and a codimension 0 extended actidkP(2n),
SQ22n + 1)), because th&Q(2n)-action and theSQ22n + 1)-action onS™ in Exam-
ple 2.3 commute with thisZ,-action. Remark that the orbits of the codimension 1
extended actionKP(2n), SQ2n)) consist of: principal orbitsS™~, one singular orbit
which coincides with the uniqu@ "-fixed point of ®P(2n), T"), and one exceptional
orbit RP(2n — 1).

In order to characterize torus manifolds which have codsmn O extended ac-
tions, i.e., homogeneous torus manifolds, we will also nénedfollowing basic facts,
summarized in Section 2.2 to 2.4.

2.2. Homogeneous spac&/H with finite T-fixed points. First we discuss
homogeneous spaces withactions. LetT be a maximal torus in a compact Lie group
G, and H a closed subgroup 6. Suppose thatG/H, T) is a torus manifold, that
is, it satisfies the following three properties:

(1) the T-action onG/H has finite kernel,

(2) dmG/H =2dimT,;

(3) the T-fixed point set G/H)T # @.

Because of the third property, there is an elemght € G/H such thatTgH = gH.
It follows that T c gHg™! for someg € G. Hence we can take a subgrou as
follows:

TCcH°CHCG,
where H® is the identity component ofl. SinceT is a maximal torus inG, we have
rankG = rankH® = dimT =n,

where therank of a compact connected Lie group is the dimension of a maxiorak
subgroup. Consequently, we need to consider maximal rabgreups ofG.

2.3. Facts from classical Lie theory. In order to consider maximal rank sub-
groups, we recall some classical Lie theory (see [13, Chagfe
For any compact, connected Lie gro@® there is a finite covering map:

(2.1) p: G =Gy x---x G > G,

whereG; (i = 1,...,Kk) is a compact, simply connected, simple Lie group, or a com-
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pact, connected, commutative Lie group, i.e., a torus. hetkernel ofp be denoted
by N. Then we have

G~ (Gy x -+ x Gy)/N,

where N is some finite central normal subgroup @y x - - - x G.
Now we have the following lemma for a product of Lie groupse(§&3, Theo-
rem 7.2]).

Lemma 2.5. Let G (i =1,..., k) be compactconnected Lie groups and let G
be their product Assume H is the identity connected maximal rank subgroup in G
Then H = Hy x --- x Hy, where H is a maximal rank subgroup in G

2.4. Essential isomorphism and a remark for the characteriation. In this
subsection, we define an essential isomorphism.

We first need some notations. Thernel of (M, G) is defined as the intersection
of all isotropy subgroup$ ).y Gx. If the kernelN is the identity element, then this
action is aneffective action The induced actionMl, G/N) is always effective, and we
call it the induced effective actiorWe may now define an essential isomorphism.

DEFINITION 2.6. LetN be the kernel of i1, G) and N’ the kernel of (', G).
We say that ¢, G) and (M’, G') are essentially isomorphidf their induced effective
actions M, G/N) and (M’, G'/N’) are weak equivariantly diffeomorphic, that is, there
are an isomorphismp: G/N — G’/N’ and a diffeomorphismf: M — M’ such that
f(p(0, X)) = ¥(p(g), f(x)) for (g, x) € G/N x M, whereg: G/N x M - M and
v: G /N x M"— M’ are two induced effective actions.

ExAMPLE 2.7. In Example 2.2, P(n), PU(n + 1)) is essentially isomorphic to
the natural transitive actionCP(n), SUn + 1)).

ExampPLE 2.8. LetSpinm) be the universal (double) covering &Qm) (m >
3). This groupSpinm) acts on a sphere and a real projective space through the pro-
jection to SQm). In Example 2.3 (resp. Example 2.4), the codimension lneldd ac-
tion (S, SQ(2n)) (resp. RP(2n), SQ(2n))) is essentially isomorphic toSE", Spir(2n))
(resp. RP(2n), Spin(2n))) for n > 2, and the codimension 0 extended acti6f' (SQ2n+
1)) (resp. RP(2n), SO2n + 1))) is essentially isomorphic to the natural transitivéiac
(S?", Spin2n + 1)) (resp. RP(2n), Spin2n + 1))) for n > 1.

Let G = Gy x --- x Gy be a covering ofG defined in (2.1) such that eadB;
(i=1,...,k) is a compact, simply connected, simple Lie group, or a ta@umip.

Then (M, G) is essentially isomorphic to

(2.2) (M, G) = (M, Gy x--- x Gy).
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Therefore, we only need to consider products of simply cotete simple Lie groups
and tori as the transformation groups on a homogeneous toausfold. In the next
section we characterize homogeneous torus manifolds.

3. Characterization of homogeneous torus manifolds

Assume M, G) is a codimension 0 extend&taction of a torus manifold\12", T").
In this section, we will classify suchV, G) up to essential isomorphism.

3.1. Structure of torus manifolds. Now we can putM = G/H and T is a
maximal torus subgroup oH and G by the argument in Section 2.2. Moreover, a
T-action of G/H, T) is defined by a natural inclusion df to G. By (2.2), G/H,G)
is essentially isomorphic to

(G/H, G) = (G/H, Gy x - - - x Gy).
Let p: G — G be the projection of (2.1). Then we have
(3.1) G/H = G/p(H),

where X = Y meansX andY are diffeomorphic. Therefore it is sufficient to classify
G and its subgroupp~X(H). To classify suchG and p~1(H), we first consider the
identity component ofp~1(H).

Let H (resp.T) be the identity component gb1(H) (resp.p (T))2. Because of
Lemma 2.5,G/H is decomposed into a product as follows:

G/H = G1/Hy x - -- x Gy/Hy,

where H; C G; is a maximal rank, connected subgroup foria# 1,..., k. Because
T is a maximal torus subgroup @& and H, we see thafl is also a maximal torus
subgroup ofG and H such thatp(T) = T. Moreover, we have the following lemma.

Lemma 3.1. If (G/H, T) is a torus manifold then (G/H, T) is also a torus
manifold and each G is a compact simply connectedsimple Lie group

Proof. We prove G/H, T) satisfies the three properties in Section 2.2. Because
T is a maximal torus subgroup & and H, we can easily check@/H)T # 0, i.e.,
property (3) holds. Because diByH = 2dimT, we have dinG/H = 2dimT, i.e.,
property (2) holds. Since@/H, T) is almost effective, G/H, T) is also almost effec-
tive, i.e., property (1) holds. Moreover, we have edghis not a torus by property
(1), i.e., eachG; is a compact, simply connected, simple Lie group. O

2We remark thatp~™(T) = T by [13, Theorem 4.9 in Chapter V].
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Taking a maximal torus subgroufy in H;, the maximal torus subgroup is de-
composed into

T=T1x---xTkCH;x---xHc C Gy x---xGy.
The following structure lemma holds.

Lemma 3.2. Suppose that the torus manifoldM, T) has a codimensio® ex-
tended G-action and M= G/H such that TC H ¢ G. Put G/H = G1/Hy x - -+ x
G/H, T=Tix---xT, and G/H, =M, foralli =1,...,k, whereG is a uni-
versal covering of G its subgroupH (resp T) is the identity component of (H)
(resp p~1(T)), and T is a maximal torus subgroup iniGand H. Then each factor
(Mi, Ti) = (Gj/H;, T;) is a torus manifold

Proof. By Lemma 3.1, G/H, T) is a torus manifold and eact; is a simply
connected, simple Lie group. Becausg/{, T) is almost effective, we also have that
(Gi/H;, T;) is almost effective for all =1,...,k. SinceT, is a maximal torus subgroup
in G; and H;, we have G;/H;)) #@ for alli =1,..., k. Therefore, we have

2dimT; < dimGi/Hi

foralli =1,..., k. Hence, the following equation holds:
~ k k ~ ~
2dimT =) " 2dimT, <) dimG;/H; =dimG/H.
i=1 i=1

On the other hand 2 diffi = dimG/H. Consequently, we have 2 difn= dimG; /H;
foralli =1,...,k, and each factorN;, T;) = (G;j/Hi, T;) is a torus manifold. [

From Lemma 3.2, in order to classif$s/H, we need to consider each factor
Gj/H; constructed by a compact, simply connected, simple Lie g®uand its max-
imal rank connected subgroug;, such that

dimGj/Hi =dimG; —dimH; = 2dimT;, = 2 rankG; = 2 rankH;.

In the next subsection we classify all codimension 0 extdn@eactions of torus
manifolds M, T") up to essential isomorphism.

3.2. Characterization of homogeneous torus manifolds. Let S be a compact,
connected, simple Lie group, arl a compact, connected, maximal rank, maximal
subgroup ofS. Here, amaximal subgroupmeans that ifS” is another compact, con-
nected, maximal rank subgroup & and there is an elemerg € S such thatS C
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Table 1. Maximal rank subgroups.

S A(l=z1) B (I1>2)
SIAaXALIXT A<i<)[ALxT (=11 B_ixTL(i=1)
S B (>2) C (>3)

S DixB (1<i<l) | D (i =) CixC_ (1<i<l
S G (=3 D (1=4)

S A xTE(i =) D_1xT! (=1 |[DxD (I<i<I-1)
S D (I >4) Es

S| ALxTi(i=1-1,) Dsx T1 \ A1 x As

S Es E;

S Ao x Ay x Ay Dg x A; \ A;

S E; Esg

S Az x As \ EexT! Ds

S Es

S As \ Acx A | Es x A

S Es F4

S E;x A Csx A \ Ar x Ay

S F4 GZ

S B4 A2 ‘ A]_XAl

gS'g~! then S = gS’'g~. For suchS and S, the classification of these types, i.e.,
the Lie algebras ofS and S, is known by classical Lie theory: see the Table 1 (see
[1] or [13, Chapter Vj).

Here, in the Table 1A ~ SUl + 1), B ~ SQ2 + 1), C ~ Sfl), D, ~ SQ2)
are the classical Lie groups aries, E7, Eg, F4, G, are the exceptional Lie groups
(indices indicate their rank), an8 ~ X meansS and X have the same Lie algebra.
Note that each dimension @ is as follows:

dmA =12+2; dimB =dmC =2 +1); dmD =2 —1)
dmEg =78 dimE; =133 dimEg=248 dimF;=52 dimG, = 14.

Therefore dimS/S can be computed as in Table 2 below.

3The Table 1 is based on the list in [13]. In the list in [1, 1¥etcases = 1,1 in A do not
appear; however, we can easily check these cases shouldclbddd in their list by making use of
[13, Theorem 7.16 in Chapter V]. Moreover, for the cases ithatnot fixed inB;, C; and D; in [13],
we can easily check that indices 8f (G” in [13]) should be the indices in the above list by making
use of [13, Theorem 7.16 in Chapter V].
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Table 2. Dimension of5/S.

S/S| A/A_1x A xThH | A/(A_1xTYH Bi/(Bi_1xT?)

dim | 20 —i+1;1<i<l 2, 1< 2@ 1) 2<I
S/S Bi/(Di x Bi_) B/ D Ci/(Ci x Ci)

dim |22 -2 +1); 1<i<I| 2,2<I 40 —i)1<i<l, 3<I
S/S Ci/(A_1 xTY) Di/(Dj_1 x T Di/(D;i x D)

dim 0+ 1), 3<1 A —1); 4<1 |4 =iy l<i<I—1, 4<I
S/S D /(A1 x TY) Ee/(Ds x T) Ee/(A1 x As)

dim I(1—-1); 4<I 32 40

S/S Ee/(A2 x Ax x Ay) E7/(Ds x A1) E7/A7

dim 54 64 70

S/S E7/(Az x As) E7/(Ee x TY) Eg/Ds

dim 90 54 128

S/S Es/Ag Es/(As x As) Eg/(Es x A)

dim 168 200 162

S/S Es/(E7 x A1) Fa/(Cs x A1) Fa/(Az x Az)

dim 112 28 36

S/S Fa/Ba G2/Az Go/(AL x Ag)

dim 16 6 8

It follows easily from Table 2 that the following two cases &he only possible
cases of dinB/S = 2 rankS:

AJ(A-Lx T
and
B//D;.

If S’ is not a maximal subgroup but is a maximal rank compact cdedesubgroup,
then S’ is a subgroup of a conjugation of one of the maximal subgrdipe Table 1.
Hence we have di/S’ > dimS/S. By Table 2, we have dig/S” > dimS/S >
2rankS, hence suchS’ does not occur. Moreover, i§ and S, are compact, con-
nected, maximal rank, maximal compact subgroups in the esitmgonnected, simple
Lie group S with same Lie algebra type, i.e§ ~ S,, thenS, and S, are unique up to
conjugation inS (see [13, Chapter V]). Therefore we have the following LemBuz
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Lemma 3.3. Let(Gj/Hi, Ti) be a pair such that > H; D T; anddimG; /H; =
2dimT; = 2. Assume Gis a connectedsimple Lie group H; is a connectedclosed
subgroup and rankG; = rankH; = dimT;. Then there are just the following two cases

Gi/Hi =SUl + 1)/3(U(l) x U(1)) = CP(l);
Gi/Hi = Spin@ + 1)/Spin(2l) =~ SQ2| + 1)/SQ2!) = .

From Lemma 3.3, we havé = [T, SW(li + 1) x ]_[lj’=1 Spin2m; + 1). Because
an Spinm)-action can be identified with aBQ(m)-action up to essential isomorphism
(see Section 2.3 and Example 2.8), we can assume that

a b
G=[[suli+1)x[]sa2m; +1),

i=1 =1

wherea + b = k.
BecauseH = Hj; x --- x Hy is the identity component op~'(H), we have the
following relation:

HcpH)cNH)CG;

3.2 3 a b
32 N(H) =] sU@) x (@) x [ [ S(0@m;) x 01)),
i=1 j=1

where N(H) is a normalizer group ofi in G. Hence, we have the following fibration
for the torus manifoldG/H =~ G/p (H):

(3.3) A=p*YH)/H —->G/H - G/p*(H) =~ G/H,

where p }(H)/H = A is a subgroup ilN(H)/H ~ ]'[kj’=1 Z,, because o5(0O(2m;) x
0(1))/SQ2m;) ~ Z, and the above (3.2). Note that we can regdrdas the group
generated by the antipodal involution &™, i.e., Z, >~ O(2m; + 1)/SQ2m; + 1) =
{l2m, +1, —l2m;+1}. Therefore, A acts onl‘[ﬁ’=1 S?Mi freely. Moreover, we have that this
A-action on ]’[?:1 S?Mi is orientation preserving if and only il ¢ SO2my + --- +
2m, + b). Consequently, we have the following theorem.

Theorem 3.4. Suppose a torus manifolM?2”, T") extends to a codimensioh
extended G-actignwhere G is a compagctconnected Lie group whose maximal torus
is T". Then(M?", G) is essentially isomorphic to

a H?:l @m; a b
[]cPai) = — []PuUGi + 1)< [ [sazm; + 1)),

i=1 i=1 j=1



296 S. KUROKI

where A can be any subgroup QT[?zlzz whose factorZ, = {lom;+1, —lom;+1} for j =
1,....b, and [T, PUQ + 1)< T°_, bscj(zmj +1) acts on[ ], CP() x [])_, ™ /A
in the natural way and -7, i +3;_; m; = n.

Furthermore M?" is orientable if and only ifA ¢ SQ2my + - - - + 2my, + b).

Here, we give two examples.

ExamMPLE 3.5. Letl = Iynyp be the identity element iO(2m + b). We have
{I,—1} C ]_[tj’=l Z, C O(2m + b), and the following manifold is one of the homo-
geneous torus manifolds in Theorem 3.4:

b
RP,(2m) = <]‘[ szmi>/{|,—|},
j=1

where {1, —1} acts on]_[ﬁ’:l SilNe ]_[?:1 R2Mi+1 = R2™D canonically. Note that if
b = 1, this manifoldRP1(2m) is an even dimensional real projective spae(2m).
If bis even (resp. odd), thefl, —1} C SQ2m + b) (resp.{l, —1} ¢ SQ2m + b)).
Therefore the following two conditions are equivalent byedrem 3.4:

(1) RPy(2m) is orientable;

(2) bis even.

EXAMPLE 3.6. Let us consider the product of three sphed&% x Y™ x ™ ¢
R2M+L 5 R2MeF1 5 R2Ms+1\We define the groupd as follows:
A = ((—lomy+1, —lomp+1s lomg+1)s (lomg41, —lomy+1, —lomg+1))
= {(lamy+1, lomy+1, lomg+1), (= l2my+1, —lomy+1s lomg+1),

(lomp+1s = lomgt1, —lomg+1), (—lomi+1, lomp+1s —l2mg+1)}

x>~ ZzXZz,

where lom 41 € O(2m; + 1) is the identity element. Becausé C SQ2my + 2m; +
2mz + 3), we see that ™ x ™ x ™)/ A is a homogeneous torus manifold and
orientable by Theorem 3.4.

We can easily show the following corollaries.

Corollary 3.7. If a simply connected torus manifold has a codimenfi@xtended
G-action (M?", G) is essentially isomorphic to

b

a a b
<]_[ CP(li) x [T ™, [ PUli + 1) x ] sa2m; + 1)),
i=1

j=1 i=1 j=1
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a b
where} i, i + > j_ymj =n.

REMARK 3.8. We can assumen; > 2 in the above Corollary 3.7, because
(%, SQA3)) and CP(1), PU(2)) are essentially isomorphic. Therefore, diffeomospi
types of simply connected, homogeneous torus manifolddearompletely determined
by sequencedq,...,l3) and fng,...,my) suchthatO< 1y <---<l;, 2<m; <--- <my,
A+ Z'j’zl m; = n. We also remark that these sequences do not determine the
omniorientation onM.

The set of torus manifolds is a topological generalizatibrcampact non-singular
toric varieties and this set also contains alasitoric manifolds As is well known,
every guasitoric manifold is simply connected and their aoblogy rings are gen-
erated by second degree cohomology classes (see [6] forathe af toric varieties,
and [3, Theorem 5.18], or [4, Theorem 4.14] for the case ofsijodc manifolds).
Consequently, we have the following corollary by Coroll&y .

Corollary 3.9. If a compact non-singular toric variety or a quasitoric méoid
(M, T™ has a codimensio® extended G-actianthen (M2, G) is essentially iso-
morphic to

(1‘[ CP(i), [TPUGi + 1)>,

i=1 i=1
where> 2 | Ij =n.

REMARK 3.10. If a compact algebraic variety has a codimension Onebete com-
pact G-action, then this variety is non-singular. Hence, in thése we may omit the
assumption of non-singularity in the above corollary.

4. On other T-manifolds

Finally, in this section, we give an application of the abamgument for other
T-manifolds M, T).

Suppose al ™-manifold (M2", T™) extends to a transitiv&-action, whereG has
T™ as its maximal torus. Assume that thi§'-action is almost effective and has finitely
many fixed points. Then we hawve> m (if n = m then M is a torus manifold). From
the same argument as in Section 2.2, we also v G/H such thatT™ Cc H° C G
and rankG = rankH® = m. Therefore we can apply the same argument as for torus
manifolds, and we obtain the diffeomorphism typeNf".

For example, applying the above argument fist*{, T"+1), we have the following
proposition, where alecomposable manifold Mheans that the manifoli¥ is diffeo-
morphic to M; x My such that dinM;, dim M, # 0.
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Proposition 4.1. Assume tha{M*", T"*1) has finitely many fixed pointsM is
simply connectedand that the T+!-action is almost effectivelf (M4, T"*1) has a
codimensiorD extended G-actiofwhererankG = n+1) and M is not a decomposable
manifold then M*" is diffeomorphic to one of the followings

G2(C"?) = SUn +2)/S(U(n) x U(2)):
HP(n) = SEn + 1)/(Sp(n) x SK1)):
Qan = SA2n + 2)/(SA2n) x SQ2)),

where G(C"+?) is the complex Grassmannian ®planes inC"*+2, HP(n) is the quater-
nionic projective spacgeand @, is the complex quadric

Proof. BecauseM is not decomposable, we can assume tBais a simply con-
nected, compact, simple Lie group. First we assuvhe= G/H. With a method sim-
ilar to that demonstrated in Section 2.2, we can easily shwat tankG = rankH.
BecauseM is simply connected, we havel = H°. AssumeH is a maximal com-
pact subgroup. In this case, we will see from Table 2 that thie (@&, H) such that
rankG = rankH = n + 1 and dimG = dimH = 4n is one of the three pairs in the
statement of this proposition (remark th@(D,) ~ (C», C1xC;) and D4, Az x T1) ~
(D4, D3 X Tl))

Next we assuméM = G/K andK = K° is not maximal. Then we have diGyK >
dimG/H whereH is maximal and ranks = rankH = rankK = n+ 1. If G is one of
the next Lie groupsBn.1, Es, E7, Es, Fs4, Go, then we always have di@/H > 4n
from the list in Table 2. Therefore we can assume tRais one of the next three Lie
groups: Ant1, Cni1, Dnya.

If G is Anr1, then an inequality dinG/H < 4n holds only whenAn;1/(An x T1)
from the list in Table 2. Thus, we ha8 D H D K whereH ~ A, x TL If K is
maximal in such subgroup, we also haex (Aj_1 x A,_j xTY) x Tl for 1< j <n.
Then we can easily check that di@gyK > 4n. Hence this case does not occur.

If G is Chy1 Or Dnyg, then we always have di@/H > 4n from the list in Ta-
ble 2. Hence only the maximal case occurs. ]

REMARK 4.2. In general 1", T"*1) can be decomposed into a produbd;(x
<o x My, Ty x--- x T), but we can easily prove that the type decomposition of Lem-
ma 3.2 does not hold (except= 1). For example & x S?, T? x T1) is one of the
elements in the classM*', T"*1) for n = 2, and it has the codimension 0 extended
G, x SQ(3)-action, wheres® = G,/SU3) and $* = SQ(3)/SQ2). However, the two
factors &°, T?) and (&%, T1) are not in the classM*", T"1).
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