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Abstract
This is the first of a series of papers which will be devoted to the study of the

extendedG-actions on torus manifolds (M2n, Tn), whereG is a compact, connected
Lie group whose maximal torus isTn. The goal of this paper is to characterize co-
dimension 0 extendedG-actions up to essential isomorphism. For technical reasons,
we do not assume that torus manifolds are omnioriented. The main result of this pa-
per is as follows: a homogeneous torus manifoldM2n is (weak equivariantly) diffeo-
morphic to a product of complex projective spaces

Q CP(l ) and quotient spaces of
a product of spheres

�Q
S2m

�=A with standard torus actions, whereA is a subgroup

of
Q Z2 generated by the antipodal involutions onS2m. In particular, if the homo-

geneous torus manifoldM2n is a compact (non-singular) toric variety or a quasitoric
manifold, thenM2n is just a product of complex projective spaces

Q CP(l ).

1. Introduction

A torus manifoldis an even dimensional oriented manifoldM2n acted on by a half-
dimensional torusTn with non-empty fixed point set: typical examples are the complex
projective spaceCP(n) and the even dimensional sphereS2n equipped with the natural
Tn-actions. As is well known, the naturalTn-action onCP(n) is induced from the tran-
sitive U (nC1)-action (orPU(nC1)-action) onCP(n), that is, thisTn-action extends to
a U (nC 1)-action orPU(nC 1)-action (see Example 2.2). Moreover, there is a similar
property for theTn-action onS2n (see Example 2.3). So we can naturally ask which
torus manifolds possess suchextended actions(the exact definition is in Section 2.1). In
a series of papers we focus on this extension problem of torusactions on torus mani-
folds.

This problem is reminiscent of the study of automorphism groups of toric vari-
eties by Demazure in [5], where a toric variety is a normal algebraic variety V on
which an algebraic torus (C�)n acts with a dense orbit (see [6]). We note that a com-
pact non-singular toric variety is a torus manifold by restricting its (C�)n-action to a
Tn-action ((C�)n contains the topological torusTn D (S1)n as its maximal compact
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subgroup). The automorphism groupAut(V) of V contains (C�)n and the action of
Aut(V) restricted to (C�)n coincides with the original (C�)n-action onV . Hence, we
can regard Demazure’s study as the study of the extension problem of (C�)n-actions
on toric varieties. In fact the notion of torus manifold (orunitary toric manifoldin the
earlier terminology) was introduced by Hattori and Masuda in[8, 11] as a far-reaching
topological generalization of compact non-singular toricvarieties. Consequently, our
extension problem may be interpreted as the topological version of Demazure’s work.
(From this point we assume our groups in this paper are alwayscompact.)

In a series of papers, we will study extendedG-actions. In particular, in the present
paper and the next papers, we will characterize extendedG-actions which have co-
dimension 0 (i.e.,G acts transitively) and 1 principal orbits up toessential isomorphism
(i.e., the induced effective actions are same: see Section 2.4). We often call a torus
manifold on whichG acts transitively ahomogeneous torus manifold. For technical
reasons, in this paper, we do not assume that torus manifoldsare omnioriented.

Let Z2 be defined asfI2m jC1, �I2m jC1g � O(2m j C 1), and letPU(x) be a pro-
jective unitary group (see Example 2.2),SO(x) a special orthogonal group,O(x) an
orthogonal group. Our main result (Theorem 3.4) is as follows:

Theorem 1. Suppose a torus manifold(M2n, Tn) extends to a transitive G-action,
where G is a compact, connected Lie group whose maximal torus is Tn. Then(M2n, G)
is essentially isomorphic to

 
aY

iD1

CP(l i ) �
Qb

jD1 S2m j

A
,

aY
iD1

PU(l i C 1)� bY
jD1

SO(2m j C 1)

!
,

whereA can be any subgroup of
Qb

jD1 Z2, and
Qa

iD1 PU(l i C 1)�Qb
jD1 SO(2m j C 1)

acts on
Qa

iD1CP(l i )�Qb
jD1 S2m j =A in the natural way, and

Pa
iD1 l i CPb

jD1 m j D n.

Furthermore, M2n is orientable if and only ifA � SO(2m1 C � � � C 2mb C b).

We also have the following result (see Corollary 3.9):

Corollary 2. Suppose a compact, non-singular toric variety or a quasitoric man-
ifold (M2n, Tn) extends to a transitive G-action, where G is a compact, connected Lie
group whose maximal torus is Tn. Then (M2n, G) is essentially isomorphic to

 
aY

iD1

CP(l i ),
aY

iD1

PU(l i C 1)

!
,

where
Pa

iD1 l i D n.
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Here, aTn-manifold M2n is called aquasitoric manifoldover a simple polytope
Pn if the following two conditions are satisfied (see [3, 4]1):
(1) the Tn-action is locally standard, that is, locally modelled by the standard action
on Cn;
(2) there is the orbit projection map� W M2n ! M2n=Tn D Pn constant onTn-orbits
which maps everyk-dimensional orbit to a point in the interior ofk-dimensional face
of Pn, k D 0, : : : , n.
Quasitoric manifolds were defined by Davis and Januszkiewicz as a topological coun-
terpart of projective, non-singular toric varieties in [4]. We note that every smooth pro-
jective toric variety is a quasitoric manifold (e.g. [3, Chapter 5]). From our main result
Theorem 1, we may conclude that if a compact, non-singular toric variety has a tran-
sitive G-action, then this manifold is a product ofCP(l )’s (Corollary 2). Hence, such
manifolds are projective toric varieties; thus, they are also quasitoric manifolds.

The organization of this paper is as follows. In Section 2, wefirst set up some no-
tation and basic facts. Next we prove our main result Theorem3.4, that is, we charac-
terize homogeneous torus manifoldsG=H in Section 3. A key lemma for this charac-
terization is Lemma 3.2, as well as the classification resultof simply connected, simple
Lie groups and their maximal rank maximal connected subgroups in classical Lie the-
ory proved in [1]. Finally, we remark that our methods, in particular Lemma 3.2, do
not work for otherT-manifolds in Section 4.

2. Preliminaries to the characterization

In this section, we recall some fundamental results. We start with recalling some
basic notation associated to a torus manifold and an extended G-action.

2.1. Basic notations and examples.A torus manifold is a 2n-dimensional,
closed, connected, smooth manifoldM2n (D M) with smooth, finite kernel action of
an n-dimensional torusTn D (S1)n (D T) such thatMT ¤ ; (see Section 2.4 for the
kernel of an action). LetMT denote theT-fixed point set. Automatically, every fixed
point is isolated, because dimM D 2 dimT and T acts onM with finite kernel.

REMARK 2.1. In the paper [8], the definition of torus manifolds involves the
choice of orientations of manifoldM and itscharacteristic submanifoldscalled anomni-
orientationon M. Because we will classify extended actions up to essential isomorphism
in this paper, we do not need to choose an omniorientation onM. Moreover, the
T-action onM does not need to be effective.

1Davis and Januszkiewicz use the term “toric manifold” in [4], but in this paper we use the term
“quasitoric manifold” in [3] because we would like to reserve the use of the term “toric manifold” to
mean a “non-singular toric variety”.
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Let ' W Tn � M2n ! M2n be a Tn-action on M2n. Assume that a compact, con-
nected Lie groupG has Tn as its maximal torus subgroup. If there exists an action8 W G � M2n ! M2n such that the restrictedTn-action8jTn�M2n is the given', then
we call8 an extended G-actionof (M2n, Tn), and we also denote8 as (M2n, G). If
a principal G-orbit is of codimensionk, we call (M2n, G) a codimension k extended
G-action of (M2n, Tn). Here, the integerk satisfies 0� k � n. BecauseM and G are
compact, if (M2n, G) is a codimension 0 extendedG-action then theG-action onM2n

is transitive andM2n is a homogeneous manifold. The following three examples are
standard and important.

EXAMPLE 2.2. If the Tn-action'W Tn�CP(n) ! CP(n) on CP(n) is defined by

'((t1, : : : , tn), [z0I z1I � � � I zn]) D [z0I t1z1I � � � I tnzn],

where (t1, : : : , tn) 2 Tn and [z0I z1I � � � I zn] 2 CP(n), then we can easily check that this
is a torus manifold whose fixed points are (nC 1) points:

[1I 0I � � � I 0], [0I 1I 0I � � � I 0], : : : , [0I � � � I 0I 1].

Considering the aboveTn as the diagonal subgroup ofU (n C 1) with a unit in the
(1, 1)-entry, this action extends to the transitiveU (n C 1)=Z(U (n C 1))-action, where
Z(U (nC 1)) is the center ofU (nC 1). Therefore (CP(n), U (nC 1)=Z(U (nC 1))) D
(CP(n), PU(nC1)) is a codimension 0 extended action of the torus manifold (CP(n), Tn).
Remark thatPU(nC 1)D U (nC 1)=Z(U (nC 1))' SU(nC 1)=ZnC1 � SU(nC 1) has
Tn as its maximal torus subgroup, whereG ' G0 meansG and G0 are isomorphic,
G� G0 meansG andG0 have a same Lie algebra, andZnC1 is the center ofSU(nC1).

EXAMPLE 2.3. Assume theTn-action ' W Tn � S2n ! S2n on S2n � R2n � R DR2nC1 is defined as follows: first we identifyTn with SO(2)n � SO(2n); and nextTn

acts onR2n by the restriction of the naturalSO(2n)-action onR2n. Then we can easily
check that this is a torus manifold whose fixed points are 2 points: the north pole
(0,: : : , 0, 1) and the south pole (0,: : : , 0,�1) of S2n. Moreover this action extends to the
SO(2n)-action whose orbits are principal orbitsS2n�1 (codimension 1 orbits) and two
singular orbits which are the 2 fixed points of theTn-action. Therefore (S2n, SO(2n)) is
a codimension 1 extended action of the torus manifold (S2n, Tn). Remark that (S2n, Tn)
also extends to a codimension 0 extended action (S2n, SO(2nC 1)).

EXAMPLE 2.4. In the above Example 2.3,S2n � R2nC1 has a free involution by�I2nC1 2 O(2nC1), whereI2nC1 is the identity element in the orthogonal groupO(2nC
1). Now we define the manifoldRP(2n) by S2n=Z2, whereZ2 D fI2nC1, �I2nC1g. Be-
cause theTn-action on S2n commutes with theZ2-action, we can define aTn-action
on RP(2n) induced by theTn-action on S2n. Moreover, the twoTn-fixed points on
S2n, the north and south poles, go to the same point inRP(2n) under theZ2-quotient,
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and this point is the unique fixed point of thisTn-action onRP(2n). We can easily
check (RP(2n), Tn) is effective, because (S2n, Tn) is effective andTn \ Z2 D fI2nC1g.
Therefore, (RP(2n), Tn) is a torus manifold; however, we remark thatRP(2n) is a
non-orientable manifold. Furthermore, we have that (RP(2n), Tn) has a codimension
1 extended action (RP(2n), SO(2n)) and a codimension 0 extended action (RP(2n),
SO(2n C 1)), because theSO(2n)-action and theSO(2n C 1)-action onS2n in Exam-
ple 2.3 commute with thisZ2-action. Remark that the orbits of the codimension 1
extended action (RP(2n), SO(2n)) consist of: principal orbitsS2n�1, one singular orbit
which coincides with the uniqueTn-fixed point of (RP(2n), Tn), and one exceptional
orbit RP(2n� 1).

In order to characterize torus manifolds which have codimension 0 extended ac-
tions, i.e., homogeneous torus manifolds, we will also needthe following basic facts,
summarized in Section 2.2 to 2.4.

2.2. Homogeneous spaceG=H with finite T-fixed points. First we discuss
homogeneous spaces withT-actions. LetT be a maximal torus in a compact Lie group
G, and H a closed subgroup inG. Suppose that (G=H , T) is a torus manifold, that
is, it satisfies the following three properties:
(1) the T-action onG=H has finite kernel;
(2) dimG=H D 2 dimT ;
(3) the T-fixed point set (G=H )T ¤ ;.
Because of the third property, there is an elementgH 2 G=H such thatT gH D gH.
It follows that T � gHg�1 for some g 2 G. Hence we can take a subgroupH as
follows:

T � Ho � H � G,

where Ho is the identity component ofH . SinceT is a maximal torus inG, we have

rankG D rankHo D dim T D n,

where therank of a compact connected Lie group is the dimension of a maximaltorus
subgroup. Consequently, we need to consider maximal rank subgroups ofG.

2.3. Facts from classical Lie theory. In order to consider maximal rank sub-
groups, we recall some classical Lie theory (see [13, Chapter V]).

For any compact, connected Lie groupG, there is a finite covering map:

(2.1) p W QG D G1 � � � � � Gk ! G,

whereGi (i D 1, : : : , k) is a compact, simply connected, simple Lie group, or a com-
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pact, connected, commutative Lie group, i.e., a torus. Let the kernel ofp be denoted
by N. Then we have

G ' (G1 � � � � � Gk)=N,

where N is some finite central normal subgroup inG1 � � � � � Gk.
Now we have the following lemma for a product of Lie groups (see [13, Theo-

rem 7.2]).

Lemma 2.5. Let Gi (i D 1, : : : , k) be compact, connected Lie groups and let G
be their product. Assume Ho is the identity connected maximal rank subgroup in G.
Then Ho D H1 � � � � � Hk, where Hi is a maximal rank subgroup in Gi .

2.4. Essential isomorphism and a remark for the characterization. In this
subsection, we define an essential isomorphism.

We first need some notations. Thekernel of (M, G) is defined as the intersection
of all isotropy subgroups

T
x2M Gx. If the kernel N is the identity element, then this

action is aneffective action. The induced action (M, G=N) is always effective, and we
call it the induced effective action. We may now define an essential isomorphism.

DEFINITION 2.6. Let N be the kernel of (M, G) and N 0 the kernel of (M 0, G0).
We say that (M, G) and (M 0, G0) are essentially isomorphicif their induced effective
actions (M, G=N) and (M 0, G0=N 0) are weak equivariantly diffeomorphic, that is, there
are an isomorphism� W G=N ! G0=N 0 and a diffeomorphismf W M ! M 0 such that
f ('(g, x)) D  (�(g), f (x)) for (g, x) 2 G=N � M, where ' W G=N � M ! M and W G0=N 0 � M 0 ! M 0 are two induced effective actions.

EXAMPLE 2.7. In Example 2.2, (CP(n), PU(nC 1)) is essentially isomorphic to
the natural transitive action (CP(n), SU(nC 1)).

EXAMPLE 2.8. Let Spin(m) be the universal (double) covering ofSO(m) (m �
3). This groupSpin(m) acts on a sphere and a real projective space through the pro-
jection to SO(m). In Example 2.3 (resp. Example 2.4), the codimension 1 extended ac-
tion (S2n, SO(2n)) (resp. (RP(2n), SO(2n))) is essentially isomorphic to (S2n, Spin(2n))
(resp. (RP(2n),Spin(2n))) for n� 2, and the codimension 0 extended action (S2n,SO(2nC
1)) (resp. (RP(2n), SO(2nC1))) is essentially isomorphic to the natural transitive action
(S2n, Spin(2nC 1)) (resp. (RP(2n), Spin(2nC 1))) for n � 1.

Let QG D G1 � � � � � Gk be a covering ofG defined in (2.1) such that eachGi

(i D 1, : : : , k) is a compact, simply connected, simple Lie group, or a torusgroup.
Then (M, G) is essentially isomorphic to

(M, QG) D (M, G1 � � � � � Gk).(2.2)
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Therefore, we only need to consider products of simply connected, simple Lie groups
and tori as the transformation groups on a homogeneous torusmanifold. In the next
section we characterize homogeneous torus manifolds.

3. Characterization of homogeneous torus manifolds

Assume (M, G) is a codimension 0 extendedG-action of a torus manifold (M2n, Tn).
In this section, we will classify such (M, G) up to essential isomorphism.

3.1. Structure of torus manifolds. Now we can putM D G=H and T is a
maximal torus subgroup ofH and G by the argument in Section 2.2. Moreover, a
T-action of (G=H , T) is defined by a natural inclusion ofT to G. By (2.2), (G=H , G)
is essentially isomorphic to

(G=H , QG) D (G=H , G1 � � � � � Gk).

Let p W QG ! G be the projection of (2.1). Then we have

G=H � QG=p�1(H ),(3.1)

where X � Y meansX and Y are diffeomorphic. Therefore it is sufficient to classifyQG and its subgroupp�1(H ). To classify such QG and p�1(H ), we first consider the
identity component ofp�1(H ).

Let QH (resp. QT) be the identity component ofp�1(H ) (resp.p�1(T))2. Because of
Lemma 2.5, QG= QH is decomposed into a product as follows:

QG= QH D G1=H1 � � � � � Gk=Hk,

where Hi � Gi is a maximal rank, connected subgroup for alli D 1, : : : , k. Because
T is a maximal torus subgroup ofG and H , we see thatQT is also a maximal torus
subgroup of QG and QH such thatp( QT) D T . Moreover, we have the following lemma.

Lemma 3.1. If (G=H , T) is a torus manifold, then ( QG= QH , QT) is also a torus
manifold, and each Gi is a compact, simply connected, simple Lie group.

Proof. We prove (QG= QH , QT) satisfies the three properties in Section 2.2. BecauseQT is a maximal torus subgroup ofQG and QH , we can easily check (QG= QH ) QT ¤ ;, i.e.,
property (3) holds. Because dimG=H D 2 dimT , we have dimQG= QH D 2 dim QT , i.e.,
property (2) holds. Since (G=H , T) is almost effective, (QG= QH , QT) is also almost effec-
tive, i.e., property (1) holds. Moreover, we have eachGi is not a torus by property
(1), i.e., eachGi is a compact, simply connected, simple Lie group.

2We remark thatp�1(T) D QT by [13, Theorem 4.9 in Chapter V].
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Taking a maximal torus subgroupTi in Hi , the maximal torus subgroupQT is de-
composed into

QT D T1 � � � � � Tk � H1 � � � � � Hk � G1 � � � � � Gk.

The following structure lemma holds.

Lemma 3.2. Suppose that the torus manifold(M, T) has a codimension0 ex-
tended G-action and MD G=H such that T� H � G. Put QG= QH D G1=H1 � � � � �
Gk=Hk, QT D T1 � � � � � Tk, and Gi =Hi D Mi for all i D 1, : : : , k, where QG is a uni-
versal covering of G, its subgroup QH (resp. QT) is the identity component of p�1(H )
(resp. p�1(T)), and Ti is a maximal torus subgroup in Gi and Hi . Then each factor
(Mi , Ti ) D (Gi =Hi , Ti ) is a torus manifold.

Proof. By Lemma 3.1, (QG= QH , QT) is a torus manifold and eachGi is a simply
connected, simple Lie group. Because (QG= QH , QT) is almost effective, we also have that
(Gi =Hi , Ti ) is almost effective for alli D 1,:::,k. SinceTi is a maximal torus subgroup
in Gi and Hi , we have (Gi =Hi )Ti ¤ ; for all i D 1, : : : , k. Therefore, we have

2 dimTi � dim Gi =Hi

for all i D 1, : : : , k. Hence, the following equation holds:

2 dim QT D kX
iD1

2 dimTi � kX
iD1

dim Gi =Hi D dim QG= QH .

On the other hand 2 dimQT D dim QG= QH . Consequently, we have 2 dimTi D dim Gi =Hi

for all i D 1, : : : , k, and each factor (Mi , Ti ) D (Gi =Hi , Ti ) is a torus manifold.

From Lemma 3.2, in order to classifyQG= QH , we need to consider each factor
Gi =Hi constructed by a compact, simply connected, simple Lie group Gi and its max-
imal rank connected subgroupHi , such that

dim Gi =Hi D dim Gi � dim Hi D 2 dimTi D 2 rankGi D 2 rankHi .

In the next subsection we classify all codimension 0 extended G-actions of torus
manifolds (M, Tn) up to essential isomorphism.

3.2. Characterization of homogeneous torus manifolds. Let S be a compact,
connected, simple Lie group, andS0 a compact, connected, maximal rank, maximal
subgroup ofS. Here, amaximal subgroupmeans that ifS00 is another compact, con-
nected, maximal rank subgroup inS and there is an elementg 2 S such thatS0 �
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Table 1. Maximal rank subgroups.

S Al (l � 1) Bl (l � 2)
S0 Ai�1 � Al�i � T1 (1< i < l ) Al�1 � T1 (i D 1, l ) Bl�1 � T1 (i D 1)

S Bl (l � 2) Cl (l � 3)
S0 Di � Bl�i (1< i < l ) Dl (i D l ) Ci � Cl�i (1� i < l )

S Cl (l � 3) Dl (l � 4)
S0 Al�1 � T1 (i D l ) Dl�1 � T1 (i D 1) Di � Dl�i (1< i < l � 1)

S Dl (l � 4) E6

S0 Al�1 � T1 (i D l � 1, l ) D5 � T1 A1 � A5

S E6 E7

S0 A2 � A2 � A2 D6 � A1 A7

S E7 E8

S0 A2 � A5 E6 � T1 D8

S E8

S0 A8 A4 � A4 E6 � A2

S E8 F4

S0 E7 � A1 C3 � A1 A2 � A2

S F4 G2

S0 B4 A2 A1 � A1

gS00g�1 then S0 D gS00g�1. For suchS and S0, the classification of these types, i.e.,
the Lie algebras ofS and S0, is known by classical Lie theory: see the Table 1 (see
[1] or [13, Chapter V]3).

Here, in the Table 1,Al � SU(l C 1), Bl � SO(2l C 1), Cl � Sp(l ), Dl � SO(2l )
are the classical Lie groups andE6, E7, E8, F4, G2 are the exceptional Lie groups
(indices indicate their rank), andS� X meansS and X have the same Lie algebra.
Note that each dimension ofS is as follows:

dim Al D l 2 C 2l I dim Bl D dim Cl D (2l C 1)l I dim Dl D l (2l � 1)I
dim E6 D 78I dim E7 D 133I dim E8 D 248I dim F4 D 52I dim G2 D 14.

Therefore dimS=S0 can be computed as in Table 2 below.

3The Table 1 is based on the list in [13]. In the list in [1, 13], the casesi D 1, l in Al do not
appear; however, we can easily check these cases should be included in their list by making use of
[13, Theorem 7.16 in Chapter V]. Moreover, for the cases thati is not fixed inBl , Cl and Dl in [13],
we can easily check that indices ofS0 (G0 in [13]) should be the indices in the above list by making
use of [13, Theorem 7.16 in Chapter V].
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Table 2. Dimension ofS=S0.
S=S0 Al =(Ai�1 � Al�i � T1) Al =(Al�1 � T1) Bl=(Bl�1 � T1)
dim 2i (l � i C 1); 1< i < l 2l ; 1� l 2(2l � 1); 2� l

S=S0 Bl=(Di � Bl�i ) Bl=Dl Cl=(Ci � Cl�i )
dim 2i (2l � 2i C 1); 1< i < l 2l ; 2� l 4i (l � i ); 1� i < l , 3� l

S=S0 Cl=(Al�1 � T1) Dl =(Dl�1 � T1) Dl =(Di � Dl�i )
dim l (l C 1); 3� l 4(l � 1); 4� l 4i (l � i ); 1< i < l � 1, 4� l

S=S0 Dl =(Al�1 � T1) E6=(D5 � T1) E6=(A1 � A5)
dim l (l � 1); 4� l 32 40

S=S0 E6=(A2 � A2 � A2) E7=(D6 � A1) E7=A7

dim 54 64 70

S=S0 E7=(A2 � A5) E7=(E6 � T1) E8=D8

dim 90 54 128

S=S0 E8=A8 E8=(A4 � A4) E8=(E6 � A2)
dim 168 200 162

S=S0 E8=(E7 � A1) F4=(C3 � A1) F4=(A2 � A2)
dim 112 28 36

S=S0 F4=B4 G2=A2 G2=(A1 � A1)
dim 16 6 8

It follows easily from Table 2 that the following two cases are the only possible
cases of dimS=S0 D 2 rankS:

Al =(Al�1 � T1)

and

Bl=Dl .

If S00 is not a maximal subgroup but is a maximal rank compact connected subgroup,
then S00 is a subgroup of a conjugation of one of the maximal subgroupsS0 in Table 1.
Hence we have dimS=S00 > dim S=S0. By Table 2, we have dimS=S00 > dim S=S0 �
2 rankS, hence suchS00 does not occur. Moreover, ifS01 and S02 are compact, con-
nected, maximal rank, maximal compact subgroups in the compact, connected, simple
Lie group S with same Lie algebra type, i.e.,S01 � S02, then S01 and S02 are unique up to
conjugation inS (see [13, Chapter V]). Therefore we have the following Lemma3.3.
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Lemma 3.3. Let (Gi =Hi , Ti ) be a pair such that Gi � Hi � Ti and dimGi =Hi D
2 dimTi D 2l . Assume Gi is a connected, simple Lie group, Hi is a connected, closed
subgroup, and rankGi D rankHi D dimTi . Then there are just the following two cases:

Gi =Hi D SU(l C 1)=S(U (l ) �U (1))� CP(l )I
Gi =Hi D Spin(2l C 1)=Spin(2l ) � SO(2l C 1)=SO(2l ) � S2l .

From Lemma 3.3, we haveQG DQa
iD1 SU(l i C 1)�Qb

jD1 Spin(2m j C 1). Because
an Spin(m)-action can be identified with anSO(m)-action up to essential isomorphism
(see Section 2.3 and Example 2.8), we can assume that

QG D aY
iD1

SU(l i C 1)� bY
jD1

SO(2m j C 1),

whereaC bD k.
Because QH D H1 � � � � � Hk is the identity component ofp�1(H ), we have the

following relation:

(3.2)

QH � p�1(H ) � N( QH ) � QGI
N( QH ) D aY

iD1

S(U (l i ) �U (1))� bY
jD1

S(O(2m j ) � O(1)),

where N( QH ) is a normalizer group ofQH in QG. Hence, we have the following fibration
for the torus manifoldG=H � QG=p�1(H ):

A D p�1(H )= QH ! QG= QH ! QG=p�1(H ) � G=H ,(3.3)

where p�1(H )= QH D A is a subgroup inN( QH )= QH 'Qb
jD1Z2, because ofS(O(2m j )�

O(1))=SO(2m j ) ' Z2 and the above (3.2). Note that we can regardZ2 as the group
generated by the antipodal involution onS2m j , i.e., Z2 ' O(2m j C 1)=SO(2m j C 1)DfI2m jC1,�I2m jC1g. Therefore,A acts on

Qb
jD1 S2m j freely. Moreover, we have that this

A-action on
Qb

jD1 S2m j is orientation preserving if and only ifA � SO(2m1 C � � � C
2mb C b). Consequently, we have the following theorem.

Theorem 3.4. Suppose a torus manifold(M2n, Tn) extends to a codimension0
extended G-action, where G is a compact, connected Lie group whose maximal torus
is Tn. Then (M2n, G) is essentially isomorphic to

 
aY

iD1

CP(l i ) �
Qb

jD1 S2m j

A
,

aY
iD1

PU(l i C 1)� bY
jD1

SO(2m j C 1)

!
,
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whereA can be any subgroup of
Qb

jD1Z2 whose factorZ2 D fI2m jC1,�I2m jC1g for j D
1, : : : , b, and

Qa
iD1 PU(l i C1)�Qb

jD1 SO(2m j C1) acts on
Qa

iD1CP(l i )�Qb
jD1 S2m j =A

in the natural way, and
Pa

iD1 l i CPb
jD1 m j D n.

Furthermore, M2n is orientable if and only ifA � SO(2m1 C � � � C 2mb C b).

Here, we give two examples.

EXAMPLE 3.5. Let I D I2mCb be the identity element inO(2mC b). We havefI , �I g � Qb
jD1 Z2 � O(2m C b), and the following manifold is one of the homo-

geneous torus manifolds in Theorem 3.4:

RPb(2m) D
 

bY
jD1

S2m j

!,
fI , �I g,

where fI , �I g acts on
Qb

jD1 S2m j � Qb
jD1 R2m jC1 D R2mCb canonically. Note that if

b D 1, this manifoldRP1(2m) is an even dimensional real projective spaceRP(2m).
If b is even (resp. odd), thenfI , �I g � SO(2m C b) (resp.fI , �I g 6� SO(2m C b)).
Therefore the following two conditions are equivalent by Theorem 3.4:
(1) RPb(2m) is orientable;
(2) b is even.

EXAMPLE 3.6. Let us consider the product of three spheresS2m1�S2m2�S2m3 �R2m1C1 � R2m2C1 � R2m3C1. We define the groupA as follows:

A D h(�I2m1C1, �I2m2C1, I2m3C1), (I2m1C1, �I2m2C1, �I2m3C1)i
D f(I2m1C1, I2m2C1, I2m3C1), (�I2m1C1, �I2m2C1, I2m3C1),

(I2m1C1, �I2m2C1, �I2m3C1), (�I2m1C1, I2m2C1, �I2m3C1)g
' Z2 � Z2,

where I2m jC1 2 O(2m j C 1) is the identity element. BecauseA � SO(2m1 C 2m2 C
2m3 C 3), we see that (S2m1 � S2m2 � S2m3)=A is a homogeneous torus manifold and
orientable by Theorem 3.4.

We can easily show the following corollaries.

Corollary 3.7. If a simply connected torus manifold has a codimension0 extended
G-action, (M2n, G) is essentially isomorphic to

 
aY

iD1

CP(l i ) � bY
jD1

S2m j ,
aY

iD1

PU(l i C 1)� bY
jD1

SO(2m j C 1)

!
,
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where
Pa

iD1 l i CPb
jD1 m j D n.

REMARK 3.8. We can assumem j � 2 in the above Corollary 3.7, because
(S2, SO(3)) and (CP(1), PU(2)) are essentially isomorphic. Therefore, diffeomorphism
types of simply connected, homogeneous torus manifolds canbe completely determined
by sequences (l1, : : : , la) and (m1, : : : , ma) such that 0< l1 � � � � � la, 2�m1 � � � � �mb,Pa

iD1 l i CPb
jD1 m j D n. We also remark that these sequences do not determine the

omniorientation onM.

The set of torus manifolds is a topological generalization of compact non-singular
toric varieties, and this set also contains allquasitoric manifolds. As is well known,
every quasitoric manifold is simply connected and their cohomology rings are gen-
erated by second degree cohomology classes (see [6] for the case of toric varieties,
and [3, Theorem 5.18], or [4, Theorem 4.14] for the case of quasitoric manifolds).
Consequently, we have the following corollary by Corollary3.7.

Corollary 3.9. If a compact non-singular toric variety or a quasitoric manifold
(M2n, Tn) has a codimension0 extended G-action, then (M2n, G) is essentially iso-
morphic to

 
aY

iD1

CP(l i ),
aY

iD1

PU(l i C 1)

!
,

where
Pa

iD1 l i D n.

REMARK 3.10. If a compact algebraic variety has a codimension 0 extended com-
pact G-action, then this variety is non-singular. Hence, in this case we may omit the
assumption of non-singularity in the above corollary.

4. On other T-manifolds

Finally, in this section, we give an application of the aboveargument for other
T-manifolds (M, T).

Suppose aTm-manifold (M2n, Tm) extends to a transitiveG-action, whereG has
Tm as its maximal torus. Assume that thisTm-action is almost effective and has finitely
many fixed points. Then we haven � m (if n D m then M is a torus manifold). From
the same argument as in Section 2.2, we also haveM � G=H such thatTm � Ho � G
and rankG D rankHo D m. Therefore we can apply the same argument as for torus
manifolds, and we obtain the diffeomorphism type ofM2n.

For example, applying the above argument for (M4n, TnC1), we have the following
proposition, where adecomposable manifold Mmeans that the manifoldM is diffeo-
morphic to M1 � M2 such that dimM1, dim M2 ¤ 0.
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Proposition 4.1. Assume that(M4n, TnC1) has finitely many fixed points, M is
simply connected, and that the TnC1-action is almost effective. If (M4n, TnC1) has a
codimension0 extended G-action(whererankGD nC1) and M is not a decomposable
manifold, then M4n is diffeomorphic to one of the followings:

G2(CnC2) D SU(nC 2)=S(U (n) �U (2))I
HP(n) D Sp(nC 1)=(Sp(n) � Sp(1))I

Q2n D SO(2nC 2)=(SO(2n) � SO(2)),

where G2(CnC2) is the complex Grassmannian of2-planes inCnC2, HP(n) is the quater-
nionic projective space, and Q2n is the complex quadric.

Proof. BecauseM is not decomposable, we can assume thatG is a simply con-
nected, compact, simple Lie group. First we assumeM D G=H . With a method sim-
ilar to that demonstrated in Section 2.2, we can easily show that rankG D rankH .
BecauseM is simply connected, we haveH D Ho. AssumeH is a maximal com-
pact subgroup. In this case, we will see from Table 2 that the pair (G, H ) such that
rankG D rankH D n C 1 and dimG D dim H D 4n is one of the three pairs in the
statement of this proposition (remark that (B2, D2)� (C2, C1�C1) and (D4, A3�T1)�
(D4, D3 � T1)).

Next we assumeM D G=K andK D K o is not maximal. Then we have dimG=K >
dim G=H whereH is maximal and rankG D rankH D rankK D nC 1. If G is one of
the next Lie groups:BnC1, E6, E7, E8, F4, G2, then we always have dimG=H > 4n
from the list in Table 2. Therefore we can assume thatG is one of the next three Lie
groups: AnC1, CnC1, DnC1.

If G is AnC1, then an inequality dimG=H < 4n holds only whenAnC1=(An � T1)
from the list in Table 2. Thus, we haveG � H � K where H � An � T1. If K is
maximal in such subgroup, we also haveK � (A j�1� An� j � T1)� T1 for 1� j � n.
Then we can easily check that dimG=K > 4n. Hence this case does not occur.

If G is CnC1 or DnC1, then we always have dimG=H � 4n from the list in Ta-
ble 2. Hence only the maximal case occurs.

REMARK 4.2. In general (M4n, TnC1) can be decomposed into a product (M1 �� � � � Mk, T1 � � � � � Tk), but we can easily prove that the type decomposition of Lem-
ma 3.2 does not hold (exceptk D 1). For example (S6 � S2, T2 � T1) is one of the
elements in the class (M4n, TnC1) for n D 2, and it has the codimension 0 extended
G2 � SO(3)-action, whereS6 D G2=SU(3) and S2 D SO(3)=SO(2). However, the two
factors (S6, T2) and (S2, T1) are not in the class (M4n, TnC1).
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