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Abstract
We show that an upper bound for the maximal Thurston—Berinegumber of
any double of a knoK given by the Kauffman polynomial is sharp if the bound is
sharp forK. In particular, we give formulas for the maximal ThurstoreABequin
numbers of positive doubles of torus knots and two-bridgetdn

1. Introduction

A contact structureon 3-spaceR® = {(x, ¥, 2) | X, ¥, z € R} is a global differen-
tial 1-form & such thatt A d£ # O everywhere orR®. We say that a contact structure
on R? is standardif it is given by a differential 1-formdz — y dx. The 3-space en-
dowed with a contact structuréz — y dx is called thestandard contact3-space A
Legendrian linkis a smooth embedding of disjoint circles in the standardtamin3-
space such that its tangent vector lies in the contact Zeplarhich is the kernel of
the standard contact structure, at each point. ffbet diagramof a Legendrian link
is its projection onto thex| z)-plane. Generically, the only singularities of a front di-
agram are cusps and transverse double points [19]. We ashanall front diagrams
are generic. For example, Fig. 1 (a) shows a generic frordraim of a Legendrian
knot which is ambient isotopic to the figure eight knot. Weaibta link diagram of
the same topological type from a front diagram by rounding ¢hsps and making the
strand with smaller slope overcross at each double point. ekample, we obtain a
diagram of the figure eight knot as in Fig. 1 (b). For an oridritent diagramF of a
Legendrian link, letc(F) andw(F) be the number of left cusps &f and the writhe of
a link diagram obtained fronfr as above. The Thurston—Bennequin number is defined
astb(F) = w(F) — ¢(F). A Legendrian isotopybetween Legendrian linkgy and J;
is an ambient isotopy betweely and J; with each level Legendrian. The Thurston—
Bennequin number is known to be a Legendrian isotopy inmaigd Legendrian links.
For an oriented link., we denote bylB(L) the maximal value ofb over all Legendr-
ian link which are ambient isotopic th. The integerTB(L) is called themaximal
Thurston—-Bennequin numbef L. Let L be a link andD a diagram ofL. The Kauff-
man polynomial k(L) € Z[a*, z*] is defined asa™"(®) A 5 (D), where A,z (D)
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is a regular isotopy invariant with properties as follows.

) Aan(O) =1

(ii) /\(a,z)(w) =aA@ (>> and A(a,z)(X)) =a ' Aa@y <>>
9 10 ) 04 X) =epos(<) s> )

Let f € Z[x*, y*] be a Laurent polynomial and writé = 3", fi(y)x' where f;(y) are
polynomials iny*!. We denote the largest (resp. the smallest) exponemt iof f by
max-deg f (resp. min-degf). In the late of 1990’s, an upper bound for the maximal
Thurston—Bennequin number in terms of the Kauffman polyiabmas given by Fuchs
and Tabachnikov [6], [20] as follows.

Theorem 1.1 (Fuchs and Tabachnikov [6], [20]).Let K be a link inR3. Then
min-deg F(a—lyz)(l_) —-1> TB(L)

We call the upper bound of the inequality in Theorem 1.1 Kaaiffman boundn the
maximal Thurston—Bennequin number. Then we consider thewimg problem.

PrROBLEM. Which links have the sharpness for the Kauffman bound?

It is known that the Kauffman bound is sharp for any positiigk land any alter-
nating link [3], [10], [11], [21], [22], and recently T. K&l&n has shown that the
bound is sharp for alk-adequate linkg8]. All positive links and alternating links are
-+adequate. LeD;(K) (res-p..l?g(K.)) a p-misted positi-ve (resp. negative) doub!e of a
knot K. (We shall give definitions in Section 3.) In this paper, wewltthe following.

Theorem 1.2. (1) If TB(K) > p, then the Kauffman bound is sharp forﬁ(:K)
and we haverB(D}(K)) = 1 and TB(D,(K)) = —3;

IWe take min-degF-1 (L) instead of—min-deg, F, (L) because it is a question of Stoimenow
in Section 5 for which we shall a partial answer.
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Fig. 2.

(2) If K is a knot for which the Kauffman bound is sharp afB(K) < p, then the
Kauffman bound is sharp for ﬁ(K) and we haveTB(D} (K)) = 1—2p + 2TB(K)
and TB(D,(K)) = —2—2p + 2TB(K).

Corollary 1.3. If K is a knot for which the Kauffman bound is sharen the
Kauffman bound for @(K) is sharp for any integer p

REMARK. In general, the Kauffman bound is not necessarily sharp.ekample,
many negative torus knots do not have the sharpness as meshtio [11].

This paper is organized as follows. In Section 2, we shallothice results of
D. Rutherford which will be used to prove Theorem 1.2 in SgttB. In Section 4,
we shall give formulas for the maximal Thurston—Bennequimhers of positive dou-
bles of torus knots and two-bridge knots. In Section 5, wdl shiscuss a problem of
A. Stoimenow.

2. Existence of rulings

In this section, we recall a work of D. Rutherford [13]. Fimge give the definition
of a ruling for a front diagram of a Legendrian link. By planaotopy, we assume
that all singularities of a front diagrari have differentx-coordinates. Give a subset
o = {A1,..., An} Of the set of crossings of, with the x-coordinate ofi; denotedx;
so thatx; < Xi;+1, let S,(F) denote the front diagram obtained frofby resolving all
crossings inp to parallel horizontal lines (see Fig. 2). The geis called aruling if
(i) every componentT; of S,(F) (as a Legendrian link) consists of two horizontal
strands having one left cusp and no self-crossings. TheruppgenotedU;, and the
lower Lj,
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Fig. 3. Normality condition

(i) for eachi, the strands ofS,(F) meeting wherex; was in F belong to different
components. Call the upper of these straflsand the lowerQ;,
(iii) one of the following normality conditions (Fig. 3) has for eachi: for somejy, j,,
(@ P =Lj andQ =Uj,;
(b) B =Uj, and Q; = Uj,, with the z-coordinate ofLj, less than the-coordinate
of Lj, atx = Xi;
(c) B =Lj, andQ; = Lj,, with the z-coordinate ofU;, less than the-coordinate
of Uj, at X = X;.

REMARK. The setp = {X1, A2} in Fig. 2 (a) is a ruling. See Fig. 2 (b).

D. Rutherford has shown the following result. (See Lemma &1 Theorem 3.1
in [13].)

Theorem 2.1 (Rutherford [13]). (1) A Legendrian link L has a front diagram
with a ruling if and only if the Kauffman bound for the maxinfdiurston—Bennequin
number of L is sharp
(2) If F is a front diagram with a ruling for a Legendrian link ,Lthentb(F) = TB(L).

REMARK. Theorem 2.1 gave an affirmative answer to a conjecture ofudh$
[4]. As mentioned in [13], the existence of a ruling of a fralihgram of a Legendrian
link is equivalent to the existence of an augmentation onLtéhgendrian contact DGA,
defined by Chekanov [1] and Eliashberg [2]. (See [5] and )1} Fuchs studied the
existence of an augmentation of a doubled knot in [4].

3. Proof of Theorem

Take an embedding of an annulédsin R3. We denote the core curve @ by K.
When we orient two boundary curves of the annulus so as to round the annulus
in the same direction, we denote the linking number of thenbdawy curves byp.
Then add a clasp to the boundary curves as shown in Fig. 4. ladeea clasp &)
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(resp. b)), then we call the resultant knot p-twisted positive doubléesp negative
double of K

REMARK. For example, see [14] for the definition of @twisted positive dou-
ble of a knot. The 2-twisted positive double of the positixefdil knot is described in
Fig. 5. We may define a-twisted negative double of a knot as the mirror image of a
(—p)-twisted positive double of the mirror image of the knot. fimve Theorem 1.2,
we consider a front diagram for a double of a Legendrian krmaioed by doubling
a front as follows. First take a front diagraf of an arbitrary Legendrian knot. Then
we take a “double” ofF as shown is Fig. 6. (Shift a copy d¥ slightly down.) Next
we insert “full-twists” in a part ofF which consists of a subarc and its copy as shown
in Fig. 7. Finally we make a “clasp” at one portion of the ob& front diagram as
shown in Fig. 8. If we insert a clas@)( (b) or (c) in Fig. 8, then the resultant front
diagram is denoted ak,, Fy, or Fy7, respectively. Notice thaE; , is a front dia-
gram for a Legendrian representative of a positive doubla kifot, andF; , and F7 7
are front diagrams for Legendrian representatives of negatoubles of a knot.

Proposition 3.1. Let K be a knot inR® and F a front diagram for a Legendrian
representative of KThen for any integer p with p< tb(F), Fo+,tb(F)—p (resp Fo i ry—p)
is a front diagram with a ruling for a Legendrian represeriat of Dg(K) (resp D5 (K)),
tb(FJ,tb(F)_p) =1 andtb(Fyy,F_p) = —3.

Proof. By direct calculation, we havp = m—n + th(F) for F} andF;  as
Legendrian representatives 6ff (K) and D (K), th(F; ) = 1 —2m and tb(Fmn) =
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—3—2m. By assumption, we may assume timat= 0. Thus we haven = tb(F) — p,
tb(Foinery_p) = 1 andtb(Fyyry_p) = —3. We know thatFy'y ey, and Fyy, ), are
front diagrams with rulings by considering resolutions ofssings as in Fig. 9. (We
do not need to consider resolutions of crossings of claspsaércrossings near each
crossing ofF.) ]

Proposition 3.2. Let K be a knot inR®. If F is a front with a ruling for a
Legendrian representative of ,Kthen for any integer p with p> th(F), F;_—tb(F),O
(resp F[;:tb(F)fl,O) is a front diagram with a ruling for a Legendrian represeriat of
D} (K) (resp D, (K)), tb(Fy )0 = 1—2p + 2tb(F) and th(F "y o) = —2 —
2p + 2tb(F).

Proof. As in the proof of Proposition 3.1, we hage= m—n + tb(F) (resp.p =
m—n+th(F)+1) for F | (resp.F; ), andtb(F; ) = 1—2m andtb(F ;) = —4—2m.
By assumption, we may assume that 0, and hence we have front diagralh‘=1§_tb(F)’0
and F, ", ¢)_1.0 SUCh thattb(F ey o) = 1 —2p + 2tb(F) andtb(F Sy o) = —2 —
2p+2tb(F). By assumption thaff has a ruling, we know theE;F_tb(F)yo andF_ “r)-1.0
are front diagrams with rulings by considering resolutiohgach crossing in the rulings
of F and crossings near clasps as in Fig. 10. ]

Proof of Theorem 1.2. Theorem 1.2 follows from Theorem 2.AgpBsition 3.1
and Proposition 3.2. ]
4. Examples

In this section, we give formulas for positive douBSlesf torus knotsand two-
bridge knots(cf. [9].)

2We are interested in a knot with nonnegative maximal ThursBennequin number since it is not
slice [15] [16].
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Proposition 4.1. Let Ty, be the(m, n)-torus knot for positive integers m and n
(1) fmn—m-n= p, thenTB(D{(Tmn)) = 1,
(2) f mn—m—n =< p, thenTB(Dy(Tmn)) = 1—2p +2(Mn—m—n).

Proof. As we will show in Remark of Section 5, we know thEB (T (m, n)) =
(m—1)(n — 1) — 1. Therefore the result follows from Theorem 1.2. O

A two-bridge link T(ay, &z, ..., a,) is defined by a link diagram as in Fig. 11, where
a denotes|a;| (# 0) crossing points with sigr; = g /|a| = £1. For a two-bridge
knot, we have the following.
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Proposition 4.2. Let m be a positive integeiThen
TB(D;(T(ay, - - -, @om)))
2m m
1, it Y a—) lagl-1=p,
i=1 j=1
2m

m 2m m
1—2p+2{Za —Z|a2j|—1}, if Y a—) la-1=<p,
j=1 j=1

i=1 i=1

TB(Dy (T(ay, . - ., @m+1)))
2m+1

m
1, it Y a—) lal-2=p,
i=1 =1

2m+1 2m+1

m m
1—2p+2!Za—Z|a2j|—2}, it Y a-) lal-2<p
j=1 i=1 j=1

i=1

Proof. By a result of [21],TB(T(ay, ..., am)) = > & — Y Tialaj| — 1 and
TB(T(a, ..., 8me1)) = Yoy @& — Y|-4l3| — 2. Thus we obtain the result by The-
orem 1.2. O]

5. A problem

Let K and L be a knot and a link inR3. A Seifert surfacefor L is a compact
oriented surface none of whose components are closed ansewjaundary id.. We
define x (L) to be the maximal Euler characteristic of all Seifert scefaforL. We
defineu(K) as the minimum number of crossing changes required to unknoThe
integer u(K) is called theunknotting numberof K. In [18], A. Stoimenow gave the
following question.

QUESTION (Stoimenow [18]). Does min-dgd~a1 (L) < 1—x(L) hold for any
link L? Does min-degF1 ,(K) < 2u(K) hold for any knotK?

We can give a partial answer to this problem by using the ¥alig proposition.

Proposition 5.1. Let K be a knot for which the Kauffman bound is shafen
we havemin-deg, F,1 (K) < 1— x(K) and min-deg, Fa1 5 (K) < 2u(K).

Proof. By assumption, we haveB(K) =min-deg F1 »(K) — 1. By a result of
L. Rudolph in [15] and [16], we know thafB(K) < 2gs(K) — 1, wheregs(K) is the
slice genus ofK. Thus min-deg Fz1 »(K) =< 2g5(K). On the other hand, @(K) <
1— x(K) and gs(K) < u(K). Therefore, we have min-dgé 1 (K) < 1— x(K) and
min-deg, Fa15(K) < 2u(K). 0
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REMARK. Let L be a negative link that is a link which admit a diagram with all
negative crossings. Then max-gég-1 »(L*) — 1> min-deg Fz1 »(L*)—1>0 by a
result in [21] concerning a positive link that is a link whieldmit a diagram with all
positive crossings. (Herel.* is the mirror image ofL.) By a formula F1 (L) =
Fa.z(L) [7] we have max-def1 ,(L*) = max-degF(,;(L) = — min-degF-1 (L),
we know that min-degdf, (L) < —1. On the other hand, iK = T(p, g), then the
inequalities of the above question are sharp. In fact, bysaltrén [21] and a result
of Rasmussen [12] for a positive knot, min-gdg.1 »(T(p, q)) —1 = TB(T(p,q)) =
s(T(p,q)) —1=2u(T(p,q) —1=2(p—1)q—1)— 1, wheres is the Rasmussen’s
s invariant in [12]. It is well-known that - x(T(p, 9)) = 2(p — 1)(Q — 1). Thus we
have min-deg Fa-1»(T(p, 9)) —1 = —x(T(p, 9)).
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