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Abstract
Let f: Ghk =& Gmy be any continuous map between tvaistinct complex

(resp. quaternionic) Grassmann manifolds of the same dimenWe show that the
degree of f is zero providedn, m are sufficiently large andl > 2. If the degree

of f is £1, we show thatrf, I) = (n, k) and f is a homotopy equivalence. Also,
we prove that the image unddr of every element of a set of algebra generators of
H*(Gm,; Q) is determined up to a signt, by the degree off, provided this degree

is non-zero.

1. Introduction

The purpose of this paper is to study degrees of maps betweedistinct complex
(resp. quaternionic) Grassmann manifolds. It can be viemged continuation of the pa-
per [14] where the case of oriented (real) Grassmann masifehs settled completely.
The same problem in the case of complex and quaternionics@m manifolds was
initiated and settled in [14] in half the cases. The problean be formulated purely
algebraically in terms of algebra homomorphism betweencthtgomology algebras of
the complex Grassmann manifolds concerned. These algeavasadditional structures,
arising from Poincaré duality and the hard Lefschetz thmor®ur results are obtained
by exploiting these properties. In view of the fact that theegral cohomology ring of
a quaternionic Grassmann manifold is isomorphic to thahefdorresponding complex
Grassmann manifold via a degree doubling isomorphism, ara ur proofs involve
mostly analyzing the algebra-homomorphisms between themology algebras of the
Grassmann manifolds, we will only need to consider the cdssomplex Grassmann
manifolds. (In the course of our proof of Theorem 1.3, simgdynectedness of the
complex Grassmann manifold will be used; the same propésty lzolds for the quater-
nionic Grassmann manifolds.) For this reason, we need amlgohsider the case of
complex Grassmann manifolds.

Let IF denote the fieldC of complex numbers or the skew-field of quaternions.
We denote byFG the F-Grassmann manifold ok-dimensional leftF-vector sub-
spaces off". Let d := dimg F. Since we will mostly deal with complex Grassmann
manifolds, we shall writeGp « instead of CG,; the phrase ‘Grassmann manifold’,
without further qualification, will always mean a complexaSsmann manifold.
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Using the usual ‘hermitian’ metric oF", one obtains a diffeomorphisth: FG x =
FGn,n_k. For this reason, it suffices to consider only ths&rassmann manifold8G,, k
with 1 < k < [n/2]. Let 1 < | < [m/2] be anotherF-Grassmann manifold having the
same dimension aBG, k so that ding FG,x = k(n —K) =I(m—1) = N.

Complex Grassmann manifolds admit a natural orientatiosingr from the fact
they have a natural complex structure. Although the quaieim Grassmann manifolds
do not admit even almost complex structures (cf. [11]), they simply connected and
hence orientable.

Let f: FGnk — FGm, be any continuous map. It was observed in [14] that when 1
k < I <[m/2], the degree of is zero. Wher =1, one has\ = m— 1 andFGp, is just
theF-projective spac&PN. The set of homotopy classes of mafasFG,, x — FPN are in
bijection with homomorphisms of abelian groups= HY(FPN; Z) — HY(FG,«; Z) =
Z whered = dimg IF, via the induced homomorphism. Furthermore the degreé f
determined byf*: HY(FPN; Z) — HY(FG x; Z). (See [14] for details.)

We now state the main results of this paper.

Theorem 1.1. LetF=C or H and let d=dimgF. Let f: FGpx — FGny be any
continuous map between twiGrassmann manifolds of the same dimensidinen
there exist algebra generators; & HY(FG,; Q), 1 <i <, such that the image
f*(u) € HY(FGnx; Q), 1 <i <, is determined up to a siga- by the degree of
f, provided this degree is non-zero

Theorem 1.2. LetF =C or H. Fix integers2 <| < k. Let m n > 2k be positive
integers such that(k — k) =I(m —1) and f: FG,x — FGy, any continuous map
Then degree of f is zero ifl? — 1)(k* — 1)((m —1)? — 1)((n — k)?> — 1) is not a perfect
square In particular, degree of f is zero for n sufficiently large

Theorem 1.3. Let F =C or H. Suppose that(h — k) =I(m—1), and1 <1 <
[m/2], 1<k <[n/2]. If f: FGprkx — FGn, is a map of degreetl, then(m,l) = (n, k)
and f is a homotopy equivalence

Our proofs make use of the notion of degrees of Schubert tiegjeextended to
cohomology classes. Theorem 1.3, which is an analogue inoeogical realm of
a result of K.H. Paranajape and V. Srinivas [13], is provethgidVhitehead’s theo-
rem. Proof of Theorem 1.1 uses some properties of the cologyadf the complex
Grassmann manifolds arising from Hodge theory. (See Piti@os3.2.) Theorem 1.2
is proved by reducing it to a diophantine problem and appgald Siegel’s Theorem
on solutions of certain polynomial equation of the foyfi= F(x). In our situation,
F(x) will be of degree 4 ovefQ having distinct zeros.

We now highlight the following conjecture made in [14]. Them 1.2 provides
the strongest evidence in support of the conjecture.
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Conjecture. LetF=C or H and let2<I| <k <n/2<m/2 where kl,m,ne N.
Assume that o — k) =I(m —1). Let f: FG,x — FGn be any continuous mapThe
degree of f is zero

The paper is organized as follows. K2 we recall basic and well-known facts
concerning the cohomology algebra of the complex Grassrmmaanifolds. We shall
consider continuous maps from a cohomologically Kahler ifochand establish some
important properties ir§3. They will be used in the course of our proofs. We prove
the above theorems ig4.

2. Cohomology of Grassmann manifolds

There are at least two well-known descriptions of the coHogyring of a com-
plex Grassmann manifol@, k. We recall both of them.

Let ynk be the ‘tautological’ bundle ove&,x whose fibre over a poinV € Gy k
is the k-dimensional complex vector spadé. Evidently y,x is a rankk-subbundle
of the rankn trivial bundle E" with projectionpr;: Gox x C" — Gp k. The quotient
bundle £"/yn k is isomorphic to the orthogonal compleme,qtk in &M (with respect to
a hermitian metric orC") of the bundley, k. Let ¢ (ynk) € H? (Gnk; Z), be thei-th
Chern class ofynk, 1 <i < k. Denoting the total Chern class of a vector bungley
c(n) we see that(yn) - c(vn) = 1.

Let ci,..., ¢ denote the elementary symmetric polynomialskirindeterminates
X1, ..., X. Defineh; =h;(cy, ..., c) by the identity

[]@+xty™t=> " h;tl,

1<i<k j>0

Thus ¢; (va1) = hj(C1(vnk), C20mk); - - - &(k)), 1< j <n—k. (See [12].)

Consider the rindZ[cy, . . ., &]/Znk Where degree o€ = 2i, andZ, is the ideal
(hj 1 j > n—k). It can be shown that the elemertt, n —k+1 < j <n, gen-
erateZ, k. The homomorphism of graded ringqcy, ..., &] — H*(Gnk; Z) defined
by ¢ — ci(ynk) is surjective and has kerngl, x and hence we have an isomorphism
H*(Gnk; Z) = Z[C, ..., &]/Ink- Henceforth we shall writec; to meanci(ynk) €
H*(Gn; Z). We shall denote by; the element;(y; ) = hj € H4(Gn; Z).

As an abelian groupH*(Gn; Z) is free of rank(;). A Q-basis forH? (G x; Q)
is the setC, of all monomialscl' - - - c/* where ji <n —k, Vi, >, iji =r. In
particular, ¢~ generatesH?N(Gnx; Q) = Q. If j denotes the sequende, . . ., jk, we
shall denote byc! the monomialc{1 e c,ik. If k <n/2, the setC, :={C | d € G} is
also a basis foH? (G ; Q) whered := &' - - . g*.

Schubert calculus. Another, more classical description of the cohomology Biig
the Grassmann manifol@ x is via the Schubert calculus. Recall tifat = SL(n, C)/ P
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for the parabolic subgroupx c SL(n, C) which stabilizesCk ¢ C" spanned b, ..., &;
hereg, 1 <i <n, are the standard basis elementsC8f Denote byB c SL(n, C) the
Borel subgroup of Slr(, C) which preserves the flag' c --- c C" and by T ¢ B
the maximal torus which preserves the coordinate &%es 1 < j <n. Let I(n, k)
denote the set of alk element subsets dfl, 2,..., n}; we regard elements df(n, k)
as increasing sequences of positive intedgersi; < - - - < ix whereix < n. One has a
partial order onl (n, k) where, by definitioni <j if i, < j, for all p, 1< p <k. Let
i € I(n, k) and letE; € G, denote the vector subspace ©f spanned bye; | j € i}.
The fixed points for the action of c SL(n) on G,k are precisely theg;, i € | (n, K).

Schubert varieties isp x are in bijection with the set(n, k). The B-orbit of the
T-fixed point E; is the Schubert cell corresponding it@and is isomorphic to the affine
space of (complex) dimensioEj(ij —j) =:1il; its closure, denote®®;, is the Schubert
variety corresponding to € I (n, k). It is the union of all Schubert cells correspond-
ing to thosej € I (n, k) such thatj <i. Schubert cells yield a cell decomposition of
Gnk. Since the cells have even (real) dimension, the class ofit#ch varieties form a
Z-basis for the integral homology @, x. Denote by 2] € H2N-II(G,, \; Z) the fun-
damentaldual cohomology class determined ). (Thus [Gnk] € HY(Gnx; Z) is the
identity element of the cohomology ring.) We shall denote thndamental homology
class ofGnk by punk € HN(Gnk; Z).

Schubert varieties corresponding o £ k+1—i,n—k+2,...,n) € I(n, k),

0 <i =n—k, are calledspecialand will be denoted?;. More generally, ifv =v; >

<. >y >0 is a partition of an integer, 0 <r < N, with v; < n—k, we obtain an
elementi:=(n—k+1—v;,n—K+2—v,,...,n—w) € I(n,K) with |[i| =N —r. This
association establishes a bijection between such pai@mdI (n, k), or, equivalently,
the Schubert varietie®; in Gnk. It is sometimes convenient to denote the Schubert
variety Q; by ©, wherev corresponds té. This is consistent with our notation for a
special Schubert variety.

The special Schubert classes form a set of algebra geremitét (G, «; Z). In-
deed, f]=ci(v;) =G, 1 <i <n—k. The structure constants are determined by
(i) the Pieri formula, which expresses the cup-product ofaapitrary Schubert class
with a special Schubert class as a linear combination of with-negative integral lin-
ear combination of Schubert classes, and, (ii) the Giainflnula, which expresses
an arbitrary Schubert class as a determinant in the spechait®@rt classes [2, Chap-

ter 14].
The basis{[2i] | i € I(n, k)} is ‘self-dual’ under the Poincaré duality. That is,
assume that, j € I1(n, k) are such thati| +|j| = N. Then

((21[], k) =6,

wherei’=(n+1—iy,...,n+1—1i3) € l(n, k).
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The degreeof a Schubert variety2; of (complex) dimensiorr is defined as the
integer ([Qi]C], unk) € Z. It is well-known [8], [2] that

rt H1§t<ssk(is - it)

1) deg(2i) = o1 G D
In particular
) degGni) = (€, pnk) = NIl .. (k — 1)

(n—K!- - (n—-1)"

More generally, deg@ill2]) := (N1, 1nk) = Q! 11/(ir + jier-j —n — 1)
whereq = dim(;) + dim(2j) — dimGn k. (See [2, p.274]. We caution the reader that
our notations for Grassmann manifolds and Schubert vasietre different from those
used in Fulton’s book [2].)

One has the following geometric interpretation for the degof a Schubert variety.
More generally, given any algebraic imbeddiXg— P™ of a projective varietyX of
dimensiond in the complex projective spad®™, the degreeof X is the number of
points in the intersection oK with d hyperplanes in general position. The degree of
a Schubert variety defined above is the degree of the PlioMeeddingS?; € Gnx —
P(AK(C")), defined as) — AK(U), where AK(U) denotes thek-th exterior power of
the vector spacd).

Cohomology of quaternionic Grassmann manifolds. In the case of quaternionic
Grassmann manifoltllG,, x, one has a Schubert cell decomposition with cells only in di-
mensions 4, 0 < j < N, labeled by the same s&{n, k) as in the case of the complex
Grassmann manifol@G,, x. Furthermore, denoting the quaternionic Schubert vadety
responding to € 1 (n, k) by @I, the structure constants defining the integral cohomology
algebra ofHG x for the basig !} are identical to those in the case®,, k. Thus, the
association®;] — [2!"] defines an isomorphism oings H*(CGn ; Z) — H*(HGn k; Z)
which doubles the degree. In particular one hasideatical formula, namely (1), for
the degrees of quaternionic Schubert classes. The oiimmian HG, i is chosen so that
the image of the positive generator BPN(CG,, x; Z) under the above isomorphism is
positive.

3. Maps from cohomologically Kéhler manifolds

In this section the symbol d will have a different meaningnfravhat it did in§1.

Let f: X — Y be any continuous map between two compact connected atiente
manifolds of the same dimension. It is well-known thaff if has non-zero degree, then
the induced mapf*: H'(Y; Z) — H'(X; Z) is split-injective for allr. In particular,

f*: H*(Y; Q) — H*(X; Q) is a monomorphism ofings.

Recall that a compact connected orientable smooth manidkicalledc-symplectic

(or cohomologically symplectic) if there exists an elemente H?(X;R), called a
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c-symplectic class, such that € H?(X;R) = R is non-zero wherel = (1/2) dimg X.
If w is ac-symplectic class inX, then (X, w) is said to satisfy theveak Lefschetz
(respectivelyhard Lefschetzcondition if Uw—1: H1(X;R) — H%-1(X;R) (respectively
Uo' 1 HIT(X; R) — H(X;R), 1 <i <d) is an isomorphism. IfX, ») satisfies the
hard Lefschetz condition, theX is calledc-Kahler or cohomologically Kahler. 1fX, w)
is c-Kahler, and ifw is in the image of the natural mad?(X;Z) — H?(X;R), we
call X c-Hodge. Note that if X, w) is c-Kahler and ifH?(X; R) = R, then (X, tw) is
c-Hodge for somd € R.

Clearly Kéhler manifolds are-Kahler and smooth projective varieties ov@rare
c-Hodge. It is known thaP?#P? is c-symplectic but not symplectic (hence not Kahler)
since it is known that it does not admit even an almost comptexcture. It is also
c-Kahler. Examples oft-symplectic manifolds which satisfy the weak Lefschetz-con
dition but notc-Kéahler are also known (cf. [10]).

Any c-symplectic manifold X, w) is naturally oriented; the fundamental class of
X will be denoted byux € Hyy(X; Z) = Z.

Let (X, w) be ac-Kahler manifold of dimension@® Let 1<r <d. One has a
bilinear form (, -),, (or simply (-, -) when there is no danger of confusion) bi (X;R)
defined as d, B). = (@B, ux), a, B € H(X;R). When X, ») is c-Hodge, the
above form is rational, that is, it restricts to a bilinearnioH" (X;Q) x H" (X;Q) — Q.

It will be important for us to consider the bilinear form onethational vector space
H"(X; Q) rather than on the real vector spaké(X;R). The bilinear form (, -) is
symmetric (resp. skew symmetric) iif is even (resp. odd). Note that the above form
is non-degenerate for all. This follows from Poincaré duality and the hard Lefschetz
condition thatg — B U %" is an isomorphismH" (X; Q) — H%"(X; Q). Further, if

r <d, the monomorphisnuw: H'?(X; Q) — H'(X; Q) is an isometric imbedding,
i.e., (@, B) = (aw, Bw) for all a, B € H'2(X; Q).

As in the case of Kahler manifolds (cf. [7], [16], [6]), onetalms an orthogonal
decomposition of the real cohomology groups of-Kahler manifold K, w). The de-
composition, which preserves the rational structure whénj is c-Hodge, is obtained
as follows: Let 1<r <d. Let V], or more briefly)" whenw is clear from the con-
text, be the kernel of the homomorphismw?—"*1: H"(X; R) — H%-"*2(X;R). An
element of V" will be called aprimitive class One has thd_efschetz decomposition

(3) H(XR) = P oV
0=<q<[r/2]

We have the following lemma.

Lemma 3.1. Suppose thatX, ) is a c-Hodge manifold of dimensio?d with
second Betti number equal tb Let f: X — Y be any continuous map of non-zero
degree where Y is a compact manifold with non-vanishing ree&etti numberThen
() (-, Mo=t4"(-, )oon H(X;Q) forteQ, t #0.
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(i) (Y, ¢) is c-Hodge wherep € H?(Y; Q) is the unique class such that*(f) = w.

Furthermore f* preserves the Lefschetz decomposit{@p that is f*(V}) C Vj, for

r <d.

(iii) If o, B € H'(Y;Q), then(f*(x), T*(8)). = deg(f)(«, B),. In particular, degree of
f equals(w®, ux)/(¢?, ).

Proof. (i) This is trivial.

(i) Let dim(X) =2d. Since degf) #0, f*: H(Y; Q) — H'(X; Q) is a mono-
morphism for alli < 2d. Comparing the second Betti numbers XfandY we con-
clude thatf*: H2(Y; Q) — H2(X; Q) = Q is an isomorphism. Lep € H%(Y; Q) be
the unique class such thdt(¢) = w. Since f* is a homomorphism ofings, we have
07w = (f*(9))! = f*(¢") and soe® # 0.

Let r <d be a positive integer. One has a commuting diagram:

H(V; @) 5 jat-r(y; Q)

fl 7 lf

HT(X; Q) 25 42 (x; Q).

The vertical maps are monomorphisms since dg¢g{0. By our hypothesis oiX,
the homomorphismuw?— in the above diagram is an isomorphism. This implies that
UpY~" is a monomorphism. Since, by Poincaré duality, the vectacapH'(Y; Q)
and H2-"(Y; Q) have the same dimensiotjp?~—" is anisomorphismand so ¥; ¢) is
c-Hodge. It is clear thatf *(Vj) C V.

(iii) Suppose thatr, 8 € H'(Y; R). Then

(5@, F*(B)w = (F*(@) F*(B)""; ux)
= (F*@B) * (0" ); ux)
= (F*(@Be®™"); ux)
= (@Bep®™", f.(ux))
= deg(f)(@Be’™"; uv)
= deg(f)(«, B)y-

The formula for the degree of follows from what has just been established by
takingo = B = ¢. O]

Observe that the summands in the Lefschetz decompositjoaré3mutually ortho-
gonal with respect to the bilinear form,(-). Indeed, leix € V'=2P, B e V'~ p <q.
Thusaw"*2P*1=0 and saxe""*P*9=0. Therefore Pa, w9p) = (@B P 1y)=0.

As observed earlier the form (-) is non-degenerate. It follows that the form restricted
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to each summand in (3) is non-degenerate. In favourablatgins, the form is either
positive or negative definite as we shall see in Propositi@b&low.

We shall recall some basic results from Hodge theory and aseral facts con-
cerning harmonic forms, all of which can be found in [@&5]. They will be needed
in the proof of Proposition 3.2.

Suppose thaX has been endowed with a Kéhler metric with Kéhler class
H?(X;R). Recall that one has the decompositidh(X;C) = D pig=r HPI(X;C) where
HP9 denotes thea_-cohomology. We identify thed P9(X; C) with the space of har-
monic forms (with respect to the Kahler metriBf9 of type (p, q).

We shall follow the notations used in [§15.8]. One has the operatots and
A on HPA(X;C) where L: HP9(X; C) — HP*LA*Y(X; C) equals wedging with the
Kéahler classw and A: HP9(X;C) = BP9 — BP~14-1 = Hp-1a-1(X:C) is the operator
(—=1)P*a#L# on BP9(X; C). The operatorA is dual toL with respect to the hermitian
scalar product denoted- ( - ),:

4) (@, B)s = /x o A#B

on H'(X;C) = @p+q:r BPA,
The kernel ofA is denoted byB(’)”q. One has the Hodge decomposition

(5) HPO0= P B

O<k=min{p,q}

where BP9 := L¥(B?*9¥) is the space of all harmonic forms of type (p, ) and
classk. Then the distinct summands in (5) are pairwise orthogoriéh wespect to
(-, -).. Also, AL¥ is a non-zero scalar multiple df“~* on BY ™% for p+q < d,

1 <k < min{p, q}.

Proposition 3.2. Suppose tha(X, ») is a compact connected Ké&hler manifold
such that H9(X;C) = 0 for p # q. Then the form(—1)*"( ., -), restricted to
@IV¥ =2 c HZ(X; R) is positive definite fod <q <r, 1<r <[d/2].

Proof. First assume that = dim¢ X is even, sayd = 2s. In view of our hypoth-
esis, all odd Betti numbers oX vanish and we hav@? =0 for all p #q, k > 0,
so that

(6) HZ(X;C)=H""(X;C)= € B".

O<k=<r



DEGREES OFMAPS BETWEEN GRASSMANN MANIFOLDS 1151

The real cohomology groupl? (X;R) ¢ H? (X;C) = H""(X;C) has an orthogonal
decomposition induced from (3):

@) HZ(X;R) = P E'

O<k<s

where EP = {a € B”P | @ = }. Now takingr = s=d/2 one has & = (—1)5*«a for
a € Eg°. In particular the bilinear form (4) equals-1)***Q where Q(«, B) = [y aB.
Therefore (1)*¢Q restricted to eactE,® is positive definite.

We shall show in Lemma 3.3 below thatV9-% = EZ°. The proposition follows
immediately from this sinceo B) = (0 ", ®®>"B) for a, B € V¥ asd = 2s,
completing the proof in this case.

Now suppose thatl is odd. Consider the Kéhler manifod = X x P! where we
put the Fubini-Study metric of®® with Kahler classy being the ‘positive’ generator
of H?(P'; Z) c H?(P'; R) and the product structure ori so that the Kahler class of
Y equalsw+n =: ¢. By Kiinneth theorenH*(Y;R) = H*(X;R) @ H*(P*; R). We shall
identify the cohomology groups oK and P! with their images inH*(Y; R) via the
monomorphisms induced by the first and second projectiopestively. Under these
identifications, HP4(Y; C) = HPA4(X; C) @ HP~19-1(X; C) ® HYY(PY; C). In particular,
HPA(Y;C) = 0 unlessp = q. By what has been proven already, the forsl)] (-, -)
is positive definite onp*VZ =% c HZ(Y;R).

Choose a base point &' and consider the inclusion map X < Y. The imbed-
ding j is dual toy. Also j*(¢) = w. It follows that j*(¢*VZ ~*) C 0*VZ % for 0 <
k<r, 1<r <d. Since the kernel of*: H? (Y;R) — HZ (X;R) equalsH? ~2(X;R)®
H?(P%; R), and mapsH? (X;R) c HZ(Y;R) isomorphically ontoH% (X;RR), we must
havej*(gokvf,"z‘() - kaaZ)r—Zk'

Let o, € H¥ (X;R) Cc H¥(Y;R). Sincej: X < Y is dual ton, we havej,(ux) =
n N wy. Therefore,

(@), I*(B)o = (I*(@B)j*(@)*; 1x)
d—2r, J*(MX))

» 1N y)

afw
d—2r

afw

(
(
(
(

d—2r

afw” " n, py).

Sincen? = 0 we havepd 21 =92+ 4 (d — 2r + 1)w? % 5. Furthermorepfw® 2+t e
H?2d+2(X;R) = 0. Therefore, we conclude thgt(a), j *(8)). = (1/(d —2r +1)){aBe®-2*1,
py) =(1/(d — 2r +1))(@, B),. This shows that the bilinear form ( -),, on H* (X; R) is
a positive multiple of the form {, -), on H¥(Y; R) restricted toH? (X; R). It follows
that the bilinear form£1) (-, -) on H¥(X; R) restricted tow*V¥ ~%(X) is positive
definite. O
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We must now establish the following

Lemma 3.3. With notations as aboyeassume that d= 2s is even Under the
hypothesis of the above propositioEf ™ equals&*V9-%*, 0 <k <.

Proof. SinceL preserves real forms, it suffices to show tH#t" = V* when
r <s. By definition Ey" = By NHZ(X;R) ={a € H""(X;C) | A(x) =0, o = a}.

Let o € Ey". Suppose thatp > 1 is the largest integer such that!=2*Py =:
6 is a non-zero real harmonic form of typed —r + p,d —r + p). Since
Ld-2r#2p: Hr=Pr=p(X:C) — HI-"*P.d=r*p(X:C) is an isomorphism, and sineeis real
there must be a real forfi € H'~P'~P(X; R) such thatL9-2*2P(8) =9 = L9 2*P(q).
Since p is the largest, using the decomposition (6) we see hatB, ™' °. Applying
A9-2*P hoth sides and (repeatedly) using.98 is a non-zeromultiple of L9138 when
r—p+q < d we see thap is a non-zero multiple oAPa = 0. ThusB =0 and hence
6 =0, which contradicts our assumption. Therefts® 2 (o) =0 and sox € V§. On
the other handA maps HZ (X; C) onto H*~2(X; C). A dimension argument shows
that Eg" = V2. O

ExampPLE 3.4. The Grassmann manifold, x has the structure of a Kéhler man-
ifold with Kahler classw := ¢; = [R1] € H?(Gnx; Z). (This fact follows, for example,
from the Plicker imbeddingsn x — P(E)‘l.) The bilinear form (-, -) is understood
to be defined with respect t@. An orthogonal basis fovﬁfk C HZ(Gnk; Q) can be
obtained inductively using Gram-Schmidt orthogonalmatprocess as follows. Recall
from §2 the basisC, for HZ (Gn; Q). Clearlyw-C,_1=¢-C_1={T €C; | j1 > 0}
is a basis forwH? ~?(G x; Q). Therefore we see that the subspace spanne@by:
(& €C | j =0} is complementary t@Pq.0Byg " " C HZ(Gnk:; Q). The required ba-
sis is obtained by taking the orthogonal projectiorC_Qf) onto V7. Indeed, inductively
assume that an orthogonal basig} for wHZ2(Gyk; Q) that is compatible with the
direct sum decompositiofD,.,Bq " has been constructed. We need only apply the

orthogonalization process to the (ordered) {ggiU (de Cr | j» = 0} with respect to an
ordering ofC; o where ¢ is the last element. To be specific, we list the elements
in the decreasingorder with respect to the lexicographic order of the exptme(For
example, takingn = 12, k = 6, r = 6, the elements ofg o are ordered as3, CyCs,
632, Cs.) We denote the basis element B¥ obtained fromc! e C_r,o by v;. Note that
whenr <k, the span of the sefyj | jr = 0} € H*(Gnx; Q) equals the spac® of
all decomposable elements W% (G, ; Q) since, according to our assumption on the
ordering of elementg!, the element; is the last to occur and sa; does not occur
in any otherv;. Thusv, — G belongs toD C HZ (Gnk; Q) and v, € D for all other
jlil=r.

We illustrate this forr = 2, 3. (Whenr = 1, V2> =0.) The element, = ¢, —
(G2, @?)/(, w))w? = G — (degCy/degGn k)w? € H*(Gnhk; Q) is a basis for the one-
dimensional spac#*.
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Similarly, vs is a basis for/® where

Va = ~ _ (0_31 UZCU) _ ((T?n a)3) (1)3
37 (vow, Vo) 2 (w3, w3)
& degCs ; degGyk deg€sCz) — degc, degCs
=C3— W’ — =
3 degGn « degGn x deg€s) — (degcy)?
This leads to

(degcs)®  deg€sCy) degGnk — degc, degCs

— d .
degGn k degGn k deg@) — (degcy)? egCzv2)

(v3, v3) = (vs, C3) = degE3) —

The following calculation will be used in the course of theqfr of Theorem 1.2.

Lemma 3.5. With the above notatigr(v,, v2) = (degGn k) (k?—1)((n—k)?>—1)/(2(N—
1%(N —2)(N —3)).

Proof. The proof involves straightforward but lengthy ceéédion which we work
out below.

Since (2, ) =0, we get {2, v2) = (v2, C2) = (G2, C2) — (degCz/degGn k)(Cz, w?) =
degGn «(deg€3)/degGy « — (degCz/degGn )?).

Sincecs =[Q22]2=[Q4]+[Q23,1]+[22,2], we see that degf/degGy, = degCs/degGn k+
degQ3 1/degGn k + deg2;, »/degGp k.

Now an explicit calculation yields, upon using = k(n — k):

degcs (n—k—-1)(n—-k-2)n—-k—-3)k+1)k+2)k+3)

degGni 41 (N —1)(N —2)(N — 3)
degQs:  (N—k+1)(n—k—1)(n—k — 2)(k+2)(k + 1)k — 1)
degGnx 214(N — 1)(N — 2)(N — 3) ’
degQs>  N(k— 1)k +1)(n —k+1)(n — k — 1)
degGnx  2!3-2(N—1)(N—2)(N—-3)

degc; _ (k+1)(h—k—1)
degGnx  2!(N—-1)

Substituting these in the above expression igr ;) we get @, v2) = (k+1)(n—
k —1)/(4(N — 1>(N — 2)(N — 3)))A where, again usindN = k(n — k) repeatedly,
A=(N-1){(n—k—-2)k+2)(n—k —3)k+3)
+3nh—k—2)k+2)(h—k+1)(k—1)+2N(k — 1)(n — k + 1)}
—6(N —2)(N —3)((n — k — 1)(k + 1))
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=(N—-1{(N+2(n—2k) —4)(N +3(n—2k) —9)
+3(N+2(n—2k) —4)(N—(n—2k) — 1) +2(N — (n — 2k) — 1)}
—6(N—2)(N—-3)(N+(n—2k)—1)
=12(N—-(n—2k) — 1)
=12k — 1)(n — k+1).

Therefore, (2, v2) = (degGn k) (k? — 1)((n — k)2 — 1)/(2(N — 1%(N —2)(N —3)). O

REMARK 3.6. Although quaternionic Grassmann manifolds arecri§éhler, one
could use the symplectic Pontrjagin clags= e1(ynk) € H*(HG k; Z) in the place of
C1 € H3(CGny; Z) to define a pairing ¢, -), on H¥ (HGnx; Q) and the primitive
classesvj € H4 (HGn; Q). We defineV* c H¥ (HGnx; Q) to be the kernel of

UnN72r+1: HQ(HGn,k; Q) - H4N74r+4(HG“vk; Q)

The form (-, -), is definite when restricted to the spag&)¥ —% c H¥ (HG; Q).
The formula given in Lemma 3.5 holds without any change. &h&stements follow
from the degree doubling isomorphism from the cohomologyelita of G,k to that
of HGp x which maps thé-th Chern class of the tautological complksplane bundle
over Gk to thei-th symplectic Pontrjagin class of the tautological [Eftbundle over
HGn -

4. Proofs of main results

In this section we prove the main results of the paper, narfibgorems 1.1, 1.2
and 1.3.We will only consider the case of complex Grassmann masifdile proofs
in the case of quaternionic Grassmann manifolds follow iewmwiof the fact that the
cohomology algebra oflGn k is isomorphic to that ofCGp « via an isomorphism that
doubles the degree.

Recall that complex Grassmann manifolds are smooth piegegarieties and that
Schubert subvarieties yield agebraic cell decomposition. In particular their Chow
ring is isomorphic to singular cohomology (with-coefficients) via an isomorphism
that doubles the degree. It follows thetP%(G, x; C) =0 for p #q. Therefore results
of the previous section hold fo&nk. The bilinear form (, -) is understood to be
defined with respect ta =¢; € H3(Gnk; Z) = Z.

Lemma 4.1. Let f: Gnx — Gm,; be any continuous map wherénk—k) =1(m—
1) =: N. Suppose that *f(c1(y;5))) = Ac1(vq) Where € Z. Then

degGn k

deg(f) = AN .
eg(f) degGm)
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Proof. This follows immediately from Lemma 3.1 (i) and (iii) ]

Proof of Theorem 1.3. We may suppose tliat C and thatl < k; otherwisek <
| <[m/2] in which case ded() =0 for any f by [14, Theorem 2].
Suppose that ded = £1 and that < k. We have

degGnx _1l---(k=DI(m-Dr---(m—1)!

degGm; 11 (I =DI(h—K)!-- (n— 1)
k=1 (M=) (m—1)!
- (n—K!---(n— 1)

- (—=1+j) (m — j)!
- (KJE{_I (n—k+j— 1)!) (LL (n—j) )

Note that after simplifyingl#* j —1)!/(n—k+ j —1)! for eachj in the first product,
we are left with product of K — 1) blocks of fi — k —I) consecutive positive integers
in the denominator, théargestto occur being f — | — 1). Similar simplification in
the second product yields a productloblocks of fn — n) consecutive integers in the
numerator, thesmallestto occur beingif — 1 +1). Since K—1)(n—k—1)=1(m—n)
we conclude that deGn x > degGn,.

In the notation of Lemma 4.1 above, we see that either fegf O or
|deg(f)] > |A|N > 1—a contradiction. Thereforan( 1) = (n, k) if deg(f) = +1. Now
f*: H*(Gnx; Z) - H*(Gn; Z) induces an isomorphism. Sind&, x is a simply con-
nected CW complex, by Whitehead's theorein,is a homotopy equivalence. O

REMARK 4.2. (i) The above is a topological analogue of the resultartRjape
and Srinivas [13] that any non-constant morphiSmGp x — G, is anisomorphism
of varieties provided the&s, is not the projective space. Our conclusion in the top-
ological realm is weaker. Indeed it is known that there egimttinuous self-maps of
any complex and quaternionic Grassmann manifold which lange positive degrees.
See [1] and also [15].

(i) Endomorphisms of the cohomology algebra @f «x having non-zero degree have
been classified by M. Hoffman [9]. These are either ‘gradinghdmorphisms’ defined
by ¢ — Alc, 1 <i <k for somei or whenn = 2k, the composition of a grading
homomorphism with the homomorphism induced by the diffegphsm L: Gnx —
Gnk defined asU — U=, If the degree of an endomorphismof H*(Gx; Q) is zero,
then h(c;) = 0. Hoffman has conjectured in [9] that in this casevanishes in positive
dimensions. This conjecture has been established in [4hwhe 2k? — 1 and it is
also known to hold whek < 3.

Recall from Example 3.4 the construction of the primitivasdes); € H2(Gnk;Q),
2 < j < k. To avoid possible confusion, we shall denote the primitilasses in



1156 P. 3NKARAN AND S. SARKAR

H2 (Gm,; Q) corresponding toj = 2,...,1 by uj. Also V2| C H¥(Gp,; Q) will de-
note the space of primitive classes. The following lemmarigial for the proof of
Theorem 1.1.

Lemma 4.3. Suppose that fGnx — Gm is a continuous map such that
f*(ca(ym)) = Aca(yi) =ACL with A Z0. Let2 < j <I. Assume that ¢a—k) =I(m—I).
Then with the above notationsf*(u;) = A;v; whereij € Q is such that

2 = 42] degGn (ij Uj)

J degGm, (vj, vj)
for2<j<I.

Proof. The degree of equalsAN degGx/degGm, #0 by Lemma 4.1.

Therefore f*: H2/ (G ; Q) — H? (G Q) is an isomorphism and*(vﬁq‘;,) =
Vrf’jk, since f* is a monomorphism and the dimensions are equaj &sl. Note that
f* maps the space of decomposable elem@ﬂgp C H?(Gp,; Q) isomorphically onto
Dﬁfk. Sinceu; L Drzan mvﬁ,{l we see that, by Lemma 3.1 (i) *(u;) L Dﬁfkmvfyjk. As
the form (-, -) on vajk is definite by Proposition 3.2 anuﬁvjk =Qu; @ (Vfljk n Dﬁfk)
is an orthogonal decomposition, we must haviu;) = A;v; for somei; € Q.

Recall that degf) = AN degGy, x/degGn, . Note that

ANTZEA(g), £5(u) = (F*(up), £ U
= deg(f)(uj, Uj)w

= N dean,k
degGm,

(uj, uj)
by Lemma 3.1. Thuif(vi i) = (F*(uy), £*(uj)) = A2 (degGn k/degGm,)(uj, uj). [
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We need only consider the daseC. Recall that the co-
homology algebraH*(Gn,;Z) is generated by, ..., G wherec; = ¢j(yy,). Therefore
f*: H*(Gm,; Z) - H*(Gnx; Z) is determined by the images of, 1 < j <.

As observed in Example 3.4, one has—c;j Dfan, 2<j <I. It follows easily
by induction that eaclt;, 1 < j <I, can be expressed as a polynomial with rational
coefficients incy, Uy, . . ., u;. Thereforec; =: uy, Uy, ..., U generateH*(Gn,; Q).

Lemma 4.1 implies thaf *(u1) = Aci(y,;) whereAN—and hence. up to a sign—
is determined by the degree df.

Now by Lemma 4.3, the image af; under f* equalsix;v; wherex; is deter-
mined up to a sign by the degree o6f if deg(f) # 0. ]
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Proof of Theorem 1.2. We assume, as we may, thatC. We preserve the no-
tations used in the above proof. Recall from Lemma 3.5 thatvg) = (degG, k) (k? —
1)((n — k)2 — 1)/(2(N — 12(N — 2)(N — 3)). Therefore, by Lemma 4.3 we have

degGnk (va, v
= o e o
_ A4<oleg<f:m,k>2(l<2 ~ D —K>-1)
degGm,/ (2= 1)((Mm-1?-1)
= B2 - 1)(% - 1)((0n -~ K> - (1)’ - 1)

where B := 12 degG, k/(degGm, (17 — 1)((m —1)? — 1)) € Q. It follows that degf) =0
unlessQ := (12— 1)(k? — 1)((m—1)2 = 1)((n—k)> — 1) is a perfect square. It remains to
show that there are at most finitely many values rfigm for which the Q is a perfect
square. This is proved in the following proposition.

Proposition 4.4. Let 1 < a < b be positive integers Then there are at most
finitely many solutions irZ for the system of equations

(8) y>=Q(a, b, x, 2), az=bx,
where Qa, b, x, 2) := (@ — 1)(b? — 1)(x*> — 1)(z% — 1).

Proof. Letr =gcd@, b) and writea=rs, b =rt so thattx = sz Then the sys-
tem of equations (8) can be rewritten y&= F(x) where F(x) := (1/s%)(a® — 1)(b* —
1)(x? — 1)(t°x? — s?). Note thatF(x) € Q[x] has distinct zeros ). By a theorem
of Siegel [5, Theorem D.8.3, p.349] it follows that the edumty? = F(x) has only
finitely many solutions in the rinQRs € K of S-integers whereK is any number field
and S any finite set of absolute valuations &f, including all archimedean valuations.

In particular, takingKk = Q and S the usual (archimedean) absolute value, we see that
there are only finitely many integral solutions of (8). 0

For the rest of the paper we shall only be concerned with thaben theoretic
guestion ofQ(a, b, ¢, d) being a perfect square.

REMARK 4.5. (i) We observe that there amefinitely many integers < a <
b < ¢ < d such thatQ(a, b, ¢, d) is a perfect square. Indeed givenb, let c be any
positive integer such thaaf —1)(b?—1)(c>—1) = Pu? where P > 1 is square free. Let
(X, y) be any solution withx # 0 of the so called Pell's equatioy? = 1 + Px?. Then
d = |y| is a solution wheneved > c. Since the Pell's equation has infinitely many
solutions, there are infinitely many such
(i) Suppose thatlf — 1)(k? — 1)(c? — 1) = x? is a perfect square. (There exists such
positive integers—in fact infinitely many of them—for which this happens if aodly
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if (12— 1)(k?> — 1) is not a perfect square.) Then there daest exist anyd > 1 such
that Q(l, k, c,d) is a perfect square. Assume further thakc)—this can be arranged,
for example, takingk to be a multiple ofl—and setn := ¢ + k, m := kc/l so that
k(in—Kk) =I(m—1). ThenQ(l, k, n—k, m—1) is not a perfect square.
(iif) We illustrate below situations in whicl®(l, k, n—k, m—1) is not a perfect square
(assuming thak(n — k) =1(m—1)) depending on congruence classes, modulo a suitable
prime power, of the parameters involved.
(1) For an odd primep, suppose thak = p¥~! 4+ 1 modp? and none of the
numbersl, m—1, n —k is congruent to+1 mod p. Then p? | Q but p? { Q.
(2) Suppose tham =1 =5mod 8, andk = 7 mod 16. Thenra—1)2 — 1 is odd,
I12—1=8mod 16,k? — 1= 16 mod 32 and(m —1) = k(n — k) implies ( — k) is
even and son(—k)? — 1 is odd. ThusQ = 2" mod 2.
(3) Suppose that= 0 mod 8,m=1 mod 2,k = 3 mod 8. ThenQ = 8 mod 16.

We conclude the paper with the following

Proposition 4.6. Let c> 1 and let k=3 or 7. Suppose that @, k, 2c, kc) is
a perfect square Then there exist integets, n, v > 1 such that = (1/2)(&%n? + 1),
£2n2 — 30?2 =—2 and (i) €2 —3n? = —2 when k=3 and (ii) &2 — 752 = —6 when k= 7.

Proof. Assume thak = 7 and thatQ := Q(2, 7, Z, 7c) = 3?2*(2c — 1)(2c+ 1)(7c —
1)(7c+1) is a perfect square. There are several cases to conggdending on the gcd
of the pairs of numbers involved. Writed2- 1) =au?, 2c+ 1 =pv?, 7c — 1 = yx?,
7c+1=8y? wherewa, B, y, § are square free integers. Sin€eis a perfect square
and since gcd@—1,2c+1)=1, gcd(¢—1,7c+1)=1or 2, gcd(B+1, c£1) =1,
or5 ged(z+1, cx1)=1, 3, or 9, the possible values far,([8) are: (1, 1), (1, 5),
1, 3), 3,1), (5 1), (1, 15), (15, 1), (5, 3), (3,5). The pbks values for ¢, §) are
the same as foro, 8) as well as (2, 28).

Supposed, 8) = (1, 1). Since (2—1)+2 = (X +1), we obtainu?+ 2 = v? which
has no solution. Ifd¢, ) = (3, 1), then 82+2 =v2. This equation has no solution mod
3. Similar arguments show that i&(8) = (5, 1), (1, 5), (1, 15), (15, 1), (5, 3), there are
no solutions foru, v. If («, B) = (3, 5), then ¢, §) = (5, 3) or (10, 6). If {, ) =(5, 3)
again there is no solution mod 3 for the equatiotf 52 = 3y>. When ¢/, §) = (10, 6)
we obtain 182 + 2 = 6y?. This has no solution mod 5.

It remains to consider the case, (8) = (1, 3). In this case we obtain the equation
u?+2 = 3v? which has solutions, for exampley,©) = (5, 3). Now @, 8) = (1, 3) implies
(v,8)=(3,1) or (6,2). If ¢,8) =(3,1) then we obtain the equatiox?3+2 =y? which
has no solution mod 3. So assume that {) = (6, 2). As ¢, §) = (1, 2) we obtain
4y? —7u? =9, that is, 4% — 7u? = 9. Thus (¥ — 3)(2y + 3) = 7Tu?. Either 7| (2y — 3)
or 7| (2y +3). Say 7| (2y — 3) and write (¥ — 3) = 7z. Now z(7z + 6) =u?. Observe
that gcdg, 7z + 6) divides 6. Since8 = 3, X — 1 =u? is not divisible by 3. Also,
u being odd, we must have ga&i(7z + 6) = 1. It follows that bothz and 7%z + 6 are
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perfect squares. This forces 6 to be a square mod 7—a cartteadi Finally, suppose
that 7| (2y + 3). Then repeating the above argument we see that bgth-(®) =: n°
and (2 +3)/7 =:£2 are perfect squares. It follows tha§?7—6 =»? is a perfect square.
Hence 2 — 1 =u? =£252. Since 2+ 1 = 3?, the proposition follows.

We now consider the cade= 3. We merely sketch the proof in this case. Let, if
possible,Q = 223(2c—1)(2c+1)(3c—1)(3c+1) be a perfect square. Write 21 =au?,
2c+1=p4v% 3c—1=yx% 3c+1=8y? wherea, B, y, s are square free integers and
u, v, X, y are positive integers. Arguing as in the cdse 7, following are the only
possible values for, 8, v, §: («, B) = (1, 3), (3, 1), (3, 5), (5, 3), (1, 15), (15, 1), and
rv,8) =(@1,2),(2,1),(2,5), (5, 2, (1, 10), (10, 1). It can be sdbat only the case
(o, B,v,8)=(1, 3,2, 1) remains to be considered, the remaining pilissib leading
to contradictions. Thus we hav&21=u? 2c+1=3? 3c—1=2x% and +1=y2
Therefore, we havex — 1 =3u?, i.e., (X —1)(2x+1)=3u%. Hence, 3 (2x—1) or
3| (2x +1).

Suppose that 3(2x — 1). Write Z =2x — 1, z € Z. Sincez is odd, we have
gcd, 3z+2) = 1. Asz(3z+2) =u? we conclude thaz and Z + 2 have to be perfect
squares. This implies that 2 is a quadratic residue mod 3—n#&raxdiction. Therefore
31(2x—1) and we must have [32x+1) and bothz and ¥ —2 will have to be perfect
squares. Writez = n? and ¥ —2 =£2 so thaté? — 3p? = =2 andv? = u?+2 =£%? + 2.
This completes the proof. ]

REMARK 4.7. (i) Let K = Q[+/7] and letR be the ring of integers irK. If
£ +n/7 € R, theng, n € Z. Denote the multiplicative ring of units iR by U. Note
that any element o) has norm 1. (This is becaus€l is a quadratic non-residue mod
7.) Using Dirichlet Unit theorenty has rank 1; indeet) is generated by := (8+3V/7)
and+1. The integerg,n as in the above proposition yield an elemént;/7 of norm
—6 and the setS ¢ R of all elements of norm-6 is stable under the multiplication
action byU. An easy argument shows th&tis the union of orbits through := 1+/7,

A =1—4/7. ThusS= {£MX, 0K [k € Z).

Observe that ift, n are as in Proposition 4.6 (i), thepn+ /7y € S. Listing ele-
mentsé +n+/7 € Swith £, n > 1 in increasing order of;, the first three elements are
13+5/7, 29+114/7, 209+79/7. Straightforward verification shows that whern/7
is any of these, then there does not exist an integsuch that£?,? + 2 = 3v2. Since
the next term is 463+1%87, we have the lower bounct2- 175 x 46%F = 6565050625
in order thatQ(2, 7, Z, 7c) be a perfect square (assuming- 1).

(i) Now, let K =Q[+/3] and letR be the ring of integers ifK. Note that ifs +1+/3 €
R, then&,n € Z. Denote the multiplicative ring of units iR by U, which is generated
by (2 ++/3) and+1.

Suppose that(2, 3, Z, 3c) is a perfect square;s > 1. Then the integer§, n, as
in the above proposition, yield an element n+/3 of norm —2. The setS c R of all
elements of norm-2 is stable under the multiplication action ky. In fact it can be
verified easily thatS= {(1 ++/3)(2 +/3)" | m € Z}.
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Listing these with&, n > 1, in increasing order of;, the first five elements are
5+ 3V3, 19 + 14/3, 71 + 414/3, 265 + 153/3, 989 + 574/3. If & + /3 equals
any of these, direct verification shows that there is no ertegsatisfying the equation
£2n2 + 2 = 32, The next term of the sequence being 3691 + 2131we obtain the
lower bound 2 > 2137 x 369F = 61866420601441.
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