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Abstract
We study Fox 5-colorings for diagrams of 1- and 2-dimensional knots. We prove

that any 5-colorable 1-knot has a non-trivially 5-colored diagram such that exactly
four colors of five are assigned to the arcs of the diagram. Moreover, we prove that
there is a 5-colorable 2-knot such that, for any non-trivially 5-colored diagram, all
five colors are assigned to the sheets of the diagram.

1. Introduction

Let us observe the 5-colored diagrams of the knots 41, 51, and 74 as shown in
Fig. 1, where the palletZ5 = f0, 1,: : : , 4g is used to provide a 5-coloring for each
diagram. What is the common property of these 5-colorings?

Each 5-coloring in the figure uses exactly four colors 1,: : : , 4 except 0. Hence,
it is natural to ask the question:Which 5-colorable knot has a5-colored diagram with
exactly four colors?The first aim of this note is to give the answer to this questionas
follows:

Theorem 1.1. Any 5-colorable knot has a non-trivially5-colored diagram with
exactly four colors.

Harary and Kauffman [5] study the minimal number of colors assigned to the arcs
for all non-trivially p-colored diagrams of ap-colorable knotK , which is denoted by
Cp(K ). Refer to [7] also. Theorem 1.1 implies thatC5(K ) = 4 for any 5-colorable knot
K . We remark that, ifp is a prime with p> 3, then anyp-colorable knotK satisfies
Cp(K ) � 4 (Lemma 2.1).

On the other hand, ap-coloring is also defined for a diagram of a 2-dimensional
knot (a 2-sphere inR4), which satisfies the property that any non-trivialp-coloring
needs at least four colors forp > 3. Hence, we can ask a similar question to the
1-dimensional knot case concerning the minimal number of colors for all non-trivial
5-colorings. The second aim of this note is to prove the following:
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Fig. 1. 5-colored diagrams of 41, 51, and 74.

Theorem 1.2. There is a2-knot whose any non-trivially5-colored diagram needs
all of the five colors.

For example, Theorem 1.2 holds for the 2-twist-spun figure-eight knot and (2, 5)-
torus knot, which are both non-ribbon 2-knots. On the other hand, we have the fol-
lowing for the family of ribbon 2-knots:

Proposition 1.3. Any 5-colorable ribbon2-knot has a non-trivially5-colored di-
agram with exactly four colors.

2. 5-colored 1-knot diagrams

Throughout this section, aknot means a circle embedded inR3. Any knot diagram
D is regarded as a disjoint union of arcs obtained from the projected planar curves by
cutting the lower paths at crossings. For an odd primep, we consider an assignment
of an element ofZp = f0, 1,: : : , p� 1g to each arc ofD. It is called a p-coloring if
a + c = 2b in Zp holds near each crossing, where the lower arcs are colored bya and
c and the upper is colored byb. The color of the crossing is denoted byfa j b j cg.
We say that ap-coloring is trivial if all arcs of D have the same color, and otherwise
non-trivial.

Lemma 2.1. If p > 3, then any non-trivial p-coloring for D needs at least four
colors of 0, 1,: : : , p� 1.

Proof. By definition, D has a crossing with the colorfa j b j cg which does not
satisfy a = b = c. Sincea + c = 2b, we see thata, b, c are mutually different. Hence,
any non-trivial p-coloring needs at least three colors.

Assume that exactly three colors are assigned to the arcs ofD. Then it is easy to
see thatD has a pair of crossings whose colors arefa j b j cg and fa j c j bg for some
mutually differenta, b, c 2 Zp. By the equationsa + c = 2b and a + b = 2c, we have
3(b� c) = 0. This is impossible forp > 3 andb 6= c.
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Fig. 2. Eliminating a crossing with the colorf0 j 0 j 0g.

Fig. 3. Eliminating a crossing with the colorfa j 0 j 4ag.
Lemma 2.2. Any 5-colorable knot has a non-trivially5-colored diagram D with

no crossing whose color isf0 j 0 j 0g.
Proof. Assume thatD has a crossing off0 j 0 j 0g. Then it is easy to see thatD

has an adjacent pair of crossingsP and Q such thatP is of f0 j 0 j 0g and Q is offa j 0 j 4ag or f0 j a j 2ag for somea 6= 0. See the left or middle of Fig. 2. We deform
the arc with the colora near Q which detours aroundP passing over the arcs. Then
the color of P changes intof2a j 2a j 2ag, and new crossings are off0 j a j 2ag. See
the right of the figure. We repeat the deformation above if theobtained diagram still
has a crossing off0 j 0 j 0g.

Lemma 2.3. Any 5-colorable knot has a non-trivially5-colored diagram D with
no crossing whose color isf � j 0 j � g.

Proof. We may assume thatD has no crossing whose color isf0 j 0 j 0g by
Lemma 2.2. Assume thatD has a crossing offa j 0 j 4ag for somea 6= 0. Then we
deform the arc with the colora which detour around the crossing. See Fig. 3. Then
the color of the original crossing changes intofa j 2a j 3ag, and new crossings are off0 j a j 2ag and f3a j 2a j 4ag. We repeat the deformation above if the obtained diagram
still has a crossing offa j 0 j 4ag for somea 6= 0.

Proof of Theorem 1.1. LetD be a non-trivially 5-colored diagram of the knot.
By Lemma 2.3, we may assume that the upper arc of any crossing of D have a non-
zero color. Hence, each arc with the color 0 connects a pair ofcrossings directly
whose colors aref0 j a j 2ag and f0 j b j 2bg for somea, b 6= 0. According tob =
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Fig. 4. Eliminating an arc colored by 0.

Fig. 5. A 7-colored diagram of 52 with four colors.

a, 2a, 3a, 4a, we deform the arc as shown in Fig. 4 so that the arc with 0 is elimi-
nated. We repeat the deformation above if the obtained diagram still has an arc whose
color is 0.

REMARK 2.4. (i) The argument as above can be easily applied to the families
of 5-colored virtual knot diagrams [6] and virtual arc diagrams [9].
(ii) In the proof of Theorem 1.1, we eliminate the color 0 froma 5-colored diagram.
By addinga 6= 0 to the color of each arc, we can easily eliminate the colora instead
of 0.

For the cases of 7- and 11-colorings, we have just several examples as follows:

EXAMPLE 2.5. By Lemma 2.1, any non-trivial 7-coloring requires at least four
colors assigned to the arcs of a diagram.

Consider the 7-colored diagram of the knot 52 with five colors 0, 1, 2, 4, 6 as shown
in the left of Fig. 5. We deform a neighborhood of the arc with 6as in the right,
so that we can eliminate the color 6 without introducing new colors except 0, 1, 2, 4.
Hence, we haveC7(52) = 4.

Similarly, consider the 7-colored diagram of the (2, 7)-torus knotT2,7 with five col-
ors 0, 1, 2, 3, 4 as shown in the left of Fig. 6. We deform neighborhoods of the arcs with
the color 3 as in the right, so that we obtain a diagram coloredby 0, 1, 2, 4. Hence,
we haveC7(T2,7) = 4. (Kauffman and Lopes [7] conjecturedCp(T2,p) = (p + 3)=2.)
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Fig. 6. A 7-colored diagram ofT2,7 with four colors.

Fig. 7. A 11-colored diagram of 62 with five colors.

Fig. 8. A 11-colored diagram ofT2,11 with five colors.

QUESTION 2.6. Does it holdC7(K ) = 4 for any 7-colorable knotK?

EXAMPLE 2.7. Similarly to Lemma 2.1, it is easy to see that ifp> 7, then any
non-trivial p-coloring for a knot diagram needs at least five colors of 0, 1,: : : , p� 1
assigned to the arcs of a diagram, that is,Cp(K ) � 5.

Consider the 11-colored diagram of the knot 62 with six colors 0, 1, 2, 4, 7, 10 as
shown in the left of Fig. 7. We deform a neighborhood of the arcwith 10 as in the
right, so that we obtain a diagram colored by 0, 1, 2, 4, 7. Hence, we haveC11(62) = 5.

Similarly, consider the 11-colored diagram of the (2, 11)-torus knotT2,11 with seven
colors 0,1,2,3,4,5,6 as shown in the left of Fig. 8. We deformneighborhoods of the arcs
with 5 and 6 as shown in the right, so that we obtain a diagram colored by 0, 1, 2, 3, 6.
Hence, we haveC11(T2,11) = 5.
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QUESTION 2.8. Does it holdC11(K ) = 5 for any 11-colorable knotK?

3. 5-colored 2-knot diagrams

Throughout this section, a 2-knot means a 2-dimensional sphere embedded inR4

smoothly. A diagram of a 2-knot K is a projection image�(K ) under a projection
p : R4! R3 equipped with crossing information. Refer to [3] for more details.

Any 2-knot diagram is regarded as a disjoint union of compact, connected sur-
faces, each of which is called asheet. For an odd primep, an assignment of an el-
ement ofZp to each sheet of the diagram is called ap-coloring if a + c = 2b in Zp

holds near each double point, where the lower sheets are colored by a and c and the
upper is colored byb.

Let D be a p-colored diagram of a 2-knot. Consider a triple point ofD, where the
top sheet is colored bya, the middle sheets are colored byb1 and b2, and the bottom
sheets on both sides of the middle sheet withbi are colored byci 1 and ci 2 (i = 1, 2).
We may assume that the bottom sheets colored byc1 j and c2 j are adjacent along the
top sheet (j = 1, 2). See Fig. 9. We say that a triple point isdegeneratedwith respect
to the p-coloring if a = bi or bi = ci j holds for somei , j 2 f1, 2g, and otherwisenon-
degenerated. Hence, a triple point is non-degenerated if and only ifa 6= bi 6= ci j holds
for any i , j 2 f1, 2g. The notion of non-degeneracy was used in [10].

Lemma 3.1. For a non-degenerated triple point with the colors as above, we
have the following.
(i) It holds that c11 6= c12 and c21 6= c22.
(ii) It holds that c11 6= c22 and c12 6= c21.
(iii) It holds that c11 6= c21 or c12 6= c22.

Proof. We first remark that, sinceb1+b2 = 2a anda 6= b1,b2, it holds thatb1 6= b2.
(i) Since ci 1 + ci 2 = 2bi and bi 6= ci j for i , j = 1, 2, we see thatbi , ci 1, ci 2 are

mutually different.
(ii) Assume thatc11 = c22 (the casec12 6= c21 is similarly proved). Then it holds

that c12 = 2a� c22 = 2a� c11 = c21, and hence,b1 = (c11 + c12)=2 = (c22 + c21)=2 = b2.
This contradicts tob1 6= b2.

(iii) Assume thatc11 = c21 and c12 = c22. Then it holds thatb1 = (c11 + c12)=2 =
(c21 + c22)=2 = b2, which contradicts tob1 6= b2.

Lemma 3.2. Let p be a prime with p> 3. If a p-colored diagram of a2-knot
has a non-degenerated triple point, then the p-coloring needs at least five colors as-
signed to the sheets of the diagram.

Proof. It is sufficient to prove that there are at least five different colors in the setfa, bi , ci j j i , j = 1, 2g near a non-degenerated triple point. By Lemma 3.1, we have
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Fig. 9. Colors of sheets near a triple point.

two cases with respect to the colors of the bottom sheets (by changing the indices if
necessary):
(i) c11, c12, c21, and c22 are four different colors.
(ii) c11 = c21, c12, and c22 are three different colors.

For the case (i), sincea 6= ci j holds for anyi , j = 1, 2, we have five different colors
a, c11, c12, c21, and c22.

Consider the case (ii). Sincec11 = c21 = a, each of the triplets

fa, b1, b2g, fa, c12, c22g, fa, b1, c12g, and fa, b2, c22g
consists of mutually different colors. Hence, to prove the lemma, it is sufficient to
proveb1 6= c22 andb2 6= c12. Assume thatb1 = c22 (the caseb2 = c12 is similarly proved).
Sinceb1 + b2 = 2a and c12 + c22 = c12 + b1 = 2a, we haveb2 = c12. Hence, it holds that

c11 + c12 = a + b2 = 2b1

and

c21 + c22 = a + b1 = 2b2,

which induces 3(b1� b2) = 0. This is impossible forp > 3 andb1 6= b2.

Let D be a diagram of a 2-knotK , and 
 a (possibly trivial) p-coloring for D.
By using the Mochizuki’s 3-cocycle [8] of the dihedral quandle of order p, we can
define a weightWp(t , 
 ) 2 Zp for a triple point t of D in an appropriate manner. Take
the sumWp(
 ) =

P
t Wp(t , 
 ) for all triple points of D. The cocycle invariant of the

2-knot K is defined by

8p(K ) = fWp(
 ) j 
 : any p-coloring for Dg
as a multi-set [2]. The weightWp(t , 
 ) has the property that, ift is degenerated with
respect to
 , then it holds thatWp(t , 
 ) = 0. In particular, if
 is a trivial p-coloring,
then anyt is degenerated, and hence, we haveWp(
 ) = 0. In other words, if ap-coloring



946 S. SATOH

Fig. 10. Virtual arc presentation.


 satisfiesWp(
 ) 6= 0, then there is a triple pointt with Wp(t , 
 ) 6= 0 which implies that
t is non-degenerated with respect to
 .

Proof of Theorem 1.2. LetK be the the 2-twist-spun figure-eight knot, andD a
diagram ofK . The cocycle invariant ofK is calculated in [4] such that

85(K ) = f0, : : : , 0 (5 times), 2,: : : , 2 (10 times), 3,: : : , 3 (10 times)g.
The number of 5-colorings forD is 25 which includes 5 trivial ones. Hence, for any
non-trivial 5-coloring
 , it holds thatW5(
 ) = 2 or 3. SinceW5(
 ) 6= 0, D has a non-
degenerated triple point with respect to
 . The proof is completed by Lemma 3.2.

REMARK 3.3. (i) Let K2n be the 2n-twist-spun figure-eight knot. The cocycle
invariant of K2n is given by85(K2n) = n �85(K2) = f0, : : : , 2n, : : : , 3n, : : : g (cf. [1]).
Hence, if n is not divisible by 5, thenK2n has the same property as in Theorem 1.2.
(ii) Since the cocycle invariant of the 2-twist-spun (2, 5)-torus knotK is

85(K ) = f0, : : : , 0 (5 times), 1,: : : , 1 (10 times), 4,: : : , 4 (10 times)g,
K has the same property as in Theorem 1.2.

A ribbon 2-knot is obtained by adding 1-handles to a trivial 2-link [11]. It is
known that any ribbon 2-knot is presented by a virtual arc diagram [9]. Given an ori-
ented virtual arc diagramA, we construct a diagramD of a ribbon 2-knot Tube(A).
In Fig. 10, we shows a part ofD corresponding to a classical crossing ofA. More-
over, it is easy to see that there is a one-to-one correspondence between the set of the
5-colorings for A and that forD.

Proof of Proposition 1.3. LetK be a 5-colorable ribbon 2-knot. We may assume
that K = Tube(A) for some virtual arc diagramA. SinceK is 5-colorable, so isA. As
mentioned in Remark 2.4 (i), we may assume thatA has a non-trivial 5-coloring with
exactly four colors 1, 2, 3, 4.

Consider the 5-colored diagramD of K = Tube(A) corresponding toA. By the as-
sumption forA, if D has a sheet colored by 0, then the sheet is the small one colored
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Fig. 11. Eliminating a sheet colored by 0.

by 2a�b (= 0) in Fig. 10. In a neighborhood of the sheet with 0, we deform the sheet
with 2a (= b) as shown in Fig. 11 so that the color 0 is eliminated. The deformation
is similar to the one in the most left of Fig. 4. This completesthe proof.
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