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ON DOUBLY FELLER PROPERTY
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Abstract

Let X be a Feller process that has strong Feller property. In thjgep we
investigate the Feller as well as strong Feller propertieth® semigroups generated
by multiplicative functionals ofX in open sets. Special attention is given to the
Feynman-Kac and Girsanov transforms ¥f Three examples of local Kato class
measure that are not of Kato class are given in the last sestiothat Feller and
strong Feller properties hold for corresponding Feynmag-kKemigroup ofX in
open sets.

1. Doubly Feller property of transformed semigroup

Let X = (2, Fx, Ft, Xt, ¢, Px, X € E) be a strong Markov process on a locally
compact separable metric spaBe Let 0 be a point added t& so thatE, := E U
{0} is the one-point compactification d&. The pointd also serves as the cemetery
point for X. Recall thatX is said to havd-eller propertyif P,(C(E)) C Cs(E) for
everyt > 0 and lim_ | P f — f|l =0 for every f € C(E), where{P;;t > 0}
defined by P, f(x) := E4[ f(X{)] is the semigroup ofX. Here C,(E) is the space of
continuous functions orkE that vanishes at infinity and f ||, := supgl f(x)|. The
space of bounded continuous functions Brwill be denoted asC,(E). The processX
is said to havestrong Feller propertyif P,(By(E)) C Cy(E) for everyt > 0. We sayX
(or its transition semigroup) hadoubly Feller propertyif it has both Feller and strong
Feller property. Clearly the above terminology can be fdatad for any semigroup
{T;; t > 0} acting onBy(E).

Let {Z;; t > 0} be a positive multiplicative functional oX. It defines a semigroup

(1.2) T f(X) = Ex[Z:f(X¢)] for t>0 and f >0.
For an open subseB of E, we also define a semigrouR® by

1.2) TBF(X) = Ex[Z:f(X):t <tg] for t>0 and f>0 on B,

2000 Mathematics Subject Classification. Primary 31C25p8&dary 60J57, 60J55, 60J25.

*The research of this author is supported in part by NSF Grans0600206.

TThe research of this author is partially supported by a Giradtid for Scientific Research (C)
No. 19540220 from Japan Society for the Promotion of Science



910 Z.-Q. GHEN AND K. KUWAE

wherezg :=inf{t > 0; X; ¢ B} is the first exit time fromB. Let B8*(E) be theo-field of
universally measurable subsets®fand denote bys;(E) the family of bounded univer-
sally measurable functions da. Note thatT; f € B*(E) when f is Borel measurable
(T f is Borel for Borel functionf if Z; is F2-measurable). An open s& (C E) is
said to beregular if Pyx(rg = 0) = 1 for anyx € B® = E \ B. Consider the following
conditions:

(1.3) tlirr?) SUpEx[|Z; — 1]]=0 for every compact setK,
—~YxeK
(1.4) sup SsupEy[Zs] < co for some (and hence for every} > 0,
s€[0,t] xeE

and for eacht > 0, there existsp > 1 (which may depend ob) such that

(1.5) SUPEX[ZP] < 0.

xeE

The following theorem is due to K.L. Chung [6].

Theorem 1.1 (Theorems 1, 2, 3 and Corollary in [6])Let B be an open sub-
set of E and suppose that the part proces® 0 B is a strong Feller process and
the conditions(1.3) and (1.4) hold. Then the semigroupT,B; t > 0} defined by(1.2)
has strong Feller propertylf in addition, X has Feller property(that is, X is doubly
Feller), B is a regular set anq1.5) holds for every t- 0, then{T,B; t > 0} is doubly
Feller. Moreover if in addition B is relatively compagctthen T8g € Co(B) for every
t > 0 and ge By(B).

Corollary 1.2. Let B be an open subset of E and suppose th&tia strong
Feller process Assume that

(1.6) limsupEx[|Z: — 1]] = 0.

t=0xcE

Then(T,B; t > 0} has strong Feller propertylf further X has a Feller propertyB is

regular and (1.5) holds for every t> 0, then {T,B; t > O} has doubly Feller property
Moreovey if in addition B is relatively compagctthen T8g € C.,(B) for every t> 0

and ge By(B).

REMARK 1.3. In the conclusion of Theorem 2 in [6], only doubly Felf@mop-
erty of {Ty; t > O} is stated. But the proof actually gives the strong Fellempprty of
{Ti; t = 0} under (1.3), (1.4) and the strong Feller property{Bf; t > 0}.

We shall give another criteria for the Feller propertiestsFive relax the conditions
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(1.3), (1.4) and (1.5) into the following: Fix an open d&t

1.7)

tlirT}) SUpEL[1Z: — 1]:t < tp] =0 for any relatively compact open seD C B,
—~UxeD

(1.8) sup SUpEx[Zs: s < 18] < oo for some (and hence for every} > 0,
se[0,t] xeB

and for eacht > 0, there existsp > 1 (which may depend oh) such that

(1.9) SUPEL[ZP: t < 18] < o0.

xeB

Theorem 1.4. Let X be a doubly Feller process and B an open set inSkp-
pose that(1.7) holds and that

for each t> 0 and compact set K= B, there exists p> 1 such that

SUPEL[ZP: t < 18] < c0.
xeK

(1.10)

Then the semigroupT,®; t > 0} defined by(1.2) has strong Feller propertyAssume
further that (1.8) and (1.9) hold for every t> 0, B is regular and thafim;_, o Ex[|Z; —
1]: t < ] = 0 for every xe B. Then the semigroupT,®; t > O} has Feller property

Proof. (i) Strong Feller property of T,2; t > 0}: Let D be a relatively compact
open subset oB. The strong Feller property of the part proceés on D holds under
the doubly Feller property oK (see Theorem 1 in Chung [6]). Applying Corollary 1.2
and (1.7) toXP, the semigroupT,°; t > 0} defined by TP f(x) := Ex[Z; f(X¢): t <
tp], f € Bp(D) has strong Feller property. Takg € By(E). Let {D,} be an in-
creasing sequence of relatively compact open sets congetgi B. Then the quasi-
left-continuity of X yields thatPy(limy_. . 7p, = tg8) = 1 for all x € B. Take a compact
set K ¢ B. Then there img > 1 so thatKk c D, for everyn > ng and

suaT2g(x) — T,""g(x)|

xeK

= SUPEX[Ztg(Xt): tp, <t < 18]

xeK

1/p 1/q
< ||g||B,oo<supEX[th: t < rB]> <supr(rDn <t< rB)> ,
xeK

xeK

where||gllg,« = SURglI(X)| andq := p/(p—1) is the conjugate exponent gf which
may depend orK andt > O.
To establishT,g € C(K), it suffices to show

lim supPx(tp, <t < t8) =0.
n—o00 xeK



912 Z.-Q. GHEN AND K. KUWAE

Note thatPy(zp, <t < 18) = PB1(x) — P°"1(x) is continuous inx € D,. So
sup.x Px(tp, <t < t8) = Px,(tp, <t < t8) for somex, € K. There exists a sub-
sequence (still denoted a3 and x € K such thatx, — x. Forng < m < n,

Pxn(fDn <t< ‘L’B) < Pxn(TDm <t< TB).

By fixing m > nq first and takingn — oo, we have

lim Px,(tp, <t < 78) < Px(tp, <t < 78).
n—o0o

By sendingm — oo, we conclude that

lim supPy(tp, <t < tg) = lim Py (tp, <t < ) =0.
n—o00 xeK n—o00

This proves tha{T;; t > 0} is strong Feller.

(i) Feller property of{T,2; t > 0}: Since (1.9) holds for each> 0 with some
p > 1, we easily sed,Bf € C(B) for f € C,(B). Finally we prove that for each
f € Co(B)

(1.112) tlin01||Tth — fllg.o = 0.
For f € C,(B), under the conditions, we can easily see that for eaehB
tling) TR f(x) = f(x).

Then we can deduce (1.11) by using (1.8) Riesz-Markov-Kakuteeorem and Hahn-
Banach theorem to the dual space@f(B) (see Exercise (9.27) in [19]). O

Corollary 1.5. Let X be a doubly Feller process and assu(her) holds Let B
an open regular setSuppose that

there exists p> 1 such that

sup SUpE4[ZP: s < tg] < 0o for some(hence everly t > 0.
se[0,t] xeB

(1.12)

Then{T.B; t > 0} has doubly Feller propertylf in addition, B is relatively compagt
then T8g € C(B) for every t> 0 and ge By(B).

Proof. (1.12) is stronger than (1.10). Hence the strongeFgitoperty holds for
{T.B;t > 0} by Theorem 1.4. (1.12) also implies (1.4) and (1.5). Fronb)(lwe
have thatT,® mapsC,(B) into itself. As in the proof of Theorem 1.4, we shall show



ON DouBLY FELLER PROPERTY 913

Ex[|Z: —1]: t < 78] — 0 ast — O for eachx € B. By condition (1.7), for a relatively
compact open seD C B, it suffices to show that for eackhe D

tIirr?)E,<[|Zt —1]:tp <t <1g]=0.

We see that for eack € D

Ex[1Zt —1]: 1p <t < 18]
=(E[1Ze — 1Pt < TB])l/pr(TD =< t)l/q

< Py(tp < t)V9 sup supE,[|Zs—1|P:s<])/P -0 as t— 0.
s€[0,T] yeB

The proof of T,Bg € C(B) for g € By(B) is similar to that of Corollary of [6]. [

REMARK 1.6. (i) Without assuming the regularity &, we can not deduce the
Feller property of the semigroup® f (x) := Ex[ f (X¢): t < g].
(i) (1.3) (resp. (1.5)) implies (1.7) (resp. (1.10)). Irewi of the latter part of the proof
of Corollary 1.5 and Lemma 2 in [6], (1.7) and (1.12) for an pset B together
imply (1.13) below

(1.13) im supEx[1Z; — 1]: t < tg] =0 for every compact setK c B,

I
t—0 yeK

under the Feller property ofP;; t > 0}.
(iii) A sufficient condition for (1.3), (1.4), (1.5), (1.6)1.7), (1.10) and (1.12) to hold
is the following

(1.14) lim supEx[ sup(Zs — 1)2} =0.

t=>0yxcE se[0,t]
The above condition (1.14) is satisfied4f is a combination of Girsanov and Feynman-
Kac transform under appropriate Kato class condition (seg, [4], [5], and Lem-
mas 2.4 and 3.2 below).
(iv) The condition (1.7) is satisfied when the multiplicatifunctional Z satisfies cer-
tain local Kato class condition and the condition (1.12)dsolvhenZ is in certain ex-
tended Kato class. We will explain these points preciselgart two sections. We will
show in the last section that there are examples of positiukipticative functional Z
that satisfies conditions (1.7) and (1.12) but not condi{ib/6) nor condition (1.14).

2. Feynman-Kac transform

Let X be a strong Markov process dh as in the previous section ang), denote
the sample path such thai(t) =9 for everyt > 0.
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DEFINITION 2.1 (AF). An (Fi)-adapted procesA = (Ao With values in
[—o0, o0] is said to be anadditive functional(AF in short) if there exist alefining
set E € F, satisfying the following conditions;

(i) Px(E)=1 for all x € E,

(i) 6.2 c & for all t > 0; in particular,wy € E because ofvy = 0;()(w) for all w € E,
(i) for all @ € E, A(w) is right continuous having left hand limits on [O(w)[,
Ao(w) =0, |A(w)] < oo for t < ¢(w) and Ais(w) = Ai(w) + As(biw) for all t, s> 0,
(iv) for all t > 0, Ai(wy) = 0; in particular, under the additivity in (iii)A(w) = Az () (@)
forallt > ¢(w) andw € EN{¢ < 00}.

An AF A is calledright-continuous with left limitrcll AF in brief) if A;)- exists
for eachw € EN {¢ < 00}. An AF A is said to befinite (resp.continuous additive
functional (CAF in brief)) if |A¢(w)| < 0o, t € [0, oo[ (resp.t — Ai(w) is continuous
on [0,¢[) for eachw € E. A [0, oo[-valued AF is called gositive additive functional
(PAF in short). Two AFsA and B are calledequivalentif there exists a common
defining setE € F, such thatA;(w) = Bi(w) for all t € [0, oo[ and w € E.

We now introduce the PAFs of Dynkin and Kato classes.

DEFINITION 2.2 (Dynkin class). A PAFA is said to beof Dynkin classif
sup..g Ex[A] < oo for somet > 0, or equivalently, supg Ex[/; e dA] < oo
for somea > 0. By the Markov property ofX, a PAF A is of Dynkin class if and
only sup.g Ex[A:] < oo for all t > 0.

DEeFINITION 2.3 (Kato class). A PAFA is said to beof Kato class(resp.of
extended Kato classor generalized Kato clasif limi_osup.g Ex[A] = O
(resp. lim_o sup.g Ex[A] < 1); or equivalently, lim_,« sup.g Ex[ [, e “* dA]=0
(resp. lim,—« SURcg Ex[ [y € dA] < 1). A PAF A is said to beof local Kato

classif for each compact seK, a PAF 1 A defined by Lk A); = fot 1k (Xso)d A is
of Kato class.

For a PAFA, let Exp(A); be the Stieltjes exponential &, that is, Expf); is the
unique solution ofz; of

Z :1+/ Zs_ d A
10,t]

By (A4.17) of Sharpe [19],

(1) ExpA) = exp) [] @ +AA) :exp(Af+ > Iog(1+AAs)>,

O<s<t O<s<t
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where A As ;= As— As_ and A denotes the continuous part 8f. Since log(1+) < x,
x € ]0, oo[, we see Expf); < expA;. From (2.1), we have fop > 1

(2.2) (Exp(A))P = Exp(AP)),,
where AP := PAC+ Y oo (L +AAP —1).

Lemma 2.4. Let A be a PAF of Kato class and put Z Exp(A);. Then(1.6)
holds for Z Moreover
(i) if the AF B defined by B= Z(ksst(AAs)2 is of Dynkin class then (1.5) holds
for some(hence everyt > 0 and some p- 1,
(i) if |AA] < M Pg-as. for some M> 0, then (1.5) holds for some(hence evety
t >0and any p> 1,
(i) if B is of Kato class(resp |AA| < M Py-as. for some M> 0), then for any
p €1, 2] (resp for any pe [1, o)

lim supEy| sup|Zs—1/P| =0.
t=0xcE se0,t]

Proof. In view of the proof of Khas’'minskii's lemma (see Lemar@.1 (a) in [20]),
we have

1
sup.e Ex[Ad]

SUPEX[EXp(A)] = 7—

xeE
for sufficiently smallt > 0 with supg.g Ex[A:] < 1. From this,

sup.ce Ex[A]
— supg Ex[A]’

SUpE,[|Z: — 1] < 7

XeE

which converges to 0 as — 0. Next we prove the second statement. We first as-
sume thatB is of Dynkin class andp € ]1, 2]. Letting p be close to 1, we have
SUpe Ex[PA + (p — 1)B]] < 1 for sufficiently smallt > 0. Since (L )P~ —1<
(p—21)x for x > —1, we get (L&)P —1 < (p—1)x?>+ px for x > —1. Then we have

xeE O<s<-

SUPEL[ZP] = supEx [Exp(pA‘: + Z (1+AA)P — 1) }
xeE
t

1
= 1—sup.g Ex[pA +(p—1)B] =

for suchp > 1 andt > 0 by way of the argument as above. Next we assume Ahat
is bounded above b > 0 Py-a.s. Then the PAR\P is of Kato class for anyp > 1.
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Indeed, sen :=[p]+1eN. Then we see

L+M)"—1

AP < nAC+ Y A%

Hence

SUPEL[Z{] = SupEx[Exp(AP),]

xeE xeE

= . O
1 - sup.e Ex[A™]

Finally we show the last statement. Assume tBats of Kato andp € [1, 2]. Using
(x —1)P < xP -1 for x > 1, we have

SUPEx| sup|Exp(A)s — 1|P | < supEx| Exp| pA® + Z 1+AA)P 1) -1
xeE se[0,t] xeE O<s<- t
sup.ce Ex[PA +(p— 1)B]

< 0 as t 0.
= 1 sup.e EpA+(P—1B] -

The proof for the case oA A being bounded is similar. O

Theorem 2.5. Let A be a PAF of local and extended Kato claSsippose that a
PAF B defined by 8= ) ,_.,(AAs)? is of Dynkin class Put Z := Exp(A). Let B
an open regular setThen(1.7) and (1.12) hold for Z and B Consequentlythe semi-
group {T,;B; t > 0} defined by(1.2) has doubly Feller property provided X is doubly
Feller.

Proof. First we show the condition (1.7) follows from the db&ato property of
A. This is because for any compact $€t

Ex[IEXP(A) — 1/: t < 7] = Ex[EXp(A) — 11t < 7]
= Ex[Exp(lc A — 1:t < 7]
< Ex[Exp(1k A) — 1],
which converges to 0 uniformly ot by Lemma 2.4. Here we used the fact that on

{t <}, Xso € K for all s€]0,t].
For (1.12), it suffices to show that there exigis> 1 such that

PAT+ Y (L+AA)P—1)

O<s<t

is of extended Kato. Fop €]1, 2] andx > —1, recall (1 +x)P —1 < (p — 1)x? + px.
Since A is of extended Kato class, := sup, g Ex[Ar] < 1 for someT > 0. For such
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T >0, we setl := sup..g Ex[Y_o_s-7(AAs)?] < 0o and takep € ]1, 2A (1+1)/(1 +1)].
Then

supEx|:pA$ + ) ((A+aA) - 1)} <(p=1)+pr<1.

xeE O<s<T

Hence (1.12) holds by way of Khas'minskii's lemma (see Lentria (a) in [20]). [J

3. Girsanov transform

In this section, we assume thxtis an m-symmetric doubly Feller process, where
m is a positive Radon measure dh with full support and that the Dirichlet form
(€, F) of X is regular onL?(E; m). In this case, the transition kerngp;t > 0}
of X satisfies the absolute continuity condition with respecttoi.e. pi(x, N) = 0 if
m(N) = 0 for eachN € B(E), x € E andt > 0. Fora > 0, there exists ax-order
resolvent kernet, (X, y) which is defined for allx, y € E (see Lemma 2.14 in [8]). A
Borel measure is said to be oDynkin class(resp.Kato clas$ if sup,.g R, v(X) < o0
for somea > 0 (resp. lim—, o sup.g Ryv(X) = 0), andv is in thelocal Kato classif
lkv is in the Kato class for every compact $€tC E. The measure is said to be of
extended Kato clasg lim,_.. sup.g Rv(X) < 1. Here Ryv(x) := ¢ ra(X, y) v(dy).
Since X is a Feller process, its Lévy systerl,(H) exists and is defined undét,
for every x € E. Denote byS, (resp.Sy) the family of smooth measures in the strict
sense (resp. measures of finite energy integrals with baupdéentials) (see (2.2.10)
and p. 195 in [8]). Note that any Radon measure of Dynkin cidssys belongs t&
in view of Proposition 3.1 in [12].

Let ¢: E; x E; — R be a Borel function that vanishes along the diagonal. The
following lemma is a slightly modified version of [2, Lemma23B.

Lemma 3.1. Assume M| A |¢p[)un € S. Then there exists a local martingale
additive functional M of purely discontinuous type suchtthvg — Mi_ = ¢(Xi—, Xy)
for all t €10, oo[ Pyx-a.s. Moreover if N(¢?)un € S, then such M is locally square
integrable

Proof. LetM® be the AF defined by

t
MP = Z(l{|¢\>1}¢)(xsﬂ Xs) _/o N(Lyp>1)9)(Xs) d Hs.

s<t

ThenM® is a local MAF in the strict sense\{® is locally square integrable provided
N(¢?)un € S). Forn > 2, define AFM" by

t
Mtn = Z(l{l/n<|¢\§1]¢)(xsﬂ Xs) — /(; N(Li1/n<g1<139)(Xs) d Hs,

s<t
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which is a locally square integrable MAF in the strict senset fr> m > 1

[M" = M = (Lymeigiztm@?)(Ks—, Xs),

s<t

and so
t
(M{" = M"); :/ N(L1/meip1<1/m®°)(Xs) d He.
0

Therefore the limit
M® = lim M
n—oo

exists and defines a locally square integrable MAF in the tsg@mse of purely dis-
continuous type. Thereforayl; := M{Y + M is the desired local MAF of purely dis-
continuous type. ]

Hereafter we fix a continuous locally square integrable MMF and a Borel func-
tion ¢: E; x E; — R with ¢(x,y) > —1 for all X, y € E; and ¢(x, x) = 0 for x € E,.
We usepume to denote the Revuz measure @f°).

Lemma 3.2. Suppose that & — log(1 +¢))uy € S and assume thav :=
N(¢?)un + (1/2)ume is a Radon measure of extended Kato class
() There exists a locally square integrable MAFYMf purely discontinuous type such
that AMZ = ¢(Xi_, X¢) t €]0, oo Py-as.
(i) There exist t~ 0 and p> 1 such that

(3.1 supEX[ sup ZE} < 00,

xeE se[0,t]

where Z := Exp(M); is the solution of Doléan-Dade equation
Zi = 1+/ Zs_ dMs
10.1]

for M; := M¢ + Mtd. In particular, Z; is a martingale
(iii) If log(1 +¢) is bounded andv is of Katg then (3.1) holds for any t> 0 and
p > 1. Moreovey for any p> 1, we have

(3.2 lim supEx[ sup|Zs — l|p} =0

t=0xecE se0,t]
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and Z; := exp(M,) satisfies that for any p 1

lim supEx[ sup|Zs — 1|p} =

t=0yxeE se[0,t]

Proof. (i): Under the conditions, the measudgp?) iy, henceN(|¢| A [¢]2) i,
is smooth in the strict sense (see Proposition 3.1 in [12}).LBmma 3.1, it is easy
to see the existence of the locally square integrable MAF of purely discontinuous
type such thatM? — M? = ¢(X,_, X;) for all t €10, oo[ Px-a.s.

(ii): Since N(¢ — log(1 +¢))un is a smooth measure in the strict sense, there
exists a local MAFL of purely discontinuous type such that — Li_ = (¢ — log(1 +
#)) (X, X;) for all t €10, oo[ Px-a.s. Setd := M9 — L andU := J + M®. Note that

Zy = expU; — Cy),

whereC is a PCAF in the strict sense defined 6y := fé N(¢ —log(1+¢))(Xs) dHs +
(1/2)(M€);. Take p > 1 andqg > 1 with pg € ]1, 2] and definep,q := (1 +¢)P9 — 1.
Recalling the inequality (1%)" < 1+rx+(r —1)x? for x > —1 andr € [1, 2], we see
that N(¢pq—109(1+épq))en € St under the conditions. Let(P94 pe a locally square
integrable MAF of purely discontinuous type with{P®® — MPP% = ¢,.(X, , X,) for
all t € ]0, co[ Py-a.s., which can be similarly constructed by using¢ef, instead of
¢. SetMPY := MPP? 4 pgMe and Z{PY = Exp(M(PD),. Then

z{"? = exp(pa; — C{*),
where C{P? := [5 N(¢pq — 10g(L +¢pa)(Xs) d Hs + (p2q%/2)(M®);. We then see that
Ex[Z{]= Exlexp(pU; — pC)]

- E |:(Z(PQ))1/q exp< C(DQ) pCt>:|
q

(a-1)/q
< E,[Z(P9]/eE, |:eXp<q clPa) _ ﬂct)}

1 ‘ Pq
- Ex[exp(q—_1 /0 N((L+9)" — 1 — pag)(Xe) dHs

(a-1)/q
(pg—1)(M h)} :

2(q 1)

Since pg €11, 2], (3.3) is estimated by

@-1)/q
Ex[exp(':q 1(/0 N@A(Xs) dHs + 2 h))] .
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Putl := lim_o SUp, g Ex[fg N(¢?)(Xs) dHs + (1/2)(M®);] < 1. Letting p and q be
sufficiently close to 1, we have

pg—1
q-1

- pql < 1,

which shows sup g Ex[ZP] < oo for some (hence allj > 0 and somep > 1 in view
of Khas’minskii’'s lemma. Let{T,} be an increasing sequence of stopping times such
that Z;,1, is a martingale for each € N. In the same way, we see that

SUpSUpEx[thATn] <00
neN xeE

for sucht > 0 and p > 1, which yields the martingale property &. (3.1) follows
from Doob’s inequality.

(iii): We may assumep > 1. Note that the functiorfp(x) := (1 +X)P —1— px)/x?
is bounded above over[lL+¢, —1+¢71] for eache €]0,1[ and p > 1 and setD) :=
SUR (146, ~14e-1 Tp(X) > 0. Assuming thatlog(l +¢)| is bounded above byloge|,
(3.3) is estimated by

D{PA (@-1)/q
Ex[exp(q_lfo N(¢2)(xs)st+%(pq—lxmtﬂ .

Sincev is of Kato, we then have that syp Ex[Z] < oo for some (hence alfj > 0
and anyp > 1. The rest is similar as in (ii). Finally we prove the lasttstaent.
Owing to Doob’s inequality, it suffices to show

lim supEy[|Z; — 1/°] = 0.
t—0 xeE

Noting that|x — 1|P < |xP — 1| for x > 0 andEx[Z] > (Ex[Z])P = 1, we have
Ex[1Z: — 1P)? < Ef[1Zf — 11
< EIZP - 1% = EZ® - 2ZP + 1] < E,[Z{°] — 1
< Ex[exp(APP )] — 1,
where AZP? := DY [T N(¢?)(Xs) d Hs + (2pa/(2(q — 1)))(2pd — 1)(MC); is a PCAF

of Kato class, which shows syup: Ex[|Z; — 1|P]? < sup,_g Ex[exp(A%P?)] —1 — 0
ast — 0. By [x+y[P < 2P7L(Ix|P +|y|P), X, y € R, we have

1Zs — 1|P < 2P L(Exp(AP)s| Zs — 1|P + Exp(AP)s — 1),

where AP is a PAF such that its continuous part i/2)(M¢); and A AP = exp(p(¢ —
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log(1 + ¢))(Xi—, X;)) — 1 for all t € ]0, oo[ Px-a.s. Since|log(1l + ¢)| is bounded
by [logel,

| 2
{log(1 +¢)}* < <%> ¢?,
e—1
where we use the inequality ©log(1+x)/x <loge/(e — 1) for x € [-1+e, —1+&71].
Hence there exist€, > 0 such thatp — log(1 +¢) < C.¢%. This implies thatA® is
of Kato under the conditions. Therefore we obtain the ddsassertion. OJ

Theorem 3.3. Assume thatog(1+¢) is bounded on Kx E for each compact set
K and v := N(¢?)un + (1/2)ume is a positive Radon measure of local and extended
Kato class Put Z := Exp(M);. Then(1.7) and (1.12) hold for Z and for every regular
open set B In particular, Z is a martingale under the condition€onsequentlythe
semigroup{T,®; t > 0} defined by(1.2) has doubly Feller property

Proof. First we show thaN(¢ — log(1 +¢))uy is a smooth measure in the strict
sense. LetK be a compact set iftE. Then log(1 +px) is bounded orE; x E;, where
Bk (X, y) := 1k (X)p(X, ). So there existCxk > 0 such thatpx — log(1 +¢k) < Ck di
on E; x E;. This implies thatlx N(¢ — log(1 + ¢))uy is of Kato class, because
1k N(¢?)uy is a finite measure of Kato class, hence it isSp in view of the proof
of Proposition 3.1 in [12]. Then we have thhlt(¢ — log(1 +¢))uy is smooth in the
strict sense. We can apply Lemma 3.2 (ii), consequently2jlid obtained. Next we
prove (1.7). By assumptionlg % ((M9) + (1/2)(M); = (1 * M%) +(1/2)(1k * MC),
is a PCAF of Kato class. Hence we can apply Lemma 3.2 (iii). rétoze

lim supEx| sup|Zs—1]:t < tx | = lim supEx| sup|Exp(lk * M)s — 1|:t < ¢
t=0xeK se[0,t] t—=0xeK se[0,t]

< lim supEy| sup|Exp(lk * M)s —1]| =0,
t=>0yeE se[0,t]

which implies (1.7). O

4. Examples

We show in each of the three examples in this section, theaep@gsitive measure
u whose associated PAR* is in the local Kato class but not in Kato class and that
Z, = e/ satisfies conditions (1.7) and (1.12) but not (1.6) nor (L.Here A* is the
positive continuous additive functional of having Revuz measure. These examples
are to illustrate Theorem 2.5. From them, the readers caily emsne up examples of
Girsanov transform in the same spirit but Theorem 3.3 i$ agiplicable.
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ExAMPLE 4.1 (Brownian motion). LeX = (2, X;,Px) be d-dimensional Brown-
ian motion onRY. A signed Borel measurg on RY is said to beof Kato classif

lim sup lnl(dy)

T od=2 =0 when d > 3,
1=0 yerd Jix—y|<r X — Y]

lim sup (loglx — y| 1) |ul(dy) =0 when d=2,

r=0 yerd Jix—y|<r

sup lnl(dy) < oo when d=1.
xeRd J|x—y|<1

Here |u| ;= u* +u~ is the total variation measure @f. A signed Borel measurg on
RY is said to beof local Kato classif 1k u is of Kato class for every compact subset
K of RY. By definition, any measurg of local Kato class is always a signed Radon
measure. Denote bi{g (resp.K'C?C) the family of Kato class (resp. local Kato class)
measures oRY. It is essentially proved in [1] that a positive measures in Kato
classKy if and only if u is a smooth measure in the strict sense and

t

im sup [ ([t ) ds) ety = lim supE[A(1 =0,
t=0xcrd JrRd \Jo t=>0yepa

where A" is a PCAF of X admitting no exceptional set associateditaunder Revuz

correspondence. Assume now tllat 2. We will show that there is a positive measure

n e K9\ Ky satisfying

t
(4.1) sup </ Ps(X, Y) ds) u(dy) < oo for some (and hence for all)t > 0
Rd 0

xeRd

and thatZ; := e satisfies conditions (1.7) and (1.12) but not (1.6) nor (L.14

For any Borel measurg, we setNu(X) := [pq u(dy)/[x — y|9-2 the Newtonian
potential of u if d > 3, and Lu(X) = fpe l0gIX — Y| 1=y <1y n(dy) the modified
logarithmic potential ofy if d =2. Forr > 0 andz € RY, let osg,(» be the surface
measure on the sphefd, (z) with centerz and radiusr.

Let {z,}32, be a sequence iRY such that|zp1| = 2|za), N € N, |z1] > 2. We
define uun 1= 9(rn)oss,, (z,) and u = Y o1 Hn, Where

rh:=8" and g(t):=t! when d>3,
and
rm:=8" and g(t):=t'/logt~? when d=2.

It is known that forr > 0 andz € RY Noyg »(xX) =r min{1, ( /|x —z|)%~2} whend > 3
and Loyg (»(x) =r min{logr ~%, log|x — z|~*} whend = 2. It follows that whend > 3,
Nun is bounded above biun(z,) = 1 (resp. by 12"@-2)) on RY (resp. onBpny, (2,)°).
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Similarly, whend = 2, Lu, is bounded above by un(z,) = 1 (resp. by In?) on R¢
(resp. onBy/g(z,)%). Therefore we have that fat > 3

SupNJ2(0) = sup Y. Nua(¥

d
xeR xeRd n=1

< SUD(Z Leon, () (X)Npen(x) + Z 1anrn(zn)c(X)Nun(X)>

xeRd n=1

1
= <1 +Z 2n(d—2)> < o0,
n=1

which implies (4.1). Moreover, for all > r,

1£(dy)
_Hay) N _
/zn yl<r 1Za—yl92 ~ un(zn) =

which impliesu ¢ Kq. It is easy to seq € K'd"C from un, € Kq. Similarly, we have
the same conclusion for the case E 2.

For suchu € K%\ Ky, let /i := u/(lU1itll + ) and A the PCAF of X having
Revuz measurg,”wheree > 0 andU3ji(x) := Ex[ [, e 'd A]. ThenA is of local Kato
class and of extended Kato class. Hence the multiplicatinetfonal Z; := exp(A;) sat-
isfies conditions (1.7) and (1.12) in view of Theorem 2.5. ldeer Z does not satisfy
condition (1.6), not to mention condition (1.14). This ischase by Jensen’s inequality,
as the positive measune is not in Ky,

tI|m SUpEL[|Z; — 1] = I|m SUpEx[Z; — 1] > I|m<supexpCEX[At]) — 1) > 0.

0 xeRd 0 xeRrd xeRd

EXAMPLE 4.2 (Relativistic stable processes). We dixe ]0, 2] andm > 0. Let
X = (R, Xi, Px)xers be a Lévy process oY with

Eg[eV~16:X0] = g tilP+m?«)2=m]

If m> 0, it is called therelativistic o-stable process with magsee [15]). In particu-
lar, if « =1 andm > 0, it is called therelativistic free Hamiltonian procesgsee [11]).
Whenm =0, X is nothing but the usuaymmetrica-stable processlt is known (see,
e.g., [15]) that the transition density functign(x, y) of X is given by

[e¢] 1 d/2 .
pe(x, y) = emt/ (E) g YU gsP g (¢, s) dis,
0

whereés(t, s), 8,1, s > 0, is the transition density function of theibordinatorwhose
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Laplace transform is given by
o0 8
/ e %0s(t, s)ds=et".

0

A signed Borel measurg on RY is said to beof Kato classif

im sup 1(dy)

i =0 when d>a,
r=0ycrd Jix—y|<r X — y|d—

lim sup (loglx — y| Ylul(dy) =0 when d=«,

1=0 yerd Jix—y|<r

sup lul(dy) < oo when d=1<a.

xeRd J|x—y|<1

A Borel measure: on RY is said to beof local Kato classif 1k i is of Kato class
for every compact subsé of RY. By definition, any measurg of local Kato class
is always a signed Radon measure. DenoteKhy, (resp.KLffx) the family of Kato
class (resp. local Kato class) measuresRSh

It is proved in [12] (see [21] for the cagk> o with m=0, ord > 2, « =1 with
m > 0) that a positive measure is in Kq, if and only if x is a smooth measure in
the strict sense and

t
lim sup (/ ps(X, Y) ds) w(dy) = lim sup E,[A{'] =0,
Rd 0 t—0

10 ycRrd xeRd

where A" is a PCAF of X admitting no exceptional set associateditaunder Revuz
correspondence.

A measurable functionf on RY is said to beof Kato class(resp.of local Kato
clas9 if [f(x)|dx € Kq, (resp.e K%) and write f € Kq, (resp.f € K§¢) for sim-
plicity.

For any Borel measurg, we setR®u(x) := [o. n(dy)/(Ix — y|?~*) the Riesz
potential of u if d > «, and Lu(x) := [pq loglx — Y1 x_y<yy(dy) the modified
logarithmic potential ofu if d =«. If u(dx) = g(x) dx for some non-negative function
g, we write R®g(x) (resp.Lg(x)) instead of R® u(x) (resp.Lu(X)).

Let {z,}32, be a sequence iRY such that|zp1| = 2|za), N € N, |z1] > 2. We
define f,(x) := g(rn)1s, (z,)(X) and f(x) := > 2, fa(x), where

r,.=8" and g(t):=t® when d>a«

and

—a

—q-n? — —
rh:=8 and g(t) = —(l/d) Tlogt- when d=a.
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By utilizing a simple rearrangement inequality (see Theo84 in [14]), we see that for
d > o, R® f, is bounded above bR® f,(z,) = (d/a)wq (resp. by (X(2" —1)4*)(d/a)wq)
on RY (resp. onByr, (2,)°), Wherewy is the volume of the unit ball ifRY. Similarly,
for d =, Lf, is bounded above by f,(z,) = wq (resp. bywy/n?) on RY (resp. on
Br,+(1/8)(z0)°)-

Thus ford > «

sup R f(x) = sup )~ R® f(x)

d d
xeR XeR® 11

< sup(Z 1gn,, (z0)(X) R@ f,(x) + Z 1B, (z)e(X) R@) fn(x)>

xeR? \ 'p=1 n=1

d = 1
< &Cl)d(l"'z W) < 00,
n=1

which implies (4.1) by Lemma 4.3 in [13] with the upper estimaf p(x,y) discussed
in Example 2.4 in [3] or Example 5.1 in [13]. Moreover, for al ry,

f(y) d
— 2 _dy> R®f,(z) = —w ,
~/|\zny<r |z, — y|d_a y= n(2n) o d

which implies f ¢ Kq,. It is easy to seef € K'g’"; since f, € Kq, for everyn > 1.
Similarly, we have the same conclusion for the cdsea.

For suchf e K'é’f,,\Kd,w we setf := f /(| Ry |l +€), wheree > 0 and Ry f (x) :=
Ex[/o" e f(X;)dt]. Then A'is of local Kato class and of extended Kato class. Hence
the multiplicative functionalz; := exp(fé f~(Xs)ds) satisfies conditions (1.7) and (1.12).
By the same reasoning as that at the end of Example Z.does not satisfy condition
(1.6), not to mention condition (1.14).

Hereafter we shall focus on the case= 0, « €0, 2[, that is, X is a symmet-
ric a-stable process and (F) the corresponding Dirichlet form oh?(RY). (£, F) is
given by

(u(x) — u(y))?
Rixrd X — y|d+

_ A, —) (ux) — u(y)(w(x) — v(y))
2 R xR X — y|d+«

}-:{ue L2(RY); dx dy< oo},

E(u, v)

dxdy, u,velrF,

where

IBIC((d — 8)/2)

Al B) = St azr @ + g 2)’

B €]—o0,dl.

X has a Lévy systemN, H), whereN(x, dy) := A(d, —a)|x — y|7@**) dy and H, =
t. We seté(x, y) := f(X)¥?1x—y;>1;. Then for each compact sé¢, log(1l +¢) <
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f1/2 is bounded onK x RY and the functionN(¢2) is of local and extended Kato
class. For locally square integrable MA% with AM; = ¢(X;—, X;) for all t € ]0, oo[
Py-a.s., the multiplicative functionaZ defined byZ; := Exp(M); = expM:) [ oo (1 +
d(Xs_, Xs))e ?Xs=%s) satisfies (1.7) and (1.12) in view of Theorem 3.3.

ExAmMPLE 4.3 (Riemannian manifolds with lower Ricci curvature bosind Let
(M, g) be ad-dimensional smooth complete but not compact Riemanniamfold with
Ricy > (d — 1)x for somex € R. SinceM is non-compactx < 0 in view of Myers
theorem (see [16, Theorem IV.3.1 (3)]).

Let m be the volume measure induced from the Riemannian metrend set
V(x, r) := m(B;(x)). Since Rig; > (d — 1), the Bishop inequalityv (x, r) < V,(r)
and the Bishop-Gromov inequality (x, R)/V,.(R) < V(x,r)/V,(r), 0 <r < R hold
(see [16,8IV.3]). Here V,.(r) is the volume of the ball with radius in the canoni-
cal manifold with constant sectional curvature which can be computed explicitly as
follows.

V() = dog /O "s(9"tds

where

S, if «=0,
S(s) = | sinhty/=«
NEE
where wg is the volume of the unit ball irRY. Consequently, we have the volume
doubling condition sug,, V(x, 2r)/V(x,r) < oo and [;* s ds/log V (X, s) = co which
implies the stochastic completeness of the Brownian moXon (2, X;, Px) on (M, g).
We also have the scale invariant weak Poincaré inequalépegdding onc if ¥ <
0) (see Saloff-Coste [17] or Theorem 5.6.5 in [18]), whiclplies the weak form of
the weak Poincaré inequality (see Theorem 5.5.1 (i) in [18]hen the heat kernel
p:(x, y) of Brownian motion over M, g) satisfies the following Li-Yau type estimate
(see Theorems 5.5.1 and 5.5.3 in [18], cf. Theorems 6.1 &hthg9]): for eachT > 0
there existC; =Ci(T) > 0, i =1, 2, 3, 4 such that fort(x,y) €]0, T[x M x M

if k<O,

Cae—cz d(x,y)?/t C4e—C1 d(x,y)?/t
——— <X, Y) S ———
V(y, V1) V(y, V1)

Further we assume that the injectivity radius Xf (write inj,,) is positive, that is,
injy := infxem d(X, Cx) > 0, whereCy is the cut-locus ofx. Then we have the fol-
lowing (see the proof of Lemma 5 in [10] and Proposition 14 #. [ Though the
framework of [7] is restricted to compact Riemannian mdd#gp the argument in [10]
remains valid): There exist€y € ]0, oo[ such that for any € 10, injy,/2[ andx € M,

V(x,r) > Cqr9.
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Hence we have that there exiSj, Cy, Cs, C4 > 0 such that for any € 10, (injy, /2)%[,
X,yeM

CaeC2dt Y/t Cqe Craly?/t
T < pt(X, Y) < T

A signed Borel measurg is said to be of Kato class (write € Kq) if and only if

|1(dy)

lim su ——="—-=0 when d>3,
r—0 xeNFI) d(x,y)<r d(X1 Y)d_z B
lim sup (logd(x, y) 1) |ul(dy) =0 when d=2,
r=0xeM Jd(x,y)<r
sup lnl(dy) < oo when d=1.

xeM Jd(x,y)<1

The family of measures of local Kato class is similarly defirend will be denoted as
K!oc. A function f on M is said to beof Kato class(write f € K4 in short) if the
measure| f (x)| m(dx) is of the Kato class. Similarly, we writd € K if the mea-
sure | f(x)| m(dx) is so. By [13], under the above estimate, we know tliat Kqy
if and only if lim¢_.o SURp Ex[fg | f(Xs)| ds] = 0. For any Borel measure, we set
Ru(x) := [, n(dy)/d(x, y)4~2 the Newtonian potential oft if d > 3, and Lu(x) :=
Sy logd(x, Y) " 14x.y)<1y #(dy) the modified logarithmic potential of if d = 2. If
u(dx) = g(x) dx for some non-negative functiog, we write Rg(x) (resp.Lg(x)) in-
stead of Ru(x) (resp.Lu(x)).
We utilize the following estimate under Rjc> (d — 1)x:

Lemma 4.4. For non-negative measurable function f & oo,

.2) / F(d(p, X)) M(dX) < (L +0g, () (12)) dz
B (p)

{yeR?; |y|<r}

holds for all pe M, wherefy,(r) is a function independent of, fout depending on
d, « such thatlim,_q6q4,(r) = 0.

Proof. By Lemma I1.5.4 (1) in [16], we have for any non-negatimeasurable
function g on M,

(4.3) / a(x) m(dx):/ g(expptu)e_(t, u) dt o (du),
M 10,00[ xSd-1
where 9_(t, u) := 6(t,u) if t < t(u) and := 0 otherwise, and(t,u) := t4-1 x

,/det@; (exp, tu))i;. Here exp: T,M — M is the exponential mapy is the surface
measure or8%! and t(u) is the distance fromp to the cut-point ofp along y, (see
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Chapter 111, §4 in [16]). Setg(x) := Lo, (d(p, X)) f(d(p, x)). Then
(4.4) / f(d(p, X)) m(dx):/ f ()0 (t, u) dt o (du).
B (p) 10,r[xSd-1

Since Rig > (d — 1)«, it holds thatd(t, u) < S.(t)%~* for all t > 0 andu € S9-1 (see
Chapter IV Theorem 3.1 (2) (b) in [16]). Hence the right harid(44) is estimated

above by
d-1 r
sup<ﬁ> ( / f(t)td—ldt> dawy,
Isl<r S 0

which implies (4.2). ]

Fix a pointo e M. Let {z,}72; be a sequence iM such thatd(z,+1, 0) = 2d(z,, 0),
neN, d(zi, 0) > 2. We definefy(x) :=g(rn)le, @)(X) and f(x) := meq fn(x), where

rh:=8" and g(t):=t? when d=>3

and

2 t—2
.— QN — =
rh:=8 and g(t) = —(1/2) Tlogt 1 when d=2.

Rf, is bounded above byd(x’y)drn m(dy)/d(x, y)¢~2 on By, (zn), and bounded above
by m(B, (z))/r872 on By, (z1)¢. Let C := sup,cn(1 +64,.(3rn)). From Lemma 4.4, we
see that fod > 3, Rf, is bounded above byGwgd (resp. by €39/(2" —1)?)wqd) on
M (resp. onBany,(z0)¢). Similarly, ford = 2, Lf, is bounded above byQ@uvyd (resp. by
C3%q/n?) on M (resp. onB;, +(1/8)(zn)%). Moreover, R\(z,) > Cq and L fn(zn) > Cq/2
for rp < injy /2.

As in the previous examples, we séec K{;’C\Kd and (4.1) holds. So the multi-
plicative functionalZ; := exp(f; f(Xs)ds) defined by f := f/(|Rif - + ¢) satisfies
(1.7) and (1.12). By the same reasoning as that at the endahpe 4.1,Z does not
satisfy condition (1.6), not to mention condition (1.14).
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