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Abstract

In this paper we classify completely all regular minimal fages with K2 =
8, py = 4 whose canonical map is composed with an involution. We obsak
unirational families. The last two are irreducible compatseof the moduli space
of minimal surfaces of general type witk? = 8, py = 4. These families hit three
different topological types.

Introduction

The aim of this paper is to classify regular minimal surfaGwith K? =8 and
py = 4 whose canonical map factors through an involution (shioatving a canonical
involution).

The study of surfaces with geometric gerus= ho(s, QZS) =4 began with Enriques’
celebrated book.e Superficie Algebrich€]7]), where he summarized his research of
over fifty years.

By standard inequalities, minimal surfaces with geomeggouspy = 4 satisfy 4<
K2 < 45. While for high values o2 it is already difficult to prove existence, the
challenge for low values is to completely classify all sugfa with the given value of
KZ. More ambitiously, one would like to understand the topolafyhe moduli space,
i.e., the irreducible and connected components of the maghalce.

The lowest possible valug§3 = 4,5 were already treated by Enriques and the cor-
responding moduli spaces were completely understood ii7@e For K2 =6 the situ-
ation is far more complicated. In [12] Horikawa completelgssifies all surfaces with
pg =4 andK?2 =6, obtaining a stratification of the moduli space in 11 strafloreover
he shows that there are 4 irreducible components, and at timest connected com-
ponents. In [2] it is shown that the number of connected corapts actually cannot
be bigger than two. Let us point out that all these surfaceshameomorphic.
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The complete classification of minimal surfaces vt = 7 andp, = 4 was achieved
by the first author in [1]. Moreover, it is shown there that akkse surfaces are homeo-
morphic, and that there are three irreducible componemtstmost two connected com-
ponents.

The first open case(g = 8 is more complicated already for topological reasons.
By work of Ciliberto, Francia, Mendes Lopes, Oliverio and diai (cf. [5], [6], [14],
[16]) there are at least three different topological typ#wrefore at least three con-
nected components of the moduli space.

The analysis of the casdé? < 7 is based on a detailed study of the behaviour
of the canonical mawx,: S --> P3, as already suggested by Enriques. Kot =8
this approach produces too many strata and the question ey glue together be-
comes intractable. Therefore it is necessary to find a lessstiratification of the mod-
uli space.

We summarize our main result in the following

Theorem. Let S be a minimal regular surface withy g 4 and K? = 8 whose
canonical map factors through an involution i on $hen
1) the numberr of isolated fixed points of i i§, 2, 4or 20;
2) if T =20, S is a canonical bidouble cover and the two additional intiohs have
T=0;
3) the surface S belongs to exactly one of six unirational fiemilin the table be-
low we give for each family the dimension and the reference where this family is
described

| Family | dim | reference
ME |29 |33
Mo |28 |35
M 132 |42

MP 133 |43
MPV | 38 |51
MP |34 |59

4) exactly two of these familieslamelyMgDV) and M@, are irreducible components
of the moduli space

5) the surfaces in/\/lf)d“’) and the surfaces in\? are not homeomorphic and not
homeomorphic to any of the others
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Actually, we prove more:

REMARK. The indext € {0, 2, 4 in the above families means that there is a
canonical involution onS having t isolated fixed points. In fact, the only surfaces
having more than one canonical involution are canonicabltie covers having an in-
volution with ¢ = 20 and two involutions withr = 0: they give a subfamily of/\/l(()di")
(when the canonical image is a quadric cone) and a subfarhiltg (when the canon-
ical image is smooth).

The surfaces invi™ are the only ones in the above list with 2-divisible canohica
system. The surfaces 'u’vliDV) (so called because they abri Val double plangsare
the only ones in this list with nontrivial torsion subgroup the Picard group. The
surfaces in/\/lflz) are all minimal surfaces of general type with? = 8 and py = 4
having a genus 2 pencil.

The paper is organized as follows.

In Section 1 we recall some general facts about involutiors show that the num-
ber of isolated fixed points is 0, 2, 4 or 20.

Sections 2, 3, 4 and 5 are devoted to the classification andi¢odétailed de-
scription of all surfaces having a canonical involutiontwitespectivelyr = 20, = =0,
t =2 andt =4. Fort =0, 2 we use the MMP for pairs (as e.g. in [17]). The surfaces
(minimal, regular withpy =4 andK? = 8) having a canonical involution with = 4 are
exactly the surfaces (with the same invariants) whose bitiaal map is not birational.
Those without genus 2 pencil are classified in [6]. We clgs8ibse with a genus 2
pencil using the techniques developped in [4].

In Section 5 we calculate the dimensions of each family.

1. Canonical involutions

Let S be a regular minimal surface of general type and Ibe an involution onS.

Since S is minimal i is biregular, and its fixed locus consists ofisolated points
and a nonsingular (not necessarily connected) clRve

The quotientT := S/i hast nodes. Resolving them we get a cartesian diagram of
morphisms

§——§

(1) l l

T——T

with vertical maps finite of degree 2 and horizontal mapstisinal. We denote byA
the branch curver(R) and by Ey, ..., E; the exceptional curves af.

The action ofi on S yields a decompositionr,0g = O: & O3(—8), with 25 =
A+ 1 7(E). Recall thatKg = 7*(K3 +3).
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Lemma 1.1.
@ X(01) = 5x(09) - 5(KsR 1),
@ X(O(-8) = 3x(09) + 5(KsR~ ).

Proof. By Riemann-Roch
~ 1. ~
x(0) = x(O+(=8)) = =53(Ks + )
-1 R+i E K +2T: E ——}(K R—r1)
- 4 - i S - i ]~ 4 S .
The result follows then fromy (Os) = x(Oz) + X(O-T—(—S)). O
We will also use the following (cf. e.g. [15])
(4) 0= 7= KZ+6x(03) - 2x(0s) — 2h°(0+ (2K +3)).

REMARK 1.2. If the canonical map factors through the involutignthen either
pg('T') = py(S) (equivalently, all 2-forms are invariant) qng('f') =0 (i.e., all 2-forms
are anti invariant).

Lemma 1.3. Assume that i is a canonical involution and let p be an isalate
fixed point of i
e If pg(T) =0, then p is a base point dKg|.
o If pg(T) = py(S), then R is contained in the fixed part ffs.

Proof. There are local coordinates aroupduch thati (x, y) = (—x, —y). In par-
ticular i*(x2y? dx A dy) = (—1)2"°x2yP dx A dy.

If pg('f') = 0, every global 2-formw on S is anti invariant. Writingw =
3" wapx®yP dx A dy it follows w,p = 0 for a+b even. In particulaw vanishes inp.

The other case is similar, since there are local coordinatesnd any point oR
such thati(x, y) = (=%, y) and R = {x = 0}. ]

REMARK 1.4. If pg('f') =0, by Hurwitz’ formula and Riemann-Roch (as in Lem-
ma 1.1)
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From now onS will be a minimal surface of general type withk? =8, py = 4,
andqg =0.

REMARK 1.5. The canonical map db is not composed with a pencil.

More generally, by results of Zucconi and Konno (cf. [21] ad8]) the canonical
map of regular surfaces withy > 3 andK3 < 4py — 6 is not composed with a pencil.

Proposition 1.6. If the canonical map of S factors through an involutigntien
either
1) pg(T)=0,7€{0,2 4, or
2) py(T)=4, R=0, t =20.

Proof. If pg('f) = 4, the canonical map cannot have degree 2 (since thes
birational to the canonical image which has degree at mqgsthéyefore it has degree
4 andKs is base point free, so, by Lemma 1.B,=@. t = 20 follows from (2).

Otherwise pg(T) = 0. By (4) T = 4— 2h%(Og, (2K g;; +9)). O

2. Canonical involutions with pg('T') =4

In this sectionS is a minimal surface of general type wimg =8, pyg(S =4 and
a canonical involution such thaiy(T) = 4.

Consider a Hirzebruch surfadg, k € {0, 2}. Then, ifk =0, we denote byTI'y|,
IT'2| the two rulings ofFy. Otherwise, we denote bijf';| the ruling of F, and by
IT1| ;=T +|T'2], T being the ¢2)-curve.

We will show the following

Theorem 2.1. S is a bidouble covefi.e.,, a Galois cover with groupZ/27Z x
7/27) of Fy, k € {0, 2}, which is a fiber product of two double covers branched in
two general divisors Be |4'; + 2|, By € |21 +415|.

First we need the following:
Lemma 2.2. Let C be a curve of genugand let f: D — C be an étale double
cover with associated involutiof. Then the hyperelliptic involution of C lifts to an

involution on D which commutes with

Proof. The hyperelliptic involutions’ acts on Pi&(C) asL ~ L*, and therefore
it fixes any 2-torsion bundle. Since (connected) étale dowovers are classified by
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non trivial 2-torsion bundles, considering the fiber praduc

D —25D

c 2-c¢C

it follows that D’ = D ando is a lift of o’ to D.
Sinceo’ is an involution,o? is either the identity o€, which has no fixed points.
But in this last case (by HurwitzD/o would have genus /2, a contradiction. [

By Proposition 1.6, ifpy(T) =4, thenR =0, so K2 =8/2=4. By [10] T is a
canonical double cover of an irreducible quadricPih branched in the complete inter-
section with a general sextic. Moreover the canonical majs & the composition of
7 with the canonical map of .

Lemma 2.3. S is a canonical Galois cover of a quadric B¥ with Galois group
7)27 x 7.]27.

Proof. The pull-back of a ruling of the quadric is a genus 2qgleon T and
(since R = @) a genus 3 pencil ors whose general element is an étale double cover
of the corresponding genus 2 curve. Then by Lemma 2.2 we éathé canonical
involution of T to an involution onS commuting withi, and the canonical map is the
quotient by these two commuting involutions. ]

S has two more canonical involutions, and we denote thena tnd oi.

Lemma 2.4. ¢ andoi do not have isolated fixed points

Proof. Recall that the action ofon HO(Ks) is the identity. Sincey(S/z/2zx2/22) =

0, the action ofoc on H%(Ks) is multiplication by —1, and py(S/o) = pg(S/oi) = 0.
Since degfk) = 4, |Ks| is base point free, and the claim follows from Lemma 1.3.

O

Proof of Theorem 2.1. We have a commutative diagram of finiepmisms of
degree 2:

S/z22.x2/27
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The ramification locus ofr, is a smooth divisorR,, the ramification locus ofr,; is

a smooth divisorR;;, the ramification locus ofr is a set of 20 point§3. R, and R;;
intersect transversally and obviously > R, N R,i. On the other hand, singgk,| fac-
tors throughFy ([10], Lemma 1.5), the same holds fo[x, and thereforeS ;272,27

is a blow-up ofFx. So S;z,2zxz/2z i1s smooth, and also the other inclusion must hold,
ie.,, P=R, NR,.

We consider the branch divisoB&, = qon(R,) of q,, and B, :=qom(R,i) of Qyi.
It follows that B, B,ij = 20. We denote byD,, D, the respective images dfx. Since
B,, B, are 2-divisible, we can writd8, = D, + ZZJ- aEj, Byi =Dy + ZZJ- oj Ej
where E; are the exceptional divisors of the first kind of the conimactio Fy.

n*q*E; is contracted bypky and Xs=n*q*(B, + By +2Kg, ., ,,)- Thenaj +
aj=—1for all j, soaja; <0 is even and it follows thaD, D,; = 20— 8k for some
nonnegative integek.

D,, D,; are 2-divisible, effective and, + D,; is the branch curve of], so
belongs to|6I'y + 6I'z|. Therefore eitherD, € |4y + 2y, D, € |2I'y + 4I'y|, or
D, € 12I'jl, j € {1, 2.

A smooth bidouble cover of type (in the language of [3]) ((®, @, 6), (O, 0)) has
K2=8 and pg = 6. By the formulas on page 109 of [3] there is no configuratidén
singularities that changegy without changingK 2. O

Bidouble covers of a smooth quadric were already studied atariese [3], and
later Gallego and Purnaprajna [8] and [9] classified caradrialois covers of degree
4 of a surface of minimal degree. All these surfaces can baddn those papers.
Note however that these surfaces, because of the other manical involutions they
have, are also special cases of the surfaces studied in Kesegtion.

3. Canonical involutions with pg(T) =0, =0
In this caseT is smooth. By Remark 1.4

KT8 =—2— K2,

®)
§2=8+K2.

We inductively contract all{1)-curvesE on T contained in the image of the fun-
damental cycles o6, and we denote bw: T — P the composition of all these con-
tractions.

REMARK 3.1. We observe that every-{)-curve E contained in the image of
a fundamental cycle of fulfills AE = 2. It follows that equations (5) hold also for
Kp, 6p.

Let L € QU {0} be the maximal number such theKp +3p is nef. Since the pull
back of Kp +8p to Siis Kg, A > 1. In fact, A > 1, sincei =1 implies that there is
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an extremal ray such that Kp +8p)l = 0. By a.i.t.,1? < 0, whencel is a (—1)-curve
whose pull-back tdS is contained in a fundamental cycle. But these have alreaéyn b
contracted.

Proposition 3.2. There are the following two possibilities
K2 =1 and 3Kp + 8p is trivial;
K2 =0 and |2Kp +3p| is a genusO pencil without base points

Proof. By the algebraic index theoren2s2 < (Kpdp)?. Equations (5) imply
K3 <1.

If K32 =1, equality holds in the a.i.t. andK3® + §p is numerically trivial. By
equation (4) Kp + 8p is effective, hence Riemann-Roch implie8(3Kp + §p) > 1.
Therefore Xp + §p is trivial.

OtherwiseK3 < 0. Let| be an extremal ray withaKp +38p)l = 0. SinceP is nei-
ther P2 nor aP'-bundle,| has to be a-{1)-curve, whence. = §pl € Z. In particular,
2Kp +68p is nef.

Since Kp+5p is effective, whence & (2Kp+68p)? = KE, < 0. Therefore Kp+6p
is a nef divisor with selfintersection 0 and negative caranitegree. This implies that
[(—2/(Kp(2Kp + 8p)))(2Kp + 8p)| is a base point free genus O pencil. Since in our
caseKp(2Kp +68p) = Kpdp = —2 we are done. O

We get two families, according to the value Kf.

Theorem 3.3. If Ké = 1, then Ks is 2-divisible and S is a double cover of a
Del Pezzo surface of degrdebranched in a general divisor ih—6K|.

Proof. By Proposition 3.2 Bp +8p is trivial, so Kp +8p = —2K, is 2-divisible
and the same holds for its pull-badks = 7*a*(Kp + 6p). Note that sinceKp +§p is
ample, P is a Del Pezzo surface. ]

REMARK 3.4. Oliverio proves in [16] that if the canonical system ofegular
minimal surface withK2 = 8 and py = 4 is 2-divisible, eitherKs has base points
and the canonical map has degree 3 (so it is not our case)ecsettmicanonical ring
R(S, (1/2)Ks) embeds the canonical model 8fas a complete intersection of two sex-
tics in P(1, 1, 2, 3, 3).

Theorem 3.5. If K3 =0, then there is a natural numbé <r < 3, such that S is
the minimal resolution of a double cover of a Hirzebruch+8egurfaceF, branched in
a curve in|8l,, +(10+4) f|, wherel', denotes the section at infinity and f a fipre
having 8 singular points(possibly infinitely negr of multiplicity 4 as only essential
singularities
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Proof. By Proposition 3.2]2Kp +§p| is a genus 0 pencil without base points.

Contracting 8- K3 =8 (—1)-curves (contained in fibres) we get a birational mor-
phismn: P — F,. Note that there might be different choices for the 8 cotivas
yielding differentr’s.

The strict transform of the—r)-sectionl",, of F, is an irreducible rational curve
B on P with B (2Kp + 6p) = 1. Let E be a (1)-curve contained in a fibre of
|2Kp +8p|: then B, E is 0 or 1. If B,E =1, 2Kp +5p — E is again an exceptional
divisor of the first kind, so it contains an otherX)-curve E’ and B, E’ = 0. Therefore
we can choose such that for all contracted curves holés,E = O.

Now, B, is a smooth rational curve WitBozo =—r, soKpBy =1r — 2. Therefore
0 < (Kp +38p)By = (2Kp +68p)Boy — KpBy =3 —r whencer < 3.

We write §p = n*(al’y + bf) — Z? GE.

First of all, for alli, ¢ =8pE;j = (2Kp +8p)Ej —2KpE; = 2. Moreover, by formu-
lae (5)a=38p(n* f) =8p(2Kp+3p) = —4+8 =4. Finally, by 8 %2 = (al',+bf)?—8c? =
—16r +8b— 32 we get 40 =B — 16r, whenceb =5+ 2. O

REMARK 3.6. At first sight the surfaces in the previous theorem falb ifour
distinct families, according to the different values rof But, as follows clearly from
the proof, the surfac&, is obtained fromP by choosing 8 £1)-curves to contract,
and different choices vyield differemts.

Let Py,..., Ps € F; be the (not necessarily pairwise distinct) images of theseho
exceptional curves oP. Since 3p — Kp is ample, h’(26p) = 0. In particular, the
dimension of|Ap| is constant.

If r #0 andr of the pointsP, do not belong to the negative sectibg, of F,;, we
can modify the choice of the curves we contract in order taiobt = 0. It follows
that the family withr = 0 is open and dense in the subscheme of the moduli space
of surfaces of general type given by the surfaces describetheorem 3.5 which, in
particular, is unirational.

4. Canonical involutions with pg(f) =0, =2
We recall diagram (1):
§——5
|
T——T
In this casec is the blow up ofS in two distinct pointsp; and p,. We denote by

A the (—2)-curve 7(e~1(p)). Note thatA; is a component of the branch curve of ~
with A = —1.
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We define theQ-divisor & ;= § — (1/2)(A1 + Az). We have

K$6 = -3 K2,

© §2=10+K2,
Observe that, by a.i.tk2(10+K2) = K252 < (K16)? = (K2 +3)?, thereforeK2 < 2.

Let A be the maximal (rational) number such that+ +§ is nef. Note thatr* (K4 +
5) = e*Kgs, whenceK+ +§ is nef, sox > 1.

Assume thats =1 and letl be an extremal ray withK+ +8_)I =0. SinceK% <2,
we know thatT is neitherP? nor aP!-bundle. Thereford is a (—1)-curve, and we
contract it. Note that after this contraction the equatif@@sremain valid (if by slight
abuse of notation we denote the pushforwards afgain bys), since K?, 82 increase
by 1, while K§ decreases by 1. In particular, by the index theorem weKgek 2.

Therefore, we can inductively apply the above argument astdagsequence of
contractionsc;: T — P, such that (6) holds o (so K2 < 2) and there are no ex-
tremal rays in Kp +8)-.

Now, let & be the maximal rational number such thap +§ is nef. Theni > 1.

Since K2 < 2, an extremal ray has to be a-{1)-curve, whence. = 8l € (1/2)z
(since 3 is integral), i.e.,A > 3/2.

In particular, (32)Kp_ +§ is nef and, since by (4) Rp +4 is effective, we have
0 < ((3/2)Kp +8)(2Kp +8) = (1/2)(K3 — 1). Therefore,K3 € {1, 2.

Proposition 4.1. One of the following occurs
e KZ=2and|4Kp + 25| is a genus0 pencil without base points
° K2 =1, there is a birational morphism :cP — P; onto a Del Pezzo surface of
degree5, contracting (—1)-curves | with(K + 8)I =1/2, and 2Kp, + 5 =0.

Proof. We know thath > 3/2. Assume that. = 3/2 and letl be an extremal
ray with ((3/2)K + &)l = 0. By a.i.t, since (BR)K +8)?=1+K?4>0, 12 <0.
Contractingl we add 1 toK?, 9/4 to 82 and we subtract 2 from K¢, in particular,
we do not change (@)K +38)2. Therefore we can repeat the argument and inductively
contract all, say, (—1)-curvesl with ((3/2)K +6)l =0. We get a birational morphism
c: P — Py, such that onPy, A > 3/2.

Since Kp, + s is nef and Xp, +3 is effective, we have & (Kp, + 8)(2K p t+ 8)
1—s/4, i.e.,, s < 4. In particular, K2l <2+s <6, so, as above, an extremal rhy
has to be a-{1)-curve, whence. = 8l e (1/2)Z, sor > 2. Therefore Kp, +8 is a nef
and effective divisor with selfintersectionK2, +5)? = (2Kp +8)?+s/4 = K3 — 2 +s/4.

If KZ =1, it follows thats = 4 and (Kp, +8)2 = (Kp, + 8)(2Kp, +8) = 0. By
a.it. Kp +34 is trivial.

Else K2 =2, and the inequalit)K,%la_2 < (Kp,8)? gives (2 +s)(12 + (9/4)s) < (5 +
(3/2)s)? & s < 2/3: we haves = 0. In this case,P = P, and Xp +8p is nef with
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selfintersection 0 and canonical degreé, so|2(2Kp +5)| is a base point free genus
0 pencil. O

Therefore we get two families, according to the valuektﬁ.

Theorem 4.2. If K& =1, then S is the minimal resolution of a double cover of a
Del Pezzo surface of degréebranched in a divisor i —4K| having two(3, 3)}points

Proof. Letl c T be a (-1)-curve with K+ +8)l = 0. Since the intersection form
restricted to K+ +38)* is negative definite and sindeAq, A; € (K+ +8)%, I(A1+A) < 1.
Because’l, §l € Z, we havel (A1 + Ay) even, thudA; =1A, =0.

This shows that the images &; and A, are still (—=2)-curves inP. We show
that they will be contracted bg. Recall thatc is (any) sequence of 4 contractions of
extremal rays in ((B)Ks: +8)*.

The first extremal ray is a—<1)-curvel with ((3/2)K3 + 5_)| = 0. By the same
argument as abovd(A; + Ay) < 1. 8l €7, 8§l € Z, therefore w.l.o.glA; =1 and
|A2 =0.

After contractingl, A; becomes a-{1)-curve contained in ((2)K+ +8_)L, and
we can chooseéd; as second extremal ray.

By the same argument the third extremal tayhasl’A, =1 and we can choose
A, as last extremal ray.

Now, P; is a Del Pezzo of degree 5, amlis the blow up ofP; in four points.
We call the exceptional divisorgy, ..., E4. By the above arguments, we can assume
that Ay = E3 — Eq, Ay = E; — E3, and onP we have: § = ¢*§ — Y[ ,(0E)E; =
c*(—2Kp,) — Zi“zl(3/2)Ei. The direct image off on P is thereforec*(—2Kp,) —
St 2E + Ey + Es. O

Theorem 4.3. If K2 =2, hen there is a natural numb& <r < 2, such that S is
the minimal resolution of a double cover of a Hirzebruchi8egurfacelF, branched
in a fibore" € |f| and a curve in|8ly, + (9 + 4) f|, where',, denotes the section
at infinity and f a fibre having singular points x, ..., Xg of multiplicity 4 as only
essential singularitieswith x5 € I' and X% infinitely near to ¥ and belonging to the
strict transform ofT".

Proof. By Proposition 4.1J4Kp + 25| is a genus O pencil without base points.
As in the previous proof we note tha; and A, are still (—2)-curves onP, which
are contained in fibres of the pencil.

Contracting 8- K3 =6 (—1)-curves (contained in fibres) we get a birational mor-
phismn: P — F;. Repeating the same argument as in the proof of 3.5, we ofitain
r <5/2.

Let | be one of these 6-(1)-curves; then being, A; and A, all contained in fi-
bres, by Zariski's lemmaA; < 1. But it cannot bd A; =0 for all |, sincelF,, r <2
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does not contain two disjoint—2)-curves. Therefore one of these extremal rays has
IA; =1, sayEs. cﬁ, Slez, thereforeEg(A; + A2) even, thusEgA; = EgA, = 1. So, af-
ter this contractionA; and A, become {1)-curves contained in a fibre with; A, = 1.
One will be contracted and the other will map isomorphicaliyto a fibre offF,.

We haven*f = 4Kp + 25 and we writes = n*(@lry +bf) — Zf GE;.

Then, for alli, ¢; =8E; = 2. Moreover, by formulae (63 =§(n* f) = §(4Kp+28) =
4. Finally, by 12 =52 = —16r + 8b — 24 we getb = 9/2 + r, whences = n*(4T« +
9/2+2)f) -2 %E.

Therefore the direct image @ on P is n*(4lw +(5+2)f) — 3> 2E; — 3Es. [

REMARK 4.4. 1) The same argument as in Remark 3.6 shows that thecasirfa
with r = 0 form an open and dense set in the subscheme of the modak sesur-
faces of general type given by the surfaces described inr€hed.3 which, in partic-
ular, is unirational.

2) We observe that the surfaces classified in this sectioexaetly those whose canon-
ical map is a double cover of a cubic surfacePth

5. Canonical involutions with pg(T) =0, 7 = 4

This case can be treated with the same techniques as in theysdwo sections,
but the calculations become more demanding. We choose eratiff approach.

By equation (4),h0((9§/i (2Kg); + 8)) = 0, in particular, the bicanonical map factors
through the involution. In [6] the authors classify all surfaces wifly > 4, nonbirational
bicanonical map having no genus 2 pencil. In particulary thietain

Theorem 5.1 ([6], Theorem 3.1 and Remark 3.10)If t =4 and S has no genus
2 pencil then S belongs to one of the following two families
i) S is birational to a double cover df' x P* with branch curveA = Ly + L)+ Lo+
L5+ D where L, L; are distinct lines in|Tj| and De |8'1+8I",| has quadruple points
at the intersection of thd lines as only essential singularities
i) S is birational to a double cover d@f* x P with branch curveA = L, + L, + D
where L, L}, are distinct lines in|I'>| and D e |8I'1 + 82| has (4, 4) points at the
intersection of the? lines with a line L in |I'y|, having as tangent line 4 resp L5,
as only essential singularities
The torsion subgroup dPic(S) is isomorphic toZ/27. The second case is a special-
ization of the first one

REMARK 5.2. It is wellknown that, if a surface has a genus 2 pencig it
volution on each fibre induces an involution &such that both the canonical and the
bicanonical map ofS factor through it. In particular, the induced involution ganon-
ical and, if the surfaces is regular witd? = 8 and pg =4, it hast = 4.

It follows that none of the preceedingly studied surfaces aayenus 2 pencil.
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In the following S is assumed to be a surface of general type With=8, py = 4
andq = 0 having a genus 2 pencil: S— P

REMARK 5.3. Sincer =4, the canonical system has base points (cf. Lemma 1.3)
and therefore the canonical map has degree two onto a culacqoadric.

Let wgpr := ws® f*wlgll be the relative canonical sheaf. The shea\‘/aemgw1 are
vector bundles and there are the relativ&anonical mapsp,: S --> P( f*‘”gmﬂ) =
Proj (Sym f*wglPl)’ whose restriction to each fibre is itscanonical map. Note that
for g = 2 the target of the relative-canonical map is @*-bundle forn =1 and a

P2-bundle forn = 2.

REMARK 5.4. Letf:S— P! be a genus 2 fibration with fibre=(t) =: F; €
|F| and assume

(7) vt € P! the restriction map H%ws) — H%wr,) is surjective.

Then the canonical map @& factors through the relative canonical map. The resulting
map P(f.ogp) = ¢k (S) is a surjective morphism mapping each “line” of the ruling
of P(f.wgp) to a line of PPe—2,

If Sis regular, then the cokernels of the restriction maps inafé) all isomorphic
(to HY(ws(=F))). In particular, the maps arall surjective if and only if one of them
is surjective, i.e., if and only ifKg| is not composed withF|.

REMARK 5.5. The canonical map db is a double cover of a quadric. In fact,
by the above considerations the canonical image is coveyetinbs. On the other
hand, as it is seen by the same argument as in Lemma 3.14 off [tie canonical
image ofSis a cubic, it has isolated singularities, whence cannotdwered by lines.

Proposition 5.6. Let S be a regular surfagewhose canonical map is a double
cover of a quadric surface Qand let f: S — P! be a genus2 fibration. If Q is
smooth then Jwgp = 20p1(3). If Q is a quadric cone then, fogpr = Op1(2)D Ops(4).

Proof. P(f.wsp1) is a Hirzebruch surfac&y having, by Remark 5.4, a birational
morphism ontoQ. If Q is smooth, therk =0, and if the quadric is a cone, thérs 2.
We conclude, since by standard computations (e.g., [4], &Rlerd.11) dedf,wgp =
x(Og) +1=6. O

Lemma 5.7. With the same hypotheses asRnoposition 5.6,if Q is a quadric
cone then the branch curve of the relative canonical mafa S --> F, cannot con-
tain .
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Proof. Assume by contradiction that,, is contained in the branch locus ¢f.
Then the preimage of the vertex of the cone under the carlomiap is a pointp € S.
Since the genus two pencil maps onto the ruling@fit has a base point, contradict-
ing Kodaira’s lemma ([11] or [19], Proposition 5.1). ]

We will use some of the techniques developped in [4], which dake of sim-
plicity will only be briefly reported in the case of genus 2 itions f: S— P! with
pg(S) = 4.

We consider the exact sequence

(8) 0— Syn? fogp > fuwie - O — 0,

whereoy is the natural map induced by the tensor product of canosieetions of the
fibers of f, and t is an effective divisor orP! of degreeK3 — 4 (cf. Lemma 4.1 of
[4]). The mapo; yields a rational map: P(f.wgp1) -—> P( f*wgmﬂ) (relative version
of 2-Veronese embedding' — P?) birational onto a conic bundIé.

The following exact sequence defines the vector bundie as quotient of
Synt f*“’gmﬂ’ the vector bundle of relative cubics @ f.w%,), by the subbundle of
cubics vanishing o (cf. Lemma 4.4 of [4]):

2
S|Pt

©) 0 fode ® Op(12) 3 Syn? f,wp — As — 0.

The branch curveA of the mapS — C is given (cf. Theorem 4.7 and Proposition 4.8
of [4]) by a map

(10) 8. Op(2K3 +4) — As.

Lemma 5.8. Under the assumptions d?roposition 5.6f moreover K& > 6, then
each direct summand of*a%”pl has degree at leash.

Proof. Beingo, an injective morphism between two vector bundles of the same
rank, if each summand of the source has degree at least 6,athe kolds for the
target. Therefore by Proposition 5.6 we can assumesp: = Op1(2) @ Op1(4).

Assume by contradiction that (writing coordinates wgp:, f*“’éml)

f*a)S“pl = XOO]P&(Z) &) X10P1(4)
f*wéﬂ»l = YoOp1(a) ® y10p1(b) @ y20p:(C)

with a < 5.
In these coordinates we have thHa{, has equatiorx; = 0. Froma < 5 it follows
that o2(XoX1), 02(X?) belong to Spary, ¥»), whencev(T's) = {y1 = y» = 0}.
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Sincev(l'x) C C, yg does not appear in the equation ®fand thereforwg does
not appear in the equation of any relative cubic vanishing.ifThis means that the row
of the matrix ofiz corresponding to the direct summaygm]pl(Ba) of Syn? f*a)gm,1 is
a line of zeroes. Therefore this summand maps isomorphicaifo a direct summand

of ./46.
KZ > 6 implies ZK2+4 > 15> 3a and therefore the composition &fwith the pro-

jection on this summand is zero. But this impliasD v(I'y), contradicting Lemma 5.7.
O

Let now S be a minimal surface of general type with? =8, py =4 andq =0
having a genus 2 pencil : S — PL.

By the above arguments we know:
o P(f.wgp) = Fy for k € {0, 2;
. f*a)éupl ZrOm(6)®V forr € {0,1,2, whereV is a sum of line bundles of degree
at least 7.

Note thatr # 3, since dedf.w,: = 18 +degt = 22.

Theorem 5.9. The moduli space of surfaces witt? K 8, pg =4 and g= 0 having
a genus2 pencil f: S— P! is unirational of dimensior84.

Proof. We use the structure theorem for genus 2 fibrationsTteéorem 4.13 in
[4]). For each case we have to describe the associated &{BpVy, t, &, w). We treat
separately the casds=0 andk = 2.

k=0. The first three elements are ea®y=P!, V; = fiogp = 20p:(3) andt is
an effective divisor oriP! of degree 4.

& is an element of E%;]Pl (Oy, Synt Vl)/AutoD,,l(Ot)- giving the short exact sequence
(8). In order to give explicitly these extension classes weafisectionf; € HO(Op(t))
and, applying to the exact sequence

(11) 0— Op(3) S Op(7) = O — 0
the functor Hor,, (-, 30p:(6)), we get
Exte, , (O, Syt Vi) = Homo,, (Op:(3), 3051(6)) = HO(30m(3)) = C*2.

This isomorphism is explicitly given as follows: for anypie of cubics €, 1, C2),

the resulting f*a)"émj,1 is given by the short exact sequence

(12) 0= Opi(3) = Opi(7) ©3051(6) > fofps — O

for ¢ being the transpose of-(f, c1, Cy, C3); 02 is then the restriction to the last three
summands (@p:(6)) of the projection onf*a)glpl.
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These 4 data give us the exact sequence (8) and thereforerie bundleC. To
complete the 5-tuple we have to give an element (Hom(Op:(20), Ag) \ {0}),c- cor-
responding to the map in (10), and then to the branch curve c C.

From the exact sequence (9), dim(H@((20),4s)) = x (As(—20))+h(Ae(—20)) =
29 +h'(Ag(—20)). Moreover, H'(4(—20)) is isomorphic to the cokernel of the map
H(i3(—20)).

By Lemma 5.8, all summands of the source and of the targeteoirthpis(—20)
have degree at least2. More precisely, the source has< 2 summands of degree
—2, the targetr?, and H1(i3(—20)) is a mapC" — C”. In particular,

(13) r2 —r < hl(A4s(—20)) < r2

In fact, the mapH (iz(—20)) is easily obtained by the matrix of by taking ther? xr
submatrix A given by the rows and the columns of the summands of degredd8 (
in the source and in the target).

We have three cases, according to the valué'¢fdg(—20)).

hl(As(—20)) =Q This happens for a general choice&fsince dualizing the ex-
act sequence (12) one sees that, if the three cuhiocs, c; are linearly independent,
r =0.

We have 4 parameters foy 12—4 = 8 for £ and 29-1 =28 forw: 40 parameters.
Since we must take the quotient by the action of &bt P!), this family is unirational
of dimension 34.

hl(As(—20)) =1 By (13), thenr =1, i.e., there is a nontrivial relatioac; +
Bc, + yc3 = 0 between the three cubics: these are two conditionss foMoreover,
the row of the matrix ofe, corresponding to the degree 6 summand of the target is
(o, B,7), and A= (ay — B2). In order to getr =1 we need to further assurag’ = 5,
we have three conditions an and therefore this gives a family of dimension-33 +
h(As(—20)) = 32.

h(As(—20)) > 2. By (13), thenr = 2, i.e., the three cubics span a space of di-
mension 1: these are six conditions. Moreover, if the subirmalr o> corresponding
to the degree 6 summands of the target is

(14) < ar 1 n )
az P2 vz
the matrix A is
2
o1y1 — By 0
ai1ys +ooyr — 2B182 aryr — B?
azy2 — B3 a1y2 +azyr — 2182
0 azy — B3

It follows: rankA Z2 < A=0. If A=0, then gi1y1 + a2¥2)(yaY1 + 12¥2) — (Biy1 +
B2y2)? = 0, and this implies that the matrix (14) has not rank 2, ulitting the
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injectivity of o,. Thereforeh!(A4g(—20)) = 2 and this gives a family of dimension
34— 6 +hl(Ag(—20)) = 30.

k=2. HereV; = Op(2) ® Op:(4). The main difference to the first case is that
here to describe the extension class we need to apply théofuHomo,, (-, Synt Vi)
to the exact sequence

(15) 0— Op(l) 15 Op(5) = O — 0
getting only a short exact sequence

0 — Hom(Op:(5), Synt V)
— Hom(Op:(1), Synt V;) — Ext}(Oy, Synf Vi) — 0.

To induce any extension as described in the first case we napd@:(1) - Op(4)®
Op1(6)® Op(8) (but not in a unique way): the dimension of the Eist in fact 18— 6 =
12 as in the first case. We distinguish two cases.

h'(A4e(—20)) =Q This happens for general choice &f since also in this case, if
& is general, them = 0. The analysis of this case is identical to the analogoss far
k =0, so we find again 40 parameters. Since dim BgtE 7, awe get an unirational
family of dimension 40- 7 = 33.

h(As(—=20)) > 1. By (13) in this case > 1. Let us first assume = 1: then
the row of the matrix ofo, corresponding to the degree 6 summand of the target is
(o, B, 0) (where degr = 2, B € C), and therefore the matriA is (—pB2). It follows
that h'(A4s(—20)) = 1 forcesps = 0.

We are now in the same situation as in the proof of Lemma &8¢ x1), oz(xf)
belong to Spanf, y.). Arguing as there, we conclude that > v(I'y,) contradicting
Lemma 5.7.

The casea =2 is similar and even easier, since in this case we can alassisme
(up to a change of coordinates in the target) that the submaftro, corresponding to
the degree 6 summands has the form

( o 0 0)
az P2 0O)

Summing up we have found 4 families, one generically smoaiinational of di-
mension 34, say the “main” family, and three more of respectlimensions 32, 30
and 33. To conclude, we have to show that the general surfaeadh of those last
three families admits a small deformation to a surface lggl@nto the “main” family.

This is easy for surfaces in the family with= 2. In fact, we first deforni, to
Fo (i.e., the vector bundle/;). Then, leavingt fixed, we can deform the extension
classé, since all the Ext groups have the same dimension 12: geometrically this cor-
responds to defornd€ to a family of conic bundles. Finally, we can deform the last
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datum, w, since we have seen that (flr= 2) h'(A4s(—20)) = 0, so by semicontinuity
it must be zero also on nearby fibres, and therefd{eds(—20)) remains constant for
a small deformation: this geometrically corresponds tmdefA.

This argument does not work for the other two families, simtethese cases
h(As(—20)) # 0 and therefore, once we have fixed a 1-parameter deformafi@,
we will not be able to deform all possible curves

We use a different argument. Each of the two families is doathin a irreducible
component of the subscheme of the moduli space given by tifi@ces having a canon-
ical involution. We claim that it has dimension at least 34.

For the general surface in each of our two famili€shas deg = 4 nodes (the
vertices of the singular conics), none of them Ay which is smooth. Let’ be a
minimal desingularization of; the 4 2)-curves onC give rise to 4 1) curves on
the associated double cov8r the exceptional locus of the birational morphi$n> S.
The finite double cover: S — C branches inA, union of the pull-back ofA with
the (—2) curves.

The invariant part ofp. (2% ® Q%) is isomorphic to©2}(log A)® QZ.

The morphismC — P(V4) is the contraction of the strict transforms of each com-
ponent of the singular conics, so of 2 deg 8 exceptional curves of the first kind. If
%. denotes the tangent sheaf(T) = x(Tr,) —4degt = 6— 16 =—10. Then our claim
follows from

h'(Q(log A) ® @%) — h*(Qk(log A) ® Q%)
> —x(Q%(log A) ® Q3) = —x(Qf ® QF) — x(0x(23)))
= —x(F¢) — x(R3) + x(Q%(-A)) = 10 +%A(A ~Kg)

1
=6+3A(A~Ke)=34

where A(A—K¢) =56 is a standard intersection computation (note that| Opy,)(2)®
Op(—12)], A is a divisor in the linear system induced 6rby |Op,)(3)® Op1(—20))).
Then, since for a small deformation preserving the involutalso the bicanonical
map factors through it, either the two families are in thesale of the “main” family
or these surface can be deformed to surfaces as in TheorenB@& this is impossible
for topological reasons, since the surfaces in Theorem &vé non trivial 2-torsion in
Pic(S) whereas every surface with a linear pencil of genus 2 cuavesslope< 3 (in
our case 83) is simply connected by [20], Theorem 3. ]
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6. Moduli

In the previous sections we classified all pai&i( where S is a minimal regular
surfaces withK3 =8, py =4, andi is a canonical involution or8, finding 8 families.

Family | Theorem| short description \

MO 2.1 bidouble covers offy branched in (4, 2), (2, 4
MP 2.1 bidouble covers off, branched in (4, 2), (2, 4
ME,‘“") 33 double covers of a Del Pezzo of degree 1

branched in—6K
the general surface is a double coverlf

Mo 35 | branched in (8,10%-4Y % E;
MO 42 double covers of a Del Pezzo of degree 5
2 ' branched in—4K with two (3, 3)
MO 43 the general surface is a double coverRgf
2 ' branched in (8, 10) with certain singularities
Mf) 5.9 the surfaces having a genus 2 pencil
MS,DV) 5.1 2K non birational, but no genus 2 pencil

REMARK 6.1. The first two are the families for whidH%(K) is invariant. These
surfaces have in fact (Lemmas 2.3 and 2.4) two more invaistior which HO(Ks) is
antiinvariant andr = 0. In fact, for the familyMiO) the two further involutions are in
Mo, for the family M the two further involutions are i\

On the other hand, since the canonical map has maximal ddgriéene of these
surface has more than one canonical involution, it must tweaee involution for which
HO(Ks) is invariant: so these two families give all surfaces hgvimore than one canon-
ical involution.

Our results yield then a stratification of the correspondingscheme of the moduli
space of minimal regular surfaces of general type with= 8, py = 4 in six families,
image of the last 6 families of the above table.

The aim of this section is to prove the following

Theorem 6.2. ME,,DV) and /\/lf) give unirational irreducible components of the
moduli space of minimal regular surfaces of general typehvKE = 8, pgy = 4 of re-
spective dimension38 and 34.

The remaining4 families Mg’i"), Mo, /\/l(zo), M(zl) give unirational strata of re-
spective dimension29, 28, 32, 33.
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REMARK 6.3. By Kuranishi's theorem each irreducible componenthef toduli
space of minimal surfaces of general type Wit = 8, py = 4 has dimension at least
10x — 2K? = 34. It follows that the last four families are not irredueilcomponents
of the moduli space.

Observe that the general point of the irreducible compoiremthich each of these
families is contained is a surface without a canonical intioh. In fact, it cannot be in
ME‘DV) or in Mf) becauser is invariant under deformations preserving the involution

REMARK 6.4. MEDV) and Mf) are generically smooth. This is proved in [18]
for MZDV). The same calculation as in [1], Theorem 5.32, shows imf).

REMARK 6.5. Minimal surfaces of general type witk? = 8, py = 4 belong to
at least three different topological types (in particuldre moduli space has at least
three connected components). The surfaceMﬁ“’) are the only ones in our list with
2-divisible canonical class, the surfacesMElDV) are the only ones in our list with
non trivial torsion in the Picard group.

Proof of Theorem 6.2. The statement abouﬂlDV) is Theorem 1.3 of [18].

By Theorem 5.9/\/15‘2) is unirational of dimension 34. To prove that it is an ir-
reducible component of the moduli space we need to show thaa fgeneral surface
in this family the antiinvariant part (with respect to thevofution) of HY(QL ® Q2) is
trivial.

This computation works almost identically as the analogmues in [1], Section 5.3.
We sketch it.

Using the same notation as in the proof of Theorem 5.9, rehatl for a general
surfaceS in Mf), we have a finite double cove8 — C = S/i branched in the deg=
4 nodes ofC, and in the smooth divisoA. Resolving the singular points @ and
blowing up their preimages i we get a finite double covep: S— ¢ whose branch
locus is a smooth divisoAA, union of the pull-back ofA with the (-2) curves.

Now we can compute the dimension of the antiinvariant par’t—lé(SZé@ szg) with
respect to the lifting of the involution to S exactly as in the proof of Theorem 5.32
of [1]: the result is 8. Sincé: S— Sis a sequence of 4 blow ups, by Lemma 5.34
of [1] the dimension of the antiinvariant part ¢f(Q} ® Q3) is 8—2-4=0.

We prove now the second part of the statement. In all 4 c8sesa double cover
of a surfaceP such that the movable part of the branch curve dswhere s is a
Q-divisor such thattKp +§ is ample fori < 1. In particular, 3p — Kp is ample,
thereforeh'(28p) = 0, and the dimension of the linear systé@s| can be computed
by Riemann-Roch.

M) Del Pezzo surfaces of degree 1 are obtained by choosingrspiaiP?,

therefore, modulo AuR?), they depend on 8 (unirational) parameters. Curves-BK |
depend on 1+ (12)(42K?) — 1 = 21 parameters.
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Mo. By Remark 3.6, we know that1y is unirational and that for a general sur-
face in My we can assume th& is the blow up ofFy in 8 general points, branched
in a curve in\8I‘1 + 10, — 42? E; | Since 8 points infy depend on 16 parameters
and dim AutfFo) = 6, P depends on 10 parameters. The branch curve depends on 18
parameters.

M(ZO). P is the blow up of a Del Pezzo of degree 5 in 4 points, 2 of whiah ar
infin@ near to the other two. ThereforB depends on 6 parameters. The branch
curve depends on 26 parameters.

M(Zl). We know already (cf. the remark after Theorem 4.3) meﬁj) is irreducible
and for a general surface we can assume Bhas the blow up ofFFy in 6 points, the
last determined by the previous one. Thereféralepends on 18- 6 = 4 parameters.
The branch curve depends on 29 parameters. ]
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