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Abstract
A new proof of the homogeneity of isoparametric hyperswefawith six simple
principal curvatures [4] is given in a method applicable ke tnultiplicity two case.

1. Introduction

The classification problem of isoparametric hypersurfagesmaining in some cases
of four and six principal curvatures ([3], [5], [9]). The hogeneity in the caseg( m) =
(6, 1) was proved by Dorfmeister-Neher [4]. A shorter proafsvgiven in [7], but some
argument was insufficient (pointed out by Xia Qiaoling). Mwrer, we found it difficult
to extend the method to the casg ) = (6, 2).

In the present paper, we show that a delicate change of sigesnoe vectors at
anti-podal points on a leaf, which is related to the back gdosymmetry caused by a
spin action, is essential. This investigation is also ipdissable to attack on the case
m = 2. Before treating this overwhelmingly difficult case, argwete short proof for
m =1 will give us an overview how to settle the problem in theecas= 2 [9].

§2—85 consist of reviews of [6] and [7]. We do not repeat the proifs[6],
but give those of [7] in a refined manner. The shape operatbrsach focal sub-
manifold M. consist of anS'-family of isospectral transformations with simple eigen-
values++/3, £1/+/3, 0. There are many sucB'-families (see$2), but in §6—§9, we
narrow down them by using both local and global propertiessoparametric hyper-
surfaces, and conclude that non-homogeneous cases cauot 0

2. Preliminaries

We refer readers to [11] for a nice survey of isoparametripelngurfaces. Here
we review fundamental facts and the notation given in [6]t Me be an isoparametric
hypersurface in the unit sphe@"*!, with a unit normal vector field. We denote the
Riemannian connection 08! by V, and that onM by V. The principal curvatures
of M are given by constants; > - - - > A, and the curvature distribution fore {A,}
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is denoted byD; (p), m; = dim D,(p). In our situation, D, is completely integrable
and a leafL, of D, is anm;-dimensional sphere o8"*!. Choose a local orthonormal

frameey, ..., e, consisting of unit principal vectors correspondingig ..., An. We
express
1) Ve, €5 = AJys +0gbopk, ALy =—AL

where 1< «, 8, 0 < n, using the Einstein convention. The curvature tenBgy,; of
M is given by

Rugys = (L +AgAp)(8py0as — BaySps)
(2) — ) § o § o § o § o )
=eu(Ay,) —es(A,) + MG NG, — AL Apy — AZgAL + AG, AL
From the equation of Codazzi, we obtain
(3) es(hy) = AP (hy — 2p), TfOr o 7B,

and if A,, Ag, A, are distinct, we have

(4) Agﬂ()"ﬁ - )‘V) = A;’;a()‘-ot - )‘-ﬁ) = A%y()"}/ - )‘a)'
Moreover,
(5) ALy=0, A=A}, if =i #i, and a#b,

hold, and since\, is constant onM, it follows from (3),
(6) A, =0 if A, #As

When the numbeg of principal curvatures is six, the multiplicityn of A; is in-
dependent of and takes values 1 or 2 [1]. In the following, la, () = (6, 1). As is
well known, A; =cot@, + (i —1)7/6), 1<i <6, 0< #; < /6, modulor. Since the
homogeneity is independent of the choicefgf we take

0= = 9 6,=" = 0, 0= =_¢
1—12— 61 2—4— 5 3—12— 4
so that
7) M= —Ae=2+V3, A= —is=1, A3=—is=2—+/3.

Note that we choosé, € (—n/2,/2). By (5) and (6), a lealL; = Lj(p) of Di(p) =
D,,(p) is a geodesic of the corresponding curvature sphere.
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Fora=6 or 1, define the focal map,: M — S’ by
fa(p) = COSOap + SiNOa&y,
which collapses_,(p) into a pointp = fo(p). Then we have
(8) dfa(ej) = sinfa(ra — Aj)e;,

where the right hand side is considered as a vectd;i# by a parallel translation in
S’. We always use such identification. The rank fafis constant and we obtain the
focal submanifoldM, of M:

Ma = {COSO,p +SiN6a&p | p € M}.

By (8), the tangent space dfl, is given by TsMa = P+, Dj(q) for anyq e f71(p).
An orthonormal basis of the normal space Mf at p is given by

9 Ng = —SiNBa( + COSPaky, &g = €a(q)

for any q € La(p) = f;1(P). i
Now, the connectior’V on M, is induced from the connectioW, that is

1 ~ — " = -
Ve X= Ve X+VEX, A #Aa,
Sinfa(ha — Aj) ° K 8 i 7%
where X is a tangent field 9rS7 in a neighborhood ofp, and X is the one neap
translated fromX. Note thatVéjX denotes the normal component $1. In particular,
we have forj # a,

- 1
10 Ve = —— Y Al@,
( ) EJeK Slnea()\,a _ )"J) ga: ij
(11) Vad = A% 8a +SiN0a(1 + 2 2a)8jk1p),

" SiNGa(ha — Aj){

using (Aj&p— P, np) = sinBa(1+XjAa). In the following, we identify& with . Denote
by By the shape operator dfl, with respect to the normal vectdd. Then from (10)
and (11), we obtain:
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Lemma 2.1 ([6] (Lemma 3.1)). When we identify gM, with @?:1 Da+j(p) where
the indices are modul®, the second fundamental tensorg, Bind B, at p are given
respectively by

0
0
0
1
e

o o o O o
w

0
0
0
V3

0 ba+1 a+2 ba+1 a+3 ba+l at4 ba+1 atb

0
0o -

ba+1 at2 0 ba+2 a+3 ba+2 atd ba+2 atb
B;p = | DPatria+z Darzar3 0 Da+zatsa Darzars |,
Dat+1a+sa Darzara Darzara 0 Da+aats

Dat+1a+5 Dat2ars Datzars Darsass 0

where

1

= Aa 1 k
SiNGaia — 1)

12 b; = Ak
(12) ik KT SiNGa(h; — Ag) 12

a=6,1.

In fact, from (11) it follows B, (e;) = jej, where fora is, say 6,

_1+Xjke

13 i = ,
( ) Hj )\6—)»j

1
M1 =+3=—us, M2=%=—M4, n3 =0,

and by = by; follows from (4). In the following, we denotdl, = Mg and M_ = M;.
Note that both are minimal. It is easy to see that any unit mbwactor is written as
ng in (9) for someq € Lg(p), and we have immediately:

Lemma 2.2 ([10], [6]). The shape operators are isospectrak., the eigenvalues
of By are ++/3, +1/+/3, 0, for any unit normal N

For a fixed p € f;1(p), all the shape operators for unit normals @tare ex-
pressed as

(14) L(t) = costB,, +sintB, t €0, 2r).
The homogeneous hypersurfadéd with (g, m) = (6, 1) are given as the principal or-

bits of the isotropy action of the rank two symmetric sp&gSQ4), where two sin-
gular orbits correspond to the focal submanifold$. In [6], we show that the shape



operators ofM! and M" are given respectively by:

NEE)
1
0 -
V3
cost] O 0
0 0
0 0
(15)
V3 0
1
0 -
V3
cost] O 0
0 0
0 0
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O O o © o o o o © o

0 0

0 0

01 0 | +sint
ﬁ 0

0 -3

0 0

0 0

01 0 | +sint
ﬁ 0

0 -3

OOOHO&OOOO

These imply thatM. are not congruent to each other.
Note that thereexist many other one parameter families of isospectral operators
costB, +sintA, where, for instanceA is given by

0
0 0
3
_ E 2
° 7
0 0
(16) . 5
. 3/3
v
N
VI
° T35

0 0
1
7 03
0 5| 0
0 0 0
0 0 ﬁ
2
NI
° i
33 05 ’
° T3
_3_\/5 0

oo%|
@H

0 0 0
1
0 0 —
V3
0 0 0
1
— 0 0
V3
0 0 0
1 0 0
2
0o 0 -2
V3
O 0 O
2
~ 0 o0
/3
0o 0 1

O1 0
_76 2
G
% 0
0 0

699

c b o oo O ©0 °g

V3
0

and so forth. We see in the homogeneous case, the kernel ddedepend ort,
while it depends in other cases. In the following, we showt tih the latter cases
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are not admissible to the shape operators of the focal subottn of isoparametric
hypersurfaces withg, m) = (6, 1).

3. Isospectral operators and Gauss equation
By Lemma 2.2,L(t) = costB, + sintB, is isospectral and so can be written as
17) L(t) =U®LOU ()

for someU (t) € O(5). Moreover, this implies the Lax equation

d
(18) Le(t) = EL“) =[H(), L®)],
where
H(t) = Uy ()U )L € o(5).

In particular, we have_(0) = B,, and

(19) Li(t) = — sintB, + costB, = L(t + %)

and hence forL{(0) = B, = (), bij = bji, and H(0) = (h;;), h; = —h;i;, we can ex-
press

B, = Lt(0) =[H(0), B,]

0 _%hn —+/3hy3 —%hm —2/3hss
%th 0 —%hza —%hm —%hzs
(20) =| v3hay %hzz 0 —%hu —/3hss
% ha1 % hay % has 0 — % hss
2v/3hs; %hsz v/3hs3 %hSA 0

Note that the eigenvectors af(t) are given by
(21) ej(t) = U(t)e;(0),
which implies

(22) Vaargj (1) = H(t)e; (t).
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Here we have

(23) Vdsdt = CoVe;, Co= %

becauselg has radiugsinég| = ¢g. Hence we obtain
(24) H(0) = (coA; (0)),

wherei denotes the row and denotes the column indices. Moreover, denoting the
(i, j) component ofL(t +m/2) by by (t) wherebj; (t) = by; (t), we have

(VaL(t+3)), =) ~byALD) ~ AL ©
= e5(byj (1)) + A ()b (t) — bik (t) Af; ().

Becausel(t + 7/2) = oV L(t +7/2), Li(n/2) =—B, and L(w/2) = B;, multiplying
—Cp to the both sides and putting= 0, we obtain

(25) B, = —Coes(B;) — [H(0), B].
Now, rewrite (20) as

V3 1 V3 1

0 —Tblz _ﬁbm —Tbu —mb15
J3 G
7b21 0 _\/§b23 — 7b24 — szs
1 1
H(0) = 7 bsi  +/3bs 0 —3by - ﬁbgs ,
V3 V3 V3
T D41 - bi,  V/3bss 0 — bas
1 V3 1 V3
—Db —Db —Db —Db 0
e 51—, Ds2 73 53 5 Ds4

and substitute this into (25). Then we have the followingrfolas which we use later:

3 1 3 1
[1.1] V3= 2<\/_b%2 +—bZ;+ \/_b%4+ —b§5>,

I e Y e P W
1 V3 V3 V3
pa oo vt P )
1 1
8.3] 0= 2<_73b§1 — /303, +V/3b%, + 73b§5>,
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[4.4] —i— ( fbil fbiz \/§b§,3+§b§5):

73 2
1 V3 1 V3
[5.5] - 3=—2<Tﬁb§1+Tb§2+ﬁb§3+7b§4>,
4 33 5
[1.2] 0 =—cpes(b1o) + ﬁblsbsz + —b14b42 + mblsbszy
V3 5/3 V3
[1.3] 0 =—coes(b13) — 7b12b23 + Tbl4b43 + —b15b53,
[1.4] 0 =—coes(brs) 2bb+2bb
. 14 7 13034 73 15054,
V3 V3
[1.5] 0 =—coes(bss) + TbleZS - Tb14b45,

5 3/3 7
[2.3] 0 =—cpes(bo3) — 7b21b13 + Tb24b43 + rﬁbzsbss,

3/3 3V3
[2.4] 0 =—cpes(b2s) — —b21b14 + —b25b54.

[2.5] 0 =—coes(b25) — —=b21b15 + —=b23bss,

7 /3
3/3 5

34] 0=-— ——Dbgzib bos + ——=Db35bsa,
[3.4] Co€s(b34) — \/§ 31014 — — ——baobos e 35054

V3 5/3 V3
[3.5] 0 =—copes(bss) — 7b31b15 — Tbszbzs + 7b34b45,

5 3V3 4
45] 0=-— bss) — ——=by1b15 — ——bobos — —bysbss.
[4.5] Co€s(bss) 4¢§ 41015 2 42025 \/:_)) 43035

These are nothing but another description of a part of thes&aguations (2) [8].

4. Global properties

An isoparametric hypersurfackl can be uniquely extended to a closed one [2].
We recall now the global properties of.

Let pe M and lety be the normal geodesic gt We know thaty N M consists
of twelve pointspy, ..., pi2 which are vertices of certain dodecagon: see Fig. 1, where
indices are changed from [6, pp.197-198] and [7, Lemma 3.2].
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S @s0
7Fig. 1.6

Lemma 4.1 ([6]). We have the relations

Di(p1) = D2—i(p2) = Di+a(ps) = Da—i(pa) = Di+2(ps) = Ds—i(Pe),
Di(pj):Di(pj+6)v ] :1!""6

where the equality mearfsbe parallel to with respect to the connection of’Sand
the indices are modul6.

From these, some relations amor\éﬂ's are obtained as follows. Denote Ip(t) the
point on Lg(p) such thatp; = p(0), parametrized by the center angle where the center
means that of a circle on a plane. Similarly, we denoteqgfty the point onLz(pz)
parametrized fronp, = (0). Note thates(p;) is parallel withe,(py). Extende; and e,

as the unit tangent vectors @{t) andq(t), respectively. Consider the normal geodesic
y; at p(t), thenq(t) = Lo(p2)Ny. Herees(p(t)) is parallel withes(q(t)). Then we have

sing, 1
SinBg SiNOs

Va,ar€s(p(t)) = Va/dies(q(t)).

Sinfg

Therefore theD; component of Ve,€3)(p1) is the Do_; component of Ve, €5)(p2) mul-
tiplied by sinf,/sin6s. We denote such relation by

Aba(p) ~ A2 (pa),

up to sign. A similar argument at eveny, implies the global correspondence among
Al's:
B
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5 31 3 511 1

6 2144|216

Table 1.

Lemma 4.2 ([6]). For a frame consisting of principal vectors around each, p
we have the correspondenaéjk(pm) ~ Aij’,k,(pn) where |, j, k at p, correspond to
i’,j’, kK at p, in Table 1.

5. The kernel of the shape operators
For pe M and p € M., let
Ep = spariKerL(t) | t € [0, 27)} = spaRc( o) {€3(t)}-

The following proposition proved in [6] is crucial.

Proposition 5.1 ([6] (Proposition 4.2)). M is homogeneous if and onlydimEg =
1for any p

Next, recall

_1+kide _ Az — A

26 i = C ,
(26) Mi o — l)he—)ti

C1=2+\/§.

The second equality follows frorg = —1/A3 = —(2 ++/3). Put

1 _ V2(/3+1)

- sin 06(13 — )"6) - 4 '

Co

(sinfg = —v2(v/3 — 1)/4).

Lemma 5.2. Take pe fg *(p) and identify FM. with @‘?:1 Dj(p). Then we have
(27) By (€3) = C2Ve,8s,
(28) By (Ve;€3) = C1 Ve, 65,
(29) B; (Ve €3) = C2 Ve, Ve, 6s.
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Similar formulas hold for the shape operatorgy @f M_, if we replace6 by 1, and
3 by 4.

Proof. From (12) follows (27). Using (4), we have (28):

i A3— A i
€ = C]_ASGQ = C1Ve386.

(30) Bn(veeeS) = Ai(ss//via = ClAsg—
Ag — A

Taking the covariant derivative of (27) wheR&,q: = CoVe, by (23), we obtain
1
C2Ve, Ve, € = Ve (B (€3)) = S B, (€3) + B (Ves€3) = B (Ve €3). 0

REMARK 5.3. (27) implies that dinEy = 1 holds if and only ifVee3 vanishes
at a point of f~(p). Moreover, (28) implies thaVe,e; vanishes if and only iVe,es
vanishes.

When Vg,e3(p) # 0, we have dinEg > 2, sincees(p) and Ve,es(p) (€ Ep) are
mutually orthogonal. We denotk instead ofEg, when it causes no confusion. Let
E' be the orthogonal complement & in TyM.. Moreover, put

W = Wp = span(o 2r){ Ve, €s(t)},

where we regardV as a subspace afgM. by a parallel displacement. The following
lemmas are significant.

Lemma 5.4 ([7] (Lemma 4.2)). W C E*.

Proof. We can expresk(t) with respect to the basig(p), i = 1,...5, as in
Lemma 2.1,

V3 sltn shiz  shs  shs

shi, %c sz shy shys
LO=] shs shs O s shs |, {

sbis sShs  shs _73C shys

shis shs shis  shis  —v/3c

C = cost,
s = sint.

Let es(t) =*(uy(t), ..., us(t)) belong to the kernel of (t). Then the third component
of L(t)(es3(t)) must satisfy

. 5

sint 1 -
) A(p)ui(t) = 0.
Sinfg Az — Ag —
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Thus we obtain

(31) (Ve,85(p), €3(t)) =0

for all t, which meansVe,es(p) € E*. O

By the analyticity and the definition dE and W, we can express

E = spares(q), Vies(@), k=1,2,...},

(32) )
W = Spar{Ve3e5(q), Vesveseﬁ(q)i k = 11 21- . }1

at any fixed pointg € Lg, whereV‘g6 meansk-th covariant differential in the direction
6. Thus we have by Lemma 5.4,
(33) (Vies, Vi Vees) =0, k1=0,1,2,....

Lemma 5.5 ([7] (Lemma 4.3)). For any t, L(t) maps E onto Wt E*L.

Proof. We can expreds(t) = cos L (tp)+sintL;(to) for anyty. ThenL(to)(es(to)) =
0 and Li(to)(es(to)) = C2Ve,€s(to) (see (27)) imply

L(t)(es(to)) = (costL(to) + sintL(to))(es(to)) = C2 Sint Ve, e5(to) € W.

Moreover, (27) implies that this is an onto map. ]
Lemma 5.6 ([7] (Lemma 4.4)). dimE < 3.

Proof. Take anyp e f6‘1 p). Since KeB,, = D3(p) C E, we have dimB,(E) =
dimE—1. BecauseB, (E) is a subspace oE!, the lemma follows fronR® = TzM, =
EeE*. O

The following is obvious:
Lemma 5.7. As a function ofp € M., dim E is lower-semi-continuous

Letd = maxsem, dim Eg. We know that 1< d < 3 andM is homogeneous wheh=
1. At a pointq on the focal submanifoldM_ = M1, denoteFg = spaR e 1(q){€(a(t))}-
The argument oM., holds forM _ if we replaceE by F and pay attention to the change of
indices. Especially, dirk = 1 holds onM. if and only if dimF = 1 holds onM_, because
Aéa =0 holds for allj if and only if A{4 = 0 holds for allj, by the global correspondence
in §4. Note that, however, not everything is symmetricn. Indeed, for homogeneous
hypersurfaces with six principal curvaturdd,. and M_ arenot congruent §2, [6]).
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6. Description of E

In this section, we discuss what happens if we supposeEdil. Lemma 5.5
suggests that the matrix expressionlgt) can be simplified if we use the decompo-
sition T;M, = E @ E*.

Lemma 6.1. Whendim E =d, we can express E L(t) as

(04 R
= (% S

with respect to the decompositiorsNl. = E @ E+, whereOq is d by d R is d by
5—d and S is5—d by5—d matrices The kernel of L is given by

<)é>eE, RX=0.

The eigenvectors fou; (#0) in (13) are given by
1
—RY
Mi

(34) (RR+11iS— p?1)Y = 0.

where Ye E' is a solution of

Proof. The first part follows from Lemma 5.5. Lété) be an eigenvector of

with respect tou;, where X € E andY e E*, abusing the notatiorX = (>0() and

_(0

Y = (Y) Then we have
00 RY/X)_ RY \_ (X
R s)\y ) \wrx+sy) Hlv)

RY = u; X,
RX+SY= Y.

and hence

For u3=0, Y =0 and'RX =0 hold since the kernel belongs B Whenpy; #0, mul-
tiplying u; to the second equation and substitute the first one into itobtain (34).
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Then the eigenvector df for an eigenvalueu; is given by
1 RY
Wi : [
Y

In this section, we suppose din= 2 occurs at some poinp € M.. Then we
have the decompositioizM. = E2@ V2@ W! (the upper indices mean dimensions),
whereW = B, (E) = B;(E) by Lemma 5.5.

For a continuous frames(t) € D3(t) alongLg, D3(t+m) = D3(t) implieses(t+x) =
ees(t), e = £1. Then we haveéVges(t + ) = eVges(t), and it follows

7. dmE=2

Ve,es(t +7) = C—llL(t + 1) (Ves3(t + 7))
= —C—llL(t)(EVeees(t)) = —&Ve,85(1)-

Since Vg,e5(t) € W never vanishes (Remark 5.3), and so has a constant direetien
havee = —1.

In the following, we mean by a continuous fraredt) along Lg, a frame onLg
minus a point. This is because we may hayé + 27r) = —g(t), which occurs as
O(5) acts on the shape operator via spin action. Fortunathiy, does not affect the
argument.

Consider a continuous frame(t) along Lg, and expressvges(t) = Ai63(t)e (1).
Then putting f (t) = (AZ(t))> — (A2,(t))?, we havef (t+x) = — f(t) since Vges(t+m) =
—Ve,&3(t) and D (t +r) = De_i (t) holds. Thus at some poim = p(to) of Lg, f(tp) =0
occurs. Here by the Gauss equation [3.3], or from

0 = (Vg e3(t), L(t)(Ve,83)(1))

= VB((ALDY — (AL0P) + —

ﬁ{(Aés(t))z — (AZ1)%,

we have also £2,(to))? — (Ags(to))? = 0. Thus we may put ap,

Ve,€3 = X(€1 * &5) + y(&e + &),
35
(39) Ve3e6=~/§x(e1—es)+%(ez—e4)

by rechoosing the directions & =¢g(p), i =1, 2, 4, 5, if necessary. Normalizing the
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right hand side, we define
Xi=a(er+es) +B(e; +e4) € E,

1 B
Z1= = {(V3a(er — &)+ —(es — &)} € W
1 a{ ( ) «/§( )}
wherea? + 82 = 1/2 ando = 2(3x? + $2/3), and Vee3 = aX; and Ve,es = bZ; hold
for somea andb. Note thatB,(X1) = /o Z;. SinceV is orthogonal toes, X1, Z1, we
have an orthonormal basis & given by

_1 B
Xz_o{ﬁ
Zy = Ber+6s5) —alex +ey),

(&1 — &) — V(e — e4)},

where B, (X2) = 1//0 Z, holds. SinceV is parallel,
Xo(t) == X2(0) = Xz, Za(t) := Z2(0) = Z
is an orthonormal frame oY at any p(t). Now expressX,(m) = X2(0) and Zy(w) =

Z,(0) via basis atp(w). Namely, choosings (7) = € € Di(n) = Dg_;(0) suitably, we
can express

Xo(m) = %{%(e’l —€) — x/éa’(c-é — eﬁl)}
(36) 1( B
= ;{ﬁ(el—es) — V3a(e —e4)},
- Zy(m) = B'(€) + &) — (€, + €))

= peL+ &) —a(e +e),

becauseD; () ® Ds(r) = D1(0) & Ds(0), and Dy(rr) @ Da(rr) = D2(0) @ D4(0) hold.
Hence from (37)|¢/| = |a|, |8'| = |Bl, ando’ = o(7) = 0(0) follow. Thus we may
consider

{ﬂ’(efl—ds) = ple1 — &), {a’(%—eﬁ) = a(e — &),
B'(e + €)= per + &), o' (6 +€) = aer + &),
and from D; () = De-i (0), it follows

B'e,=—pes, [(d'€ =—aey,

—p'es=pe, |-ao'€=aey,

B'€, = pes, o'€, = aey,

B'es5 = pey, o'€) = aey.

However then, we have = 8 =0, a contradiction.
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Thus we conclude:
Proposition 7.1. dim E =2 does not occur at any point of M

8. dmE=3

By the previous proposition, difea = 3 occurs onM. if dim E > 1.

Proposition 8.1. WhendimE = 3, at any point p of ls, E and E- are expressed
via g =¢g(p) as

E= spar{es, a(er +65) + (e + &), %(el — &) — V3a(e — e4)},

E'= spar{ffia(el — &)+ %(ez — &), Bler+6s5) — a(e +e4)},

for suitablew, B satisfyinga® + 2 # 0.

Proof. Sincees, e; + 65, & + €4, €1 — 65, & — € generate a frame of M., we can
chooseXq, X, € E as

X1 =a(er+6&)+p(ex+ &) +y(er — &),
Xz =X(e1 +65) +y(e + &) + 2(61 — &) + w(E — €&4).

Then Z; = B,(X;) € E* are given by

2= V(e — &) + iaﬂ(ez &)+ V(e +e),

2
Z,= V3x(er — &) + %y(ez )+ 3ze ) + %w(ez +e).

Because 0 %X1, Z1) = 2¢/3ay, changing the sign ofs, if necessary, we may assume
y =0, ie.,

X1 =a(ep +6s)+ (e + &) € E,
(38) _ B i B N
Zy = V3a(e es)+ﬁ(ez es) € E*.

Next from 0 =(Xy, Zo) = v3az+ fw/+/3, and 0 =(Xo, Z,) = 2(+/3xz+ (1/+/3)yw),
ay — Bx =0 holds unlesz = w = 0, and thenx(e; + es5) + y(e; + &4) is proportional to
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X1. Thus we may rechoose

(39) Xz=2(e1—es)+w(ez—e4)=%(el—es)—fsa(eg—m)eE,
and
(40) Z,=pBer+e) —ale; +e&) € EL.

When z = w = 0, we have spdiX;, X,} = sparfe; + &5, & + &4} and spafiZy, Z,} =
sparfe; — 65, & — &4}. Here, in order to fit in with the expression (39) and (40), we
change the sign o, and may consider

(41) Xo=& -6, Zy=er+e,
corresponding tg8 = 0. O

Note thatXy, X, Z1, Z, are mutually orthogonal. Then the orthonormal frames of
E and E* are given respectively, by

63, Xi=oa(ert+es)+p(er+ey),

P e~ e5) — Vaa(er - e4))

- (%

X2 =
and

-1 eyt P
3 Z,= ﬁ(fsa(el es) + ﬁ(ez e4)),

Zy=p(er+6&) —a(e +e),

where we put

2
(44) o+ g% =3, a:2<3a2+%>.
Consider an arc of Lg containingp = p(0) and p(r). Since X1, X, are given at each

point of Lg by (38), (39) and (40), using a continuous framé) and a continuous
function «(t), B(t) alongc, we have a continuous frameg(t), X,(t) and Xy(t) of E,

NI =



712 R. MIYAOKA

and Z(t) and Z,(t) of E+ alongc. With respect to this moving frame, we can express

0 0 0 0 0

0 0 o Jo@® O

1
(45) Lo=8,=1° ° ° 0 =
0 Jo®) O 0 ut)

for ne = npe. In fact, fromL(t)(e(t)) = nia(t), we knowL(t)(X1(t)) = Vo (t)Za(t) and
L(t)(X2(t)) = 1/4/0(t)Z2(t). Moreover, it is easy to sed (t)(Z;(t)), Zi(t)) =0. Then
putting u(t) = (L(t)(Z1(t)), Za(t)), we have (45). Note that(t) + 1/o(t) +u(t)? = 10/3
follows from |L(t)||2 = 20/3. Moreover, by using the notation i§6, (45) implies
that T(t) = 'R(t)R(t) has eigenvalues (t), 1/o(t) with eigenvectorsZ,(t), Z(t) € E+,
respectively. Note that even #(t) = 1/o0(t) holds, Z;(t) and Z,(t) (thus, Xi(t) and
Xo(t)) are continuously chosen so that tist) part in (45) be described as above
whereu(t)? =4/3 # 0.
Next, we show:

Proposition 8.2. o (t) is constant and takes valuds 1/3 or 3.

Proof. We havelL(x) = —L(0) from L(t) = costB, + sintB,, and T(x) = T(0)
from T(t) = R(t)R(t). This implieso = o () = 6(0). Whena(t) is not identically 1,
we may considerr # 1, and as an eigenvector df(0) for o, Zi(w) is parallel to
Z1(0). Then from

{ L(m)(Xa(m)) = Vo Za(7),
L(0)(X1(0)) = v/o Z1(0),

we have
Xi(w) =eX1(0), Zi(w) = —e21(0), &=41.

Similarly from

L(w)(Xa(r)) = %Zz(ﬁ),

L(0)(X2(0)) = %zz(ox

we have, unlesgp # 0,

Xa(m) = —eX2(0), Za(r) = £Z2(0),
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where we useg () € Dg_i(0) by the global correspondence in (42) and (43). How-
ever, sinceE' is parallel alongLs, and the pairZy(t), Z»(t) is a continuous ortho-
normal frame ofE* by the remark before the proposition, this contradicts tw that

a continuous frame preserves the orientation. Therefon§, the cases = 1, 1/3, 3
remain. O

9. Final result

Proposition 9.1. Whendim E =3, o =1 does not occur

Proof. In this case, & = g2 follows from (44), and hence by a suitable choice
of directions ofg’s, we have

E = sparies, e, + v/3ey, v/3e; + &5,
E' = spariv/3e, — €4, & — V3es).
Since B, mapsE onto E*, by, = bps = 0 follows, i.e., A}y = A5, = 0 holds. These

imply A3, = Ag; =0 by the global correspondence. However, sifgge; is a combi-
nation of e; + v/3e, and +/3e; + &5, this implies Vg,e3 = 0, a contradiction. O

In the last possible case, we have by Proposition 8.1,

E = spares, e+ 65, & — e}, E" =spare; — e, & +ey},
and this holds everywhere by a continuous choice st Since E is mapped ontd=E+
by B; = (bij), we have
(46) bis =124 =0, bio+bos =D+ bys.

On the other hand, for another focal submaniftdd, the remaining possible case is
also this case when dirk = 3. (For the definition ofF, see the end 0%5.) Because
Ve,8s(P) ~ Ve,€4(q) € E* N F, where p = p; andq = pz in Fig. 1, identifying the
vectors atq with those atp as in Table 1, we may consider
F = {es(a), es(a) — es(a), es(a) + ex(a)}
= {es(P), ew(p) — &s(p), e2(p) +ex(P)},
F+ = {e5(q) + e3(a), &s(a) — e(q))

= {eu(p) + &s(p), e2(p) — es(p)}-

Here, some signature might be opposite, which does not matte importance is

C35=Cp=0
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holds sinceC, mapsF onto F*, wherecij = (1/(sinf1(Ai — A1)))A/, is the compo-
nents of the shape operat@; of M_ for ¢ = e (see Lemma 2.1). Then the latter
implies by, = 0, and by the global correspondence, we hbyge= 0, and hence it fol-
lows from (46),

b14 = bys.

Next from the Gauss equation [1.2] B, bigbs, = 0 follows. Whenby3 = 0, [1.1]
implies b?, = 2, and hencé?; = 2, but this contradicts [2.2]. Thus we hates; = 0.
Since this holds identically by the analyticityp;4 = bys = 0 follows from the global
correspondence, and the second rowBpf vanishes, contradicts [2.2]. Therefore we
obtain:

Proposition 9.2. dim E = 3 does not occur
Finally, the kernel of the shape operators of the focal sutifolals of isoparametric
hypersurfaces withg, m) = (6, 1) is independent of the normal directions, and by Brop

sition 4.2 of [6], we obtain:

Theorem 9.3 ([4]). Isoparametric hypersurfaces witfg, m) = (6, 1) are homo-
geneous
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