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Abstract
In this paper we introduce a notion ofq-subharmonicity for non-smooth functions

and then usingq-subharmonic exhaustion function, define aq-pseudoconvexity
which is applicable to the domain with non-smooth boundary.Among others, we
generalize the Donnelly-Fefferamn type theorem onq-pseudoconvex domains and as
an application of this theorem, we give approximation theorem for �-closed forms.

1. q-subharmonic functions and q-pseudoconvex domains

For a real valuedC2 function ' defined onU � Cn, Lop-Hing Ho [5] first de-
fined q-subharmonicityof ' on U and using thisq-subharmonic function, he introduce
the notion of weak q-convexityfor domains with smooth boundaries. In this paper,
first we investigate a natural extension of these notions to the class of upper semi-
continuous functions and domains with non-smooth boundaries. After that, we deal
with L2-estimate for the�-equation on this domain, which is essentially Donnelly-
Fefferman theorem [3, 1, 2] in case the domain is pseudoconvex.

DEFINITION 1.1. Let ' be an upper semicontinuous function onU . Then we
say that' is q-subharmonicon U if for every q-complex dimension spaceH and for
every compact setK � H \ U , the following holds: if h is a continuous harmonic
function on K and h � ' on �K , then h � ' on K .

One of the most typical examples ofq-subharmonic function which is not pluri-

subharmonic is�Pq�1
j =1 jzj j2+(q�1)

Pn
j =qjzj j2. Also, note that an upper semicontinuous

function onU is plurisubharmonic exactly when it is 1-subharmonic andq-subharmonicity
implies q0-subharmonicity wheneverq � q0 and ann-subharmonic function is just sub-
harmonic function in usual sense. Before listing some properties of q-subharmonic
function, we emphasize thatq-plurisubharmonicity is a different notion: aC2 smooth
function u on U is calledq-plurisubharmonicif its complex Hessian has at least (n�q)
non-negative eigenvalues at each point ofU . Also, there is a parallel notion ofq-
plurisubharmonicity for upper semicontinuous functions (for example, see [4]).
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To approximate non-smoothq-subharmonic function by smoothq-subharmonic func-
tion, we define a mollifier��(z) = �(z=�)=j�j2n, where� is a non-negative smooth ra-
dial function inCn vanishing outside the unit ball and satisfying

R
Cn �dV = 1. HeredV

stands for the standard Lebesgue measure. We now list basic properties ofq-subharmonic
function.

Proposition 1.2. Let U be an open set ofCn and 1� q � n. Then the following
hold:
(1) If ' is q-subharmonic in U, then ' is subharmonic in U.
(2) If ' is q-subharmonic in U, then u��� is smooth q-subharmonic in U� . Moreover,
u � �� & u when� ! 0. Here U� = fz 2 U : � < dist(z, bU)g.
(3) In general, the set of q-subharmonic functions in U is not invariant under holo-
morphic maps, but in variant under unitary change of coordinates.
(4) If � is a convex increasing function and' is q-subharmonic in U, then � Æ ' is' is q-subharmonic in U.
(5) Let ' 2 C2(U ). Then the q-subharmonicity of' is equivalent to

(1.1)
X0

jK j=q�1

X
j ,k

' j k̄� j K �̄kK � 0 for all q-forms � =
X0
jJj=q

�J dz̄J ,

where
P0 denotes summation over strictly increasing multi-indices.

Proof. (1) is obvious. For the proof of (3), (4), and (5), see [5, 4]. Since' is
subharmonic inU , we see (2) except theq-subharmonicity ofu��� . To see this, letH
be q-dimensional complex subspace inCn. By (2), q-subharmonicity is invariant under
the unitary change of coordinates. Hence we may assume thatH = f(z0, 0): z = (z0, z00) 2
Cng, wherez0 2 Cq and z0 2 Cn�q. Sinceu is q-subharmonic,u(z0, 0) is subharmonic
in H . Henceu � ��( � , 0) is subharmonic inU� , i.e., u � ��( � , 0) is q-subharmonic
in U� .

We also say that' 2 C2(U ) is strictly q-subharmonicif ' satisfies (1.1) with strict
inequality. With thisq-subharmonicity, we define the followingq-pseudoconvexity for
domains so that 1-pseudoconvexity exactly coincides with pseudoconvexity in usual
sense.

DEFINITION 1.3. Let D be an open set inCn. Then D is calledq-pseudoconvex
if there is aq-subharmonic exhaustion function forD.

Note thatD is pseudoconvex if and only if it is 1-pseudoconvex, since 1-subharmonic
function is just plurisubharmonic. Also, we say thatD is strictly q-pseudoconvexif the
boundary ofD, bD is of C2-class and its defining function is strictlyq-subharmonic.
Now we mention some elementary properties ofq-pseudoconvex domains as an in-
dependent remark.
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REMARK 1.4. Let D be q-pseudoconvex, 1� q � n. Then the following hold:
(1) If bD is of C2-class, then by (1.1),D is weakly q-convex in the sense of
L.-H. Ho [5].
(2) If q � q0, then q-pseudoconvexity impliesq0-pseudoconvexity.
(3) D has aC1-smooth strictlyq-subharmonic exhaustion function, more precisely
there are strictlyq-pseudoconvex domains,D� ’s, � = 1, 2,: : : , satisfying

(1.2) D =
1[
�=1

D� , D� �� D�+1 �� D.

Proof. For (1), we refer to [5]. From the property ofq-subharmonicity, (2) is
clear. We prove (3). Let' be a q-subharmonic exhaustion function forD and U j =f'(z) < j g. Note thatU j % D as j !1. By Sard’s theorem, we can find a decreas-
ing sequencef� j g with lim j!1 � j = 0 and two increasing sequencesfa j g, fb j g with
lim j!1 a j =1, lim j!1 b j =1 such that for everyj ,
(a) U j � D j := fz 2 D : u � ��(z) + jzj2=a j < b j g;
(b) U j [ D j �� D j +1;
(c) eachD j has smooth boundary.

Even though the domain is not pseudoconvex, we have the following Donnely-
Fefferman type theorem [3] for the�-equation onq-pseudoconvex domains.

Theorem 1.5. Let D be a q-pseudoconvex domain inCn and let ' be a given
q-subharmonic function in D. Let  2 C2(D) be strictly plurisubharmonic and�e� 
be also q-subharmonic. Let 0 < " < 1. Then for every�-closed (0, r )-form g, q �
r � n, there is a solution u of the equation�u = g such that

(1.3)
Z

D
juj2e�'+" dV � 4"(1� ")2

� 1
r

X0
jK j=r�1

X
j ,k

Z
D
 j k̄g j K ḡkKe�'+" dV,

whenever the right had side of(1.3) is bounded. Here ( j k̄) = ( ��̄)�1.

If  has the form, = �log(�v), wherev is a negativeq-subharmonic function
in D, then�e� is q-subharmonic. This is the typical example that satisfies theas-
sumption on of Theorem 1.5. Note that�e� is q-subharmonic means that

(1.4)
X0

jK j=q�1

X
j ,k

 j (z) k̄(z)a j K ākK � X0
jK j=q�1

X
j ,k

 j k̄(z)a j K ākK

for every (0,q)-form a =
P0jJj=q aJ dz̄J in D. In fact, (1.4) holds for any (0,r ), r � q

forms in D, sinceq-subharmonicity impliesr -subharmonicity.
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This kind of L2 existence and estimate for the�-equation have been thoroughly
studied on strictly pseudoconvex domains by Donnely-Fefferman [3] and on general
pseudoconvex domains by Berndtsson [1] and Błocki [2]. Actually, in order to prove
the estimate like Błocki [2], plugging =  ̃=" into (1.3), we obtain the following

Z
D
juj2e�'+ ̃ dV � 4

(1� ")2
� 1

r

X0
jK j=r�1

X
j ,k

Z
D
 ̃ j k̄g j K ḡkKe�'+ ̃ dV,

whenever ̃ is strictly plurisubharmonic and�e� ̃=" is q-subharmonic inD.
We end this section stating an approximation theorem for�-closed forms as one

application of Theorem 1.5. In particular, ifD is 1-pseudoconvex, i.e., pseudoconvex,
then this corollary corresponds to the approximation for holomorphic functions in
L2-norm.

Corollary 1.6. Let D be a q-pseudoconvex domain inCn and h a continuous q-
subharmonic function in D. Assume that K= fz 2 D : h(z) � 0g �� D. If �-closed
(0, r )-form f , r � q�1 is smooth in a neighborhood of K, then for eachÆ > 0, there
is a �-closed(0, r )-form gÆ whose coefficients are in L2(D) and satisfying

k f � gÆkL2(K ) < Æ.
2. Bochner identity

In this section we first prove the following Bochner identityfor differential forms:
for any C2 real valued function' and smooth (0,r )-form � =

P0jJj=r �J dz̄J , we have

(2.5)

X0
jK j=r�1

X
j ,k

�2

�zj � z̄k
(� j K �̄kKe�')

= �2 Reh�, ���'�ie�' +
X0

jK j=r�1

X
j ,k

' j k̄� j K �̄kKe�'
+
X0

jK j=r�1

X
j ,k

h
(�k� j K )(� j�kK )e�' + (Æ'j � j K )(Æ'k�kK )e�'i.

Here h , i be an inner product induced by a standard Hermitian metric inCn and this
inner product can be naturally extended to differential forms. Also, here��' denotes

the formal adjoint of�-operator in L2(e�') and for C1 function v, � j v and Æ'j v is
defined by

� j v =
�v� z̄j

, Æ'j v = e' ��zj
(e�'v).
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Note that the following two equalities hold:

�� =
X0
jJj=r

nX
j =1

� j�J dz̄J , ��'� = � X0
jK j=r�1

nX
j =1

Æ'j � j K dz̄K

for smooth (0,r )-form � =
P0jJj=r �J dz̄J . Then (2.5) can be easily obtained by the

direct calculation of the left hand side of (2.5). Letj�j2 = h�, �i. Then, since

j��j2e�' =
X0
jJj=r

nX
j =1

j� j�J j2e�' � X0
jK j=r�1

X
j ,k

h�k� j K , � j�kKie�'

and

(2.6) j��'�j2e�' =
X0

jK j=r�1

X
j ,k

hÆ'j � j K , Æ'k�kKie�' ,

we can rewrite (2.5) as

(2.7)

X0
jK j=r�1

X
j ,k

�2

�zj � z̄k
(� j K �̄kKe�')

= �2 Reh�, ���'�ie�' +
X0

jK j=r�1

X
j ,k

' j k̄� j K �̄kKe�'

+
X0
jJj=r

nX
j =1

j� j�J j2e�' � j��j2e�' + j��'�j2e�'.

The Bochner identity (2.7) for smooth (0, 1)-forms can be found in [1].
Next, multiplying both sides of (2.7) by a smooth functionw and integrating it

over D, we obtain the following Bochner-Kodaira identity.

Lemma 2.1. Let � be a bounded domain inCn with smooth boundary and� its
defining function of�. If w, ' 2 C1(�), � 2 C1

(0,r )(�) \ Dom(��), i.e., � is a (0, r )-

form (1 � r � n) which is smooth up to the boundary and satisfies the�-Neumann
boundary conditions on b�,

nX
j =1

� j � � j K = 0 on b� for all K ,
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then we have

(2.8)

2 Re
Z
� wh��

�'�, �ie�' +
Z
� wj��j2e�' � Z� wj�

�'�j2e�'
=

X0
jK j=r�1

X
j ,k

�Z
� w' j k̄� j K �̄kKe�' � Z� w j k̄� j K �̄kKe�'�

+
X0
jJj=r

nX
j =1

Z
� wj� j�J j2e�' +

X0
jK j=r�1

X
j ,k

Z
b� w� j k̄� j K �̄kKe�' .

Here we omitted the standard volume form dV.

In [1], Berndtsson also proved (2.8) for for smooth (0, 1)-forms �. Though the
proof of Lemma 2.1 is essentially same, for the convenience,hereunder, we give a
brief verification.

Proof of Lemma 2.1. From now on, for the simplification of notation, we will
omit the notationdV. Multiply the left hand side of (2.7) byw. Then we have to
calculate the following integration over�,

I =
X0

jK j=r�1

X
j ,k

Z
� w

�2

�zj � z̄k
(� j K �̄kKe�').

We may assume thatj��j = 1 on b�. Then twice integration by parts give

I =
X0

jK j=r�1

X
j ,k

Z
� w j k̄� j K �̄kKe�' +

X0
jK j=r�1

X
j ,k

Z
b� w j� j K �̄kKe�'�k̄ dS

+
X0

jK j=r�1

X
j ,k

Z
b� w�k(� j K �̄kKe�')� j dS,

where dS is the volume measure ofb�. Because of the�-Neumann boundary con-
ditions, the second integration of the right hand side of theabove equality vanishes.
Hence we have to evaluate the third integration of the right hand side of the above
equality. Again, by the�-Neumann boundary conditions, we have, onb�

(2.9)

X
j ,k

�k(� j K �̄kKe�')� j =
X
j ,k

[(�k� j K )�̄kKe�' + � j K �k(�̄kKe�')]� j

=
X
j ,k

(�k� j K )�̄kKe�'� j .

Since
Pn

k=1 �̄kK�k is tangential tob� and for all indicesK ,
Pn

j =1� j �� j K = 0 on b�,
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we have for all indicesK ,

0 =
X

k

�̄kK�k

0
�X

j

� j K � j

1
A

or equivalently, onb� X
j ,k

�̄kK (�k� j K )� j = �X
j ,k

� j K �̄kK� j k̄.(2.10)

Plugging (2.10) into the right hand side of (2.9), we obtain

(2.11) I =
X0

jK j=r�1

X
j ,k

Z
� w j k̄� j K �̄kKe�' � X0

jK j=r�1

X
j ,k

Z
b� w� j k̄� j K �̄kKe�' dS.

We also multiply the right hand side of (2.7) byw and integrate it over�. Combining
this with (2.11), we have (2.8) of Lemma 2.1.

3. Proof of Donnelly-Fefferman type theorem

Before proving Theorem 1.5 for generalq-pseudoconvex domains and general
q-subharmonic functions, we first verify our theorem for a smoothly bounded
q-pseudoconvex domain�. Moreover, we assume that',  are smooth up to�,  
is positive definite, and�e� is q-subharmonic.

If � satisfies the�-Neumann boundary conditions onb�, then we have

(3.12) 2 Re
Z
� wh��

�'�, �ie�' = 2
Z
� wj�

�'�j2e�' � 2 Re
Z
�h�

�'�, �w y �ie�' ,

where the interior multiplication�w y � is defined by the following manner

�w y � =
X0

jK j=r�1

nX
j =1

�w�zj
� � j K dz̄K .

In fact, using (2.6) and integration by parts, we see (3.12).Let w = e�" . Then us-
ing (1.4), we have

(3.13)

� X0
jK j=r�1

X
j ,k

Z
� w j k̄� j K �̄kKe�'

=
X0

jK j=r�1

X
j ,k

�" Z�  j k̄� j K �̄kKe�'�" � "2
Z
�  j k̄� j K �̄kKe�'�" �

� "(1� ") X0
jK j=r�1

X
j ,k

Z
�  j k̄� j K �̄kKe�'�" .
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Also suppose that� is �-closed in�. Note that the second integral of the right hand
side of (2.8) vanishes and the first integral and the boundaryintegral of the left hand
side of (2.8) are non-negative. Now applying Lemma 2.1 withw = e�" and using
(3.12), (3.13), we obtain

"(1� ") X0
jK j=r�1

X
j ,k

Z
�  j k̄� j K �̄kKe�'�" 

� Z�j�
�'�j2e�'�" + 2" Z�j�

�'�j j� y �̄je�'�" 
� �1 +

2"
1� "

� Z
�j�

�'�j2e�'�" +
"(1� ")

2

X0
jK j=r�1

X
j ,k

Z
�  j k̄� j K �̄kKe�'�" .

Here we again use (1.4) for the last integral of the above estimate. Hence we have
proved that

(3.14)
X0

jK j=r�1

X
j ,k

Z
�  j k̄� j K �̄kKe�'�" � 4"(1� ")2

Z
�j�

�'�j2e�'�" 

for every �-closed (0,r )-form � which satisfies the�-Neumann boundary conditions.
Let g be a�-closed (0,r ) form on � and assume

kgk2 =
X0

jK j=r�1

X
j ,k

Z
�  j k̄g j K ḡkKe�'+" <1.

Note that since ( j k̄) is a positive definite Hermitian matrix, the following holds:

jhg, �ij2 � X0
jJj=r

jgJ �̄J j2 =
1

r

X0
jK j=r�1

nX
j =1

jg j K �̄ j K j2

� 1

r

0
� X0
jK j=r�1

X
j ,k

 j k̄g j K ḡkK

1
A
0
� X0
jK j=r�1

X
j ,k

 ��̄g�K ḡ�K

1
A.

Therefore, by (3.14), we have

(3.15)

����
Z
�hg, �ie�'����

2 � 4"(1� ")2
� 1

r
kgk2 

Z
�
����'���2e�'�" 

for every smooth�-closed (0,r ) form � satisfying�-Neumann conditions onb�. Now
to solve the�-equation for a given�-closed (0,r ) form g, we need the following
Hörmander’sL2-method.



DONNELLY-FEFFERMAN THEOREM 607

Lemma 3.1. Let � be a smoothly bounded domain inCn and ' a smooth func-
tion in �. If g is a �-closed(0, r )-form satisfying the inequality

����
Z
�hg, �ie�'����

2 � C1

Z
�j�

�'�j2e�'=w
for all � 2 C1

(0,r )(�)\Dom(��) with �� = 0, where1=w is an integrable positive func-

tion, then there is a solution u of the equation�u = g such that

Z
� juj2we�' � C1.

Proof. The proof is a slight modification of Hörmander’s method to solve the�-equation. This can be found in [1]. For the convenience, we give a brief proof.
For a 2 Dom(��') = Dom(��), define an anti-linear functional

L(��'a) =
Z
�hg, aie�' .

For a 2 C1
(0,r )(�)\Dom(��), decomposea = �+�, where� 2 Ker� and� 2 (Ker�)? �

Ker ��' . By the assumption and the density, we have for anya 2 Dom(��),
L(��'a) � C1

Z
�j�

�'aj2e�'=w.

By the Hahn-Banach theorem and the Riesz representation theorem, there is av 2
L2(e'=w) such that for anya 2 Dom(��),
(3.16)

Z
�hg, aie�' =

Z
�hv, ��'aie�'=w

and the norm of the anti-linear functional satisfies

(3.17) kLk =
Z
� jvj2e�'=w � C1.

Let u = v=w. Then by (3.16),u is a solution to�u = g and (3.17) gives the desired
estimate foru.

Next, we prove the following Donnelly-Fefferman type theorem for general
q-pseudoconvex domainD and generalq-subharmonic function' in D (without the
assumption of smoothness of').
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Proof of Theorem 1.5. SinceD is aq-pseudoconvexdomain, we can choose strict-
ly q-pseudoconvex domains D� with smooth boundary such that

D =
1[
�=1

D� , D� �� D�+1 �� D for all �.

Also there is a decreasing sequencef'�g of smooth q-subharmonic functions which
converges pointwise to'. Now we apply the estimate (3.15) with'� , w = e�" and� = D� for each�. Then we have for all smooth�-closed (0,r ) form � satisfying�-Neumann conditions onbD�
(3.18)

����
Z

D� hg, �ie�'� ����
2 � C2

Z
D�
����'����2e�'��" ,

where

C2 =
4"(1� ")2

� 1

r

X0
jK j=r�1

X
j ,k

Z
D�  j k̄g j K ḡkKe�'�+" .

Note that 1=w = e is integrable inD� . Applying Lemma 3.1 with (3.18), we see that
there are solutionsu� and corresponding estimates (1.3) for all domainsD� . Since'�
is decreasing, the constantC2 is bounded by the quantity of the right hand side of
(1.3) that is independent of�. Therefore there is a limitu of some subsequence offu�g which satisfies�u = g on D and the desired estimate (1.3).

4. Application to approximation theorem

In this section we prove Corollary 1.6. Leth be a continuousq-subharmonic func-
tion in D. Assume thatK = fz 2 D : h(z) � 0g �� D.

Proof. Let f be a given�-closed (0,s) form whose coefficients are inL2(K ),
s� q � 1 and (z) = log(1 +jzj2). Note that for all 1� j , k � n,

� � z̄k
=

zk

1 + jzj2 ,
�2 � z̄j � z̄k

=
zkz̄j

(1 + jzj2)2
+

Æ jk

1 + jzj2 ,

whereÆ jk is the Kronecker’s symbol. It follows that is strictly plurisubharmonic and�e� is plurisubharmonic, i.e.,q-subharmonic. LetV be an open neighborhood ofK
in which f is smooth and�-closed. We choose open setsU so thatK � U �� V ��
D and� 2 C1(Cn) vanishing outsideV and satisfying� � 1 on U . Let u = �(� f ) =�� ^ f and Æ > 0 be given. Note thatu is a �-closed (0,s + 1)-form in D, s + 1� q
whose coefficients are inL2(D). We claim that there is avÆ such that�vÆ = u on D
and kvÆkL2(K ) < Æ. Put gÆ = � f � vÆ. Note that� f � f on K . Hence we have

k f � gÆkL2(K ) = kvÆkL2(K ) < Æ.
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We prove our claim. First, we can choose�0 > 0 so thath > �0 on V nU , sinceh
is continuous and non-negative outsideK . For � > 0 to be determined later, we apply
the main theorem to' = �h,  = log(1+jzj2), and" = 1=2. Write u =

P0jJj=s+1 uJ dz̄J .

Then there is av� to �v� = u and satisfying

Z
D
jv�j2e��h+log(1+jzj2)=2 � 32

r

X0
jK j=s

X
j ,k

Z
D
 j k̄u j K ūkKe��h+log(1+jzj2)=2.

Notice that for some constantCk which is independent of�, we have

Ck

Z
K
jv�j2 � Z

D
jv�j2e��h+log(1+jzj2)=2,

since h � 0 on K . On the other hand, sinceu has a support inV n U , for some
constantCVnU , we have

32

r

X0
jK j=s

X
j ,k

Z
D
 j k̄u j K ūkKe��h+log(1+jzj2)=2 � CVnU e���0.

Here CVnU depends only onu,  and fixed�0. Hence if we choose� large enough so
that CVnU e���0=CK < Æ, we see thatjvÆjL2(K ) < Æ.
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