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Abstract
We obtain the affirmative answer for a special case of thealimnation
problem for algebraic embeddings & into C3. Indeed, we determine all the
compactificationg X, Y) of C? such thatX are normal quartic hypersurfaces I
without triple points and¥ are hyperplane sections & Moreover, for eacl{X,Y),

we construct a tame automorphism @f which transforms the hypersurface\ Y
onto a coordinate hyperplane.

1. Introduction

A polynomial mappingf: C" — C™ is called analgebraic embeddingf C" into
C™for m>n > 1if f is injective and if the image of is a smooth algebraic sub-
variety of C™. Let Aut(C") be the group of algebraic automorphisms@¥. Here we
consider the following conjecture:

Conjecture. Let f: C" < C"! be an algebraic embeddinghen f is equivalent
to a linear embedding up tAut(C") and Aut(C"*'), equivalently to saythere exists an
algebraic automorphism of"*! which transforms the image (€") onto a coordinate
hyperplane

For the casen = 1, Abhyankar-Moh [1] and Suzuki [14] showed that the conjec-
ture is true. For the casas> 2, the conjecture is still unsolved. In this paper, we
will consider the casen = 2 only. Our approach is geometric and our main tool is a
method of compactifications df?. Let f: C? — C2 be an algebraic embedding. We
identify C3 with an affine part of the complex projective spagein the standard way.
We denote byX; the closure of the image of in P3 and putYs := X¢ \ f(C?). By
construction, we see that; is a hyperplane section ak; and thatX; \ Y; is bi-
regular toC?, that is (X¢, Y;) is a compactification ofC% We call Y the boundary
of the compactification. Our main purpose is to write downlieikly a defining equa-
tion of the image off up to affine transformations of® and to construct explicitly

2000 Mathematics Subject Classification. Primary 14R10p&dary 32J05.



564 T. OHTA

an algebraic automorphism @ linearizing the defining equation, when the image of
f is of low degree. This explicit way is very important for ustramly to obtain ex-
amples but also to find geometric invariants and inductivéhoes. In this direction,

in Ohta [10], we showed that the conjecture is true when tigrege of the image of

f is less than or equal to three. For the case of degree threeyeeded a so-called
Nagata automorphisnfcf. [10]) to linearize some embedding.

Next we consider the case of degree four. Then we have thenioly three possi-
bilities: (1) X is normal and it has at least a triple point; () is normal and it has
no triple points; (3)X; is non-normal. For the case (1), in Ohta [11], we showed that
the conjecture is true, and we needed a generalization anahalogue of a Nagata
automorphism to linearize some embeddings. In this paperwil treat the case (2)
only. The case (3) will be dealt with elsewhere. Thus it seffito consider a com-
pactification , Y) of C? such thatX is a normal quartic hypersurface ¥ without
triple points andY is a hyperplane section of. First we will determine the defining
equations of such compactificationX,(Y) by using the classification of minimal nor-
mal compactifications of? due to Morrow [9] and the structure theorem of minimally
elliptic singularities due to Laufer [8]. Finally, for eadX, Y), we will construct a
tame automorphism of® explicitly which linearizes the defining equation f\ Y.

From now on to the end of this paper, we assume the following:

ASSUMPTION Let X be a normal quartic hypersurface® without triple points
andY a hyperplane section of such thatX \ Y is biholomorphic toC2. Denote byH
the hyperplane ifP® with Y = X N H.

We define some notations as follows. Lét=J;_, Y; be the irreducible decom-
position of Y. We put) := H|x. We note that Suppy =Y and Oy(X|y) = Op(4).
We putx :=SingX ={X1,..., Xmn}. Letz: M — X be the minimal resolution oKX
with exceptional se€ = | J_, Ei := #~1(x), where eachE; is irreducible. We denote
by C the proper transform of a curv@ in X by 7. In §2, we shall see thaX has a
unique minimally elliptic double point, which is denoted ky, and thatz? = -1, -2
for the fundamental cycl@ of 7—1(x;). Then our main results are the following:

Theorem 1. Let(X,Y) be a pair satisfyingAssumption. Then the weighted dual
graph of Y U E is one ofFig. 1, where the notations, o, A mean smooth rational
curves with self-intersection numbersl, —2, —3 respectively and alb, A are ir-
reducible components of. E

Theorem 2. For each weighted dual graph of U E in Theorem 1,the defining
equation of(X, Y) is one of the following up téut(P3):
(XV) X: (2223 +az5+ Bzozs + v Z5)* + 2023 + 2323 = 0, % — day =0,
(XVI) X: (2223 +aZ2 + Pzozs + yZ2)2 + 2025 + 2323 = 0, B% — day #0,
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Fig. 1.

(XVII) X: (zoz3+aZ5+ Bzozy + yZ3)? — (2023 + 22)? + 2025 = 0, {B? — da(y — HB? —
da(y +1)} =0,

XVl X: (223 +aZd+Bzozs +yZ2)? — (2023 + )2 + 2123 = 0, {B% — da(y — D}{B? —
da(y +1)} 70,

(XIX) X: (2223 +aZ2 + Bzozy + yZ2)? — 24 + 2025 + 62222 = 0, (B? — da(y — 1)}{B? —
4oy +1)} =0,

(XX) X: (zozs + a3 + Bzozs + yZ2)? — Z} + 2073 + 62225 = 0, {B% — da(y — DHB? —
da(y +1)} 70,

(XXI) X: Z3Z3+ (223 + 3202123)22 — 2323 — (3/4)23Z3 + 20Z5 + 8(z423 + 25) 2% = O,
where z= (20 : 71 : 2> : Z3) is a homogeneous coordinate Bf, H = {z3=0}, «,8,y.8 €
Canda #0.

REMARK. In Theorems 1 and 2, we continue to number the typesXo¥j from
the previous paper [11] and we obtain some invariants asvist|
(XV) Z2=-2, Y =4Y1 (Y line), X = {x}.
(XVI) Z22=—-2, Y =2Y1+2Y, (Y;: line), x = {x1}.
(XVI) Z2==2, Y =2Y1+ Yo+ Y3 (Y;: line), X = (X1, Xa}.
XVII) Z2=-2, Y =Y1+Yo+Yz+Ys (Vi line), x = {x}.
(XIX) Z2=—=2, Y =2Y1+ Yo+ Y3 (Y;: line), X = (X1, Xa}.
(XX) Z2==2, Y =Y1+ Yo+ Ys+Ys (Yi: line), x = {x4}.
(XXI) Z2=—1, Y =2Y1+Y, (Yo line, Yo conic), X = {X1}.
For each typex; =(0:0:1:0) is the unique minimally elliptic double point darx,
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is a rational double point of typé,;, where

(B:—2a:p:0) forthe type (XVII) and B2 —4a(y —1) = 0.
Xo=14 (B:—2a:—pB:0) forthe type (XVIl) and B2 —4a(y +1) = 0.
(B:—20:0:0) for the type (XIX).

Moreover, every line inX throughx; is an irreducible component &f (see Lemma 3.2
(i) and Lemma 4.1 (v)).

Here we recall some special subgroups of &3)( Let A(3,C) and J(3,C) be the
subgroups of all affine transformations and de Jonquiérézmarphisms respectively.
Let us denote byf (3,C) the subgroup generated #(3,C) and J(3,C). An algebraic
automorphism ofC3 is said to betameif it is an element ofT (3, C) (cf. [11]).

Theorem 3. For each defining equation dfX, Y) in Theorem 2,there exists a
tame automorphism dof® which transforms X Y onto a coordinate hyperplane

As a consequence of Theorems 2 and 3, we obtain the following:

Theorem 4. Let f: C? — C2 be an algebraic embeddingAssume that X is
a normal quartic hypersurface if#*® without triple points Then f is equivalent to a
linear embedding up t&\ut(C?) and T(3, C).

Indeed, if one has such an algebraic embeddinghen X;, Y;) has one of the
defining equations of the types (XV) through (XXI) up to ARt} by Theorem 2 and
there exists a tame automorphism@f transforming f (C?) = X\ Y onto a coordinate
hyperplane by Theorem 3. Thus we obtain Theorem 4.

NOTATION. b (V) =dimg H'(V, R): i-th Betti number ofV.
Excg: exceptional set of birational morphisg: V — W.
Pic(V): Picard group ofV.

Ky: canonical divisor ofV.

wy: dualizing sheaf oiv.

my ,: maximal ideal ofOy ,.

multy V: multiplicity of V at general point of\.

D|y: restriction of Cartier divisoD to V.

(D - C)v,p: local intersection number oD andC atv € V.
D, ~ D, D; and D, are linearly equivalent.

(V, v): normal two-dimensional singularity.

pg(v): geometric genus of\{, v).

Pg(v1, - - -5 vn) = 2oLy Pg(vi).
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N={1, 2, 3,...}: set of all positive integers.

(—n)-curve: smooth rational curve with self-intersection m@n—n.
S (—n)-curve.

®: 0O-curve.

e. (—1)-curve.

o: (—2)-curve.

A: (—3)-curve.

2. Preliminaries

In this section, we shall describe the fundamental progenif a pair K, Y) sat-
isfying Assumption in§1. We use the same notation as tha§in LetY = Uf:lYi be
the irreducible decomposition of. We denote by ded the degree ofY; as a plane
curve of H = P2 We set) := H|x = Z}zl kiYi, wherek; e N and Zitzlka degy; = 4.
We putx := SingX = {Xy,..., Xm}. Letz: M — X be the minimal resolution oK with
exceptional sek = U?:l E; :=7~(x), where eachE; is irreducible. We may assume
that 71(x) = Ujq 4+, Ej for L<i <m, where 0 =i5p < <--- <sn:=s. Let
z0 =32 .18 Ej be the fundamental cycle of ~*(x;) with a; € N. We denote by
C the proper transform of a cun@ in X by 7. LetI" be a general smooth hyperplane
section of X with ' N x = @. We have the relations(- Y;)m = (" - Yi)x = degY; and
[~ kiYi+) 5., b Ej with by € N. We note thatox = Ox(Kx) = Ox andx C Y
and thatM \ (Y U E) is biholomorphic toC2. By Kodaira [6] and Ramanujam [12],
we see thatX \ Y and M \ (Y U E) are biregular toC2. In particular, X and M are
rational surfaces. Then we have the next proposition.

Proposition 2.1 (Ohta [10]). One obtains the following
() Ho(X, Z) = Ho(Y, Z) = Z.
(i) Hi(X, Z) = Hy(Y, Z) = 0.
(iii) Ha(X, Z) = Ha(Y, Z) = B, Z - Y.
(iv) Hs(X, Z) = Hs(Y, Z) =0.
(v) HY(X, Ox)=0.
(Vi) pg(x) =1.
(vii) X is not a cone
(viii) gcd(degYs, ..., degY;) = 1.
(ix) mult, X < Y1 ki multy Yi (Yp €Y = XN H).

REMARK. (1) By (i) and (ii), Y is a connected divisor without cycles. In par-
ticular, eachy; is a rational curve without nodes. ¥ contains at least two lines, then
Y consists of lines which meet at only one point. Indeed, thils sinceY has no
cycles and eacly; is a plane curve.

(2) By (vi), (vii) and Assumption ing1, we may assume thag is a minimally
elliptic double point andk\ {x;} consists of at most rational double points. For simplic-
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ity, we putZ := Z®. By Artin [2] and Laufer [8], we see thay ~ —Z, Z?=—1,-2
and 2002 =2 for 2<i <m.

(3) Since M, Y U E) also satisfies the assertions (i) through (Y),U E is a
connected divisor without cycles (cf. [10]). By Noetherrula, we obtairb,(Y) +
ba(E) = by(M) = 10— Z2. ThusY U E consists of 10- Z2 rational curves.

For the divisor), we obtain the following classification. In the last part bfst
section, we will make this classification to be detailed.

Lemma 2.2. There exist the following seven possibilities for the diviy:
() Y =4Y: (Y1: line) with x C Y;.
(i) Y=3Y1+Y, (Yi: line) with x C VYi.
(i) Y =2Y1 +2Y, (Y;: line) with x C Y.
(iv) Y =2Y1 + Yo + Y3 (Y;: line) with x € Y; and Y, N Y2 N Y3 = {one poin}.
(V) Y=Y1+Ya+Y3+ Yy (Yi: line) with x={x3} =Y1NYoNYzN Y,
(Vi) Y =2Y1+Y2 (Y1: line, Yo: conid with x C Y; and Y, NY, = {one poin}.
(vii) Y =Y1+Y2 (Y1: line, Y,: cuspidal cubig with x C SingY and YNY, = {one poin}.

Proof. By Proposition 2.1 (ii), (viii) and (ix), we obtain ¢hassertions. ]

For the fundamental cycleZ and Z#), we shall prove some lemmas with strong
effect to the structure ofX, Y).

Lemma 2.3 ([8], [10]). One obtains the following
(1) Assume that Z= —2. Then

T'mx,x, = Om(=2).

Moreover the blowing-up morphism at;xof X factorsz and (C - Z) = mult,, C for
any curve C in X through x

(2) Assume that Z= —1. Denote by E a unique irreducible component; Bf Z with
(Ei - Z) = -1 and a = 1. Then there exists a unique poingy pf E; \ Sing(SuppZ)
such that

(7 o) mx x, = Ow (=2 — 2Ey),

whereg: M — M is a blowing-up at p with exceptional curve fFand Z is the
proper transform of Z in M Moreover the blowing-up morphism atpof X factors
7 om and (C' - Z' + 2E}) = multy, C for any curve C in X through ix where C’ is
the proper transform of C in M

Proof. First we use Theorem 3.13 in [8] and the universal @rypof blowing-
up (cf. Proposition 11.7.14 in [5]). By applying the same amgent as in the proof of
Lemma 3 in [10], we obtain the assertions. ]
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REMARK. In (i), we note thatrjZ = Z'+Ej, Ky ~ -2’ and Z?%=-2 (cf. 84).
Lemma 2.4 ([2], [10]). Assume that x contains at least two point$en
mrmy = Ou(—2Y)

for 2 <i <m. Moreover the blowing-up morphism atf X factorsz and (C-z®) =
mult,, C for any curve C in X through;x

Proof. First we use Theorem 4 in [2] and the universal prgpeftblowing-up
(cf. Proposition 1.7.14 in [5]). By applying the same argemh as in the proof of
Lemma 3 in [10], we obtain the assertions. ]

Lemma 2.5. One obtains the following

(i) Assume that C is a line or a conic in. XthenC = P! and (C - Z®) = 1 when
X €C((@<i<m). If xeC, thenC is a(—1)-curve with(C - Z) = 1. If x; ¢ C,
thenC is a (—2)-curve with(C - Z) = 0.

(i) Assume that C is a plane cuspidal cubic in X aBihgC = {x;}. ThenC = P!
and (C-ZM)=1when xe C 2<i <m). If Z2=-2, thenC is a O-curve with
(C-2)=2. If z2= -1, thenC is aO-curve with(C - Z) = 2 or a (—1)-curve with
¢.2)=1.

Proof. By Lemma 2.3, we note that the blowing-up morphisnx;abf X factors
m or wom if Z2=—2 or —1 respectively. By Lemmas 2.3, 2.4 and the adjunction
formula, we obtain the assertions. O

REMARK. In (i) and (i), we note thaC U z~%((x \ {x1}) N C) is a simple nor-
mal crossing divisor of smooth rational curves. In (i), wes ghatC meetsz ~1(x;)
transversally at only one point i; € C.

Lemma 2.6 (Reid [13]). One obtains the following
() Z is a numerically2-connected divisor of M witwz; = O, and p(Z) = h%(02) =
h1(Oz) = 1. Here an effective divisor D of smooth projective surface @&l 4o be
nummerically n-connected for n 0 if it satisfies the conditiorfD; - D,) > n for every
effective decomposition B D; + D, with D;, D, > 0.
(i) There exists an exact sequence

0— C — Pic@z) &2 782 — 0
of abelian groups where the homomorphisigieg is given for £ € Pic(Z) by

degl = (deg, Llg,, . .., deg, LI, ).
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(iii) If £ is a nef line bundle on Z witlleg, £ := Y, & deg: L|g = 1, then there
exists a unique smooth point P of Z such tfa& Oz(P).

(iv) If P and Q are smooth points of,Zzhen P=Q if and only ifOz(n(P —Q)) = Oz
for some integer > 1.

Proof. (i) By the adjunction formula, Lemma 3.11 and Theorém@l in [13],
we obtain the assertions.

(i) Note that HY(Z, Z) =0 andH?(Z, Z) = 7% sinceY U E has no cycles and
SuppZ consists ofs; rational curves. Note that(Oz) = C and H?(Oz) = 0 by (i)
and dimx Z = 1. By applying the exponential cohomology sequence of\swanZ,
we obtain the assertion.

(i) By Lemma 4.23 in [13], we obtain the assertion.

(iv) By noting (ii) and (iii), we obtain the assertion. ]

We shall prove some useful lemmas for smooth compactificataf C2. It is well-
known that the weighted dual graph of a boundary of minimahvad compactification
of C? is a linear tree of smooth rational curves by Ramanujam [12] these graphs
are classified by Morrow [9] (cf. Proposition 2 in [10]). Heresmooth compactifi-
cation S, C) of C? is said to beminimally normalif it satisfies the following two
conditions: (1)C is a simple normal crossing divisor; (2) anyX)-curve inC meets
at least three other irreducible componentsCof

Lemma 2.7. There exists no boundary C of smooth compactificatio®%$atis-
fying the following conditions
(i) C contains a smooth rational curveyQvith Cg > —1.
(i) C\ Cop consists of at least three connected componentsch are denoted by €
Co, ...,Chwithn> 3.
(i) C; meets @ transversally at only one point for any <i < n.
(iv) C; is a simple normal crossing divisor of smooth rational cwwehose self-
intersection numbers are less than or equal 4@ for any i=1, 2.

Proof. Assume that there exists such a smooth compaciificg®, C) of C2 By
applying some blowing-ups orCgU- - -UC,)\ Cp, We obtain a smooth compactification
(S, C’) of C? with simple normal crossing boundary, wheté is the total transform
of C in S. Let C/ be the total transform o€; in S for 0<i <n. ThenC’ satisfies
the following conditions:

(1) Cjis a smooth rational curve i€ with (C})? > —1;

(2) C’\ Cj consists of then connected components;, C;, ..., C/ with n > 3;

(3) C/ meetsCj transversally at only one point for any<i <n;

(4) C/ is a simple normal crossing divisor of smooth rational carwehose self-
intersection numbers are less than or equal for anyi =1, 2;

(5) C{ is a simple normal crossing divisor of smooth rational cari@ any 3<i <n.
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Fig. 3.

By [12], we obtain a linear tree in Fig. 2 as a boundary of madimormal compacti-
fication of C? by applying some blowing-downs i6’, whereCj, C; and C; are the
proper transforms o€;, C; andC; respectively. However this dual graph is not found
in Morrow’s classification. This is a contradiction. O

Lemma 2.8. Assume that C is a boundary of smooth compactificatiofi®o$at-
isfying the following conditions
(i) C contains a(—1)-curve G.
(i) C\ Cop consists of exactly two connected componentsa@ G.
(i) C; meets @ transversally at only one point for any= 1, 2.
(iv) C; is a simple normal crossing divisor ¢f2)-curves
Then the weighted dual graph of© C; is a linear treee—o—o—- - - —o.

Proof. Assume that the weighted dual graphGafu C; is not such a linear tree.
Then there exists an irreducible compon@ht; of C; such that(Co U C;) \ Cy 1 con-
sists of at least three connected components and such thawvefghted dual graph
of the connected component ¢€o, U C;) \ C; 1 containingCp is a linear tree. By
contracting the connected component (6 U Cy) \ C1 1 containingCo, we obtain a
boundary of smooth compactification @ satisfying the conditions in Lemma 2.7.
This is a contradiction. O

Lemma 2.9. Assume that C is a simple normal crossing boundary of smooth
compactification ofC2 which is a union of only on¢—1)-curve and somé—2)-curves
Then the weighted dual graph of C is a linear treeo—e—o or a tree as inFig. 3.

Proof. LetCoy be the unique £1)-curve inC and C\ Co = L, Ci the decom-
position into connected components with> 1. By Lemma 2.7, we obtaim = 1, 2.
Then we consider the following cases (1) and (2).
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(1) Assume thainh = 2. By Lemma 2.8, the weighted dual graphs @f U C;
and Cy U C; are linear trees—o—o—--- —o. By using Morrow’s classification after
the contraction ofCo U C; or Co U C,, we see that the weighted dual graph®fis a
linear treeo—o—e—o.

(2) Assume thain = 1. Note that the weighted dual graph ©f is not a lin-
ear tree by the assumption. Then there exists an irreducimeponentC; ; of C;
such thatC \ C; ; consists of at least three connected components and suchhtha
weighted dual graph of the connected componen€afCy 1 containingCy is a linear
tree. By contracting the connected componentCof C; ; containingCy, we obtain a
simple normal crossing boundafy of smooth compactification of? which is a union
of only one (1)-curve Dg and some £2)-curves and such thdd \ Dy consists of at
least two connected components. By Lemma D7\ D, consists of exactly two con-
nected components. By the same argument as that in (1), tlghtee dual graph of
D is a linear treec—o—e—o. Hence the weighted dual graph Gf is obtained as in
Fig. 3. ]

From now on to the end of this section, we shall show that soases do not
occur for the classification of the divisg¢ in Lemma 2.2. In the proofs of the fol-
lowing lemmas, we mainly use Lemmas 2.5, 2.7 and 2.8. Edpeciee always note
Remark of Lemma 2.5.

Lemma 2.10. It does not occur the case where
Y=2Y1+2Y, (Y;: line) with x; ¢ Y1 NYa.

Proof. Assume that this case occurs. We may assumexthat Y; \ Y.. By
Lemma 2.5,Y; is a (—1)-curve andY; is a (—=2)-curve inM. Note the linear equiva-
lence

f‘N2?1+2?2+ZbiEi
i

with bj € N. Then we consider the following cases (1) and (2).

(1) Assume that¥; NY; is a smooth point ofX. Note that ¥1 - Y2) = 1 by com-
puting the intersection number of the above linear equiuaaleand\?l. By Lemma 2.7,
XN (Y1\Yz) consists of only one point;. Since (3 bi -\?2) =3>0, xN(Y2\ Y1)
contains at least one point. By Lemma 2X8) (Y2 \ Y1) consists of exactly one point,
which is denoted by, and the weighted dual graph ¥ U Y, Uz ~(x,) is a linear
tree as in Fig. 4 (1), wher€&s .1, ..., Es, are the irreducible components af-1(x,)
(s, — s > 1). By computing the intersection number of the above lineguivalence
and Y, + Z@, we obtainbs, = —1. This is a contradiction.

(2) Assume that;NY; is a singular point ofX, which is denoted by,. By Lem-
ma 2.4, the blowing-up morphism & of X factorsz. Thus we obtainY; - Y») = 0.
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71 (xp) 7 (x2) @ or ' (x3)
A A ’_/— A A
Yl Y2 E51+1 Esz Yl E51+1 ESZ Y2 E52+1 ES3
—
(52 — s1) vertices (52 — s1) vertices (s3 — s2) vertices
(1) )
Fig. 4.

By Lemma 2.7,xN(Y1\Y2) consists of only one point;. By Lemma 2.8,xN(Y2\ Y1)
consists of no points or exactly one point, which is denotgdxf) and the weighted
dual graph ofY;UY,Un " }(xNY,) is a linear tree as in Fig. 4 (2), whef&,+1,..., Es,
are the irreducible components #f1(x,) and Ee,+1, . . ., Es, are the irreducible com-
ponents ofr ~1(xg) (S — s > 1,8 — S > 0). If x = {xq, X2}, then we havebg +; = —1
by computing the intersection number of the above linearivetpnce andY, + Z@.
This is a contradiction. I = {x1, X2, X3}, then we havebs +1 + bg, =1 by computing
the intersection number of the above linear equivalence¥andz@ + Z®). This is a
contradiction. O

Lemma 2.11. It does not occur the case where
YV=2Y1+Y+Y3 (Y| Iine) with X eY; \ (Y2 U Y3)

Proof. Assume that this case occurs. Note that Y; and thatY;, Y, Y are a
(—=1)-curve and two £2)-curves inM respectively by Lemma 2.5. ¥;NY,NY3is a
smooth point ofX, then we haveY; - Y2) = (Y2 - Ya) = (Y3 - Y1) = 1 by computing the
intersection number of each and " ~ 2Y; +Y,+Ys+ Y, b E (b € N). By applying
the blowing-up onY; N Y, N Ys, we obtain a smooth compactification 6 with the
conditions in Lemma 2.7. This is a contradiction. Thgs Y, N Yz is a singular point
of X, which is denoted byx,. By Lemma 2.4, the blowing-up morphism & of
X factorsz. Thus we have Y ~\?j) =0 fori # j. Hence the weighted dual graph of
Y1UY>UYsUr (%) is not a linear tree ansl = {x;, X2} by Lemma 2.7. On the other
hand, the weighted dual graph ¥fUY,UYsUr 1(X,) is a linear tree by Lemma 2.8.
This is a contradiction. O

Lemma 2.12. It does not occur the case where

y=2Y1+Y, (Y1: line, Yo: COI’]iC) with X3 €Y \ Yo.
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7 (x)
—_—~

Yl ES|+1 ESZ Y2
—_— —
(s2 — s1) vertices

Fig. 5.

Proof. Assume that this case occurs. Note that Y; and thatY; and Y, are a
(—=1)-curve and a-{2)-curve inM respectively by Lemma 2.5. Note the linear equiv-
alence

f"\’2?1+?2+2biEi

with b € N. If Y;NY, is a smooth point ofX, then we haveY; - Y2) = 2 by com-
puting the intersection number of the above linear equmzaieand\?z. By applying
the blowing-ups twice orY1NY,, we obtain a smooth compactification 6 with the
conditions in Lemma 2.7. This is a contradiction. TH4sN Y, is a singular point of
X, which is denoted by,. By computing the intersection number of the above linear
equivalence and’;, we have {1 -Y,) =0, 1. If (Y1 Y,) =1, then each pair ofy,

Y, and 7~1(x,) meets transversally at only one point sind& (Z®) = (Y, - Z@) = 1.

By applying the blowing-up or¥; N Y, N 7~(x,), we obtain a smooth compactifi-
cation of C? with the conditions in Lemma 2.7. This is a contradiction. uhwe
have {1 -Y,) = 0. Hencex = {x1, X,} by Lemma 2.7 and the weighted dual graph of
Y1U Y2 U 7Y(xp) is a linear tree as in Fig. 5 by Lemma 2.8, wheg.y, - - - , Es,
are the irreducible components of 1(x,) (s; —s; > 1). By computing the intersection
number of the above linear equivalence afd- Z®, we obtainbg., = —1. This is a
contradiction. O]

Lemma 2.13. It does not occur the case where
Y=Y1+Y, (Y1: line, Y,: cuspidal cubig with Y;NY,={X;} # SingYa.

Proof. Assume that this case occurs. Hh= P2, Y; and Y, meet tangentially to
the third order atx; which is a smooth point of,. By Lemmas 2.3 and 2.5?1 is a
(—=1)-curve inM and (f1-Z) = (Y»- Z) = 1. Note that {1-Y,) =0, 1 by computing the
intersection number ofy and " ~ V1 + Y2+ Y, biE (b € N). If SingY, is a smooth
point of X, then we see thaf, = Y, and \?2? =1 by the adjunction formula. By apply-
ing the blowing-ups three times on Si¥ig we obtain a smooth compactification 6f
with the conditions in Lemma 2.7. This is a contradiction.u$t5ingY, is a singular
point of X, which is denoted by,, and in particularx = {X3, xo}. By Lemma 2.4, the
blowing-up morphism ak, of X factorsz. ThusY, is a smooth curve and in partic-
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ular a 1) curve inM since - Z) = 1. Note that {»- Z®) =2 by Lemma 2.4 and
z@ =y ..aE (a €N). Then we consider the following cases (1), (2) and (3).

(1) Assume that there exists an irreducible compor@ntof 7 1(x,) such that
(Y2 E,) =2 anda, = 1. Note that {,- Z® — E;,) = 0. By applying the blowing-ups
twice on Y, N E;,, we obtain a smooth compactification @ with the conditions in
Lemma 2.7. This is a contradiction.

(2) Assume that there exist two irreducible componetsand E;, of 7~1(xp)
such > - E,)=(Y2-E,) =1 anda, =&, =1. Note that {,- Z® — E;, — E;,) =0
By applying the blowing-up oY, N E;, N E;,, we obtain a smooth compactification of
C? with the conditions in Lemma 2.7. This is a contradiction.

(3) Assume that there exists an irreducible comporptof 7 1(x;) such that
(Y2- Ei,) =1 anda, = 2. Note that ¥ - Z® — 2E;)) = 0. Note thatY, U 7~1(xp)
is of simple normal crossing and tha is a rational double point not of typa. If
(Y1 Y,) =0, thenx, is a rational double point of typé by Lemma 2.8. This is a
contradiction. Thus we haveY{-Y,) = 1. Since ¥1-Y2)=(Y1-2)=(Y2-2)=1,
each pair ofYs, Y2 and 7—%(x1) meets transversally at only one point. By applying
the blowing-up onY; N Y, N7 1(x1), we obtain a smooth compactification 6 with
the conditions in Lemma 2.7. This is a contradiction. O

Lemma 2.14. It does not occur the case where
Y=Y1+Y, (Y1: line, Y. cuspidal cubi¢ with Yy NY; # {x;} = SingY>.

Proof. Assume that this case occurs. Note thatnd Y, meet inH = P2 tan-
gentially to the third order at a smooth point ¥ and thatx \ {xX;} is contained in
Y1NY; and {x3} = SingY,. By Lemma 2.5,Y; is a (—2)-curve inM with (Y1-Z)=0
andY, is a (—1)-curve with >+ Z) =1 or a O-curve with Y, - Z) = 2. Note the linear
equivalence

f‘N?l+?2+ZbiEi

with b € N. If Y1 NY, is a smooth point ofX, then we haveY; - Y2) = 3 by com-
puting the intersection number of the above linear equmaeleand\?l. By applying
the blowing-ups three times o¥i; N Y,, we obtain a smooth compactification 6
with the conditions in Lemma 2.7. This is a contradiction. usty; N Y, is a sin-
gular point of X, which is denoted byk,, and in particularx = {x;, xo}. Note that
(Y1-Z@) = (Y,-Z@) = 1 by Lemma 2.4. By computing the intersection number of the
above linear equivalence ant, we have Y1 -Y2) =0, 1, 2. If (Y1-Y,) =1, 2, then
there exists a unique irreducible compondit of 7~1(x,) such thatY;, Y, and Ei,
meet at only one point sincer{- Z®) = (Y, - Z®@) = 1. By applying the blowing-ups
(Y1 - Y,) times onY; N Y, N Ej,, we obtain a smooth compactification @f with the
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conditions in Lemma 2.7. This is a contradiction. Hence weehe?l . \?2) =0. Then
we consider the following cases (1) and (2).

(1) Assume thatY, is a (~1)-curve in M with (Y, - Z) = 1. By Lemma 2.8,
the weighted dual graph of; U Y, U z~1(x,) is a linear tree as in Fig. 6 (1), where
Es+1,-.., Es, are the irreducible components of 1(x;) (s,—s; > 1). By computing the
intersection number of the above linear equivalence‘fmdz(z), we havebs 41 = —1.
This is a contradiction.

(2) Assume thaty, is a O-curve inM with (Y- Z) = 2. Since {2 - Z) = 2, we
have muly Z =1, 2, where{p} := Y,NSuppZ. If mult, Z = 1, then we obtain a smooth
compactification ofC? with the conditions in Lemma 2.7 by applying the blowing-ups
twice on p. This is a contradiction. If multZ = 2, then after applying the blowing-
up on p, by Lemma 2.8, we have the weighted dual graphYot Y, U 7~1(x,) as in
Fig. 6 (2), whereEg .1, ..., Es, are the irreducible components of1(x,) (s, —s1 > 1).
By computing the intersection number of the above linearivadence andY; + 2@,
we obtainbs +1 = —1. This is a contradiction. Ul

As a consequence, we obtain the following refined classificadf the divisor) .

Proposition 2.15. There exist the following seven possibilities for the diviy’:
(i) Y=4Yy (Y1: line) with x C Y;.
(i) Y=3Y1+Y2 (Y;: line) with x C VYi.
(i) Y =2Y1+2Y, (Yi: line) with x Y and Y NYs = {x}.
(iv) Y =2Y1+ Y2+ Y3 (Yi: line) with x c Yy and Y, N Yo N Y3 = {X41}.
(V) YV=Y1+Yo+Y3+Y, (Y, Iine) with Xx={X1} = Y1 N YN YzN Y,
(Vi) Y =2Y1+Y, (Y1: line, Yo: conig with x C Y7 and Y. NY, = {X3}.
(vii) Y =Y1+Y, (Y1 line, Yz cuspidal cubig with x = {X;} = Y; N Y, = SingYa.
In particular, for each casgY contains at least one line through. x

3. Proof of Theorem 1 for22= -2

In this section, we shall prove Theorem 1 for the c&@%e= —2. Let (X, Y) be a
pair satisfying Assumption iffil andZ2 = —2. We use the same notation as thagin
and §2. We mainly consider a projection from and a blowing-up ak; to investigate
the pair (X, Y). First we note thal¥ U E is a connected divisor without cycles which



ALGEBRAIC EMBEDDINGS OF C2 INTO C3 577

consists of twelve rational curves. For each irreduciblmponentE; of Z, we may
assume thatl; - Z) <0 for 1<i <siand E -Z) =0 for 51 <i <5, where
S,1 IS an integer with 1< 551 < s1. We putZ; = Zf‘;’i aEi and Z, = Zis;&)‘lﬂ a E;,
where Z, = 0 is allowed. Thus we obtain an effective decompositiorr Z; + Z,.
Since Z2= —2, we note thaty 1 =1, 2. Leto: P2 — P2 be the blowing-up ak; with
exceptional divisorA, which is isomorphic tdP?. Let T be the proper transform of a
closed algebraic subsét of P2 by 0. We have thao |z, . : P3\ A = P3\ {x} and
Ops(A)|a = Ope(—1). We setE := XN A. We have thatr|xg: X\ E = X\ {xi}
and that K, Y U E) is a compactification ofC? with dualizing sheafwy = Ox. Let
v: X' — X be the normalization oK. Let C' be the proper transform of a cun@
in X by o|gov. We have thab|g:, 1g: X \v*(E) = X\E and that ', Y" U
v~Y(E)) is a compactification ofC2. Let y: P3... — P? be the projection fromx,
and ¥ : P2 — P2 the resolution of indeterminacy af. We have thaty|.: A — P2
is an isomorphism and/|x: X — P? is a generically finite morphism of degree two.
We note thatl” ~ Hig+Alx, T~ v*(Hg)+v*(Alg) and [ ~ Y i ki Vi + 35 b E|
with b; € N. Then we have some fundamental lemmas.

Lemma 3.1. One obtains the following
() X is non-normal Moreover X|, = 2E = 2line and A N SingX = E.
(i) Sing X" consists of at most rational double points
(iii) There exists a birational morphism: M — X satisfyingolyx o 7 = x. Then
T (Aly) = Z and T (V%) Op(1) = Om(" — Z). Moreover deg(@lg) = —(E - 2)
for each irreducible component; Bf Z; and 7(SuppZ,) is a finite set In particular,
Tlwe: M\ E = X\ (EU(alx) 7 (x\ (x1}).
(iv) There exists a birational morphis@’: M — X' satisfyingv o ¥* = 7. Then
deg@@’|g) =1 and degp|g) = —(Ei - Z) with E" :=7"(E) for each irreducible com-
ponent E of Z;, and 7" (SuppZ,) is a finite set Moreover 7" is a minimal resolution
of X" with Excw’ = SuppZ, Umr~1(x\ {x1}). Here one puts the push-forward Weil di-
visor Z" = (7").(Z) of X".
o) Let X" £ v 5 P2 pe the Stein factorization of|x o v. Then V is normal g
is a birational morphism and h is a finite morphism of degre®.twn particular,
9% \Excq®: X"\ Excg ¥ V \ g(Excg) and Excg is the proper transform of the union
of all lines in X through x by o|xov. Thus one obtains the commutative diagram as
in Fig. 7.
(vi) Assume that | is a line in X through.x Theni” N SingX" consists of at most
one rational double point of type A and the weighted dual rap (7*) (") =1 U
(@")71(1" nSingX") is a linear treee or e—o—o—---—o. In particular, g(I") is a
smooth point of V and R 1 ={x;}, {X1, Ay} for some n> 1.
(vii) SingV consists of at most rational double points
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Proof. (i), (i) The assertions are the general propertfethe minimally elliptic
singularity (X, x;) with Z? = —2. Indeed, we can check the assertions by applying a
blowing-up of the local analytic defining equation oX,(x;) in Theorem 4.57 (2) of
[7] (ct. [8]). _

(i) There exists a birational morphism: M — X satisfyingo|x o T = 7 by
Lemma 2.3 (i). In particular, we haver] 1(E) = SuppZ. By the isomorphisms

f*(O@(—Aﬂy) = ﬁ*(0—|Y)*mX,xl = ﬂ*mX,xl = Ou(-2),

we obtainT*(Alx) ~ Z. Sincem*(Alx) is an effective divisor ofM whose support
equals to Sup and the intersection matrix of Sugbis negative definite, we obtain
7T*(Alx) = Z. In particular, we have

TP 1x)* Or=(1) = T Og(Hlg) = 7 Ox(T = Alg) = Ou(f* - 2).

Let E; be any irreducible component &. Sincer|g, is identified withmyoﬂa,
we obtain dedf|g) = —(E; - Z). By noting that &%) 1(x) = EU (o) X(x \ {x1}),
we haveﬁ|M\E M\ EZ= Y\ (E U (O'|7)_1(X \ {X1})).

(iv) There exists a birational morphis@m’: M — X" satisfyingv o 7 =7 by
the lifting property of normalization (cf. Proposition 834in [4]). By noting (ii)) and
that v is a finite morphism, we obtain the assertions.

(v) Note the general properties of Stein factorization Qurollary I11.11.5 in [5]).

(vi) First we note (ii) and that is a (1)-curve inM by Lemma 2.5 (i). By ap-
plying Lemma 4 in [10] for the morphism&”: (M, (7")~1(1")) — (X',T") and
g: (X', T7") = (V, g(I")), we obtain the assertions.

(vii) By using (ii), (v) and (vi), we obtain the assertion. ]

Lemma 3.2. One obtains the following
() HNA=E. In particular, Y is a union of lines throughx
(i) Every line in X through xis contained in Y
(iii) Y; is a (—=1)-curve in M with(l'-Y;) =(Y; - Z)=1 (1<i <t).
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(v) Y =Y.' nY" =VinY; =0 ( #]).

(v) x\ {x1} consists of at most rational double points of type A

(vi) Excg=Y" and gy X\ Y =V g(Y)).

(vii) (Sing X' )\ Y  =g~(SingV).

(viii) (X", Y" USuppZ’) and (V, g(SuppZ")) are compactifications of2.

Proof. (i) Assume thaH N A #ZE. Let| be any line inH such thatx; e | ¢ X
and[ NE=¢. Since X-I)z =2 and (N A)N X =0, we have

> (ih%-l)w = D (X hpp=2

pel\{x} \i=1 pel\{x1}

On the other hand, by Proposition 2.15, we h&ve (3 iz kiYi -1), ,=0,1 for

a general lind in H throughx;. This is a contradiction. Thus we obtalhiN A = E.
Since E C SingX and (X - I)z = 2 for a general lind in H throughx;, we see that
Y is a union of lines througkx;.

(i) Let | be any line inX throughx;. Then we havéNA c XNA=E=HNA.
Hence we obtain c H and thusl c XN H =Y.

(i) Note that eachy; is a line in X throughx; by (i).

(iv) Since eachy; is the proper transform of a line through by the blowing-up
at x;, we see that?iﬂY_j =@ (i #j). By noting this, we obtain the assertions.

(v) By using (i), (i) and Lemma 3.1 (vi), we obtain the asgsit

(vi) By using (i), (i) and Lemma 3.1 (v), we obtain the asgsrs.

(vii) Note (vi) and thatg(Y") consists of smooth points of.

(viii) Note (vi) and thatv=1(E) = SuppZ . O

Lemma 3.3. One obtains the following
(i) Z' is the Cartier divisorv*(Alx) of X'. In particular, (7")*(Z") = Z.
(i) 9.(Z)=hW(E), 0°9.(Z)=Z + i, kY =v*(Hly).
(i) kY; is a Cartier divisor of X' (1 <i <t).
(V) T'~ i kY +2Z", T~ Y (@)Y ) +2Z.
(v) 9.(T") is a smooth Cartier divisor of V with,gl'") N SingV = @.
(Vi) g(T") ~20.(Z"), g'gu(T) =T + i kY .
(Vi) (9:(T") - gu(T v =8, @(T") - 9(Z)v =4, @(Z) 9(Z))v =2.
(i) (g«(I") - 9(Z )y g7y = (W(T) - ¥ (E)pe vy =ki (L <i =1).
(i) Kg: ~=Z', Ky ~ =g.(Z") = =h*(¥(E)).

Proof. (i) By Lemma 3.1 (iii) and (iv), we haver()*v*(Alx) = Z. By pushing
this forward, we obtain*(Aly) = (7°).(2) =Z'.
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(i) By noting thatv*(Alx) =Z andy|g: E = ¥(E), we haveg,(Z") = h*(¥ (E)).
Thus we obtairg*g,(Z") = v* (¥ x)*(¥(E) = v*(Hlx) = Z" + X, k Vi

(i) By (i) and (i), we see thaty;_, kY; is a Cartier divisor ofX . By Lem-
ma 3.2 (iv), we obtain the assertion.

(iv) Note (i), (i), (iii) and thatT" ~ v*(Hlx) + v*(Alx).

(v) First we note thal' is a smooth Cartier divisor ok with T NSingX' = ¢
which intersects eacl;’ transversally at only one point by ( Y;)x = 1. Since each
g(Y;") is a smooth point of/, we obtain the assertion.

(vi) By pushing the first relation of (iv) forward, we obtaihe first assertion. By
noting (i), (ii), (iii) and (iv), we have £")*(g*g.(T")) ~ T+ Y\ _,(@")*(&Y; ). Since
Supp&”)*(g*g.(T")) = I' U (7")"4%Y") and the intersection matrix ofz’)~1(Y") =
(go)~Xg(Y")) is negative definite, we haver()*(g*g.(T")) =T +X_,(@")* Y ).
By pushing this forward, we obtain the second assertion.

(vii) Note (vi) and that dedp = 2 and Oy (g.(Z")) = h*Opz(1).

(viii) By noting that h|y - 0.(T") = ¥(T), we obtain the first equality of the
assertion. By the same argument as in the proof of Proppsgi@ (vi) in [11], we
obtain the second equality of the assertion.

(ix) Since both of Sing<’ and Singv consist of at most rational double points,
we see thatKy and Ky are Cartier divisors. Sinc&" is the minimal resolution of
X", we have £)* Ky ~ Km ~ —Z. By pushing this forward, we also haweyg ~
—Z". By noting Lemma 3.2 (vi), we obtaiiy ~ —g.(Z"). O

REMARK. The branch locus of h is a reduced plane quartic curve. Indeed, this
is showed as follows. First we note that Rig(is torsion-free by Lemma 3.1 (vii), Lem-
ma 3.2 (viii), and Proposition 1 in [10]. Thus we obtain thgeativity of h*: Pic(P?) =
Z — Pic(V). Let R be the ramification divisor ofi. Since dedr = 2, we haveKy ~
h*Kpz + R andh*B = 2R. By noting (ix), we obtainh*(B — 4L) ~ 0 and henceB —
4L ~ 0, whereL is a line inP2. In the following, we omit the investigation of a detailed
structure ofB since there is no necessity in our arguments.

Lemma 3.4. One obtains the following
(i) The weighted dual graph dfz") 1(Y;") is given as inFig. 8(a), (b), (c), (d)for
ki =1, 2, 3, 4respectively where the integers adjacent to vertices are coefficienthén t
divisor ()*(k Y; ).
(i) bo((7")"X(Y")) = 4. In particular, 8 < by(7~(x1)) < 11.
(iii) (Sing X")\ Y’ #¢. In particular, SingX' # @ and SingV # 9.
(iv) If xNY; contains more than one point for somethen2 < k; <4 and (xNY;)\{x1}
consists of only one rational double point of type _A.
(v) YUE is a simple normal crossing divisor of twelve smooth ratioturves whose
weighted dual graph is not a linear treén particular, each irreducible component; E
of E is a smooth rational curve with & (E; - Z) — 2.
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Proof. (i) By Lemma 3.3 (vi), we haver’)*(g*g.(T")) = '+ Y1 ()" ¥ ).
By noting that § o 7")|w\(gor)-i(singv): M \ (g o 7")"X(SingV) — V \ SingV is a
composite of blowing-ups whose exceptional setig)(1(Y") = (go7") 1(g(Y")) and
that (7*)*(g*g.(T")) is the total transform of,(T") by go7", we obtain the assertion.

(i) By noting (i) and thatY UE = (7*)~(Y")Un~(x;), we obtain the assertions.

(i) Assume that SingK’ c Y'. Then we haveY U E = (7*)~%(Y") U SuppZ..
Thus we obtainby(Y U E) <4 +2=6. This is a contradiction.

(iv) By noting (i) and thatX' \ v-3(E) = X \ {x1}, we obtain the assertion.

(v) By usingby(r~1(x1)) > 4 and Proposition 3.5 in [8], we have that*(x,) is
a simple normal crossing divisor of smooth rational curvBy. using py(x;) 7 0 and
Satz 2.10 in Brieskorn [3], we see that the weighted dual lgrafpz —(x,) is not a
linear tree. By Lemma 3.1 (vi) and/{(-Z) =1 (1<i <t), we obtain the assertionsJ

Since Z? = —2, there exist the following three possibilities for the idor Z; =
f‘;'iai Ei. From now on, we shall consider these cases separately:
(1) Z1 = E; with (El . Z) = -2
(2) Z1 = 2E; with (El : Z) = -1
(3) Z1=E;+E; with (E1-Z)=(E>- Z) = —1.

3.1. The caseZ; = E; with (E;-2Z) = -2.
Proposition 3.5. This case does not occur

Proof. Assume that this case occurs. By Lemma 3.4 (v), we liaakeE, is a
(—4)-curve inM. By Lemma 3.3 (iv) and Lemma 3.4 (i), (v), we see th¥t-E;) =1
and (@°)* (kY )—kY;-E1) =0 (L<i <t). In particular, Y'NE; consists of smooth
points of X'. By contracting the curvem®)~1(Y"), we obtain a boundary of a minimal
normal compactification of? which is a union of seven<2)-curves and one 0-curve.
However its weighted dual graph cannot be found in Morrowassification. This is
a contradiction. O

3.2. The caseZ; = 2E; with (E;-Z) =—1. By Lemma 3.4 (v), we have that
E; is a (~3)-curve inM. By Lemma 3.1 (iii) and the isomorphisnt|z, we obtain
E: = E, =g(E.) = v¥(E)= E =P By Lemma 3.1 (iv) and Lemma 3.3 (i), we
also obtainE;" =7"(SuppZ) and g(E; ) = h~1(¥/(E)).
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Proposition 3.6. There exist the following two cases
() Y =4Yy (Y1: line) with x = {x}.
(i) Y =2Y1+2Y, (Yi: line) with x={x;} =Y. NY>.
Moreover for the caseqi) and (ii), the weighted dual graphs of U E are of types
(XV) and (XVI) in Theorem lrespectively

Proof. First we note tha¥ U E is of simple normal crossing. Sinag = 2 and
(Y -Z) =1, we obtain {; - E1) =0 (L<i <t). In particular, Y N E; consists
of singular points ofX'. By Lemma 3.4 (i), we have that = {x;} and 2< k; < 4
(1 <i <t). Thus we obtainy = 4Y; or Y = 2Y; +2Y, (Y;: line). By Lemma 3.3 (iv),
we obtain (Yi_,(7")*(kiY;) - E1) = 2. By noting this, we see that the weighted dual
graphs of £*)~}(Y")U E; are given as in Fig. 9 (a) and (b) for the cases 4Y; and
Y = 2Y; + 2Y, respectively. By contracting the curva')~*(Y"), we have a boundary
of a smooth compactification df? which is a simple normal crossing divisor of seven
(—2)-curves and one—{1)-curve. By Lemma 2.9, its weighted dual graph is given as
in Fig. 9 (c). Since the«1)-curve in Fig. 9 (c) is the proper transform &, we
obtain the assertions. O

3.3. The caseZ; =E; +E;, with (E;-Z) =(E»-Z)=-1. By Lemma 3.4 (v), we
have thatkE; and E, are (-3)-curves inM. By Lemma 3.1 (iv), (v) and Lemma 3.3
(i), we also have thatE; # E;, 9(E:) # 9(Ez), E; UE, =7 (SuppZ) and
g(Ey) U g(E2) = h™X(¥/(E)). Since Supg is connected, both of; UE, and
g(E:r) U g(E2") are also connected.

Lemma 3.7. One obtains the following
() E=E"=gE)*V(E)ZE=F (=12
(i) Both ofE; NE, and gE; )Ng(E2 ) consist of only one point
(i) Sing vV = g(E1 ) N g(Ez), (SingX")\Y =E; NE; .
(v) (Yi-E1+E)) =1, (@)KY))— kY- E1+E) =0 (1<i <t).
(v) (SingX")n(E:' UE,)=E' NE,".
(vi) (7) Y(E: NEz") = Supp — E1 — Ey), by(Supp€ — E; — Ey)) = 6.
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(vii) There exist the following two cases

(a) Y=2Y1+Yo+Y3 (Y| Iine), X=XNYy={Xy, A}, (X1} =Y1NYaNYs.

(b) Y=Y1+Y2+Y3+Ys (Yi: line), x={x1} =Y1NY2NY3N Yy
Moreover for the caseqa) and (b), the weighted dual graphs d¢fz*) 1(Y")UE;UE;
are given as inFig. 10 (a)and (b) respectively
(viii) ExN Ez =@. Moreover there exists no irreducible component ®fippZ — E; —
E,) intersecting both of Eand BE.

Proof. (i) By Lemma 3.1 (jii) and the isomorphisthg, we obtain the assertion.

(i) First we note that X', Y UE; UE,) and , g(E;' ) Ug(E;)) are com-
pactifications ofC2 and thatX" andV are normal. By Proposition 1 (ii) in [10], we
obtain the assertion.

(i) By Lemma 3.4 (iii), we have that Siny # . Sinceh*(¥/(E)) = g(E; ) +
9(E2") and > qen-i(p) Multy V < degh = 2 for any pointp of P?, we obtain the first
assertion. By Lemma 3.2 (vii), we also obtain the secondrtisse

(iv) By noting (iii), Lemma 3.3 (iv) and Lemma 3.4 (i), (v), webtain the as-
sertions.

(v) By using (iii) and (iv), we obtain the assertion.

(vi) By using (v) andby((7*)~%(Y")) = 4, we obtain the assertions.

(vi) By Lemma 3.3 (iv), we obtain(}i_,(@")*(Y;") - Ej) =2 (j =1, 2). By
noting this and (iv), we have thaf = 2Y; +2Y;, 2Y; + Yo+ Yz or Yy + Yo + Y3+ Yy
(Yi: line). Now we assume thal = 2Y; + 2Y, (Y;: line). Then we may assume that
Y; and E; \ Sing(SuppZ) meet transversally at only one point, which is denoted by
pi, for eachi =1, 2. LetL be a line inP? such that i o g o 7°)(p.) € L # ¥ (E).
Since h*(¥(E)) = g(E1 ) + 9(E2 ), we see that the divisorz)*g*h*L intersectsZ
transversally at only two pointp; and gz, whereq, is a point of E; \ Sing(SuppZ).
By noting this and Lemma 3.1 (iii), we obtain

02(Z) = Oz(=(F = 2)) % Oz(=(7")*g"h*L) ¥ Oz(—p1 - G-

By Lemma 3.3 (iv), we obtai)z(2Z2) = Oz(—2p1—2p2). Thus we obtainDz(2(q, —
p2)) = Oz. By Lemma 2.6 (iv), we see thap = p,. Hence we obtain

(hogom”)(p1) =(hogom’)(q) = (hogom")(p2).
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By noting that hogo@”)(pi) = ¥ (Y;) (i =1, 2), we havey (Y1) =¥ (Yo). On the other
hand, we havey (Y1) # ¥(Y,) sinceY; and Y, are distinct two lines througky. This
is a contradiction. Thus we obtain the assertions.

(viii) Since E; NE," consists of only one point and Su@pis of simple normal
crossing, we havde; N E; = @. Next we assume that there exists an irreducible com-
ponent of Supp{ — E; — E») intersecting both oE; and E,. By contracting the curve
(7@")"XY")U E1 U E,, we obtain a boundary of a minimal normal compactification of
C? which is a union of five £2)-curves and one O-curve. However its weighted dual
graph cannot be found in Morrow’s classification. This is atratiction. Thus we
obtain the assertions. O

Now we have thatE;’ N E, is a rational double point o’ of type As, Dg
or Eg by Lemma 3.7 (vi). LetW be the fundamental cycle of7¢) 1(E; N E.).
Then we note thatit")~%(E; N E,") = Supp& — E1 — Ez) = SuppW = |2, Ei and
Z=E +Ey+ Z?zsai Ei with a3, ..., ag € N. By Lemmas 2 and 3 in [10], we also
note that €;- W) =(E>-W)=1. Since Z-Ej)=0 (3<i <8), we obtain Z-W) =0.

Proposition 3.8. Assume thaE; NE, is of type A. Then the weighted dual
graph of YUE is of type(XVIIl) or (XVIII) in Theorem 1for the case) = 2Y;+Yo+Ys3
or Y=Y1+Y,+Yz+Y, (Yi: line) respectively

Proof. Assume thaE; N E, is of type As. Then the weighted dual graph
of SuppW is given as in Fig. 11 (a), where the integers adjacent tdcesrtare co-
efficients inW. We note that E3- W) =(Eg-W)=—-1and E -W)=0 (4<i <7).
By computing the intersection numbeZ (W), we have

8
0=(Z-W)=(E1-W)+(E2- W)+ ) a(E -W)=2—ag—as.
i=3

Thus we obtaireg = ag = 1. Moreover, by computing the intersection numbets ;)
and Z - Ey), we obtain(Zig:Sa,- Ei-Ei1) = (Z?zga Ei - E2) = 2. By noting that Supg

is of simple normal crossing, we see that N (E3 U Eg) = E; N (E3 U Eg) = @. Here
we note Lemma 3.7 (viii). By contracting the cun&*)~1(Y")UE;UE, and suitable
curves inY U E, we have a boundary of a minimal normal compactificationCéf
Since its weighted dual graph must be found in Morrow’s cfasgtion, the weighted
dual graph of Supiz is uniquely determined as in Fig. 11 (b). By Lemma 3.7 (vii),
we obtain the assertion. O

Proposition 3.9. It does not occur the case whekg’ NE, is of type 3.

Proof. Assume thaE; N E, is of type Dg. Then the weighted dual graph
of SuppW is given as in Fig. 12 (a), where the integers adjacent tacesrtare co-
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Fig. 11.
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Fig. 12.

efficients in W. We note that E; - W) = (E; - W) = 1. By contracting the curve
(@) XY") U E; U E;, and suitable curves iiY U E, we have a boundary of a min-
imal normal compactification of2. Since its weighted dual graph must be found in
Morrow’s classification, the weighted dual graph of Supjps uniquely determined as
in Fig. 12 (b). We note thatHs - W) = -1 and & -W)=0 (i =3,4,5,7,8). By
computing the intersection number& (W) and ¢ - E7), we have 0=Z -W) =2—a4
and 0=¢ - E;) =as — 2a; +1. Thus we obtaira; = 3/2 ¢ N. This is a contradiction.
O

Proposition 3.10. Assume thaE; NE, is of type E. Then the weighted dual
graph of YU E is of type(XIX) or (XX) in Theorem 1,for the case) =2Y;+Y,+Y3
or Y=Y1+Y>+Yz+Ys (Yi: line) respectively

Proof. Assume thaE; N E, is of type Es. Then the weighted dual graph of
SuppW is given as in Fig. 13 (a), where the integers adjacent tacesriare coefficients
in W. By Lemma 3.7 (viii) and E; - W) = (E2 - W) = 1, the weighted dual graph of
SuppZ is uniquely determined as in Fig. 13 (b). By Lemma 3.7 (vii)e wbtain the
assertion. O

Thus we complete the proof of Theorem 1 for the c@ge= —2.

4. Proof of Theorem 1 forz2= -1

In this section, we shall prove Theorem 1 for the caSe= —1. Let (X, Y) be
a pair satisfying Assumption i§1 and Z2 = —1. We use the same notation as that
in §1 and §2. We mainly consider a projection fromy and a blowing-up atx; to
investigate the pairX, Y). First we note thatY U E is a connected divisor without
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1 @ 3 @O E, E,
(@) (b)

Fig. 13.

cycles which consists of eleven rational curves. Sidée= —1, we may assume that
E; is a unique irreducible component @& = ) %, a E; such that E; - Z) = —1 and
ap = 1. Then we have thatE - Z) = 0 for any irreducible componerE; of Z —
E;. By Lemma 2.3 (ii), there exists a unique poipg of E; \ Sing(SuppZ) such that
(7 o mo) mx x, = Ow(—2Z' — 2Ep), wheremo: M’ — M is a blowing-up atpy with
exceptional curveEy and Z’ is the proper transform of by mo. We putr’ := 7 o 7.
Let C’ be the proper transform of a cun@in X by ='. Let E/ and E’ be the proper
transforms ofE; and E by no respectively fori > 1. We note thatrgZ = 2" + E,
SupprgZ = (n') Y(x1), Excn’ = Z' UE), Ky ~ —2Z' and 2% = —2. Leto: P8 —
P? be the blowing-up atx; with exceptional divisorA, which is isomorphic toP2.
Let T be the proper transform of a closed algebraic sufisaif P2 by o. We have
that os5, 50 P32\ A = P2\ {x} and Os(A)la ¥ Opz(—1). We setE :=X N A. We
have thato|x,g: X \ E = X\ {x;} and that &, Y U E) is a compactification ofC?
with dualizing sheafwoy = Ox. Let y: P2... — P2 be the projection fromx; and
¥ P8 — P2 the resolution of indeterminacy aof. We have that/|,: A — P2 is an
isomorphism and/|y: X — P? is a generically finite morphism of degree two. We
note thatl' ~ H|x + Alx and " ~ Y1_; kY +Y5., by Ej with bj € N. Then we have
some fundamental lemmas.

Lemma 4.1. One obtains the following
() X is normal Moreover X|, = 2E = 2line and E N SingX consists of only one
point, which is denoted b;.
(i) SingX consists of exactly one minimally elliptic singular poiitand at most ra-
tional double points
(iii) There exists a birational morphisf: M’ — X satisfying(olx) o 7 = #’. Then
@) (Aly) = Z' + 2E), (@) (¥ lx)* Ope(1) = ow(l =27 - 2Ey), 7'lgy Bp = E and
7' (SuppZ’) = {X1}. Moreover 7’ is a minimal resolution oK with Excw’ = (7')~(X7) U
(@)X \ xa)).
(iv) Z'is the fundamental cycle ¢fr')~1(X7) with Z'? = —2. Moreover X7 is a minimal-
ly elliptic double point ofX and(ﬁ’)"my,)T1 = Ow(—-2).
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(v) There eX|sts exactly one lingin X through %. Then RS l,cY andxzel; CY.
Moreoverl is a (—1)-curve in M with (I’ Z)=1and (I’ E)) =0 andi; is a (—1)-
curve in M with(i;- Z)=1 and p ¢ 1.

i) Let X % v % P2 pe the Stein factorization of|x. Then V is normalg is a
birational morphism and h is a finite morphism of degree.twoparticular, glx,;: X\
I; = Vv \ g(I1) with Excg =11 = g~(g(X7)) and (V, g(Y U E)) is a compactification of
C2 Thus one obtains the commutative diagram asig. 14.

(vii) V is a projective normal Gorenstein surface with dualizimgafwy = Oy. More-
over SingV consists of exactly one minimally elliptic double poirfkg and at most
rational double points

Proof. (i) The assertions are the general properties of timmally elliptic sin-
gularity (X, x1) with Z? = —1. Indeed, we can check the assertions by applying a
blowing-up of the local analytic defining equation oX,(x;) in Theorem 4.57 (3) of
[7] (cf. [8]). _

(i) By using Ky ~ 0 and Proposition 1 (vi) in [10], we obtaipg(Sing X) =1
Sinceo|xg: X\ E = X\ {x4} and E N SingX = {X7}, we obtain the assertion.

(i) There exists a birational morphis@’: M’ — X satisfying ¢|x) o 7@ = n’
by Lemma 2.3 (ii). In particular, we obtainz() *(E) = Supp@’ + 2E;). By the iso-
morphisms

(@) (Om(=A)Ix) = (T) (01x) mxx = Om(=2" - 2Ey),

we obtain {T')*(Alx) ~ Z'+2E;. Since &')*(Alx) is an effective divisor oM’ whose
support equals to Supp(+2E;) and the intersection matrix of Sugf(+ 2E() is neg-
ative definite, we obtain@')*(Alx) = Z' + 2E,. In particular, we have

@) @R Or(1) = (T) Ox(Hlx) ¥ (7)) Ox(T — Alg) = Ow (I - Z' - 2Ey).

Let E/ be any irreducible component ofr)~(x;) for i > 0. Sincen'|g is identi-
fied with (¥|x) o (7'|g), we obtain dedt'|g) = —(Z' + 2E; - E/)w. Thus we see
that 7'|g,: Ep = E and 7' (SuppZ’) = {X1}. Here we note that Exg’ = (7')~%(X1) U
() 71(x \ {x1}). Since Sup = 7~1(x1) and pp € E; \ Sing(Suppz), there exist no
(—1)-curves in Sup’ = (7')~*(X7). Thus7 is a minimal resolution ofX.
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(iv) Note that7 gives a minimal resolution of the minimally elliptic singuity
(X, x7) and Ky ~ —Z’. By using Theorem 3.4 in [8], we have that is the funda-
mental cycle of ¥')~(X7). By using Z'> = =2 and Theorem 3.13 in [8], we see that
multy; X =2 and @) my - = O (—2)).

(v) There exists at least a lirein X throughx; by Proposition 2.15. By Lem-
ma 2.3 (ii), we obtaini(-Z'+2E}) = 1. Hencdl” is a (~1)-curve inM’ with (I"-2) =1
and (- E{) =0. In particular,i is a (~1)-curve inM with (I-Z)=1 andpo ¢ I. Since
(" -2y =1, we see thal passes througl; necessarily. From this, the existencelof
is unique. Thus we put; :=1. By Proposition 2.15 again, we obtain c Y and in
particulari; C Y.

(vi) Note the general properties of Stein factorization Qirollary 111.11.5 in [5]).

(viiy Since degg = 2, SingV consists of at most double points. Note that any
double point is a hypersurface singularity and in particidaGorenstein singularity.
ThusV is Gorenstein. Sincglx,;: X\I1 =V \g(l;) andKx ~ 0, we obtainKy ~ 0.
By applying Proposition 1 (vi) in [10], we obtaipg(SingV) = 1. Hence we obtain
the assertions. O

REMARK. The branch locu8 of h is a reduced plane sextic curve. Indeed, this
is showed as follows. First we note that Rig(is torsion-free by Lemma 4.1, and
Proposition 1 in [10]. Thus we obtain the injectivity f: Pic(P?) = Z — Pic(V).
Let R be the ramification divisor oh. Since dedy = 2, we haveKy ~ h*Kpz + R and
h*B = 2R. By noting thatKy ~ 0, we obtainh*(B —6L) ~ 0 and henceB — 6L ~ 0,
where L is a line in P2 In the following, we omit the investigation of a detailed
structure ofB since there is no necessity in our arguments.

Lemma 4.2. One obtains the following
(i) x={x1}, SingX ={X1}, 1< by(Y) <2, by(E) =11—by(Y). In particular, SingV =
{g(x1)}-
(i) E is a simple normal crossing divisor of oife 3)-curve B and some—2)-curves
whose weighted dual graph is not a linear tree
(iii) 11 is a (—1)-curve in M with(iy-E1) =1, (1-Z—E;)=0and p &1
(iv) fin SuppZ is a smooth point of Zwhich is denoted by ip In particular, py #
p1 € Ex\ Sing(Suppz).
(V) 0z(Z) = Oz(—po).

Proof. (i) First we show thatl{NSingX)\ {X1} = ¥. Assume thatl¢ N SingX)\
{X1} #9. By Lemma 2.5 (i) and Lemma 4.1 (i), there exists an irredleccomponent
E/ of (7)Y((I,nSingX)\ {X1}) which is a (-2)-curve inM’ with (I}-E/) = 1. By using
Z'>=—-2 and Lemma 4.1 (v), we obtairZ(+ Ei’+271)2 =0 directly. On the other hand,
the intersection matrix ofg(o 7')~%(g(I1)) = I}, U SuppZ’ U (7')~2((I; N SingX) \ {Xz})
is negative definite. This is a contradiction. Thus we haw thn SingX = {X7} and
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in particularx Nl = {x;}. By noting Proposition 2.15 and Lemma 4.1 (v), we obtain
1 <by(Y) <2 andx = {x1}. Immediately, we also obtain the other assertions.

(i) By using by(E) > 4 and Proposition 3.5 in [8], we have th&t is a simple
normal crossing divisor of smooth rational curves. By uspmgx:) 7 0 and Satz 2.10
in [3], we see that the weighted dual graphfis not a linear tree. By the adjunction
formula, we obtain the assertion.

(i) Note that !} is a (~1)-curve in M’ with (I} - Z') =1 and [, - E}) = 0 by
Lemma 4.1 (v). SinceIA{- Z’) =1, there exists a unique irreducible compon&tof
Z' such that I@l- E))=1and [Ai -Z' — E{) = 0. Since the intersection matrix of ¢
7')"Y(g(I1)) =1, USuppz’ is negative definite, we obtain B()2+6 = (Z'+E/+21)2 < 0
and thus E/)? < —3. Sincepo € E; \ Sing(Suppz), we haveE/ = E;. By noting that
(IAi- Ej) = 0, we obtain the assertion.

(iv) By noting (iii), we obtain the assertions.

(v) Let L be a line inP? such that ki o g)(X7) = ¥(X1) ¢ L. Then we have
Suppbi o gom')*L NSuppZ’ =¢@. By the projection formula andh(c go7')|g,: Ey =
¥(E), we also have {(ogo®)*L-Ej)m = (L -¥(E))pz = 1. Hence fo).(hogoT)*L
intersectsZ transversally at only one poinpg, which is a smooth point oZ. By
Lemma 4.1 (iii), we obtaii® — Z ~ (70).(ho go7)*L. By restricting this relation to
Z, we obtain the assertion. O

Lemma 4.3. There exists only the case where
Yy=2Y1+Y, (Y]_: line, Ys: COﬂiC) with X = Y1 N Yy = {Xq].

In this case one has that Y=1;, ¥ (H) = ¥(E) and H|x = 2Y; + Y2 + E. Moreover
one has that (¥2) # 9(E), g(Y2)+9(E) = h*(¥(E)) and Y2 = g(Y2) = ¥(E) = g(E) =
E = PL

Proof. By Proposition 2.15, Lemma 4.1 (v) and Lemma 4.2 (igré exist the
following four possibilities:
(1) Y =4Y; (Y1: line) with x =xN Yy = {X1}.
(2) Y =3Y1+Y2 (Y1, Y2: line) with x =x N (Y1 \ Y2) = {X1}.
(3) Yy=2Y1+Y, (Y]_: line, Ys: COﬂiC) with X =Y NY, = {X1}.
(4) Y =Y1+Y, (Y1: line, Yo: cuspidal cubic) withx =Y, NY, = SingYs = {X}.
For each case, we note th¥ =1;, X7 € Y; andY; = P! for anyi. By noting the
position of x; in Y and thaty/|x is a generically finite morphism of degree two, we
obtain (H) = ¥(E). First we consider the case (3). In this case, we obtdjg =
2Y;1 +Y,+E sincey(H) = ¥/(E). By noting Lemma 4.1 (vi) and that|g: E = v (E),
we have thag(Y2) # 9(E), 9(Y2)+9(E) =h*(¥(E)) andY> = g(Y2) = ¥/(E) = g(E) =
E = P! Next we show that the cases (1), (2) and (4) do not occur.

(1) Assume that the case (1) occurs. SigdeH) =¥ (E), we obtainH [¢ = 4Y 1+
2E. By Lemma 4.1 (iii), there exists an effective divisBr of M such that Supp =
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SuppZ andT" — Z ~ 4Y, + D. From this, we obtain D - E)=(3Z - E) for each
irreducible componeng; of Z. Since the intersection matrix of Sugp= 7 %(x1) is
negative definite, we hav® = 3Z and thusl™ ~ 4Y, +4Z. In particular, we have
0z(4Z) = Oz(—4p1). By Lemma 4.2 (v), we also hav®z(4(po — p1)) = Oz. By
Lemma 2.6 (iv), we obtaimpy = p;. This is a contradiction.

(2) Assume that the case (2) occurs. Sing€H) = ¥ (E), we obtainH|yx =
3Y: +Y, + E. By Lemma 4.1 (iii), there exists an effective divisBr of M such that
SuppD = SuppZ and['—Z ~ 3Y;+Y,+D. From this, we obtain@-E;) = (2Z - E;) for
each irreducible componef®; of Z. Since the intersection matrix of Sup= 7 ~1(xy)
is negative definite, we hav® = 2Z and thusl’ ~ 3Y; + Y, + 3Z. In particular, we
have 0z(3Z) = Oz(—3p1). By Lemma 4.2 (v), we havéz(3(po — p1)) = Oz. By
Lemma 2.6 (iv), we obtairpy = p;. This is a contradiction.

(4) Assume that the case (4) occurs. Note thatind Y, meet at only one point
X1 transversally. In particularY, is smooth. By using ) 'mg g = Ow(=2") and
Lemma 3 in [10], we obtain¥(;-Z’) = 1. On the other hand, we obtailfy( Z’) = 0, 2
by Lemma 2.3 (ii). This is a contradiction. ]

Lemma 4.4. One obtains the following
() Y, is a(—1)curve in M with(Yo-Z)=1, (Y1-Y2)=0and p ¢ Ya.
(i) Y>N SuppZ is a smooth point of Zwhich is denoted by » and B # po, pi.
(i) Y U E is a simple normal crossing divisor of twe-1)-curvesY;, Y, one (—3)-
curve B and eight(—2)-curves whose weighted dual graph is not a linear tree
(iv) I' ~ 2Y1 + Y, + 3Z. In particular, Oz(3Z) = Oz(—2p; — po).
(V) Oz(3po —2p1 — p2) = Oz. In particular, p; € E; \ Sing(SuppZ).

Proof. (i) Note that each pair of;, Y> and E meet transversally at only one
point X; and that the blowing-up morphism & of X factors7’ by Lemma 4.1 (iv)
and Proposition 11.7.14 in [5]. From these, we ha¥ (Y5) = (Y] - E}) = (Y3 E}) = 0.
Thus we obtain the assertion.

(i) By using (i), we obtain the assertions.

(i) By (i), (i) and Lemma 4.2 (ii), (iii), we obtain the asstion.

(iv) Note thatHlx = 2Y; + Y, + E. By Lemma 4.1 (iii), there exists an effective
divisor D of M such that SupP = SuppZ and " — Z ~ 2Y; + Y, + D. From this, we
have O -E;j) =(2Z-E;) for each irreducible componeft;, of Z. Since the intersection
matrix of SuppZ = = ~1(x1) is negative definite, we obtaiB = 2Z and thusl® ~ 2Y; +
Y, +3Z. In particular, we obtair0z(3Z) = Oz(—2p1 — po).

(v) By (iv) and Lemma 4.2 (v), we hav®z(3p;—2p1— p2) = Oz and in partic-
ular deg0z(3pp —2p1 — p2) =degOz = (0,..., 0). By noting (ii) and thatpg, p; € E;,
we obtainp, € E; \ Sing(Suppz). ]
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Fig. 15.
Proposition 4.5. There exists only the case where
Y=2Y1+Y, (Y1: line, Y2 conig with x =Y; NYs = {X;}.
Moreovey the weighted dual graph of U E is of type(XXI) in Theorem 1.

Proof. We have already obtained the first assertion. Now vewepthe second
assertion. Let’?;, E* and E* be the proper transforms of,, Ei and E by the con-
traction morphism ofY, respectively. By Lemma 4.2 (iv) and Lemma 4.4 (ii), (iii),
\?;‘ U E* is a boundary of a smooth compactification @ which is a simple nor-
mal crossing divisor of one—(l)-curve\?g‘ and nine £2)-curves. By Lemma 2.9 and
p2 € E; \ Sing(Suppz), the weighted dual graph 0?5" U E* is given as in Fig. 15.
Since p; € E; \ Sing(SuppZ) and p; # p2, we obtain the assertion. ]

Thus we complete the proof of Theorem 1 for the c@$e= —1.

5. Proof of Theorems 2 and 3

In this section, we shall prove Theorems 2 and 3. We use the satation as
that in the previous sections. For each weighted dual greipﬁ O E of type (XV)
through (XXI) in Theorem 1, we know the shape of the divi$ow (\?U E) by noting
that (- Yi)m = (T - Y;)x = degY; and (- E)y = 0. By contracting suitable<{1)-curves
in Y U E repeatedly, we can obtai? or P! x P! as a compactification of2. Let
T=T110---01y: My =M — - .. — Mg be the composite of blowing-downs M, := P2
or P x P!, where 10< N < 11. Conversely, we obtaiM by applying blowing-ups of
Mg on t(\?u E) repeatedly. We denote bl _; the center of the blowing-ug and by
F the proper transform of Exg = Tfl(P,_l) in M for 1 <i < N. The birational map
¢ =mott: Mg---— X, which has points of indeterminacy a{Exczt), gives an
isomorphismMo\r(\?U E) = X\ Y. The commutative diagram in Fig. 16 gives a reso-
lution of indeterminacy ofp. The imageG := z,I" is an irreducible curve oMy with
SingG = r(Exct). Sincer is determined by the linear systeifi] on M, the mapg is
determined by the linear system|f‘| =|G—mgPy—myP; —- .- —mp_1Pn_1] On Mg
with m; > 1. By chasing the process of the resolution of indetermirafcy, we can
determine a basis of the four-dimensiori2ddvector space associated with|[|. Thus
we write down the map and the pair X, Y) as the image ofp concretely. Finally
we construct a tame automorphism ©f explicitly which linearizes the hypersurface
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Fig. 16.

X\Y of PP\ H=C3 Letw=(wo:wy:wp) andz=(z0:2 : 2 : z3) be homo-
geneous coordinates @ and P2 respectively. LetX, y) = ((Xo : X1), (Yo : Y1)) be a
bihomogeneous coordinate Bf x PL.

5.1. The types (XV) and (XVI). For each type, there exists a composite
T10---0711: Mi1=M — - .. = Mo = P? of blowing-downs toP? such that Exa is
contained inY U E. Let L be the imager(Y U E), which is a line inP?, andL the
proper transform oL in M. We note thatr(Exct) = {Po} andYUE =LU (U, F),
whose weighted dual graph is given as in Fig. 17(XV) or (X\By the shape of" U
(YUE) andI"'2 = 4, we see thaG is a plane sextic curve with Sifg=G N L = {Py}
and thate is determined by the linear systel®L — 2Py — 2P; — 2P, — 2P; — 2P, —
2Ps — 2Ps — P; — Pg — Py — Pyg|, whose base locus consists of only one pdt We
may assume that = {w, =0} and P, =(0:1:0). Then we have the next proposition
by computing directly.

Proposition 5.1. One obtains the following
() The map¢ is given up to automorphisms dP? and P3, as follows

Zp = wowg
2= fa(w)wj
2o = wiw; + { f1(w) + Aqwow}{ f1(w) + Aowow?)
Z3 = ’l,l)é3
with fi(w) = fi(wo, w1, wp) = w3 + w?w, and A4, A, € C, wherei; = 1, for the type
(XV) and A1 # X, for the type(XVI).
(i) The pair (X, Y) is given up to automorphisms df3, as follows
X: (z2z3+aZ3 + Bzozs + y22)? + 2025+ 2223 =0
Y:23=(aZ5+ B2z +vZ) =0

with o, B, ¥ € C and @ # 0, where g2 — 4ay = 0 for the type(XV) and 2 —4ay #0
for the type(XVI).
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(iii) For each typethere exists a tame automorphism@t which transforms the hyper-
surface X\'Y onto a coordinate hyperplane

5.2. The types (XVII) and (XVIII). For each type, there exists a composite
T=10---0T10. Mig=M — - .- = Mg = P! x P! of blowing-downs toP! x P! such
that Excr is contained inY UE. Let C;UC, be the imager(\?u E), which is a union
of fibers of the two standard projections Bt x P!, andC, UC, the proper transform
of CLUC, in M. We note thatr(Exct) = {Po, Ps} and Y UE =C,UC,U (U2 F),
whose weighted dual graph is given as in Fig. 17 (XVII) or (XY¥IBy the shape
of T U(Y UE) and'2 = 4, we see thaG is an irreducible curve of bidegree (4, 4)
with SingG = G N (CyL U Cy) = {Py, Ps} and thate is determined by the linear system
[(4C1+4C5) — (2Py+ 2Py + 2P, + P3+ Py) — (2Ps + 2Ps + 2P + Pg + Pg)|, whose base locus
consists of two point$; and Ps. We may assume th&; = {y; =0}, C, = {x; = 0},
Po=(0:1),(1:0)) andPs = ((1:0), (0:1)). Then we have the next proposition by
computing directly.

Proposition 5.2. One obtains the following
() The map¢ is given up to automorphisms dP! x P! and P3, as follows

20 = XoX3YoYs
71 = fa(X, y)X2y?
2o = AaXtYoYs + { fa(X, ¥) + AXoXaYoya}{ f2(X, y) + AaXoX1YoYi)

_ 4 b
Z3=X1Yp

with fo(X, y) = fa(Xo, X1, Yo, Y1) = XY + XoX1YZ + X2Yoy1, A1, A2, A3 € C and A3 # O,
where (A1 — 12)?{(A1 — A2)? + 4A3} = O for the type(XVII) and (A1 — A2)?{(A1 — A2)% +
4).3} # 0 for the type(XVIII).

(i) The pair (X, Y) is given up to automorphisms df3, as follows

X: (2223 + aZg + P2ozs + y25)* — (2023 + 25)° + 2123 = 0

Y:z3=(@Z3+prons+yZ)? — 24 =0

with , B, y € C and « # 0, where {82 — 4a(y — 1)}{B% — 4a(y + 1)} = 0 for the type
(XVI) and {82 — 4a(y — 1)}{B% — 4a(y + 1)} # O for the type(XVIII).

(iii) For each typethere exists a tame automorphism@f which transforms the hyper-
surface X\'Y onto a coordinate hyperplane

5.3. The types (XIX) and (XX). For each type, there exists a composite
T10---01711: M;1 =M — ... — Mg = P? of blowing-downs toP? such that Exa
is contained inY U E. Let L be the imager(Y U E), which is a line inP2, and
L the proper transform of. in M. We note thatr(Exct) = {P, P;} andY U E =
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LU (U F), whose weighted dual graph is given as in Fig. 17 (XIX) or (XBy
the shape off’ U (Y U E) and I'2 = 4, we see thaG is a plane sextic curve with
SingG =G NL ={Py, P;} and thaty is determined by the linear systei®L — (2P, +
2P + 2P, + 2P3 + 2P, + Ps + Pg) — (2P7 + 2Pg + Py + Pyg)|, whose base locus consists
of two points Py and P;. We may assume thdt = {w, =0}, P,=(0:1:0) and
P;=(1:0:0). Then we have the next proposition by computingatly.

Proposition 5.3. One obtains the following
() The map¢ is given up to automorphisms dP? and P3, as follows
Zp = wowg
7 = fa(w)wj

2o = wiwy + wywj + { fa(w) + Aawow3}{ fa(w) + Aawow3}
73 = wg

with fg(w) = f3(U)o, w1, w2) = w%wl + w%wz +A3w1w§ and Aq, A2, A3 € C, where ()\.1 —

2)?{(A1 — A2)%? — 4} = 0 for the type(XIX) and (A1 — A2)%{(A1 — A2)? — 4} # O for the

type (XX).

(i) The pair (X, Y) is given up to automorphisms df, as follows

X: (zazz+ a2+ Bzozy + yZ2)? — i + 205 + 8225 =0

Y:z3= (@5 + Bz +yZ)> -2 =0

with a, 8, ¥, 8 € C anda # 0, where {? — 4a(y — 1)}{B% — 4a(y + 1)} = O for the type
(XIX) and {82 — 4a(y — 1)}{B? — 4a(y + 1)} # 0 for the type(XX).

(iii)y For each typethere exists a tame automorphism@t which transforms the hyper-
surface X\ Y onto a coordinate hyperplane

5.4. The type (XXI). For this type, there exists a composite= 73 0 --- o
T10: Mg = M — ... — Mg = P? of blowing-downs toP? such that Exa is con-
tained inY U E. Let L be the imager(Y U E), which is a line inP?, and L the
proper transform ofL in M. We note thatr(Exct) = {Py}, Fo = Y2, Fio = Y: and
YUE =LU (U F) whose weighted dual graph is given as in Fig. 17 (XXI).
By the shape ofi" U (Y U E) and I'2 = 4, we see thaG is a plane curve of de-
gree nine with Sings = G N L = {Py} and that¢ is determined by the linear system
9L — 3Py — 3P, — 3P, — 3P; — 3P; — 3Ps — 3P — 3P; — 2Pg — Py|, whose base locus
consists of only one poinP;. We may assume thdt = {w, =0} and P, =(0: 1: 0).
Then we have the next proposition by computing directly.
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Proposition 5.4. One obtains the following
(i) The map¢ is given up to automorphisms dP? and P3, as follows

20 = fa(w)w§
Z1 = wowg + f4(w)2wg
3
2, = wiwg — fu(w)®+ > fa(w){wow3 + fa(w)?}
3 = U)g
with fg(w) = fa(wo, wy, wy) = wg + wfwz + Awowg and A € C.

(i) The pair (X, Y) is given up to automorphisms dP3, as follows

3
X: B2+ (220 + 3202123)20 — 2325 — Zzng +2023+ 8(z1z3 + 293 =0

3
Y:z3= zé(zozz— ézf) =0

with § € C.
(i) There exists a tame automorphism@f which transforms the hypersurface \X
onto a coordinate hyperplane

REMARK. In (ii), the hypersurfaceX \ Y is expressed as follows:
3
0=2+ (223 +32021)2, — Z — Zzng +20+8(z1 +23)
3 2
=<b+£+§ha>—%h+%f+m+ﬂh+%)
where @, z1, ) is a coordinate ofC3 =P3\ H.

Thus we complete the proof of Theorems 2 and 3 for the types) (¥vough
(XXI) in Theorem 1.
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L Fy
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Fy, Fs F; F, C, C, F; Fs Fy
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