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REMARK ON THE RANK OF ELLIPTIC CURVES
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Abstract
A covariant functor on the elliptic curves with complex multiplication is

constructed. The functor takes values in the noncommutative tori with real multi-
plication. A conjecture on the rank of an elliptic curve is formulated.

Introduction

A. Let 0< � < 1 be an irrational number given by the regular continued fraction

� = a0 +
1

a1 +
1

a2 + � � �
= [a0, a1, a2, : : : ].

Consider anAF-algebra,A�, defined by the Bratteli diagram of Fig. 1, whereai in-
dicate the multiplicity of the edges of the graph. (For a definition of the AF-algebras
and their Bratteli diagrams, we refer the reader to [2], or§1.2.) For the simplicity, we
shall say thatA� is a noncommutative torus. Note that the classical definition of a non-
commutative torus is slightly different but equivalent from the standpoint of theK -theory
[3], [7], [13]. The A� is said to have real multiplication, if� is a quadratic irrationality.
Recall that the noncommutative toriA� , A� 0 are stably isomorphic wheneverA� 
K �=
A� 0 
K, whereK is theC�-algebra of the compact operators. It is known thatA� , A� 0
are stably isomorphic if and only if� 0 � � modGL(2, Z), i.e. � 0 = (a� + b)=(c� + d),
wherea, b, c, d 2 Z andad� bc = �1.

B. Let 3 = !1Z+!2Z be a lattice in the complex planeC. Recall that3 defines
an elliptic curve E(C) : y2 = 4x3 � g2x � g3 via the complex analytic mapC=3 !
E(C) given by the formulaz 7! (}(z, 3), } 0(z, 3)), whereg2 = 60

P!23� !�4, g3 =
140

P!23� !�6, 3� = 3� f0g and

}(z, 3) =
1

z2
+
X
!23�

�
1

(z� !)2
� 1!2

�
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Fig. 1. TheAF-algebraA�.
is the Weierstrass} function. We identify the elliptic curvesE(C) with the complex
tori C=3. If � = !2=!1, then E� (C), E� 0(C) are isomorphic whenever� 0 � � mod
GL(2, Z). The endomorphism ringEnd(C=3) is isomorphic either toZ or to an or-
der in the imaginary quadratic number fieldk [14]. In the second case, we say that
the elliptic curve has a complex multiplication and denote such a curve byEC M.

C. Consider the cubicE�: y2 = x(x�1)(x��), � 2 C�f0, 1g. The j -invariant of
E� is given by the formulaj (E�) = 26(�2��+1)3��2(��1)�2. To find � corresponding
to an elliptic curve with the complex multiplication, one has to solve the polynomial
equation j (EC M) = j (E�) with respect to�. Since j (EC M) is an algebraic integer,�C M 2 K, where K is an algebraic extension (of the degree at most six) of the field
Q( j (EC M)). Thus, eachEC M is isomorphic to the cubicy2 = x(x�1)(x��C M) defined
over the fieldK. The Mordell-Weil theorem says that the set of theK -rational points
of EC M is a finitely generated abelian group, whose rank we shall denote by rk(EC M).

D. Let E be a category whose objects are elliptic curves and the arrows are iso-
morphisms of the elliptic curves. Likewise, letA be a category whose objects are
noncommutative tori and the arrows are stable isomorphismsof the noncommutative
tori. Our main goals can be expressed as follows.

OBJECTIVES. (i) to construct a functor (if any)F : E ! A, which maps iso-
morphic elliptic curves to the stably isomorphic noncommutative tori; (ii) to study the
range ofF on the elliptic curves with complex multiplication and (iii) to interpret the
invariants of the stable isomorphism classes of the noncommutative tori in terms of the
arithmetic invariants of the elliptic curves.

In the course of this note, we were able to obtain an answer to (i) and (ii), while (iii)
generates a conjecture. Namely, a covariant non-injectivefunctor F : E ! A, which
maps isomorphic elliptic curves to the stably isomorphic noncommutative tori, is con-
structed (Lemma 1). It is proved thatF sends the elliptic curves with complex mul-
tiplication to the noncommutative tori with real multiplication (Theorem 1). Finally, a
conjecture on the rank of an elliptic curve with the complex multiplication is formu-
lated (§3). The functorF has been studied by Kontsevich [5] (e.g.§1.39), Manin [6],
Polishchuk [8]–[11], Polishchuk-Schwarz [12], Soibelman[15] and [16], Soibelman-
Vologodsky [17], Taylor [18] and [19] et al. Our terminologyis freely and gratefully
borrowed from the above works.
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E. The existence and properties ofF are part of a Hodge theory for the mea-
sured foliations on a closed surface. Such a theory has been developed by Hubbard
and Masur [4], who were inspired by the works of Thurston [20].We shall give in
§1 a brief account of the Hubbard-Masur-Thurston theory and the explicit formulas for
the functorF. At the heart of the construction is a diagram:

F : E
h�! R2 ��! RP1 �= A,

whereh is a bijection and� is a projection map. For the sake of brevity, letIsom(E) =fE0 2 E j E0 �= Eg be the isomorphism class of an elliptic curveE, h(Isom(E)) =�E(Z + �EZ) := mE � R be a Z-module andF(E) = A�E . A summary of our results
can be formulated as follows.

Lemma 1. Let ': E! E0 be an isogeny of the elliptic curves. Then� 0 � � mod
M2(Z), where M2(Z) is an integer matrix of the rank2. In particular, F maps the
isomorphic elliptic curves to the stably isomorphic noncommutative tori.

Theorem 1. Let E 2 Isom(EC M). Then there exists an h, such that:
(i) mE is a full module in the real quadratic number field;
(ii) mE is an invariant of the class Isom(EC M).
In particular, �E is a quadratic irrationality.

The structure of the note is as follows. In Section 1, we introduce the notation and
some preliminary facts. Lemma 1 and Theorem 1 are proved in Section 2. In Sec-
tion 3, a conjecture on the rank of an elliptic curve is formulated.

1. Preliminaries

This section contains a summary of measured foliations,AF-algebras and the func-
tor F. The reader is encouraged to consult [2] (operator algebras) and [4] (measured
foliations and Teichmüller space) for a systematic account.

1.1. Measured foliations andT(g).

A. A measured foliation,F, on a surfaceX is a partition ofX into the singular
points x1, : : : , xn of orderk1, : : : , kn and the regular leaves (1-dimensional submanifolds).
On each open coverUi of X � fx1, : : : , xng there exists a non-vanishing real-valued
closed 1-form�i such that
(i) �i = �� j on Ui \U j ;
(ii) at each xi there exists a local chart (u, v) : V ! R2 such that forz = u + i v, it
holds �i = Im(zki =2 dz) on V \Ui for some branch ofzki =2.
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The pair (Ui , �i ) is called an atlas for the measured foliationF. Finally, a measure�
is assigned to each segment (t0, t) 2 Ui , which is transverse to the leaves ofF, via the
integral�(t0, t) =

R t
t0
�i . The measure is invariant along the leaves of the foliationF,

hence the name.

B. Let S be a Riemann surface, andq 2 H0(S, �
2) a holomorphic quadratic
differential on S. The linesRe q = 0 and Imq = 0 define a pair of measured folia-
tions on R, which are transversal to each other outside the set of singular points. The
set of singular points is common to the both foliations and coincides with the zeroes
of q. The above measured foliations are said to represent the vertical and horizontal
trajectory structure ofq, respectively.

C. Let T(g) be the Teichmüller space of the topological surfaceX of genusg,
i.e. the space of complex structures onX. Consider the vector bundlep : Q! T(g)
over T(g) whose fiber above a pointS2 T(g) is the vector spaceH0(S, �
2). Given
non-zeroq 2 Q aboveS, one can consider the horizontal measured foliationFq 2 8X

of the quadratic differentialq, where8X is the space of (equivalence classes of) mea-
sured foliations onX. If f0g is the zero section ofQ, the above construction defines a
map Q�f0g !8X. For anyF 28X, let EF � Q�f0g be the fiber aboveF. In other
words, EF is a subspace of the holomorphic quadratic differentials, whose horizontal
trajectory structure coincides with the measured foliation F.

Theorem ([4]). The restriction EF ! T(g) of p to EF is a homeomorphism.

D. Let 8X be the space of measured foliations on the topological surface X. Fol-
lowing Douady and Hubbard [1], we shall consider a coordinate system on8X, suit-
able for the construction of the functorF. For clarity, let us make a generic assump-
tion thatq 2 H0(S,�
2) is a holomorphic quadratic differential with the simple zeroes
only. We wish to construct a Riemann surface of

p
q, which is a double cover ofS

with the ramification over the zeroes ofq. Such a surface, denoted byS̃, is unique and
has an advantage of carrying a holomorphic differential!, such that!2 = q. Denote
by � : S̃! S a covering projection. The vector spaceH0(S̃, �) splits into the direct
sum H0

even(S̃,�)� H0
odd(S̃,�) in view of the involution��1 of S̃, and the vector space

H0(S,�
2) �= H0
odd(S̃,�). Let Hodd

1 (S̃) be an odd part of the homology of̃S relatively
the zeroes ofq. Consider a pairingHodd

1 (S̃) � H0(S, �
2)! C, defined by the inte-
gration ( , q) 7! R !. Take the associated map q : H0(S, �
2)! Hom(Hodd

1 (S̃); C)
and lethq = Re q.

Theorem ([1]). The map hq: H0(S,�
2)! Hom(Hodd
1 (S̃);R) is anR-isomorphism.
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Since eachF 2 8X is the vertical foliationRe q= 0 for a q 2 H0(S, �
2), the
theorem implies that8X

�= Hom(Hodd
1 (S̃); R). By the formulas for the relative homo-

logy:

Hodd
1 (S̃) �= Zn, where n =

�
6g� 6, if g � 2,
2, if g = 1.

Thus, if f1, : : : , ng is a basis inHodd
1 (S̃), the reals�i =

Ri
Re! are natural coordinates

in the space8X [1].

1.2. AF-algebras.

A. The C�-algebra is an algebraA over C with a norma 7! kak and an involu-
tion a 7! a� such that it is complete with respect to the norm andkabk � kakkbk andka�ak = ka2k for all a, b 2 A. If A is commutative, then the Gelfand theorem says that
A is isomorphic to theC�-algebraC0(X) of continuous complex-valued functions on
a locally compact Hausdorff spaceX. For otherwise,A represents a noncommutative
topological spaceX.

B. Let A be aC�-algebra deemed as a noncommutative topological space. One
can ask when two such topological spacesA, A0 are homeomorphic? To answer the
question, let us recall the topologicalK -theory. If X is a (commutative) topological
space, denote byVC(X) an abelian monoid consisting of the isomorphism classes ofthe
complex vector bundles overX endowed with the Whitney sum. The abelian monoid
VC(X) can be made to an abelian group,K (X), using the Grothendieck completion.
The covariant functorF : X ! K (X) is known to map the homeomorphic topologi-
cal spacesX, X0 to the isomorphic abelian groupsK (X), K (X0). Let now A, A0 be the
C�-algebras. If one wishes to define a homeomorphism between the noncommutative
topological spacesA and A0, it will suffice to define an isomorphism between the abelian
monoidsVC(A) and VC(A0) as suggested by the topologicalK -theory. The rôle of the
complex vector bundle of degreen over theC�-algebra A is played by aC�-algebra
Mn(A) = A 
 Mn, i.e. the matrix algebra with the entries inA. The abelian monoid
VC(A) =

S1
n=1Mn(A) replaces the monoidVC(X) of the topologicalK -theory. Therefore,

the noncommutative topological spacesA, A0 are homeomorphic, ifVC(A) �= VC(A0) are
isomorphic abelian monoids. The latter equivalence is called astable isomorphismof the
C�-algebrasA and A0 and is formally written asA
K �= A0 
K, whereK =

S1
n=1 Mn

is the C�-algebra of compact operators. Roughly speaking, the stable isomorphism be-
tween theC�-algebrasA and A0 means thatA and A0 are homeomorphic as the non-
commutative topological spaces.

C. Let A be a unitalC�-algebra andV(A) be the union (overn) of projections in
the n�n matrix C�-algebra with entries inA. Projectionsp,q 2 V(A) are equivalent if
there exists a partial isometryu such thatp = u�u and q = uu�. The equivalence class
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of projection p is denoted by [p]. The equivalence classes of orthogonal projections
can be made to a semigroup by putting [p]+[q] = [ p+q]. The Grothendieck completion
of this semigroup to an abelian group is called aK0-group of algebraA. Functor A!
K0(A) maps a category of unitalC�-algebras into the category of abelian groups so
that projections in algebraA correspond to a positive coneK +

0 � K0(A) and the unit
element 12 A corresponds to an order unitu 2 K0(A). The ordered abelian group
(K0, K +

0 , u) with an order unit is called adimension group.

D. An AF-algebra (approximately finiteC�-algebra) is defined to be the norm
closure of an ascending sequence of the finite dimensionalC�-algebrasMn’s, where
Mn is the C�-algebra of then � n matrices with the entries inC. Here the index
n = (n1, : : : , nk) represents a semi-simple matrix algebraMn = Mn1 � � � � � Mnk . The
ascending sequence mentioned above can be written as

M1
'1�! M2

'2�! � � � ,
where Mi are the finite dimensionalC�-algebras and'i the homomorphisms between
such algebras. The set-theoretic limitA = lim Mn has a natural algebraic structure given
by the formulaam + bk ! a + b; heream ! a, bk ! b for the sequencesam 2 Mm,
bk 2 Mk. The homomorphisms'i can be arranged into a graph as follows. LetMi =
Mi1�� � ��Mik and Mi 0 = Mi 01�� � ��Mi 0k be the semi-simpleC�-algebras and'i : Mi !
Mi 0 the homomorphism. One has the two sets of verticesVi1, : : : , Vik and Vi 01, : : : , Vi 0k
joined by thears edges, whenever the summandMi r containsars copies of the summand
Mi 0s under the embedding'i . As i varies, one obtains an infinite graph called aBratteli
diagramof the AF-algebra.

E. By A� we denote anAF-algebra given by the Bratteli diagram of Fig. 1. It
is known thatK0(A� ) �= Z2 and K +

0 (A� ) = f(p, q) 2 Z2 j p + �q � 0g. The AF-algebras
A� , A� 0 are stably isomorphic, i.e.A� 
K �= A� 0 
K, if and only if Z + �Z = Z + � 0Z
as the subsets ofR.

1.3. The functor F.

A. The Hubbard-Masur theory (§1.1) has been treated in a general setting so far.
From now on, we switch to the caseg = 1 (complex torus). Notice thatS = S̃�= T2,
since every holomorphic quadratic differentialq on the complex torus is the square of
a holomorphic differential!.



ON THE RANK OF ELLIPTIC CURVES 521

Fig. 2. The measured foliationF on T2 = R2=Z2.

B. Let � = Re! be a 1-form defined by!. Since! is holomorphic,� is a closed
1-form on T2. The R-isomorphismhq : H0(S,�)! Hom(H1(T2); R), as explained, is
given by the formulas: 8>>><

>>>:
�1 =

Z
1

�,

�2 =
Z
2

�,

where f1, 2g is a basis in the first homology group ofT2. We further assume that,
after a proper choice of the basis,�1, �2 are positive real numbers.

C. Denote by8T2 the space of measured foliations onT2. EachF 2 8T2 is
(measure) equivalent to a foliation by a family of the parallel lines of a slope� and
the invariant (transverse) measure� (Fig. 2).

We use the notationF�� for such a foliation. There exists a simple relationship
between the reals (�1, �2) and (� , �). Indeed, the closed 1-form� = Const defines a
measured foliation,F�� , so that

8>>><
>>>:
�1 =

Z
1

� =
Z 1

0
� dx

�2 =
Z
2

� =
Z 1

0
� dy

, where
dy

dx
= � .

By the integration: 8>>><
>>>:
�1 =

Z 1

0
� dx = �,

�2 =
Z 1

0
�� dx = �� .

Thus, one gets� = �1 and � = �2=�1.

D. Recall that the Hubbard-Masur theory (§1.1.C) establishes a homeomorphism
h: TS(1)!8T2, whereTS(1)�= H = f�: Im� > 0g is the Teichmüller space of the torus.
Denote by!N an invariant (Néron) differential of the complex torusC=(!1Z + !2Z).
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It is well known that!1 =
R1
!N and!2 =

R2
!N , where1 and 2 are the meridians

of the torus. Let� be a projection acting by the formula (� , �) 7! � . An explicit
formula for the functorF : E ! A is given by the composition:F = � Æh, whereh is
the Hubbard-Masur homeomorphism. In other words, one gets the following (explicit)
correspondence between the complex and noncommutative tori:

E� = E�R2
!N

�Æ�R1
!N

� h7! F

R1
��R2
��Æ�R1

�� h7! A�R2
��Æ�R1

�� = A� ,
where E� = C=(Z + �Z).

2. Proof

2.1. Proof of Lemma 1. Let ' : E� ! E� 0 be an isogeny of the elliptic curves.
The action of' on the homology basisf1, 2g of T2 is given by the formulas:

(1)

� 01 = a1 + b2 02 = c1 + d2
, where

�
a b
c d

� 2 M2(Z).

Recall that the functorF : E ! A is given by the formula:

(2) � =

R2
!NR1
!N
7! � =

R2
�R1
� ,

where!N is an invariant differential onE� and � = Re! is a closed 1-form onT2.
(i) From the left-hand side of (2), one obtains

(3)

8>>><
>>>:
!01 =

Z
 01 !N =

Z
a1+b2

!N = a
Z
1

!N + b
Z
2

!N = a!1 + b!2,

!02 =
Z
 02 !N =

Z
c1+d2

!N = c
Z
1

!N + d
Z
2

!N = c!1 + d!2,

and therefore� 0 =
R 02 !N

ÆR 01 !N = (c + d� )=(a + b� ).

(ii) From the right-hand side of (2), one obtains

(4)

8>>><
>>>:
�01 =

Z
 01 � =

Z
a1+b2

� = a
Z
1

� + b
Z
2

� = a�1 + b�2,

�02 =
Z
 02 � =

Z
c1+d2

� = c
Z
1

� + d
Z
2

� = c�1 + d�2,

and therefore� 0 =
R 02 �ÆR 01 � = (c + d�)=(a + b�). Comparing (i) and (ii), one gets

the conclusion of the first part of Lemma 1. To prove the secondpart, recall that
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the invertible isogeny is an isomorphism of the elliptic curves. In this case
�

a b
c d

� 2
GL2(Z) and � 0 = � modGL2(Z). ThereforeF sends the isomorphic elliptic curves to
the stably isomorphic noncommutative tori. The second partof Lemma 1 is proved.

It follows from the proof thatF : E ! A is a covariant functor. Indeed,F pre-
serves the morphisms and does not reverse the arrows:F('1'2) = '1'2 = F('1)F('2)
for any pair of the isogenies'1, '2 2 Mor(E).

2.2. Proof of Theorem 1. The following lemma will be helpful.

Lemma 2. Let m � R be a module of the rank2, i.e. m = Z�1 + Z�2, where� = �2=�1 =2 Q. If m0 � m is a submodule of the rank2, then m0 = km, where either:
(i) k 2 Z� f0g and � 2 R�Q, or
(ii) k and � are the irrational numbers of a quadratic number field.

Proof. Any rank 2 submodule ofm can be written asm0 = �01Z + �02Z, where

(5)

��01 = a�1 + b�2�02 = c�1 + d�2
and

�
a b
c d

� 2 M2(Z).

(i) Let us assume thatb 6= 0. Let1 = (a + d)2� 4(ad� bc) and10 = (a + d)2� 4bc.
We shall consider the following cases.

CASE 1. 1 > 0 and1 6= m2, m 2 Z�f0g. The real numberk can be determined
from the equations:

(6)

��01 = k�1 = a�1 + b�2,�02 = k�2 = c�1 + d�2.

Since � = �2=�1, one gets the equation� = (c� + d)=(a� + b) by taking a ratio of the
two equations above. A quadratic equation for� writes asb�2 + (a� d)� � c = 0. The
discriminant of the equation coincides with1 and therefore there exist the real roots�1,2 = (a� d�p1)=(2c). Moreover, k = a + b� = a + (b=(2c))(a� d�p1). Since1
is not the square of an integer,k and � are the irrationalities of the quadratic number
field Q(

p1).
CASE 2. 1 > 0 and1 = m2, m 2 Z� f0g. Note that� = (a� d� jmj)=(2c) is a

rational number. Since� does not satisfy the rank assumption of the lemma, the case
should be omitted.

CASE 3. 1 = 0. The quadratic equation has a double root� = (a� d)=(2c) 2 Q.
This case leads to a module of the rank 1, which is contrary to an assumption of the
lemma.
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CASE 4. 1 < 0 and 10 6= m2, m 2 Z � f0g. Let us define a new basisf�001, �002g
in m0 so that

(7)

��001 = �01,�002 = ��02.

Then:

(8)

��001 = a�1 + b�2,�002 = �c�1� d�2,

and � = �002=�001 = (�c� d�)=(a + b�). The quadratic equation for� has the formb�2 +
(a + d)� + c = 0, whose discriminant is10 = (a + d)2 � 4bc. Let us show that10 > 0.
Indeed,1 = (a+d)2�4(ad�bc) < 0 and the evident inequality�(a�d)2 � 0 have the
same sign, and we shall add them up. After an obvious elimination, one getsbc< 0.
Therefore10 is a sum of the two positive integers, which is always a positive integer.
Thus, there exist the real roots�1,2 = (�a � d � p10 )=(2b). Moreover, k = a + b� =
(1=2)(a�d�p10 ). Since10 is not the square of an integer,k and� are the irrational
numbers in the quadratic fieldQ(

p10 ).
CASE 5. 1 < 0 and 10 = m2, m 2 Z � f0g. Note that� = (�a � d � jmj)=(2b)

is a rational number. Since� does not satisfy the rank assumption of the lemma, the
case should be omitted.

(ii) Assume thatb = 0.
CASE 1. a�d 6= 0. The quadratic equation for� degenerates to a linear equation

(a�d)� +c = 0. The root� = c=(d�a) 2 Q does not satisfy the rank assumption again,
and we omit the case.

CASE 2. a = d and c 6= 0. It is easy to see, that the set of the solutions for� is
an empty set.

CASE 3. a = d and c= 0. Finally, in this case all coefficients of the quadratic
equation vanish, so that any� 2 R�Q is a solution. Note that in the view of (6),k =
a = d 2 Z. Thus, one gets case (i) of the lemma. Since there are no otherpossibilities
left, Lemma 2 is proved.

Lemma 3. Let E be an elliptic curve with a complex multiplication and hthe
Hubbard-Masur map, which acts by the formulas of§1.3.D. Consider a module
h(Isom(E)) = �E(Z + �EZ) := mE. Then:
(i) �E is a quadratic irrationality,
(ii) a�E 2 Q (up to a choice of h).

Proof. (i) Since E has a complex multiplication,End(E) > Z. In particular,
there exists a nontrivial endomorphism', i.e. an endomorphism which is not the mul-
tiplication by k 2 Z. By Lemma 1,' defines a submodulem0

E of the rank 2 of the
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module mE. By Lemma 2, m0
E = kmE for a k 2 R. Since ' is a nontrivial endo-

morphism, k =2 Z. Thus, the option (i) of Lemma 2 is excluded. Therefore, by the
item (ii) of Lemma 2,�E is a quadratic irrationality.

(ii) Recall that EF � Q � f0g is the space of holomorphic differentials on the
complex torus, whose horizontal trajectory structure is equivalent to given measured
foliation F = F

�� . We shall varyF�� , thus varying the Hubbard-Masur homeomorphism
h = h(F�� ) : EF ! T(1). Namely, consider a 1-parameter continuous family of such
mapsh = h�, where� = Const and� 2 R. Recall that�E = �1 =

R1
�, where� = Re!

and ! 2 EF . The family h� generates a family!� = h�1� (C), where C is a fixed

point in T(1). Denote by�� and ��1 the corresponding families of the closed 1-forms
and their periods, respectively. By the continuity,��1 takes on a rational value for a� = �0. (Actually, every neighborhood of�0 contains such a�0.) Thus, �E 2 Q for
the Hubbard-Masur homeomorphismh = h�0 .

Lemma 3 implies (i) of Theorem 1. To prove (ii), notice that when E1, E2 2
Isom(EC M), the respective modulesm1 = m2. It follows from the fact that an iso-
morphism between the elliptic curves corresponds to a change of basis in the module
m (Lemma 1). Theorem 1 is proved.

3. Arithmetic complexity of the noncommutative tori

Let A� be the noncommutative torus with a real multiplication. Since � is a qua-
dratic irrationality, the regular continued fraction of� is eventually periodic:

(9) � = [a0, a1, : : : , ak+1, : : : , ak+p ],

whereak+1, : : : , ak+p is the minimal period of the continued fraction.

DEFINITION 1. Let us call the numberc(A� ) = p an arithmetic complexity of the
noncommutative torus with real multiplication.

Lemma 4. The number c(A� ) is an invariant of the stable isomorphism class of
the noncommutative torusA�.

Proof. It follows from Lemma 1 thatA� , A� 0 are stably isomorphic if and only if� 0 = � modGL(2, Z). By the main property of the regular continued fractions, the ex-
pansion of� and� 0 must coincide, except possibly a finite number of the entries. Since
the continued fraction of� is eventually periodic, so must be the continued fraction of� 0. Moreover, the minimal periods of� , � 0 must coincide as well as their lengths. Thus
c(A� 0) = c(A� ).
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EXAMPLE 1. Let us find an arithmetic complexity of the noncommutativetorus
A3

p
6. The continued fraction expansion of 3

p
6 =
p

54 is [7;2, 1, 6, 1, 2, 14]. Since
the continued fraction is six-periodic, we havec(A3

p
6) = 6.

It is very useful to think of the normalized period (1,ak+2=ak+1, : : : , ak+p=ak+1) of A� as
coordinates of the ‘rational points’ of the noncommutativetorus, taken up to a cyclic
permutation. In the sense, such points are the generators ofan abelian group of all
rational points ofA� modulo the points of a finite order.

Conjecture 1. c(A�EC M
) = rk(EC M) + 1.
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