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Abstract
In this paper we present several discreteness criterion fora non-elementary group

G in SL(2, C) by using a test map which need not to be inG.

1. Introduction

The discreteness of Möbius groups is a fundamental problem, which have been
discussed by many authors. In 1976, Jørgensen established the following discreteness
criterion by using the well-known Jørgensen’s inequality [5]:

Theorem 1.1. A non-elementary subgroup G of Möbius transformations acting

on R
2

is discrete if and only if for each f and g in G the grouph f , gi is discrete.

This important result has become standard in literature andit shows that the dis-
creteness of a non-elementary Möbius group depends on the information of all its rank
two subgroups. There are many further discussions in this direction. Gilman [3] and
Isochenko [4] showed that the discreteness of all two-generator subgroups, where each
generator is loxodromic, is enough to secure the discreteness of the group. This is also
a direct consequence of Rosenberger’s result [6] about minimal generating system of a
non-elementary Möbius group.

In 2002, Tukia and Wang [9] generalized Theorem 1.1 by considering elliptic el-
ements as follows.

Theorem 1.2. Let G be a non-elementary subgroup of SL(2, C). If G contains
an elliptic element of order at least3, then G is discrete if and only if each non-
elementary subgroups generated by two elliptic elements ofG is discrete.

They also asked in [9] that for a non-elementary groupG containing parabolic and
elliptic elements whetherG is discrete if every subgroup ofG generated by a parabolic
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and an elliptic is discrete. We gave a positive answer to thisquestion and proved the
following three theorems in [10].

Theorem 1.4. Let G be a non-elementary subgroup of SL(2, C) containing par-
abolic and elliptic elements. Then G is discrete if and only if for each parabolic f
and elliptic g in G the subgrouph f , gi is discrete.

Theorem 1.5. Let G be a non-elementary subgroup of SL(2, C) containing par-
abolic (resp. elliptic) elements. Then G is discrete if and only if for each loxodromic
f and parabolic(resp. elliptic) g in G the subgrouph f , gi is discrete.

Theorem 1.6. Let G be a non-elementary subgroup of SL(2, C) containing par-
abolic elements. Then G is discrete if and only if for each pair of parabolic elements
f and g in G the subgrouph f , gi is discrete.

Recently, Chen Min in [2] proposed to use a fixed Möbius transformation as a test
map to test the discreteness of a given Möbius group. More precisely, letG be a non-
elementary group and letf be a non-trivial Möbius map. If each group generated by
f and an element inG is discrete, thenG is discrete. A novelty of this discreteness
criteria is that the test mapf need not be inG, which suggests that the discreteness is
not a totally interior affair of the involved group. Following the idea of Theorems 1.2
to 1.6, it is natural to ask whether one can generalize these results by using test maps.
There are altogether 9 cases; see the next section for details.

2. Main results

We begin with some elementary notations about Möbius groups.The reader is
referred to [1] for more information.

Denote by Möb(2) the group of all (orientation-preserving) Möbius transformations

of the extended complex planeC = R2 [ f1g. Recall that any matrixA =
�

a b
c d

�
in

SL(2, C) induces a Möbius transformationfA(z) = (az + b)=(cz + d). Then Möb(2) is
isomorphic toSL(2, C)=f�I g, where I is the identity matrix.

Let tr2( fA) = tr2(A) where tr(A) denotes the trace ofA. Non-trivial elements of
SL(2, C) or equivalently Möb(2) can be classified by their traces: if tr2( f ) is real with
0� tr2( f ) < 4, f is called elliptic; if tr2( f ) = 4, f is called parabolic; if tr2( f ) is real
and tr2( f ) > 4, f is called hyperbolic and if tr2( f ) is not in the interval [0, +1), f
is termed strictly loxodromic. We use the term loxodromic toinclude both hyperbolic
and strictly loxodromic elements. It is easy to see tr2( fn)! tr2( f ) when fn converges
to f in SL(2, C). Thus we have

Lemma 2.1. (a) The set consisting of all loxodromic(resp. strictly loxodromic)
elements is open in SL(2, C);
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(b) The set consisting of all hyperbolic(resp. elliptic) elements is open in SL(2, R).

We also need the following lemma, which is a direct consequence of the well-
known proposition in [7,§1].

Lemma 2.2. Let G be a non-elementary and non-discrete subgroup of SL(2, C).
After replacing G by its subgroups of index2 if necessary, G is (a) dense in SL(2, C),
or (b) conjugate to a dense group of SL(2, R).

The following characterization of uniform convergence is useful for us; see [8,
p. 158].

Lemma 2.3. Let gi and g be Möbius transformations. Then gi converges uni-
formly to g if and only if gi (xi )! g(x) whenever xi is a sequence such that xi ! x.

Let G be a subgroup ofSL(2, C) and f a non-trivial element inSL(2, C). Denote
by fix( f ) the set of all fixed points off , and L(G) is the limit set ofG. Recall thatG
is discrete if the identity map is isolated inG, and G is elementary ifL(G) contains
at most two points ifG is discrete, and in addition if nox 2 L(G) is in fix(g) for each
g 2 G if G is non-discrete (cf. [8, p. 165]).

Now we can state our main result.

Theorem 2.4. Let G be a non-elementary subgroup of SL(2, C) and f a non-
trivial Möbius transformation. If for each loxodromic element g in G the grouph f , gi
is discrete, then G is discrete.

Proof. Suppose thatG is not discrete. Since the discreteness of a Möbius group
and its finite-index subgroup are equivalent, then we may assume that there is a se-
quencefgng of distinct loxodromic elements inG such thatgn ! I by Lemmas 2.1
and 2.2. By Jørgensen’s inequality we may assume that the group h f , gni is discrete
and elementary for alln. There are three cases:

CASE 1. f is loxodromic. Then f and gn share the same fixed points. Since
G is non-elementary, there is a loxodromic elementg 2 G which has distinct fixed
points from that of f . Note thatggng�1! I . Similarly, h f , ggng�1i is discrete and
elementary, and hencef and ggng�1 have the same fixed points for largen, which
means thatg either fixes or exchanges two fixed points off . This is impossible since
g is loxodromic.

CASE 2. f is parabolic. But it is known that there exist no discrete andelemen-
tary groups which contain both loxodromic and parabolic elements.

CASE 3. f is elliptic.
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Since the extended complex plane is compact, we may assume that fix(gn) = fan, bng
with an ! a and bn ! b. Chooseg in the non-elementary groupG, such that the
following holds:
(i) fix(g) \ fa, bg = ;;
(ii) fix( g) \ fix( f ) = ;.

Let ag denote the attractive fixed point ofg. By (i) and Lemma 2.3, we may
assume that bothgk(an) and gk(bn) converge toag uniformly for all n as k ! 1.
Then by (ii) we see that there exists an integerk1, such thatfgk1(an), gk1(bn) : n � 1g
lies in a neighborhoodU of ag which is disjoint with f (U ).

Becauseh f , gk1gng�k1i is discrete and elementary for largen, f either fixes or
exchangesgk1(an) and gk1(bn), which meansf (U )\U 6= ;. This is a contradiction.

Theorem 2.5. Let G be a non-elementary subgroup of SL(2, C) containing ellip-
tic elements and f a parabolic transformation. If for each elliptic element g2 G the
group h f , gi is discrete, then G is discraete.

Proof. Suppose thatG is not discrete. By Lemma 2.2 the proof can be divided
into two cases:

CASE 1. We may assume thatG is dense inSL(2, R). By Lemma 2.1, there
exists a sequencefgng of distinct elliptic elements inG such thatgn ! I . Then the
group h f , gni is discrete and elementary for largen by Jørgensen’s inequality. Thus
gn stabilizes the fixed point off . Since G is non-elementary, there isg 2 G which
has distinct fixed points from that off . Similarly, we can deduceggng�1 stabilizes
the fixed point of f for large n, which is a contradiction.

CASE 2. G is dense inSL(2, C). Normalize f such that f =
�

1 1
0 1

�
.

Note that the closure of the set of fixed points of all ellipticelements inG contains

the limit set of the non-elementary groupG. Thus we may suppose thatg =
�

a b
c d

� 2
G is elliptic, whereb 6= 0 andc 6= 0.

Construct a matrixh =

�
1 �2

p
b

1=(2pb) 0

� 2 SL(2,C). SinceG is dense inSL(2,C),

there exists a sequencefhng in G which converges toh. Then h f , hngh�1
n i is discrete

and non-elementary for largen. By computation the third entry ofhngh�1
n converges to�1=2. This contradicts Jørgensen’s inequality forh f , hngh�1

n i.
Theorem 2.6. Let G be a non-elementary subgroup of SL(2,C) containing para-

bolic elements and f a parabolic transformation. If for each parabolic element g2 G
the grouph f , gi is discrete, then G is discrete.

Proof. Suppose thatG is not discrete. Then we may assume thatG is dense
either in SL(2, R) or in SL(2, C). Here we only prove the former case; for the latter
case, the proof can use the same construction.
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Normalize such thatf =
�

1 1
0 1

�
. Note that the closure of the set comprising fixed

points of all parabolic elements inG is exactly the limit set of the non-elementary

group G. Thus we may suppose thatg =
�

a b
c d

� 2 G is parabolic withc 6= 0.

Construct a matrixh =
�

1 �m
1=m 0

� 2 SL(2, R), where m is an positive integer.

Since G is dense inSL(2, R), there exists a sequencefhng in G which converges to
h. Then h f , hngh�1

n i is discrete and non-elementary for largen. By computation the
third entry of hngh�1

n converges to�b=m2. This contradicts Jørgensen’s inequality for
large m.

Theorem 2.7. Let G be a non-elementary subgroup of SL(2, C) containing par-
abolic elements and f a loxodromic(resp. an elliptic) transformation. If for each par-
abolic element g2 G the grouph f , gi is discrete, then G is discrete.

Proof. Suppose thatG is not discrete. Then we may assume thatG is dense
either in SL(2, R) or in SL(2, C). Similarly, we only prove the former case.

Normalize such thatf =
�

r 0
0 1=r

�
. Note that the closure of the set comprising

fixed points of all parabolic elements inG is exactly the limit set of the non-elementary

groupG. Thus we may suppose thatg =
�

a b
c d

� 2 G is parabolic withb 6= 0 andc 6= 0.

Construct a matrixh =
�

1 �
0 1

� 2 SL(2, R), where� = (d � a)=(2c). Since G is

dense inSL(2, R), there exists a sequencefhng in G which converges toh. Then

hngh�1
n =

�
an bn

cn dn

�
converges to

�
a + c� �c�2 + (d � a)� + b

c �c� + d

�
.

Note thath f ,hngh�1
n i is discrete and non-elementary for largen. Then by Jørgensen’s

inequality we have

jbncnj
����r � 1

r

����
2 � 1.

But bncn converges toc(�c�2 + (d� a)� + b) which is 0 since� = (d� a)=(2c). This
is a contradiction.

For the remaining two cases, we ask the following

Conjecture 2.8. Let G be a non-elementary subgroup of SL(2, C) containing el-
liptic elements and f a loxodromic(resp. an elliptic) transformation. If for each ellip-
tic element g2 G the grouph f , gi is discrete, then G is discrete.

Now we can prove the following two special cases.
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Theorem 2.9. Let G be a non-elementary subgroup of SL(2, R) containing ellip-
tic elements and f a loxodromic(resp. an elliptic) transformation. If for each elliptic
element g2 G the grouph f , gi is discrete, then G is discrete.

Proof. Suppose thatG is not discrete. Then we can find a sequencefgng of dis-
tinct elliptic elements inG such thatgn ! I and eachgn is not of order 2 by Lem-
mas 2.1, 2.2 and the following Lemma 2.10. By Jørgensen’s inequality we may assume
that the subgrouph f , gni is discrete and elementary for alln, which deduce thatf and
g2

n share the same fixed points iff is loxodromic, and eitherf and g2
n have a common

fixed point or f exchanges two fixed points ofg2
n if f is elliptic. In both cases we

can get a contradiction by using the same method as Case 1 and Case 3 in the proof
of Theorem 2.4, respectively.

Lemma 2.10. If f fi g � SL(2, C) is a sequence of elements with order2, then fi
can not converge to the identity as i!1.

Proof. Note that eachfi can be represented asfi (x) = (ai x + bi )=(ci x � ai ). It is

obvious that
�

ai bi

ci �ai

�
cannot converge to

�
1 0
0 1

�
.

Theorem 2.11. Let G be a non-elementary subgroup of SL(2,C) containing ellip-
tic elements and f a loxodromic(resp. an elliptic) transformation withjtr2( f )�4j < 1.
If for each elliptic element g2 G the grouph f , gi is discrete, then G is discrete.

Proof. Suppose thatG is not discrete. Then we may assume thatG is dense
either in SL(2, R) or in SL(2, C). Similarly, we only prove the former case.

Normalize such thatf =
�

r 1
0 1=r

�
, and we supposeg =

�
a b
c d

� 2 G is elliptic

with b 6= 0 6= c.

Construct a matrixh =
�

1 �
0 1

� 2 SL(2, R), where� = (d � a)=(2c). Since G is

dense inSL(2, R), there exists a sequencefhng in G which converges toh. Then

hngh�1
n =

�
an bn

cn dn

�
converges to

�
a + c� 0

c �c� + d

�
.

Note thath f ,hngh�1
n i is discrete and non-elementary for largen. Then by Jørgensen’s

inequality we have

(1 + jbncnj)
����r � 1

r

����
2 � 1,

that is,

jbncnj � �1 +
1jr � 1=r j2 = �1 +

1jtr2( f )� 4j .
This contradicts thatbncn! 0.
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