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Abstract
In this note we will obtain defining equations of modular curves X0(22n). The

key ingredient is a recursive formula for certain generators of the function fields on
X0(22n).

1. Introduction and statements of results

Let 0 be a congruence subgroup ofSL2(R) commensurable withSL2(Z). The mod-
ular curve X(0) is defined as the quotient of the extended upper half-planeH� = f� 2
C : Im � > 0g [ P1(Q) by the action of0. It has a complex structure as a compact
Riemann surface (i.e., a non-singular irreducible projective algebraic curve), and the
polynomials defining the Riemann surface are calleddefining equationsof X(0). The
problem of explicitly determining the equations of modularcurves has been addressed
by numerous authors. For instance, Galbraith [5], Murabayashi [12], and Shimura
[17] used the so-called canonical embeddings to find equations of X0(N) that are non-
hyperelliptic. For hyperellipticX0(N), we have results of Galbraith [5], González [6],
Hibino [7], Hibino-Murabayashi [8], and Shimura [17]. In [16] Reichert used the fact
that X1(N) = X(01(N)) is the moduli space of isomorphism classes of elliptic curves
with level N structure to compute equations ofX1(N) for N = 11, 13,: : : , 18. Further-
more, in [10] Ishida and Ishii proved that for eachN two certain products of the
Weierstrass� -functions generate the function field onX1(N), and thus the relation
between these two functions definesX1(N). A similar method was employed in [9]
to obtain equations ofX(N) = X(0(N)). Very recently, in [19] the second author of
the present article devised a new method for obtaining defining equations ofX0(N),
X1(N), and X(N), in which the required modular functions are constructed using the
generalized Dedekind eta functions. (See [18] for the definition and properties of these
functions.)

When 01 and 02 are two congruence subgroups such that02 is contained in01

and a defining equation ofX(01) is known, one may attempt to deduce an equation
for X(02) using the natural coveringX(02) ! X(01). Of course, the main difficulty
in this approach lies at finding an explicit description of the covering map. In this note
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we will prove a recursive formula for the coveringsX0(22(n+1)) ! X0(22n), from which
we easily obtain defining equations ofX0(22n) for positive integersn.

To state our result, we first recall the definition of the Jacobi theta functions

�2(� ) =
X
n2Z

q(2n+1)2=8 = 2
�(2� )2

�(� )
,

�3(� ) =
X
n2Z

qn2=2 =
�(� )5

�(�=2)2�(2� )2
,

and

�4(� ) =
X
n2Z

(�1)nqn2=2 =
�(�=2)2�(� )

,

whereq = e2� i � and

�(� ) = q1=24
1Y

n=1

(1� qn)

is the Dedekind eta function. Now our main result can be stated as follows.

Theorem 1. Let P6(x, y) = y4�x3�4x, and for n� 7 define polynomials Pn(x, y)
recursively by

Pn(x, y) = Pn�1

 p
x2 + 4p

x
,

yp
x

!
Pn�1

 
�
p

x2 + 4p
x

,
yp
x

!
x2n�5

.

Then P2n(x, y) = 0 is a defining equation of the modular curve X0(22n) for n � 3.
To be more precise, for n � 1, let

xn =
2�3(2n�1� )�2(2n�1� )

, yn =
�2(8� )�2(2n�1� )

.

Then,
(1) for n � 2, we have xn�1 =

p
(x2

n + 4)=xn and yn�1 = yn=pxn;
(2) for n � 6, Pn(xn, yn) = 0, and Pn(x, y) is irreducible overC;
(3) when n is an even integer greater than4, xn and yn are modular functions on00(2n) that are holomorphic everywhere except for a pole of order2n�4 and 2n�4� 1,
respectively, at 1. (Thus, they generate the field of modular functions on00(2n) and
the relation Pn(xn, yn) = 0 between them is a defining equation for X0(2n).)

We remark that it can be easily shown by induction thatPn(x, y) is contained in
Z[x, y8] for n � 7 and has a degree 2n�4 � 1 in x and a degree 2n�4 in y. We also
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remark that whenn is odd, the polynomialPn(x, y) fails to be a defining equation of
X0(2n) because in this case

yn(� ) =
�(16� )2�(2n�1� )�(8� )�(2n� )2

is not modular on00(2n). (When n is odd, yn does not satisfy the conditions of
Newman [13, Theorem I] for a product of Dedekind eta functions to be modular on00(N). Indeed, one can show that whenn is odd,

yn

�
a� + b

c� + d

�
=

�
2

d

�
yn(� ),

�
a b
c d

� 2 00(2n),

where
� �

d

�
is the Jacobi symbol.)

EXAMPLES. Using Theorem 1, we find that a defining equation ofX0(256) is

y16� 16x(x + 2)4(x2 + 4)y8 � x(x + 2)4(x � 2)8(x2 + 4) = 0,

and an equation forX0(1024) is

y64� 212vy56� 28 � 241uvy48� 29uv(11 � 23u + 28 � 7 � 17v)y40

� 24uv(31 � 149u2 � 28 � 2053uv + 216 � 7 � 73v2)y32

� 29uv(31u3 + 27 � 32 � 31u2v + 3 � 216uv2 + 223v3)y24

� 25u3v(47u2 � 29 � 54uv + 215 � 17 � 31v2)y16

� 26u3v(u3 + 27 � 41u2v + 218 � 5uv2 + 226v3)y8 � u7v = 0,

whereu = (x � 2)8 and v = x(x + 2)4(x2 + 4).

Our interest in the modular curvesX0(22n) stems from the following remarkable
observation of Hashimoto. Whenn = 3, it is known that the curveX0(64) is non-
hyperelliptic (see [14]) of genus 3. Then the theory of Riemann surfaces says that it
can be realized as a plane quartic. Indeed, it can be shown that the space of cusp
forms of weight 2 on00(64) is spanned by

x = �(4� )2�(8� )2, y = 2�(8� )2�(16� )2, z =
�(8� )8

�(4� )2�(16� )2
,

and the mapX0(64) ! P2(C) defined by� 7! [x(� ) : y(� ) : z(� )] is an embedding.
Then the relation

x4 + y4 = z4
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amongx, y, z is a defining equation ofX0(64) in P2. (The Fermat curveX4+Y4 = 1 is
birationally equivalent toy4�x3�4x = 0 in Theorem 1 via the mapX = (x�2)=(x+2),
Y = 2y=(x + 2).) Then Hashimoto pointed out the curious fact that the Fermat curve
F2n : x2n

+ y2n
= 1 and the modular curveX0(22n+2) have the same genus for all positive

integern. In fact, there are more similarities between these two families of curves. For
instance, the obvious coveringF2n+1 ! F2n given by [x : y : z] ! [x2 : y2 : z2] branches
at 3� 2n points, each of which is of order 2. On the other hand, the congruence sub-
group00(22n+2) is conjugate to

00
0(2n+1) =

��
a b
c d

� 2 SL2(Z) : 2n+1 j b, c

�
,

and the natural coveringX0
0(2n+2)! X0

0(2n+1) also branches at 3�2n cusps ofX0
0(2n+1).

These observations naturally lead us to consider the problem whether the modular curve
X0(22n+2) is birationally equivalent the Fermat curveF2n . It turns out that this problem
can be answered easily as follows.

According to [3, 11, 15], when a modular curveX0(N) has genus� 2, any auto-
morphism ofX0(N) will arise from the normalizer of00(N) in SL2(R), with N = 37,63
being the only exceptions. Now by [1, Theorem 8], for alln � 7, the index of00(2n)
in its normalizer inSL2(R) is 128. Therefore, the automorphism group ofX0(22n+2)
has order 128 for alln � 3. On the other hand, it is clear that the automorphism
group of any Fermat curve containsS3. Thus, we conclude that the modular curve
X0(22n+2) cannot be birationally equivalent to the Fermat curveF2n when n � 3. Still,
it would be an interesting problem to study the exact relation between these two fam-
ilies of curves.

REMARK . After the paper was finished, Professor M. Zieve has kindly informed
us that explicit equations forX0(2n) have also been obtained by Elkies [2]. Using geo-
metric arguments, Elkies showed that the curveX0(l n) can be embedded inX0(l 2)n�1.
When l = 2, the curveX0(22) is of genus zero and thus possesses a Hauptmodul� (� ).
Then the embedding is explicitly given as

� 7! (� (� ), � (2� ), : : : , � (2n�2� )),

and the equations ofX0(2n) are defined in terms of the relations between� (2 j�1� ) and� (2 j � ). Elkies’ equations and ours are both recursive in nature. Note that, however,
Elkies’ method is a generalization of the classical modularequations where a defining
equation for X0(N) is given in terms of j (� ) and j (N� ), while our method empha-
sizes on explicit construction of generators of the field of modular functions. Moreover,
since our starting point is the genus 3 modular curveX0(64), our equations are more
comparable to Elkies’ equations forX0(6n), where the starting point is the genus 1
modular curveX0(36).
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2. Proof of Theorem 1

To prove xn�1 =
p

(x2
n + 4)=xn, we first verify the casen = 2 by comparing the

Fourier expansions for enough terms, and then the general case follows sincexn(� ) is
actually equal tox1(2n�1� ). The proof of yn�1 = yn=pxn is equally simple. We have

y2
n�1

y2
n

=
�2(2n�1� )2

�2(2n�2� )2
=
�(2n�2� )2�(2n� )4

�(2n�1� )6
=
�2(2n�1� )

2�3(2n�1� )
=

1

xn
.

This proves the recursion part of the theorem. We now show that when n � 6 is an
even integer,xn and yn are modular functions on00(2n) that have a pole of order 2n�4

and 2n�4 � 1, respectively, at1 and are holomorphic everywhere.
By the criteria of Newman [13], a product

nY
k=0

�(2k� )ek

of Dedekind eta functions is a modular function on00(2n) if the four conditions
(1)

P
k ek = 0,

(2)
P

k kek � 0 mod 2,
(3)

P
k ek2k � 0 mod 24,

(4)
P

k ek2n�k � 0 mod 24,
are satisfied. Now we have

xn =
�(2n�1� )6

�(2n�2� )2�(2n� )4
, yn =

�(16� )2�(2n�1� )�(8� )�(2n� )2
.

It is clear that whenn is an even integer greater than 2, the four conditions are all
satisfied forxn and yn. We now show thatxn and yn have poles only at1 of the
claimed order.

Still assume thatn � 4 is an even integer. Sincexn and yn are �-products, they
have no poles nor zeros inH. Also, it can be checked directly thatxn and yn have
a pole of order 2n�4 and 2n�4 � 1, respectively, at1. It remains to consider other
cusps. For an odd integera and k 2 f0, 1,: : : , n� 1g, the width of the cuspa=2k is

hn,k =

8><
>:

1, if k � n

2
,

2n�2k, if k < n

2
.

Choosing a matrix� =
�

a b
2k d

�
in SL2(Z), a local parameter ata=2k is

e2� i��1�=hn,k .
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Therefore, the order of a functionf (� ) at a=2k is the same as the order off (�� ) at1, multiplied by hn,k.

Now recall that, for� =
�

a b
c d

� 2 SL2(Z), we have

�2(� ) j � =

��q1=8 + � � � , if 2 j c,� + � � � , if 2 ∤ c,

and

�3(� ) j � =

�� + � � � , if 2 j ac,�q1=8 + � � � , if 2 ∤ ac,

where � represents a nonzero complex number, but may not be the same at each oc-

curence. (Up to multipliers, if� is congruent to the identity matrix or
�

1 1
0 1

�
mod-

ulo 2, then the action of� fixes �2. Any other matrices will send�2 to either�3 or �4.
This explains the fact about�2. The fact about�3 can be explained similarly.) When
k = n� 1, we have

2n�1

�
a b

2n�1 d

�� =
a(2n�1� ) + 2n�1b

(2n�1� ) + d
=

�
a 2n�1b
1 d

�
(2n�1� )

and

8

�
a b

2n�1 d

�� =
a(8� ) + 8b

2n�4(8� ) + d
=

�
a 8b

2n�4 d

�
(8� ).

It follows that

xn

��
a b

2n�1 d

��� =
�1q2n�4

+ � � ��2 + � � � = �q2n�4
+ � � � ,

and

yn

��
a b

2n�1 d

��� =
�1q + � � ��2 + � � � = �q + � � � ,

where�, �1, and �2 are nonzero complex numbers. That is,xn and yn have a zero of
order 2n�4 and 1, respectively, ata=2n�1.
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When k = 4, : : : , n� 2, we have

2n�1

�
a b
2k d

�� =

�
2n�k�1a �1

1 0

�
(22k�n+1� + 2k�n+1d),

8

�
a b
2k d

�� =
a(8� ) + 8b

2k�3(8� ) + d
=

�
a 8b

2k�3 d

�
(8� ).

Therefore,

xn

��
a b
2k d

��� =
�1 + � � ��2 + � � � = � + � � � ,

and

yn

��
a b
2k d

��� =
�1q + � � ��2 + � � � = �q + � � � ,

where �, �1, and �2 are nonzero complex numbers. In other words,xn has no poles
nor zeros ata=2k for k = 4,: : : , n�2, while yn has zeros of orderhn,k at those points.

When k = 0, : : : , 3, we have

2n�1

�
a b
2k d

�� =

�
2n�k�1a �1

1 0

�
(22k�n+1� + 2k�n+1d),

8

�
a b
2k d

�� =

�
23�ka �1

1 0

�
(22k�3� + 2k�3d),

and we find thatxn and yn have no zeros nor poles ata=2k, k = 0, : : : , 3.
In summary, we have shown thatxn and yn have a pole of order 2n�4 and 2n�4�1,

respectively, at1 and are holomorphic at any other points. Since 2n�4 and 2n�4�1 are
clearly relatively prime,xn and yn generate the field of modular functions onX0(2n).
It remains to show thatPn is irreducible overQ and Pn(xn, yn) = 0.

When n = 6, we verify by a direct computation thaty4
6 � x3

6 � 4x6 = 0. Then the
recursive formulas forxn and yn implies that Pn(xn, yn) = 0 for all n � 6. Finally,
by the theory of algebraic curve (see [4, p. 194]), the field ofmodular functions on
X0(2n) is an extension field ofC(xn) of degree 2n�4. In other words, the minimal
polynomial of yn over C(xn) has degree 2n�4. Now it is easy to see thatPn(x, y) is a
polynomial of degree 2n�4 in y with leading coefficient 1. We therefore conclude that
Pn is irreducible. This completes the proof of Theorem 1.
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