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Abstract

Let G be a connected reductive group ouv&y, whereq is large enough and
the center ofG is connected. We are concerned with Lusztig’s theorcludracter
sheaves a geometric version of the classical character theory ef fthite group
G(Fy). We show that under a certain technical condition, the ictistn of a
character sheaf to itanipotent suppor{as defined by Lusztig) is either zero or an
irreducible local system. As an application, the geneedi®elfand-Graev characters
are shown to form aZ-basis of theZ-module of unipotently supported virtual
characters ofG(F,) (Kawanaka's conjecture).

1. Introduction

Let G be a connected reductive algebraic group dﬁgr an algebraic closure of
the finite field with p elements where is a prime. Letq be a power ofp and as-
sume thatG is defined over the finite field’y < pr, with corresponding Frobenius
map F: G — G. Then it is an important problem to determine and to undedsta
the values of the irreducible characters (in the sense dbdfios) of the finite group
GF. For this purpose, Lusztig [12] has developed the theorcluiracter sheaves
see [15] for a general overview. This theory produces sonwngéic objects oveG
(provided by intersection cohomology with coefficients@n, wherel # p is a prime)
from which the irreducible characters &F can be deduced for any. In this way,
the rather complicated patterns involved in the values efitheducible characters of
GF are seen to be governed by geometric principles.

In this paper, we discuss an example of this interrelatiomvéen geometric prin-
ciples and properties of character values. On the geonwtte; we will be concerned
with the restriction of a character sheAfto the unipotent variety oG. Under some
restriction onp, Lusztig [14] has associated tA a well-defined unipotent clas®a
of G, called itsunipotent support We will be interested in the restriction oA to
Oa. Under a certain technical condition (formulated in [4]Jldwing a suggestion of
Lusztig) the restriction ofA to O is either zero or an irreducibl&-equivariant local
system onOx (up to shift); see Section 3. The verification of that techhicondition
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can be reduced to a purely combinatorial problem, involuhmg induction of characters
of Weyl groups, the Springer correspondence and the dataroiliés of characters in
Chapter 4 of Lusztig's book [10]. The details of the somewleagthy case-by-case
verification are worked out in the second author’s thesis ff&¢ main ingredients will
be explained in Section 2.

On the character-theoretic side, we will consider teneralized Gelfand-Graev
representation§GGGR'’s for short) introduced by Kawanaka [7], [8]. In Seati4, as-
suming thatp, g are large and the center &f is connected, we deduce that Kawanaka’'s
conjecture [9] holds, that is, the characters of the vari@BGR’s of GF form a
Z-basis of theZ-module of unipotently supported virtual charactersGjt. As a fur-
ther application, in Proposition 4.6, we obtain a new charigation of GGGR'’s in
terms of vanishing properties of their character values.

2. The Springer correspondence, families and induction

In this section, we deal with the combinatorial basis for thiscussion of the
unipotent support of character sheaves. We keep the basignations of the intro-
duction: G is a connected reductive algebraic group o¥gr we assume throughout
that p is a good prime forG and that the center d& is connected. LeB C G be a
Borel subgroup and € B a maximal torus. LeWW = Ng(T)/T be the Weyl group of
G, with set of generator$ determined by the choice of C B.

Let Irr(W) be the set of irreducible characters \&f (over an algebraically closed
field of characteristic 0). The Springer correspondencecates with eacte € Irr(W)

a pair {4, ) whereu € G is unipotent (up toG-conjugacy) andy is an irreducible
character of the group of componentg®) = Cs(u)/Cs(u)°; see [10,813.1]. We
write this correspondence ds <> (u, V).

Now we can define three invariangs, bg anddg for E € Irr(W).

e bg is the smallest = 0 such thatE appears with non-zero multiplicity in thieth
symmetric power of the reflection representationVéf see [10, (4.1.2)].

e ag is the largesti > 0 such thatu' divides the generic degreBg(u) € Q[u]
defined in terms of the generic Iwahori-Hecke algebra o@gn'/?, u=%2]; see [10,
(4.1.2)].

e dg is dimB, where B, is the variety of Borel subgroups containing a unipotent
u € G such thatE < (u, ¥) for someyr € Irr(Ag(u)); see [10,§13.1].

We will be interested in several compatibility propertidstiese invariants.

Lemma 2.1. We have a < de < bg for all E € Irr(W).

Proof. See [14, Corollary 10.9] for the first inequality arid[§1.1] for the sec-
ond. The inequalityag < bg was first observed by Lusztig; see [10, 4.1.3]. ]

Recall that IrrV) is partitioned intofamiliesand that each family contains a unique
special Ee Irr(W), that is, a character such that = bg; see [10, 4.1.4]. Furthermore,
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in [10, Chapter 4], Lusztig associates with any fam#ycC Irr(W) a finite groupGr,
case-by-case for each type of finite Weyl group. (The gra@épdorm a crucial ingre-
dient in the statement of the Main Theorem 4.23 of [10].)GIfis simple modulo its
center, thenGr = Gz, &4, G5 or (Z/27)¢ for somee = 0.

Now let G* be the Langlands dual o, with Borel subgroupB* and maximal
torus T* € G*. Let W* = Ng:(T*)/T* be the Weyl group ofG*, with generating set
S* determined byT* C B*. We can naturally identifjtt¥ and W*. Note thatag andbg
are independent of whether we regdtdas a representation &% or of W*. However,
it does make a difference as far dgs is concerned.

Let s € G* be semisimple andlVs be the Weyl group of €:(s). (Note that G-(s)
is a connected reductive group since the centeGas connected.) Replacing by a
conjugate, we may assume tlsat T*. ThenW; is a subgroup ofV* and, hence, may
be identified with a subgroup ofV. So we can consider the induction of characters
from W5 to W.

Proposition 2.2. Let se G* be semisimple andF C Irr(Ws) be a family If Eq
is the special character i, then we have

IndWS(EO) = E{ +a combination ofE € Irr(W)  with bz > dg = bg,,

where B € Irr(W) is such that lp; = dg; = bg,; furthermore E; < (u, 1) under the
Springer correspondencavhere 1 stands for the trivial character

Proof. See [14§10] and [10,§13.1]. ]

We are now looking for a condition which guarantees thatEalf E; occurring
in the decomposition of Irm(Eo) havedg > bg,. Following a suggestion of Lusztig,
such a condition has been formulated in [4, 4.4]. In ordertébesit, we introduce the
following notation.

Let Sg be the set of all pairss(JF) wheres € G* is semisimple (up t&*-conjugacy)
and F C Irr(Ws) is a family. Following [10,§13.3], we define a map

®g: Sg — {unipotent classes dB},

as follows. Let §, F) € Sg and Eqg € F be special. Then consider the induction
IndWS(EO) and let Ej be as in Proposition 2.2. Now defin@ = ®g(s, F) to be the
unipotent class containing where Ej <> (u, 1) under the Springer correspondence.

Proposition 2.3 (Hézard [6]). Assume that € G* is semisimple and isolated
that is Cg+(S) is not contained in a Levi complement of any proper parabslibgroup
of G*. Let F C Irr(Ws) be a family and assume that

(*) |Gs. 7| =|Ac(u)] where ue O = dg(s, F).
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Then the following sharper version ¢froposition 2.2holds If Eq is the special char-
acter in F, then we have

IndWS(EO) = Ey +a combination ofE € Irr(W) with dz > bg,.
Proof. In the setting of Proposition 2.2, let us write
Indws(Eo) = Ej + Ej + a combination ofE € Irr(W) with dg > bg,

where Ej is the sum of allE e Irr(W) such thatdg = bg,, E # E, and E appears in
Indws(Eo). Thus, we must show thaEj = 0 if («) holds. By standard arguments, this
can be reduced to the case wh&eis simple modulo its center.

The reflection subgroups oV which can possibly arise a#/s for some semi-
simple elemens € G* are classified by a standard algorithm; see [2].

Now, if G is of exceptional typeE; can be computed in all cases using explicit
tables for the Springer correspondence [18] and induddéematrices for the charac-
ters of Weyl groups; see [652.6] where tables specifying; can be found for each
type of G. By inspection of these tables, one checks that)fHolds, thenEj = 0.

If G is of classical type, the induction of characters of Weylupr®and the Springer
correspondence can be described in purely combinatoniaisteinvolving manipula-
tions with various kinds of symbols ([1%13]). The condition £) can also be formu-
lated in purely combinatorial terms. Using this informatiat is then possible to check
that, if () holds, thenEj =0. For the details of this verification, see [6, Chapter 3].

We remark that, foiG of type B, Lusztig [13, 4.10] has shown th&; =0 even
without assuming that«] holds. ]

Finally, the following result settles the question of whemndition () is actually
satisfied.

Proposition 2.4 (Lusztig [10, 13.3, 13.4] see also Hézard [6])Let O be a unip-
otent class Then

|Gs. 7| < |Ag(u)] forall (s, F)e Sg suchthat ue O=dg(s, F).

Furthermore there exists somés, F) where s is isolated and we have equalitiy O
is F-stable(where F is a Frobenius map on)Gthen such a paii(s, ) can be chosen
to be F-stable too.

INote added January 2008: A new recent preprint by Luszti§) piévides a detailed proof of the
statements in [10, 13.3, 13.4].
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Proof. Again, this can be reduced to the case witgris simple modulo its cen-
ter, where the assertion is checked case-by-case alongn#eedf the proof of Propo-
sition 2.3. The existence of suitable semisimple elementsG* with centralisers of
the required type is checked using the tables in [1], [2] @rof exceptional type)
or using explicit computations with suitable matrix remetations (forG of classical
type). Again, see [6] for more detalils. O

It would be interesting to find proofs of Propositions 2.3 a@hd which do not
rely on a case-by-case argument.

3. Unipotent support

Recall thatG is assumed to have a connected center and that we are wonkéng o
a field of good characteristic. Now |& be the set of character sheaves ®n(up to
isomorphism) ove@ wherel is a prime,| # p. By Lusztig [12, §17], we have a
natural partition

G= ]_[ Ger where Ggr <> M(Gr).
(. F)eSe

Here, as in Section 2Gr is the finite group associated to a famiy C Irr(Ws) as
in [10, Chapter 4]. Furthermore, for any finite grolip the setM(I") consists of all
pairs &, o) (up to conjugacy) whera € I' and o € Irr(Cr(X)).

Also recall that we have a natural maps: Sg — {unipotent classes db}, de-
fined as in [10,§3.3]. From now on, we assume thptis large enough, so that the
main results of Lusztig [14] hold. (Here, “large enough” meahat we can operate
with the Lie algebra ofG as if we were in characteristic 0, e.g., we can use exp to
define a morphism from the nilpotent variety in the Lie algebw the unipotent vari-
ety of G.)

Theorem 3.1 (Lusztig [14, Theorem 10.7]). Let (s, F) € Sg and O = dg(s, F)
be the associated unipotent clasBhen the following hold
(@) There exists some A és,f and an element g¢ G with Jordan decomposition
0= 0s0u = 9s0u (where g is semisimple and ge O) such that Ay 7 0.
(b) For any Ae Gs,f, any unipotent clas€)’ # O with dim©Q’ > dim O, and any
g’ € G with unipotent part in0’, we have Ag, = 0.

Consequently, the clas8 is called theunipotent supporfor the character sheaves
in G . Note that it may actually happen thalo = 0 for A € G ~.
_ Given a unipotent clas®, we denote byl the set of irreducibleG-equivariant
@ -local systems or© (up to isomorphism).
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Theorem 3.2 (Geck [4, Theorem 4.5]; see also the remarks in Lusztig [18]).1
Let se G* be semisimple andrF C Irr(Ws) be a family Let O = dg(s, F) be the
associated unipotent class and assume that condifignin Proposition 2.3is satis-
fied Then for any Ae és,f, the restriction Ao is either zero or an irreducible
G-equivariant local systenfup to shif). Furthermore the map A— A|o defines a
bijection from the set of all A& és,f with Alp # 0 onto Zp.

(Note: In [4, Theorem 4.5], the conclusion of PropositioB,2.e., the validity of
the sharper version of Proposition 2.2, was added as ani@uhlithypothesis; this can
now be omitted.)

Now let g be a power ofp and assume thas is defined ovelly C ]Fp, with cor-
responding Frobenius mdp: G — G. We translate the above results to class functions
on the finite groupGF.

If A is a character sheaf 06 then its inverse imagé-*A under F is again a
character sheaf. There are only finitely maAysuch thatF*A is isomorphic toA,;
such a character sheaf will be call€dstable. LetGF be the set ofF-stable character
sheaves. For anp € GF we choose an isomorphisg: F*A = A and we form the
characteristic functionya,. This is a class functiolGF — (@. whose value ag is
the alternating sum of traces ¢f on the stalks ag of the cohomology sheaves &.
Now ¢ is unique up to scalar hengg , is unique up to scalar. Lusztig [1225] has
shown that

{xao | A€ GF1 is a basis of the vector space of class functio®™ — @.

Let O be anF-stable unipotent class db. We denote byZj, the set of allg € Zp
such that€ is isomorphic to its inverse imageé*€ under F. For any suchf, we can
define a class functioe: GF — Q as in [12, (24.2.2)—(24.2.4)]. We havg(g) =0

for g ¢ OF and Ye(g) = Trace(/, &) for g € OF, wherey : F*¢ 5 £ is a suitably
chosen isomorphism. On the level of characteristic fumstioTheorem 3.2 translates
to the following statement (see [132, §3], where such a translation is discussed in
a more general setting):

Corollary 3.3. Let (s, F) € Sg be F-stable andD = &g(s, F) be the associated
unipotent clasgwhich is F-stabl® Assume that conditiofx) in Proposition 2.3holds
Then for any F-stable Ac Gsyf, we have eitherxa »(g) =0 for all g € OF or ¢ can
be normalized such thata 4(g) = Ye(g) for all g € OF where& = Alo.

Now let us consider the irreducible characters@f. Lusztig [10] has shown that
we have a natural partition

Im(GF) =[] Irnsr(GF).

(s, F)eS§
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Furthermore, each piece Jr¢(GF) in this partition is parametrized by a “twisted” ver-
sion of the setM(Gr); see [10, Chapter 4]. Lusztig [12] gave a precise conjectur
about the expression of the characteristic functionsFedtable character sheaves as
linear combinations of the irreducible charactersGJt. Since we are assuming that
G has a connected center (apdis large), this conjecture is known to hold by Shoji
[17]. In particular, the following statement holds:

Proposition 3.4 (Shoji [17]). Let (s, F) € S§ and Ae és,f be F-stable Then
XA IS @ linear combination of the irreducible characters lims =(GF).

We can now deduce the following result, whose statement ionbylves the values
of the irreducible characters @&, but whose proof relies in an essential way on the
above results on character sheaves.

Corollary 3.5. Let O be an F-stable unipotent class and,u. ., ug be repre-
sentatives for the &-conjugacy classes contained @. Let (s, F) € Sg be F-stable
such thatO = ®g(s, F) and condition(x) in Proposition 2.3holds Then there exist
o1,-.., pd € Irrs 7(GF) such that the matriXp; (Uj))1<i,j<d has a non-zero determinant

Proof. By the proof of [12, 24.2.7], there are precisdlirreducible G-equivariant
local systemsy,...,E on O (up to isomorphism) which are isomorphic to their inverse
image underF; furthermore, the matrix¥g, (Uj))i<i,j<d iS Non-singular.

By Theorem 3.2, we can find\;, ..., Aq € Gs,f such thatAi|p = & for all i.
Since eacké; is isomorphic to its inverse image under, the same is true foA;, as
well. (Indeed, sinces( F) is F-stable, we haveF*A, € G+ for all i; furthermore,
F*Allo = F*&§ = &. So we must have-*A; = Ay by Theorem 3.2.) By Corol-
lary 3.3, we havexa .4 = Yg for all i (where¢; is normalized suitably). It follows
that the matrix ga ¢ (Uj))i<i,j<d has a non-zero determinant.

By Proposition 3.4, everya, 4 can be expressed as a linear combination of the
characters in lg+(GF). Hence there must existy, . .., pq € Irrs #(GF) such that the
matrix (oi (Uj))1<i,j<d has a non-zero determinant. ]

4. Kawanaka’'s conjecture

Kawanaka [8] has shown that, assuming we are in good chasditte one can
associate with every unipotent element G" a so-calledgeneralized Gelfand-Graev
representatiol”, (GGGR for short). They are obtained by inducing certainduable
representations from unipotent radicals of parabolic sulygs of GF. At the extreme
cases when is trivial or a regular unipotent element we obtain the ragukpresen-
tation of GF or an ordinary Gelfand-Graev representation, respegtivBlbsequently,
assuming thatp, g are large, Lusztig [14] gave a geometric interpretation GGR’s
in the framework of the theory of character sheaves.
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Conjecture 4.1 (Kawanaka [7, (3.3.1)]). The characters of the various GGGR'’s
of GF form aZ-basis of theZ-module of unipotently supported virtual characters dt.G

By Kawanaka [9, Theorem 2.4.3], the conjecture holds if teater of G is con-
nected ands is of type A, or of exceptional type. In this section, assuming tpat
are large enough, we will show that it also holds farof classical type.

Given a unipotent element € GF, denote byy, the character of the GGGR,,.
The usual hermitian scalar product for class functionsgGdnwill be denoted by( , ).
The following (easy) result provides an effective method Yerifying that the above
conjecture holds.

Lemma 4.2. Let uy,..., U, be representatives for the conjugacy classes of unipo-
tent elements in & Assume that there exist virtual charactess ..., p, of GF such
that the matrix of scalar product§ i, yu;))i<i,j<n is invertible overZ. ThenConjec-
ture 4.1holds

Proof. Since the above matrix of scalar products is invietiby,,, ..., y, are
linearly independent class functions @f. Consequently, they form a basis of the
Q) -vectorspace of unipotently supported class function&bn In particular, given any
unipotently supported virtual charactgr of GF, we can writey = Zi"zl ajy; where
aj € Q, and it remains to show that; € Z for all j.

To see this, consider the scalar productsyofvith the virtual characterg;. We

obtain Zj aj(pi,yj)=(pi,x)eZforalli=1,..,n. Since the matrix of scalar products
({pi, v;)) is invertible overZ, we can invert these equations and conclude #hat Z
for all j, as desired. ]

Let Dg be the Alvis-Curtis-Kawanaka duality operation on the elter ring of
GF. For anyp € Irr(GF), there is a sigre, = {£1} such that

o* :=¢,Dc(p) € Irr(GF).

The following result will be crucial for dealing with groups classical type. We as-
sume from now on that the center & is connected and thap, g are large, so that
the results in Section 3 can be applied.

Proposition 4.3. Let O be an F-stable unipotent class and,u. ., ug be repre-
sentatives for the G-conjugacy classes contained @. Let (s, ) € Sg be F-stable
such thatO = &g(s, F) and condition(x) in Proposition 2.3holds

Assume thaGr is abelian Then there exispy, ..., pg € Irrs #(GF) such that
(o, Vuj) = Gjj for 1<i, j <d.
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Proof. The following argument is inspired by the proof of [Broposition 5.6].
By [14, Theorem 11.2] and the discussion in [5, Remark 3.8}, have

d
D TAc(U) : Ac(u) 10", yu) = Ac(uy)l

i=1 p

for any p e lrrs 7(GF),

wheren, > 1 is an integer determined as follows; see [10, 4.26.3]. Eg€ Irr(Ws)
be the special character i. Then

p(1)=+£n 'g* N where N is an integer,N = 1 modg;

note also than, is divisible by bad primes only.

Now, Lusztig [10, 4.26.3] actually gives a precise formuta the integem,, in
terms of a certain Fourier coefficient. In the case wh@geis abelian, this Fourier
coefficient evaluates tG#|~1. Thus, we haven, = |G#|~1. So, since £) is assumed
to hold, we obtain

d

Y TAc(ui) s Ac(u)l(p*, ) =1 for any p e lrrs #(GF).
i=1

Now note that each term [&u;) : Ac(u;)T] is a positive integer and each terip*, y, )
is a non-negative integer. It follows that, givene Irrs =(G"), there exists a unique
i €{1,...,d} such that(p*, »,) =1 and(p*, »») =0 fori’ € {1,...,d}\ {i}. Thus,
we have a partition lgr=(GF) =1y LI 1, - --1I I such that

( % )= 1 if p €l
PoYul =0 if pel; where j #i.

Assume, if possible, thay = @ for somer € {1,...,d}. This means thatp, Dg(yy,)) =
(Da(p), yu,) =0 for all p € Irrs #(GF). Thus, by the definition of the scalar product,
we have

1 N
0=355 > p(@Dc(yy)(@) forall p e lrrg #(GF).
geGF

Let g € GF and assume that the corresponding term in the above sum igeamon
First of all, sinceDg(yy,) is unipotently supportedg must be unipotent. Le®’ be
the conjugacy class of. By [14, 6.13 (i) and 8.6], we hav®g(y,)(g) = 0 unless
O is contained in the closure aP’. Furthermore, by [14, Theorem 11.2], we have
0(9) =0 unlessO®’ = O or dimO®’ < dimO. Hence, to evaluate the above sum, we
only need to letg run over all elements i©F. Thus, we have

d
0= 12_1: Wl(uj)'TUj)DG(Vur (up)) forall p e lrrg #(GF).
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In particular, this holds for the charactess, ..., pq in Corollary 3.5. The invertibility
of the matrix of values in Corollary 3.5 then implies thag @y, )(uj) =0 for 1< j <
d. Thus, the restriction of By, ) to OF is zero. Now, the relations in [4, (2.4a)]
(which are formally deduced from the main results in [14])plynthat (De(yy,), Ye)
equalsYg(ur) times a non-zero scalar, for ar§y e Zf,. Hence, we havers(u;) = 0
for any £ € I(FQ. However, this contradicts the fact that the matrix of valé:(u;))
is invertible (see the remarks at the beginning of the prdofCorollary 3.5). This
contradiction shows that we have # & for all i. Now choosep; € |; for 1 <i <d.
Then we have(p?, yy;) = &;j for 1<i, j <d, as desired. ]

REMARK 4.4. In the setting of Proposition 4.3, let us drop the assiomphat
Gr is abelian and assume instead tlggt is isomorphic t0&3, &4 or Gs. (These
cases occur whefs is simple modulo its center and of exceptional type.) Thepn, b
the Main Theorem 4.23 of [10], we have a bijections l(GF) < M(Gx).

Let ug, ..., ug be representatives for th@F-conjugacy classes contained @F.
Since condition £) in Proposition 2.3 is assumed to hold, we can ident¥(Gr)
with the set of all pairsy, o) where 1<i <d ando e Irr(Ag(u;)"). Thus, via the
above-mentioned bijection, we have a parametrization

Irrs 7(GF) = {0y | 1 <i <d, o €lm(Ag(u)")}.

On the other hand, Kawanaka [8], [9] obtained explicit folasufor the values of the
characters of the GGGR's (fa® of exceptional type). Using these formulas, one can
check that

. _fe@ it i=j,
(P o0 Vuy) = {o otherwise.

Thus, settingp; := p(;,1) for 1 <i < d (where 1 stands for the trivial character), we
see that the conclusion of Proposition 4.3 holds in thesescas well.

Theorem 4.5. Recall our standing assumption thatgpare large enough and the
center of G is connectedThen Kawanaka’'sConjecture 4.1holds

Proof. By standard reduction arguments, we can assume wilbes of gener-
ality that G is simple modulo its center. 16 is of type A, or of exceptional type,
the assertion has been proved by Kawanaka [9, Theorem 2ukBlg his explicit for-
mulas for the character values of GGGR’s. The following arguot covers these cases
as well.

Let Oy,..., Oy be theF-stable unipotent classes &, where the numbering is
chosen such that difd; < --- <dimQOy. By Proposition 2.4, for each we can find
an F-stable pair §, i) € Sg such thatO; = &g(s, Fi) and condition £) in Proposi-
tion 2.3 holds.
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For eachi, letu; 1,...,U; 4 be a set of representatives for 8¢ -conjugacy classes
contained inOiF. Let pi 1,..., pi,q be irreducible characters as in Proposition 4.3Qif
is of classical type) or as in Remark 4.4 (i is of exceptional type). We claim that

<pi>|;_,j11 Vuiz,iz) =0 if il < i2_

This is seen as follows. We hayg;: ; , vu,,,) = £(i,,j,» Da(w,,,))- By the definition
of the scalar product, we have

(pi1,j11 DG (Vuiz in |GF Z pl]_ Jl(g)DG (yU|2 12)(9)
geGF

We now argue as in the proof of Proposition 4.3 to evaluate shim. First of all, it's
enough to letg run over all unipotent elements GF. Now let g € GF be unipotent
and assume, if possible, that the corresponding term in Howeasum is non-zero.
The fact thatp;, j,(g) 7 O implies that the class df either equalgD;, or has dimension
< dim©;,. Furthermore, the fact thatdiw,, ,)(9) # O implies that®;, is contained
in the closure of the class aj. Since we numbered the unipotent classes according
to increasing dimension, we conclude that ddm=dimQ,,; furthermore,g € O;, and
O, is contained in the closure of the classgfwhich finally shows that);, = 0;,, a
contradiction. Thus, our assumption was wrong, and the alsgcalar product is zero.

Together with the relations in Proposition 4.3 (or Remark)4we now see that
the matrix of all scalar products

(Pl a0 Vi, 12)1$|1,|2$N,1SJ1\d.1 1<jo<d,

is a block triangular matrix where each diagonal block is @entity matrix. Hence
that matrix of scalar products is invertible ovBrand so Kawanaka’'s conjecture holds
by Lemma 4.2. O

Proposition 4.6 (Characterisation of GGGR's)Recall that pq are large enough
and the center of G is connectetlet O be an F-stable unipotent class in G and
be a character of &. Theny =y, for some ue OF if and only if the following three
conditions are satisfied
(@) If x(g) #0 for some ge GF, then the conjugacy class of g is contained in the
closure ofO.

(b) If Da(x)(g) # 0 for some ge GF, then O is contained in the closure of the con-
jugacy class of g
() We havey (1) = |GF|q~-dim©/2,

Proof. If x =y, for someu e OF, then (a) and (c) are easily seen to hold by
the construction of"; see Kawanaka [8]. Condition (b) is obtained as a conseguenc
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of [14, 6.13 (i) and 8.6]. To prove the converse, by standaduction arguments,
we can assume without loss of generality tl&atis simple modulo its center. Assume
now that (a), (b) and (c) hold fog. Since x is unipotently supported, we can write
x as an integral linear combination of the characters of théowa GGGR's ofGF;
see Theorem 4.5.

Now, given anyF-stable unipotent clas€’, the characters,, whereu e O'F,
satisfy (a) with respect t@’. Hence, all characterg,, whereu is contained in the
closure of0, satisfy (a). One easily deduces tlzaty class function satisfying (a) is a
linear combination of varioug, whereu is contained in the closure @. Similarly,
any class function satisfying (b) is a linear combination ofieas Dg(y,) where O is
contained in the closure of the class wf Hence, a class function satisfying both (a)
and (b) will be a linear combination of varioyg such thatu € OF.

Let uy, ..., ug be representatives for th@F-conjugacy classes i®F. Then the
above discussion shows that we can wrjte- Z?zl ajyu; wherea; € Z for all i.

Now consider the charactegs in Proposition 4.3 (forG of classical type) or in
Remark 4.4 (forG of exceptional type). Taking scalar products pfwith p*, we
find thata > O for all i and soy is a positive sum of characters of various GGGR’s
associated withO". All these GGGR’s have dimensidG"|q=9M®/2, Hencex (1) is
a positive integer multiple ofGF|q~9m©/2, Condition (c) now forces thag = y, for
someu € OF, as required. O]
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