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Abstract
In 1971, Samuel generalized Motzkin’s idea to give a charaetiion of
Euclidean rings. In this article we will show, from Motzkin cartbamuel’s point of
view, that the concept of the restricted Nagata's pairwig@ridhm should exist in
the world of mathematics much earlier than the Euclideaoritgn.

1. Introduction

A Euclidean ring is a ring with a kind of Euclidean algorithrfithere are several
definitions of Euclidean rings which are mutually differgstee [6]). In Section 2 we
will introduce a definition of Euclidean rings due to Samugl [In [9], Samuel gener-
alized Motzkin’s idea [4] to give an ‘internal’ charactetiizen of Euclidean rings (see
Proposition 2.1). In Section 3 we will introduce the concepthe pairwise algorithm
due to Nagata [7]. In his papers, Nagata [7, 8] constructe@dievse algorithm for
Z[~/14], the ring of integers of)(+~/14), but he did not mention much about the rela-
tion between pairwise algorithms and Euclidean algorithinspired by the paper [9]
of Samuel, Chen and Leu [1] derived some properties of a riii & pairwise algo-
rithm. In Section 4 we will build an unexpected genetic rielatbetween pairwise al-
gorithms and Euclidean algorithms so that, from Motzkin amenh8el’'s point of view,
the concept of the restricted Nagata's pairwise algoritsrmat only a generalization
but also a longtime undiscovered ancestor of the Eucliddgorithm. In Section 5
we propose problems which are related to the class numbernoier field and the
k-stage Euclidean algorithm respectively.

In this article, a ringE means a commutative ring with identity:=1

2. The Euclidean algorithm

In this article we adopt the following definition of Euclideangs due to Samuel [9].
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DEeFINITION 1. Given a ringE, a Euclidean algorithm iiE is a mapg of E\ {0}
into a well-ordered se¥V such that for anya, b € E with b # 0, there exisg andr in
E such that

a=qgb+r with either r =0 or ¢() < ¢(b).
We say thatE is Euclidean if it admits a Euclidean algorithgn

NOTE. For a Euclidean algorithm on a ringE to be compatible with a Nagata’s
pairwise algorithm defined in Section 3, it is a good idea tbingep(0) > ¢(b) for all
non-zerob in E.

Proposition (Samuel [9]). Let E be a Euclidean ring for a Euclidean algorithm
¢. Then
(1) E is a principal ideal ring
(2) ¢1 is a Euclidean algorithm on E anei(ac) > ¢1(a) for ac # 0, where ¢; is
defined bygi(a) = infpearyjo; ¢(b) for all non-zero a in E

REMARK 1. The above proposition shows that Samuel’'s definition ofielilean
ring is a generalization of classical definitions of Euchiderings.

REMARK 2. Nagata [5] constructed a Euclidean riegwith the properties: (1
is an integral domain; (2) there does not exist a Euclidegordhm of E\ {0} into the
set of natural numbers. Thus, Nagata constructed an imtdgnaain E which satisfies
Samuel’s definition of a Euclidean ring, bt does not satisfy the classical definitions
of Euclidean rings.

In [9], Samuel generalized Motzkin's idea [4] to introduce tiansfinite construc-
tion of the Motzkin sets:

DEFINITION 2. LetE be aring, andV an ordinal such that carB} < cardiV).
We setEg ={0}. Fora > 0 in W, we define the Motzkin seE, by transfinite induc-
tion as follows: the seE,’ = Uﬂ<a Es is already defined ané, is the union of{0}
and the set of alb € E such that the canonical maf,” — E/bE is surjective. Define

Ew = UaeW Ea.

Proposition 2.1. A ring E is Euclidean if and only if § = E, where W is an
ordinal such thatcardE) < cardW).

Proof. See Proposition 10 and p.289 of Samuel [9] for a proof. ]

NOTE. In Section 4 we will show that there exists surprisingly amalag of
Proposition 2.1 for the restricted Nagata’s pairwise athor (see Corollary 4.9).
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3. The Nagata’'s pairwise algorithm

The following definition of a pairwise algorithm is equivateto the one given by
Nagata [7] (cf. [1, Proposition 2]):

DEFINITION 3. Let E be a ring andW a well-ordered set. We say that a map-
ping p from E x E into W gives E a Nagata’'s pairwise algorithm if and only if
satisfies the following conditions:

(1) If a,b e E andu, v € E*, thenp(au, bv) = p(a, b), whereE* is the unit group oft.
(2) If be aE andb ¢ aE* ={ae| e € E*}, thenp(a, a) < p(b, b).

(3) If b—ce akE, thenp(a, b) = p(a, c).

(4) For each pairg, b) in E x E, there areq,r € E so thatb =qga+r with either
r=aor p(r,a) < p(a b).

The following Remarks 3 and 4 are due to Nagata [7].

REMARK 3. If a ring E admits a Nagata’'s pairwise algorithm, th&nis a prin-
cipal ideal ring.

REMARK 4. If E is a Euclidean ring under a Euclidean algoritlgnto a well-
ordered selW, then one can give a Nagata's pairwise algoritiimon E by defining
that ¥ (a, b) = min{¢(au) | u € E*}.

REMARK 5. It is known that a principal ideal ring is a finite productprincipal
ideal domains and of principal ideal rings with a unique afdatent maximal ideal
(cf. [12, Chapter 4, Section 15, Theorem 33]). Further, hyd286], a principal ideal
ring with a unique and nilpotent maximal ideal is a Euclideary. Therefore, by
Theorem 4.10 below, we need only to focus our attention oncjpél ideal domains.

Proposition 3.1. Letp: Ex E - W be a Nagata’'s pairwise algorithm on a ring
E. Thenp(1g, 1g) < p(a, b) for a¢ E* and be E.

Proof. By Lemma 1 of [1] and the definition of a Nagata’'s pagmvialgorithm,
we have thato(1g, 1g) = min{p(X, ¥) | X, ¥ € E} and p(1g, 1g) < p(a, a) = p(a, b)
for a ¢ E* andb € aE. For the casé ¢ aE, there existq,r € E, r # 0 such that
b=ga+r andp(r, a) < p(a, b), thus p(1g, 1g) < p(r, a) < p(a, b).

The proposition is proved. 0

4. The restricted Nagata's pairwise algorithm

To point out that Nagata’'s pairwise algorithms have deegtiei to Euclidean al-
gorithms, let us consider the following special case of tlegda’s pairwise algorithm:
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DEFINITION 4. Let E be a ring andW a well-ordered set. We say that a map-
ping p from E x E into W gives E a restricted Nagata's pairwise algorithm if and
only if p is a Nagata’'s pairwise algorithm of satisfying an extra condition:

(5) Forb coprime toa, p(a, b) = p(a, 1g). (Note that, in a principal ideal ringe, a
greatest common divisor df, b} always exists.)

REMARK 6. If E is a Euclidean ring for, then the Nagata’s pairwise algorithm
¥, induced by¢ as in Remark 4, is a restricted Nagata’s pairwise algoritimEo

Proposition 4.1. Let E, A, and B be rings such that E Ax B. If A and B
admit a restricted Nagata’s pairwise algorithm respectyyghen E admits a restricted
Nagata’s pairwise algorithm

Proof. If p1: Ax A— W; and p,: B x B — W, give A and B a restricted
Nagata’s pairwise algorithm respectively, then, by Prdpos 2 and 5 of [1], the
mapping p((as, b1), (a2, b2)) = (01(a1, ), p2(b1, b2)) for (az, ba), (a2, bz) € E induces
a restricted Nagata’s pairwise algorithm &n ]

REMARK 7. Later in Proposition 4.8 we will prove that the conversePobpo-
sition 4.1 also holds.

Two Nagata’s pairwise algorithms: Ex E - W, p': Ex E - W on a ringE
are said to be isomorphic if there exists an order-isomarpli: p(E x E) — p'(E X E)
such thato’ =hop. It is easy to see that isomorphic Nagata's pairwise algarit have
the same properties. Thus, since all well-ordered sets eatidinal < cardE x E)
are order isomorphic to proper initial segments of any wedllered setW such that
cardW) > cardE x E) (see Corollary 7.1.1 (d) and Theorem 7.1.2 of [10]), all the
Nagata’s pairwise algorithms on the rirl§ may be constructed to take their values
in the fixed well-ordered seW. For precision sake, we may assume thtis an
ordinal, with elements customarily denoted by 0, 1, 2,3, w, w+1,..., 2w, ..., and
cardE x E) < cardW).

As an immediate consequence of Proposition 4 of [1], we hdwe following
proposition.

Proposition 4.2. If p,: ExE — W is any nonempty family of restricted Nagata’s
pairwise algorithms on a ring Ethenp =inf, p, is also a restricted Nagata’s pairwise
algorithm on E

Proposition 4.2 shows that if a ring admits a restricted Nagata’s pairwise algo-
rithm, then E admits a smallest restricted Nagata’s pairwise algorithii.e. the infi-
mum of all restricted Nagata’s pairwise algorithms).
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Theorem 4.3. Letd: E x E -~ W be the smallest restricted Nagata’'s pairwise
algorithm on a ring E For « € W setE, = E_; U {a € E\ {0} | 6(a, 1g) < a},
E/=E  U{acE\{0}6(a 1g) < «} and E, be the union offE_; and the set of all
a € E\ {0} such that(E/aE)* C na(E;), where (E/aE)* is the unit group of FaE,
E_1=E_1={0}, E, =y, Ep (set—1 < a for everyo € W and g e {—1} UW),
and 7,: E/, - E/aE is the canonical mapThenE, = E, for all « € W.

Proof. By Proposition 3.1, we know that, = Eg = {0} U E*. Fora #0 in W,
assumlngEﬂ = Eﬂ for all B <« in W, we want to prove thaE, = E,.

For nonzero nonuni € E,, if b+aE is any coprime residue class modud,
then, by writingb =ga+r, we find a representative of this class such that(r, a) <
f(a,b)=6(a, 1g) <o, thusr € E, =J,_, E = E,,. This implies thatE, € E,. Con-
versely consider nonzero nonumite E, and suppose that(a, 1g) > «. Now define
6.: Ex E—> W by

if X eaE* andy coprime tox;
ou(x, ¥) = {e(x y), otherwise.

We claim thatd; is a restricted Nagata’s pairwise algorithm: It is obviohat®; satis-
fies the conditions (1), (2), (3) and (5) of Definitions 3 andA& for the condition (4)
of Definition 3, we divide the arguments into three cases.

CAsE 1. Fory e E andy coprime toa. Sincea € E,, so there exisf in E
and nonzera in E; such thaty = qa+r and6y(r, a) =0(r, a) < « =61(a, y).

CAsSE 2. Fory € E andy not coprime toa. Then there exisff andr in E such
thaty =qga+r with eitherr =a or 6,(r, a) = 0(r, a) < 6(a, y) =61(a, y).

Case 3. Forx,y e E andx ¢ aE*. Then there exisyj andr in E such that
y = gx +r with eitherr = x or 6(r, xX) < 0(X, y) = 61(X, y). For the case # x, we
divide the arguments into three subcases.

SUBCASE 3.1. r ¢ aE*. Thenoy(r, x) =0(r, X) < 8(X, y) = 61(X, y).

SUBCASE 3.2. r € aE* and x coprime tor. In this case we still havéy(r, x) =
a < 0(r, X) < 0(X, y) =61(x, y).

SUBCASE 3.3. r € aE* andx not coprime tar. Then6,(r,x) =0(r,Xx) < 68(x,y) =
01(X, y).

Thus 9, is indeed a restricted Nagata’s pairwise algorithmEnThis contradicts
the fact thaty is the smallest restricted Nagatas pa|rW|se algorithmer&fore we have
6(a, 1g) < @, that isa € E,. We conclude tha€, = E,. ]

REMARK 8. Theorem 4.3 on restricted Nagata's pairwise algorithsnani analog
of Proposition 10 of [9] on Euclidean algorithms.

The transfinite construction described in Theorem 4.3 maypdrormed in any
ring E. More precisely,
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The transfinite construction. Let E be a ring andW an ordinal such that
cardE x E) < cardW). We setE_; = {0} and —1 < « for every @ in W. For
o in W, we defineE, by transfinite induction as follows: the s&, = J,_, Ep

(Where g € {—1}UW) is already defined an&, is the union of{0} and the set of all
a € E such that E/aE)° C na(E;), wherer,: E; — E/aE is the canonical map and
(E/aE)° is the set of all distinct cosets+ aE with b coprime toa.

It is clear that the sequenc&().cw is increasing and J, .\ Eo 2 U,cw Eo- TO
experience the relation betwedt, and the Motzkin se€,, let E = Z/8Z = {[0], [1],
[2],...,[7]} be the ring ofZ modulo &. ThenE_; = Eq ={[0]}, Eo = E; = {[0]} UE*,
E.=E 2 E» = E\{[4]}, E3= E. The advantage of, revealed in this simple example
is one step earlier than the Motzkin 96} to exhaust the ringe.

Back toE,, as a consequence of Theorem 4.3, we have:

Corollary 4.4. If aring E admits a restricted Nagata’s pairwise algorithrien
the sequencé€E,),cw exhausts the ring E

Proof. For nonzera in E, sayf(a, 1g) = o, wheref is the smallest restricted
Nagata’s pairwise algorithm fronit x E into W. Then, by Theorem 4.3a € E,,
whenceE =,y Eq- O

Theorem 4.5. Let E be a unique factorization doma{/FD). Then E admits a
restricted Nagata's pairwise algorithm if and only if thegsence(E,).cw €Xxhausts
the ring E, where W is an ordinal such thatardE x E) < cardW).

Proof. If E admits a restricted Nagata’'s pairwise algorithm, then, byollary 4.4,
E= UaeW EO(' -

Conversely ifE = |, E«, then we define a map: E x E — W as follows:
(i) ForainW, if ac E,\E, andb € E, which is coprime ta, we definep(a, b) = a.
(ii) For nonzero nonunit elemerd in E andb € aE, write a = p1p,--- p;, Where
P1, P2, - --, Pt are irreducible. We defing(a, b) =t.
(i) We define

, if b=0;

p(o'b)z{t+1, if b=uoq---q,

wherew denotes the first transfinite ordinal,e E* andqq,..., g irreducible elements
of E. If be E*, thenp(0,b) = 1.
(iv) For nonzero elementa, b in E, which have a greatest common divisgr we
definep(a, b) = p(@, b') + p(s, s), wherea', b’ € E such thata=a’s andb =b's. (For
a, not a last, inW, «a +1 is the immediate successor @f)

Now we claim thatp is a restricted Nagata's pairwise algorithm: First it isyets
verify that p satisfies the conditions (1), (2), (3) of Definition 3 and tlwmdition (5)
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of Definition 4. To verify thatp satisfies the condition (4) of Definition 3, we divide
the arguments into four cases.

For each paird, b) in E x E:

Case l. If be aE, thenb=ga+a for someq € E.

Case 2. If a=0 andb # 0, then we havé = 0 +b with p(b, 0) < p(0, b).

Case 3. If a is a nonzero nonunit elemeriy, coprime toa, anda € E, \ E.,
then there existy, r € E such thatb = qa+r with nonzeror € Efx, whence we have
o(r,a) <a =p(a,b).

CASE 4. If a is a nonzero nonunit element, asd¢ aE*, a greatest common
divisor of {a, b}, thena =a's andb = b’s for somea’, b/ in E, which are relatively
prime. Thus, as in Case 3, there exist’ € E such thatty =qga +r’ and p(r’, @) <
p(@, b). This implies thato(r’s, a’s) = p(r’, @) + p(s, S) < p(@, b') + p(s, s) = p(a, b).
Hence there exig],r =r’s in E such thatb =b’'s=qa’s+r’s with p(r,a) = p(r's,a’s) <
p(a, b).

Indeed, p is a restricted Nagata’'s pairwise algorithm &n O

Proposition 4.6. Let E, A, and B be rings such that E A x B, W an ordinal
such thatcardE x E) < cardW). Then E= Uyew Eo implies A= [, A, and

B= UaeW

Proof. Letpa: A x B — A given by pa(a, b) = a be the canonical projection.
Set Aﬁ = pA(Eﬂ) for all g € { 1} UW. Then it is clear that the sequenc8,j,cw is
increasing. Sinceé = J,.yy Ea, it is obvious thatA = [, .,y Au-

We claim by induction thatAa c A, for everya € W. Fora =0, it is clear
that Ag = Ag = {0} U A*, where A* is the unit group ofA. Fora # 0 in W, assume
that Ay  Ag for all B < o. We want to prove that, C A,. SetA, = J,_, As.
Fora # 0 in A, there existsx € B such that & X) € E,. That meansr,, x)(E’) D
(E/(a X)E)° = (A/aA)° x (B/xB)°. This implies thatna(A_() ) (A/aA) Since A, C

= Upa Ag, we obtain thatra(A,) 2 (A/aA)’, whencea € A,. Thus A, C Aa
We conclude thatd = .,y A
Similarly, we also have thaB = |,y Be- O

Corollary 4.7. Let E, A, and B be rings with A being a UFDbut not a PIQ
such that E= A x B, W an ordinal such thatardE x E) < cardW). Then E#

UaeW E“'

Proof. If E =|J,.\w Ee, then, by Proposition 4.6, Theorem 4.5 and Remark 3,
A is a principal ideal domain (PID), which is a contradictiorlence we haveE #

UaEW EO" D

Now we are ready to prove the converse of Proposition 4.1.
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Proposition 4.8. Let E, A, and B be rings such that E A x B. If E admits
a restricted Nagata’s pairwise algorithnmthen A and B admit a restricted Nagata's
pairwise algorithm respectively

Proof. By Remark 3 we know theE is a principal ideal ring, whencé and B
are also principal ideal rings. L&V be an ordinal such that catEi(x E) < card(W)
Then, by Corollary 4.4 and Proposition 4.6, we ha&e | J,.\y Ea» A=U,ow A and
B=Uyw B B, respectively. Now following the steps indicated in order Rgmarks 5
and 6, Proposition 4.6, Theorem 4.5, and Proposition 4.1,obtain thatA and B
admit a restricted Nagata’s pairwise algorithm respelstive ]

From the proof of Proposition 4.8 and by Corollary 4.4, weadtbimmediately the
following ‘internal’ characterization of a ring admitting restricted Nagata’s pairwise
algorithm.

Corollary 4.9. Let E be a principal ideal ring and W an ordinal such that
cardg x E) < cardW). Then E= J,. E« if and only if E admits a restricted
Nagata’s pairwise algorithm

Bringing Propositions 4.1 and 4.8 together and applyinguation, we have the
following:

Theorem 4.10. Let E, Aq,..., A, be rings such that E A; x --- x A,. Then
E admits a restricted Nagata’s pairwise algorithm if and yifl A; admits a restricted
Nagata’'s pairwise algorithm for #1, 2,...,n

To determine which rings of integers in imaginary quadrdigdds admit a re-
stricted Nagata’'s pairwise algorithm, we need the follgyviemma.

Lemma 4.11. Let E be a PID and a b nonzero nonunit elements in. EIf
ma(E’) 2 (E/abE)*, thenm,(E’) 2 (E/aE)*, where E is a subset of E andy: E' —
E/XE is the canonical map

Proof. Forr € E andr +aE € (E/aE)*, if r and b are relatively prime, then
r +abE € (E/abE)*, whencer + aE € n,(E’). If r and b are not relatively prime
with a greatest common divisat. Write d =q;* - - - g with nonassociate irreducible
elementsg in E andn e N fori =1,2,...,t. Expressb=q; --- g p;*- - pe~
a product of nonassociate irreducible elememisp; ands, m; € N, where integers
t >0 andk > 0. (Note thatpy = 1¢ if k=0.) It is clear thatr +ap; --- px and
b are relatively prime, whence+ap; - - - px and ab are relatively prime. Hence, by
assumption, there existse E’ such thatc+abE=(r +ap;- - - px) +abE. This implies
thatc+aE=r +aE.
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We conclude thatr,(E’) 2 (E/aE)*. 0

Theorem 4.12. The only imaginary quadratic field@(+/—I) for which the ring
E of integers admits a restricted Nagata’s pairwise aldamit are the ones for which
1=1,2,3,711.

Proof. By Proposition 14 of [9], we know that the ringsof integers ofQ(v/—I)
for | =1, 2,3,7,11 are Euclidean. Hence they admit a restrictegatds pairwise
algorithm respectively.

For| > 12, the only units inE (the ring of integers of imaginary quadratic field
Q(J_) of class-number one) are +1 andl. We use the transfinite construction, so
that Eo = {0, 1,—1} (with the notation of this construction). By Lemma 4.11 aifs in
E1, then every prime factor od is in E;. We recall that forb € E \ {0} the norm ofb
is the cardinal number of the s&t/bE. Thus the norms of prime elements i \ Eq
are 2 or 3. Now, for—| =2 or 3 (mod 4), we havéE = Z + Z+/—I and the norm of
x =a+by—I (a, b e Z)is a?+b?l; the equatiora® + b?l =2 or 3 has no solution for
| > 12. For—I =1 (mod 4) the ringE of integers ofQ(v/—1) is Z + Z{(1 +/—1)/2},
the equation to be solved in ordinary integers ia ) +b?l =8 or 12, and has no
solution forl > 12. Thus,E1\ Eq=¢ for | > 12.

Hence, by Theorem 4.5, the theorem is proved. ]

REMARK 9. By Proposition 14 of [9] and Theorem 4.12, we obtain that riing
E of integers of an imaginary quadratic field is Euclidean idamnly if E admits
a restricted Nagata’s pairwise algorithm. Thus the ringsntégers of Q(+/—I) for
| =19,43,67,163 give examples of principal ideal domainscivlidre neither Euclidean
nor admitting a restricted Nagata’s pairwise algorithmrtiermore, by applying The-
orem 4.10, there exist more examples of principal idealsifrgpt domains) which do
not admit a restricted Nagata’s pairwise algorithm.

Finally, to close this section, we prove that for the riBgof integers in a number
field if it admits a restricted Nagata’'s pairwise algoriththen its smallest restricted
Nagata’s pairwise algorithm is finite valued @ x E \ {(0, 0)}.

Theorem 4.13. Let E be an integral domain such that all the residue fields are
finite. If E admits a restricted Nagata’s pairwise algorithrthen the smallest restricted
Nagata’s pairwise algorithn® is finite valued on Ex E \ {(0, 0)}.

Proof. By Remark 3 and Theorem 4.5, we hae= | J,.,, E., whereW is an
ordinal such that car®{ x E) < cardWV). Let p: E x E — W be the restricted Nagata’s
pairwise algorithm defined in the proof of Theorem 4.5. plfis not finite valued on
E x E\ {(0, 0)}, then there is an elememt € E,, \ E/, wherew denotes the first
transfinite ordinal. We have(a, b) = w for any element coprime toa. Every coset
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¢ +aE with ¢ coprime toa admits a representativge with p(ri, @) < p(a, ¢) = o,
thus p(ri, @) = n; for some finite valuen;. By the hypothesi€E/aE is finite, whence
n =1+ sup(n;) is an ordinary integer. By the transfinite construction Bfand the
definition of p, we havea € E,, thus p(a, 1g) < n, a contradiction. Hence is finite
valued onE x E\ {(0, 0)}. Therefore the smallest restricted Nagata’'s pairwiserdlgn
0 is finite valued onE x E \ {(0, 0)}. ]

5. Remarks and Problems

In appearance the definition of a restricted Nagata’s pa@valgorithm is more
complicated than the definition of a Euclidean algorithm. t Brwom Motzkin and
Samuel’s point of view, as we analyze in Sections 2 and 4, dhetp see the ex-
istence of a restricted Nagata’s pairwise algorithm on agypal ideal ringE is easier
than to make sure the existence of a Euclidean algorithmEonAs an example, in
1987, Nagata introduced the concept of pairwise algoritant constructed a pairwise
algorithm onZ[+/14]. Actually, the pairwise algorithm he constructed Bp/14] is
an algorithm now called a restricted Nagata’s pairwise ritlgm here. But, for the ex-
istence of a Euclidean algorithm &&+/14], one had to wait until recently Harper [3]
succeeded in proving, by means of Motzkin and Samuel’s ctexiaation of Euclidean
rings, thatZ[+/14] is a Euclidean domain.

For further study, it is natural to ask the following questo

ProOBLEM 1. LetE be aring andV an ordinal such that carB(x E) < cardWV).
Is the statementE = J,. E. if and only if E =, E.” always true?

In the caseE being the ring of integers of an imaginary quadratic field, apyply-
ing Proposition 14 of [9] and Theorem 4.12, the answer to IBrabl is affirmative.
Furthermore, by assuming@RH (generalized Riemann hypothesis) aBd having an
infinite unit group, Weinberger [11] proved th&y is Euclidean, whereEx denotes
the ring of integers of a number field of class number one. Thus, by assuming a
GRH the answer to Problem 1 is affirmative for evelex of a number fieldK of
class number one except = Q(+/—I) for | = 19, 43, 67, 163.

Theoretically, to see if a given number field is of class nundres, the set J, .y Ea
takes less effort than the sgf, . E., whereN is the set of nonnegative integers.

PrROBLEM 2. Given a number fielKK of class number> 1 and the ringE of
integers ofK, does there exist any connection between the get E, and the class
number of K?
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In 1976, Cooke [2] introduced the concept loktage Euclidean rings: LR be
an integral domain. A sequence of equations (witlB, i, pi € R)

a = By + p1,
B = p1y2 + p2,

Pk—2 = Pk—1Vk T Ok

is called ak-stage division chain starting from the padr, 8). We say thatR is k-stage
Euclidean with respect td if we can find a functionf: R — N with the properties
1) f(¢)=0<= «a =0,
(2) there is ak € N such that for every pait, 8 € R\ {0} there exists am-stage
division chain for somen < k with f(p,) < f(8). Suchf is called ak-stage Euclidean
algorithm onR.

Clearly, the concept df-stage Euclidean algorithms is a generalization of Eualide
algorithms, therefore we should also ask the following tjoas

PrRoBLEM 3. Is there a characterization &fstage Euclidean rings which is an
analog of Proposition 2.1 or Corollary 4.9?
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