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Abstract
We construct a family of cyclic extensions of number fields, which every
finite place is unramified, from an elliptic curve with a raté torsion point. As
an application, we obtain such polynomidigX) of rational coefficients that have
the following property: For a rational numbérchosen at random, the class number
of the field generated by the square rootFqE) is “often” divisible by 3, 5 or by 7.

1. Introduction

The ideal class groups of number fields have been studied fongtime. One
studies the ideal class groups by using certain Diophardgiopgations, especially the
arithmetic theory of elliptic curves. For example, T. Hor[@& (see also [2]) used el-
liptic curves to find infinitely many real quadratic fields velgoclass numbers are multi-
ple of 3. The author [6] gave a geometric interpretation oh#ss work, and showed,
e.g., that the cubic polynomialX — 27 has the following propertyFor £ € Q chosen
at random the class number of the fiel@(,/453 — 27) is divisible by3 with “ proba-
bility” greater than or equal t@®/4.

On the other hand, J.-F. Mestre [5] used elliptic curves to fimfthitely many
imaginary and real quadratic fields whose 5-ranks or 7-ranksat least 2. Mestre’s
work is based on scheme-theoretic argument, and the minmoalels play an impor-
tant role in the proof.

In the present paper, we study a way to construct cyclic sides of number
fields, in which every finite place is unramified, from an dllipcurve with a ratio-
nal torsion point. Our method is similar to Mestre’s in a certsense. However, we
do not use scheme theory nor minimal models. Instead of ttmde, we use Vélu’s
formulas [9] (see Section 2) and the notion of “good pointa”an elliptic curve with
respect to a Weierstrass equation (see Section 4).

Here we briefly state the main results. Uetbe a number field of finite degree,
and letE be an elliptic curve defined ovds which has ak-rational pointTy of prime
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orderl. We take a Weierstrass equation frof the form
y? +aixy + agy = x5 + apX? + auX + ag,
with
ay, 8, ag, au, as, X(To), Y(To) € Ok

and we denote its discriminant by&. Here Oy denotes the ring of integers &f Let
Y24+ ALXY + AgY = X3+ ApXZ + AgX + Ag

be the equation folE* = E/(Tg) and A: E — E* the isogeny of kernelTy) which
are given by Vélu's formulasE* is known to be an elliptic curve defined ovky.
Here (Tp) denotes the subgroup dE(k) generated byT,. With the notation and the
assumptions described above, we can state the main resultdl@aws:

We can construct a subsét of k (for the definition seeTheorem 5.1which sat-
isfies the following two properties
() (Theorem 5.1)For any Qe E* — {O} with X(Q) € E, the field KA~(Q)) is a
cyclic extension of (Q) of degree | in which every finite place is unramified
(i) (Corollary 6.4) The setE has a positive density in:k

#E € B, i i
m HECSH@ =B8]y No
5ooo #E € ki Hi(€) < B} ] Npi+1
where H(&) denotes the exponential height relative to k&fHere pq, ..., p, denote
the distinct prime divisors of in k, and Np; denotes the absolute norm gf.

From these results, we conclude that the cubic polynomial

F(X) = 4X3 + (A2 + 4A) X2 + 2(Ag Az + 2A5) X + A2 + 4Ag

has the following property:
Assume |7 2. Then the element§ € k for which the class number of ;K=
k(+/F(&)) is divisible by | have a positive density in k

o #E ekl [he, He(®) < B} 7 Npi
A TN T | Srees

We close this section with an example (see Examples 2.4 af)d Bet E be the
elliptic curve defined ovek = Q given by

y? — 78xy + 6241y = x3 — 79x2,
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whose discriminant is-79°- 7109, which has a rational poif = (0, 0) of orderl = 5.
For this case, our results implyEor & € Q chosen at randomthe class number of

Q(v/4£3 + 576&2 + 8635964 + 10019781641)

is divisible by5 with “ probability” greater than or equal to

79 7109

— . —————=0.9873 - -.
79+1 7109+1

2. Review of Vélu's formulas

In this section, we briefly review Vélu's formulas. For dédaisee Vélu's original
paper [9] (cf. also [4]).

Let E be an elliptic curve defined over a perfect fidddand letI" be a finite sub-
group of E which is invariant under the action of GE,YQ(). Herek denotes an algebraic
closure ofk and Gal(- ) the Galois group. Then there exist an elliptic cufz& and a
separable isogeny: E — E*, which are defined ovek, such that Kei =T". Such a
pair (E*, A) is unique up tok-isomorphism, ancE* is often denoted bye/I". Given
Weierstrass equation fdE and the coordinates for the points i computing an equa-
tion for E* and an explicit form for.: E — E* of kernelT" can be done by usingélu’s
formulas

Let

(2.1) y?taxy+agy = x> +ax’ +ax+as (& €k)
be an equation foE. We defineg*, g¥ € k(E) by
(2.2) g =32+ 2ax tas —ary, ¢’ =—-2y—aix —as.

For P € E — {O}, we shall write the valuex(P), y(P), g*(P), g¥(P) by xp, Yp,
gp. g,yj, respectively, and set

" .
tp = {gP P e E[Z], up = (95)°

295 — a1gy  otherwise

Taking a setl’'y € I' of perfect representatives fof (- {O})/ £ 1, we put

t:ZtT' w = Z(UT +XTtT).

TEFO TGFO

These two quantities are ik, and do not depend on the choice df. Letting

Al=a, Ar=a, As=as, As=as—5, As=as— (a+4dat — 7w,
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we can state the formulas as follows:
The elliptic curve E = E/T" and the separable isogery: E — E* of kernel’
are given by

(2.3) Y24+ ALXY + AgY = X3+ AX2+ AgX + Ag

and by

tr ur
X=X+ + ,
X Z (x—xT (x—xT)Z)

(2 4) TEFO
' Y=y- 3 (u 2ytax+as A —Xr)*ty—yr A —Gigr
(x —xr)? (x — x7)? (x=x7)2 )’
TEFO
respectively

REMARK 2.1. Expressions (2.4) are derived from
=X+ Z (Xorr —Xx7), Y=y+ Z (Yorr —yr),
Ter—{0} Ter—{0}
or equivalently,

X+ Z XT—ZXOTT, Y + Z yT_ZyotT

Ter—{O Tell Tel'— Tell

by using the addition formulas. Herg denotes the translation-bly-map onE. Note
that we regarck(E*) as a subfield ok(E):

K(E*) = {¢ e k(E);porr =¢ for all T eI},

Thus we have
(2.5)

Xo+ > xr= Y Xp, Yo+ Y yr= Y yp for QeE*—{O},

Tel'-{O} Per Q) Ter—{0} Per1(Q)

where Xq and Yg denote X(Q) and Y(Q), respectively.

REMARK 2.2. One verifies that the invariant differential

gy g
on E associated with (2.1) is equal to the one

dX _dy

oY) = —5v = &x
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on E* associated with (2.3). Here we defi@, G e k(E*) by
(2.6) GX =3X%+2MA X + As — AY, GY=-2Y - A X— As.

ExampPLE 2.3 (The case of’ = 7Z/3Z). If E has ak-rational pointTy of or-
der 3, thenE has an equation of the form

y?+axy+by=x3 (a, bek, b(@®—27) #0)
with Tp = (0, 0), andE* = E/(Ty) is given by
Y2+aXY+bY = X3 —5abX — a’b — 7b.

EXAMPLE 2.4 (The case of® = Z/5Z). If E has ak-rational pointTy of or-
der 5, thenE has an equation of the form

y?+(@+b)xy+ab’y = x3+abx’ (a, b ek, ab@+ 1lab— b?) #0)

with To = (0, 0), andE* = E/(Ty) is given by
Y2+ (@+b)XY +ab’Y = X3+ abX? + 5@>b — 2a%b? — ab®)X
+a°h — 10a*b? — 5a°b* — 15a%b* — ab°.
ExamMpPLE 2.5 (The case of’ = 7Z/7Z). If E has ak-rational pointTy of or-
der 7, thenE has an equation of the form

y? + (a2 + ab — b?)xy + a3b?(a — b)y = x® + ab’(a — b)x?
(a, b ek, abla —b)(@®+5a%b — 8ab? + b%) # 0)

with Tp = (0, 0), andE* = E/(Ty) is given by
Y2+ (a® +ab— b?) XY +a’b?(a — b)Y
= X3 +ab’(a — b)X?
+5ab(a — b)(a? — ab+ b?)(a® — 5ab + 2ab’ + b%) X
+ab(a — b)(@® — 18a®b + 76a’b? — 182a°b°% + 211a°b*
— 132a%b® + 70a%b® — 37a%b’ + 9ab® + b%).

3. Consequences of the formulas

In this section, we study about the form of the isogenye — E* which is given
by Vélu's formulas. Notation and assumptions are the samia # previous section.
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3.1. Relations amongG*, GY and g%, ¢¥. The functionsG*, G¥ € k(E*), de-
fined by (2.6), can be written by usirgf, g¥ € k(E), defined by (2.2), as

G* =mg‘+n(g¥)?, G’ =mg.

Here we definam, n € k(E) by

_ tr 2uT _ tr 3ut
m=1- 3 (e " o) e (65 ey )

TEFO

Thus we have

(38.1) G =mpgi +np(gh)®, GH=mpg} for Qe E*—{0} and Pear Q)
where G, G§, mp, np denoteG*(Q), GY(Q), m(P), n(P), respectively (note tham
andn are regular orE —I'). These relations can be deduced from

dx _dy_ X _dy

(see Remark 2.2) combined with
dX=mdx, dY=-ng"dx+mdy.
3.2. Relation betweenX and x. We can rewrite the former expression of
(2.4) into
NEIC)
J(x)
with

|(X):XI—( Z XT)XI_1+--~,

Tel'-{O}

J(X) = l_[ (x—xT):x"l—( Z xT)x"2+-..,
O}

Ter'—{0O} Tel'—{

wherel = #I" (= degA). It is easy to verify that all the coefficients ¢{x) and J(x)
are ink. Moreover, sincel(x) : k(X)] is equal to k(E) : k(E*)] =1, these polynomials
do not have any common root.

Let Q be a point onE* with [2]Q # O. Then, for eachP € 171(Q), we have
P Z 0O, J(xp) Z0 and I (xp) — XgJ(xp) = 0. Therefore we conclude

(3.2) 1) = Xod() = [T (x—xep),

Per 1(Q)
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since the assumption [@ # O implies
#{xp; P € A7H(Q)} =#4(Q) = 1.

3.3. The field extensions arising fromk. Let Q be a point onE* with [2]Q #
O. We denote the fields

k(Q) =k(Xq, Yo),  k(x H(Q)) =k(xp, yp; P € 27H(Q))

by K, K’, respectively. Since the isogenyis defined ovelkk, we haveK C K'.
Now, we assume that the the fiekdis not of characteristic 2. Then we have

K =k(Xq, G§), K’ =k(xp, g}; P €2 %(Q)).

Here, it follows from (3.1) and the assumption @J# O (i.e. G}S #0) thatmp #0
and g}, = mz'GY, € k(xp, GY). Therefore we conclude

(3.3) K'=K(xp; P € A" }Q)).
Thus K’ is the splitting field of the polynomial (x) — XqJ(X) over K (see (3.2)).

4. Relation with reduction maps

In this section, we shall apply Vélu's formulas to elliptiarees of certain type,
and study about the relation among the isogeny and the liedustaps with respect
to a non-archimedean valuation on the ground field.

Let k be a perfect field, and let be a non-archimedean valuation &n We de-
note the valuation ring, the valuation ideal and the resiield by O,, p, and byk,,
respectively. Fora € O,, we sometimes denote the elemantodyp, of «, by a.

Let E be an elliptic curve defined ovdr which has a k-rational point gTof prime
order I. Then we can take a Weierstrass equation Eoof the form

(4.1) y> +agxy +agy = X° +apX? + auX + 3
with
(42) ai, dp, az, a4, A, XTQ! yTo € Ov-

We fix such an equation and consider the reductiorEahodulop,. That is, letE =
E modp, be the curve defined over, which is given by

(4.3) y? + 8y xy + gy = X° + &X? + &uX + B,
and let

E(k) > P~ P =P modp, € E(k,)
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be the reduction o modulo p, with respect toEquation (4.1). Using the reduction
map, we define two subsets &fk) as

&o(k; py) = (P € E(K); P € Eng(k,)},  &+(K; py) = {P € E(k); P = O}.

We call P € E(K) is good modulop, with respect to (4.1) if it belongs t&o(k;p,) (we
often omit the phrase “modulg, with respect to...”). Similarly, we calP € E(k)
is bad if it does not belong tofo(k; p,). Then clearly{O} € &.(k; p,) S &o(K; py)-
Moreover, it is easy to observe:

Proposition 4.1. (i) For P € E(k) — {O}, we have
Pedlilkip) <= xp ¢ 0y < Yyp ¢ O,.
(i) For P € E(k) — &+(k; p,), we have
Pé¢&ok p,) < gh=05=0 (modp,).

REMARK 4.2. Whether a poinP € E(k) is good or bad is determined only by
a congruent condition for itx-coordinate modulg,. More precisely, puttingA the
discriminant of (4.1), we have:
(i) If A0 (modp,), then everyP € E(K) is good.
(i) If A=0 (modp,), thenP € E(k) is bad if and only ifxp € O, and

f(xp) = f'(xp) =0 (modp,) if 20 (modp,)
x5 =a, (modp,) if 2=a=0 (modp,)
Xp =ag/a; (modyp,) if 2=0,a,#0 (modp,)

hold. Here we define a cubic polynomi&kx) by
f(x) = 4x3 + (a2 + dax)x? + 2(ayag + 2a4)X + a3 + 4ap.

Note the setsfo(k; p,) and &.(k; p,) defined above are not uniquely determined
by k, v and by E. However, one can verify the following (cf., e.g., [8, ChapVWIl,
Proposition 2.1]):

Proposition 4.3. The set&o(K; p,) is a subgroup of Ek), and the map
Eo(K;py) 3 P> Pe I§ns(’(v).
is a group homomorphism of kernél.(k; p,).

Let T be the subgroup oE(k) generated bylp,. ThenT is of prime orderd, and
its subgroupsl” N &o(k; p,) and I' N &+(k; p,) must coincide with{O} or I'. On the
other hand, the assumptiost,, yr, € O, implies To ¢ &+(k; p,). Thus we have:
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Corollary 4.4. (i) T Nné&o(k; p,) coincides with{O} or T.
(i) T'N&wk; py) = {0}

We note that the corollary above implies

(4.4) xr, yr, 8%, ¢l tr,ur € 0, foral Tel —{O}.
Now, let
(4.5) Y2+ ALXY + AgY = X3+ ApX2+ AgX + Ag

be the equation for the elliptic curvé* = E/T" andA: E — E* the isogeny which are
given by Vélu's formulas. Then the assumption (4.2) togethigh (4.4) imply

Al: A21 A3! A4! AG € Ou-

Moreover, one easily observes that all the coefficients of ghkynomials |1(x) and
J(x), defined in Section 3.2, are i®®,. Let E* = E* modyp, be the curve defined
over «, which is given by

(4.6) Y2+ Apxy + Agy = X3+ Apx® + Agx + A,
and let
E*K) > Q> Q =Qmodp, € E*(,)

be the reduction oE* modulo p, with respect to (4.5). Using the reduction map, we
define &§(K; py), &5 (K; py) € E*(K) in the same manner as fd&&. Then we can obtain
the same ones foE* as Proposition 4.1, Remark 4.2 and Proposition 4.3.

With the notation and the assumptions described above, we the following the-
orem, which asserts that the inverse imageabgf every good point contains a good
point;

Theorem 4.5. Let Q be a point in&4(k; p,) such thatA=1(Q) € E(k). Then at
least one point im~%(Q) is contained in&o(K; p,):

A HQ) N Eolk; py) 7 0.

Proof. Since the assertion is clear@ = O, we assumeQ # O. As mentioned
in Corollary 4.4, the sef” N &y(K; p,) coincides with{O} or I.

(i) We first consider the cas€ N &o(k; p,) = {O}, i.e. the case where every
T e I'—{0O} is bad. In that case, it follows from Proposition 4.1 thatred@ce I' — {O}
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satisfiesg? = g¥ =0 (modp,), and hencer = ur =0 (modp,). Therefore we have
t=w=0 (modp,) and

Ar=a;, Ar=ay, Az=a3 A4=a4 (modp,), As=as (modp,).

Thus Equation (4.6) foE* coincides with Equation (4.3) foE. We also note that all
T e I' — {O} are reduced into the same point. That is, writlaghe x-coordinate of
the (unique) singular point ok, we have%; =« for all T € I’ — {O}.

Now, supposer—1(Q) N &u(K; p,) =¥. Then everyP € A71(Q) is bad, and hence
satisfiesXp = «. Consequently, it follows from (2.5) thatq € O, and 5(Q =q«. There-
fore we concludeQ ¢ &5(k; p,), which contradicts the assumption.

(i) We next consider the cagenN &o(k; p,) =T, i.e. the case where eveflye I'
is good. In that case, we havel(Q) € &o(k; p,). Indeed, ifA~3(Q) has a bad point
P, then we havexp, yp € O, and g% = g5 =0 (modp,). Moreover, the assumption
I € &o(k; py) implies xp # xr (modyp,) for all T € I' — {O}, and hence we obtain
Xq, Yo € O, by (2.4). On the other hand, it follows from (3.1) thafy = G§ =0
(modp,). Thus we conclude ¢ &5(k; p,), which contradicts the assumption. [

REMARK 4.6. From the argument in the above proof, one observes hlbatdn-
dition A = 0 (modp,) implies A* = 0 (modp,). Here A* denotes the discriminant
of (4.5).

5. Construction of unramified extensions

From now on,k denotes a number field of finite degree, and we denote its ring
of integers byOk.
Let E be an elliptic curve defined ovér which has a k-rational point gTof prime
order I. Then we can take a Weierstrass equation Eoof the form
(5.1) y*+axy +agy = X° + apX® + auX + 3
with
&, ay, az, au, a6, X1y, Y1, € Ok.

Let I be the subgroup oE(k) generated bylp. Then it follows from the local argu-
ment in Section 4 that

(5.2) xr, yr, 8%, ¢, tr,ur € O foral T el —{O}.
Thus, letting

(5.3) Y2+ AXY + AgY = X3+ AX2+ AgX + Ag
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be the equation for the elliptic curvE* = E/T" andA: E — E* the isogeny of kernel
I which are given by Vélu's formulas, we have

Aly AZ! A3l A41 A6 € Ok.

We also note that all the coefficients of the polynomi&(x) and J(x), defined in
Section 3.2, are irOy.
Now, we define a cubic polynomidt(X) by

F(X) = 4% + (A2 + 4A9) X2 + 2(A1 Ag + 2A0) X + A + 4A,

and putKe = k(/F(&)) for £ e k. For Q € E* — {O} with Xq =& €k, it is easy to
verify that the fieldKg coincides withk(Q). We also define a polynomiah;(x) of
degreel by

Ae(x) = 1(x) = §J(x)

for eaché € k. Let A and A* denote the discriminants of (5.1) and (5.3), respectively.
For each prime divisop of A in k (it is also a prime divisor ofA* by Remark 4.6),
let 2 vadk; p) be the set of sucl € Oy, that satisfy the condition

FE)=F'(¢)=0 (modp) if 20 (modp)
£2= A, (modp) if 2=A=0 (modp)
&= Asz/A1 (modp) if 2=0, A0 (modp)

(cf. Remark 4.2). HereDy, denotes the localization of at p. One might call
Z badK; p) the set ofbad X-coordinaten E* modulo p with respect to (5.3).
With the notation and the assumptions described above, we: ha

Theorem 5.1. Let E be the set of sucl§ € k that satisfy the following three
conditions
(CO) F(§) #0.
(C1) Ag(x) is irreducible over k
(C2) & ¢ Z'padk; p) for all prime divisorsp of A in k.
Then for any Qe E* — {O} with Xq € E, the field KA~1(Q)) is a cyclic extension
of k(Q) of degree | in which every finite place is unramified

Since a Galois extension of odd degree is unramified at evdiyite place, by
using the class field theory, we obtain the following:

Corollary 5.2. Suppose K 2. Then for any £ € E, the class number of the field
K¢ is divisible by |
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REMARK 5.3. Settinga =0 in Example 2.3 (the case bf 3), we haveF(X) =
4X3 — 2707, which the author studied in [6].

REMARK 5.4. In the case where the fiekd is totally imaginary, one has the
same result as the corollary above eveh # 2.

Now, we give a proof of Theorem 5.1. Roughly speaking, ourhmeétto prove
the theorem is similar to the proof of the Weak Mordell-Weilebhem (see, e.g., [8,
Chapter VIII, Section 1]). We shall use Theorem 4.5 in plat¢he direct calculation
in [6].

At first, we fix a pointQ € E* — {O} with Xg =& € E, and put

K =k(Q) (=Ks), K'=k(A"YQ)).
Then:

Lemma 5.5. (i) K’ is a cyclic extension of K of degree |
(i) For any Pe A~1(Q), we have K= K(P).
(i) The map

t: GalK'/K)s o+ P —Pel

(P is a point inA~%(Q)) is a group isomorphism

Proof. It is immediate fronT" € E(k) € E(K) and Q € E*(K) that K'/K is a
Galois extensionK’ = K(P) holds for anyP € A~%(Q) and that: is an injective group
homomorphism. Thus we have only to show thas surjective.

Since the groug is of prime orded, its subgroup Inn must coincide with{O} or
I". Moreover, the assumption (CO) implies thatis the splitting field of Ag(x) over
K (see (3.3)). Hence we conclude Ims ' by the assumption (C1). ]

Next, we fix a prime ideafd in K and show thaK’/K is unramified atj3. Since
[K":K]=1is prime, we may assume thgk is not decomposed iKK’. Let P’ denote
the unique prime divisor of$ in K’ and«’ its residue field. Let

E(K) 3 P+ P mod’ € (E mod®)(«)

be the reduction oE modulo " with respect to (5.1). Using the reduction map, we
define &o(K’; B'), &+(K’; P") € E(K’) in the same manner as in Section 4. These
subsets are Gaf('/K)-invariant subgroups oE(K’), for we have assumed th&t is
not decomposed ifK’. Therefore, puttinglq,p the inertia group ford’/, we have
P? —P e &+(K’; ) for any P € &o(K’; ") and anyo € Iy . In particular, taking
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P from A~1(Q) N &o(K’; P'), which is a nonempty set by the assumption (C2) and
Theorem 4.5, we obtain

P’ — P el N&(K;P)

for all o € lg,p. However, it follows from (5.2) thaf” N &£+(K';P’) = {O}, and
hence the poini is invariant under the action af € lq/ /3. On the other hand, we
also haveK’ = K(P). Thus we concluddy,y = {1}. That is, K’/K is unramified at
B, which completes the proof of Theorem 5.1.

6. The density of =

In this section, we show that the sBtdefined in the previous section has a pos-
itive density ink with respect to a height function. Forkarational pointP e P9-1(k)
on (d — 1)-dimensional projective space, we denote its exporiehéight relative tok
by Hk(P) (for the definition and the basic properties of heights,, seg., [1, Part B]).
Then, as was shown by Schanuel [7], one has

(6.1) #P e PYH(K); He(P) < B} ~ Cq kB

as B — oco. HereCy is a positive constant depending only dnand k which can
be written in an explicit form. We regar®'(k) ask U {oo}, and study the asymptotic
behavior of the counting function{¢ e E; Hx(¢) < B}.

Recall that the se€ is defined by using three conditions (C0)—(C2). Among
them, the condition (CO) holds for all but finitely magye k (there are at most three
exceptions). Thus we may omit the condition (C0). On the motiend, we can esti-
mate the number of such € k that do not satisfy the condition (C1) as follows:

Lemma 6.1. We have
#(¢ € k; A:(x) is reducible over k Hc(¢) < B} < B
as B— oo.

Proof. We first show that, fof € k with F(&) # 0, the following conditions are
equivalent:
(a) Ag(x) is reducible overk.
(b) Ag(x) has a root ink.
(b)Y € =1(¢)/3(¢) holds for some; € k satisfying J(¢) # 0.
Clearly, (b) implies (a). It is also immediate to see the egleince between (b) and
(bY. Thus we have only to show that (a) implies (b). The asselioobvious in the
case wherd = 2, and we shall assume# 2 for the time being. Then, fof € k
with F(¢) # 0, one can show that the following conditions are equivialera similar
fashion to the proof of Lemma 5.5:
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(A) Ag(x) is reducible overKe.
(B) Ag(x) is decomposed into linear factors ovig.
Here, clearly (a) implies (A). Moreover, sintds assumed to be odd, it follows from
[Ke : K] < 2 that (B) implies (b). Consequently, fdr € k with F(§) # 0, the five
conditions described above are equivalent (under the gggm # 2).

By the equivalence between (a) and’(hye obtain

#{€& € k; A:(x) is reducible ovelk, Hx(§) < B} < #{¢ € k; Hc(1(¢)/J(¢)) < B}.
On the other hand, sinck(x)/J(x) is a rational function of degreke we observe
Hi(1(-)/3(-)) = Hi( )
on k. Hence we conclude the assertion by the asymptotic form@utb).( O

Now, we study about the condition (C2). Recall that the s@tg.(k; p) are de-
fined for prime divisorsp of A in k. It follows from the definition that, for each,
there exists a poin, € P}(Oy/p) — {oo} such that

ZadK; p) = (€ € PY(K); £ modp = &,}.

The distribution of rational points on a projective spac¢hvduch conditions on reduc-
tions as above can be estimated as follows:

Lemma 6.2. Letps,..., pr be distinct prime ideals in a number field k of finite
degree Then for every(Py, ..., Py) € [T, P"Y(Ok/pi), we have

r
#HP e PY"}Kk); P modp; = P for all i, H(P) < B} ~ (]‘[ M)cd,de

as B— oo. Here Np; denotes the absolute norm ef.

The lemma above can be shown in a similar (but more comptiyateay to
Schanuel's original proof (see also Watanabe [10, Examplewhich treats a modi-
fied height function).

Summing up the asymptotic formulas described above, weirobta

Theorem 6.3. We have

o N 7 _Np 2
#E € 8 H(®) < B) <]‘! Npr ¥ l)cz,kB

as B— oo. Herepy, ..., pr denote the distinct prime divisors @f in k.
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Corollary 6.4. The setE has a positive density in k in the following sense

r

. #E € B Hk(§) = B} _ Npi
& HE € K () < B) g Np; +1

REMARK 6.5. For an extensioiK of k, one can show that
#E € B, Ke = K, He(§) < B} =< (log B)"/?

holds for some € Z-o. Thus the family{K}:cz of (at most quadratic) extensions of
k, parametrized byg, consists of infinitely many fields.

Now, we assumd # 2. Then it follows from Corollaries 5.2 and 6.4 that the
elementst € k for which the class number df: = k(/F(£)) is divisible byl have a
positive density ink:

#E ekl hg, H(®)<B) 1 Np
o e ek @ =8 LN

Thus one might sayfFor & € k chosen at randomthe class number of the field:Ks
divisible by | with* probability” greater than or equal tq [; Np;i /(Np; + 1).

EXAMPLE 6.6. Puttingk =Q, a=98 andb=—1 in Example 2.3, we obtain
F(X) = 4X3 + 9604X2 + 1764X + 3764741, A = —101-9319.

Thus, foré € Q, the class number of(/F (%)) is divisible by 3 with “probability”
greater than or equal to

101 9319

T01+1 9319+1 29900

EXAMPLE 6.7. Puttingk=Q, a=1 andb=-79 in Example 2.4, we obtain
F(X) = 4X3 + 5768X? + 8635964 + 10019781641, A = —79 - 7109.

Thus, foré € Q, the class number o@(+/F(£)) is divisible by 5 with “probability”
greater than or equal to

79 7109

— . ————— =0.9873 - -.
79+1 7109+1



390

A. SATO

ExAMPLE 6.8. Puttingk =Q, a=4 andb =-97 in Example 2.5, we obtain

F(X) = 4X3+ 11087290%? + 6379117545341648 + 66809139857632818992656,

A =-=2%.97".107 . 1221457.

Thus, foré e Q, the class number of)(/F(%)) is divisible by 7 with “probability”
greater than or equal to

(1]
(2]
E
(4]

(5]
(6]

[7]
(8]

(9]
(10]

2 97 101 1221457
2+1 97+1 101+1 1221457 +1

=0.6533 - -.
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