Alekseevsky, D. and Cortés, V. Osaka J. Math. **45** (2008), 215–251

THE TWISTOR SPACES OF A PARA-QUATERNIONIC KÄHLER MANIFOLD

DMITRI ALEKSEEVSKY and VICENTE CORTÉS

(Received December 18, 2006, revised April 18, 2007)

Abstract

We develop the twistor theory of G-structures for which the (linear) Lie algebra of the structure group contains an involution, instead of a complex structure. The twistor space Z of such a G-structure is endowed with a field of involutions $\mathcal{J} \in$ $\Gamma(\operatorname{End} TZ)$ and a \mathcal{J} -invariant distribution \mathcal{H}_Z . We study the conditions for the integrability of \mathcal{J} and for the (para-)holomorphicity of \mathcal{H}_Z . Then we apply this theory to para-quaternionic Kähler manifolds of non-zero scalar curvature, which admit two natural twistor spaces $(Z^{\epsilon}, \mathcal{J}, \mathcal{H}_Z)$, $\epsilon = \pm 1$, such that $\mathcal{J}^2 = \epsilon \text{Id}$. We prove that in both cases $\mathcal J$ is integrable (recovering results of Blair, Davidov and Muškarov) and that \mathcal{H}_Z defines a holomorphic ($\epsilon = -1$) or para-holomorphic $(\epsilon = +1)$ contact structure. Furthermore, we determine all the solutions of the Einstein equation for the canonical one-parameter family of pseudo-Riemannian metrics on Z^{ϵ} . In particular, we find that there is a unique Kähler-Einstein (ϵ = -1) or para-Kähler-Einstein ($\epsilon = +1$) metric. Finally, we prove that any Kähler or para-Kähler submanifold of a para-quaternionic Kähler manifold is minimal and describe all such submanifolds in terms of complex ($\epsilon = -1$), respectively, para-complex ($\epsilon = +1$) submanifolds of Z^{ϵ} tangent to the contact distribution.

Contents

1.	Intro	oduction	216
2.	(Aln	nost) para-complex manifolds	218
	2.1.	Integrability of an almost para-complex structure.	218
	2.2.	Holomorphicity of distributions in almost para-complex manifolds.	219
3.	Para	-quaternionic manifolds and para-quaternionic Kähler manifolds	222
4.	The	twistor spaces of a para-quaternionic or para-quaternionic Kähler	
	man	ifold	224
	4.1.	The twistor spaces of a para-quaternionic manifold.	224
	4.2.	The twistor spaces of a para-quaternionic Kähler manifold	225
	4.3.	Twistor spaces of para-quaternionic (Kähler) manifolds as bundles	
		associated to G-structures.	226
5.	G-st	ructures of para-twistor type and their twistor spaces: obstructions	
	for i	integrability	227
	5.1.	Groups of para-twistor type and para-complex symmetric spaces.	227
	5.2.	The space of curvature tensors.	228
	5.3.	G-structures with connection and associated K-structures.	231
	5.4.	The twistor space of a G-structure of para-twistor type	233
		-	

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C26, 53C28; Secondary 53C42, 53C50.

D. ALEKSEEVSKY AND V. CORTÉS

6.	Integrability and holomorphicity results for the twistor spaces of a	
	para-quaternionic Kähler manifold	236
7.	The canonical ϵ -Kähler-Einstein metric and contact structure on the	
	twistor space Z^{ϵ} of a para-quaternionic Kähler manifold	237
8.	Twistor construction of minimal submanifolds of para-quaternionic	
	Kähler manifolds	248
	8.1. Kähler and para-Kähler submanifolds of para-quaternionic Kähler	
	manifolds.	248
	8.2. Twistor construction of Kähler and para-Kähler submanifolds of	
	para-quaternionic Kähler manifolds.	249

1. Introduction

Twistor methods were originally introduced by Penrose with the aim of providing a mathematical framework which could lead to a synthesis of quantum theory and relativity [13, 14]. They have proven very fruitful for the construction and systematic study of various geometric objects governed by non-linear partial differential equations such as Yang-Mills connections, Einstein metrics, harmonic maps and minimal submanifolds.

Given a geometric problem on a real differentiable manifold M endowed with certain geometric structure S, the twistor approach is to try to translate the given problem into a problem of complex geometry an a complex manifold Z, called the twistor space, which is the total space of a bundle over M. In most cases, Z can be defined as the bundle of all complex structures in the tangent spaces of M which are compatible with the geometric structure S and it comes with a natural almost complex structure \mathcal{J} , the integrability of which has to be derived from the properties of the structure S.

In the case of a four-dimensional oriented Riemannian manifold M, for instance, the fibre at $p \in M$ of the twistor bundle $Z \to M$ consists of all skew-symmetric complex structures in T_pM , which induce the given orientation [4]. It is identified with the Riemann sphere $\mathbb{C}P^1$ and, thus, carries a natural complex structure. On the other hand, the Levi-Civita connection of M induces a horizontal (i.e. transversal to the fibers) distribution $\mathcal{H}_Z \subset TZ$ and the horizontal spaces carry a tautological complex structure. Putting the complex structures on vertical and horizontal spaces together, one obtains a canonical almost complex structure \mathcal{J} on Z. By the results of Atiyah, Hitchin and Singer, \mathcal{J} is integrable if and only if the Weyl curvature tensor of M is self-dual and, in that case, self-dual Yang-Mills vector bundles on M correspond to certain holomorphic vector bundles on Z. Salamon et al. have extended these constructions from four to higher dimensions, with the role of the self-dual four-dimensional Riemannian manifold played by a quaternionic Kähler manifold [15, 9]. In [3] the twistor method was used to construct (minimal) Kähler submanifolds of quaternionic Kähler manifolds.

A *G*-structure is called of *twistor type* if the (linear) Lie algebra $\mathfrak{g} = \text{Lie } G$ of the structure group contains a complex structure, i.e. an element *J* such that $J^2 = -\text{Id}$. The twistor theory of *G*-structures of twistor type is developed in [2], see also references therein. This includes the case of quaternionic Kähler manifolds, for which the

structure group is G = Sp(1)Sp(n).

In this paper, we develop a similar theory for *G*-structures of *para-twistor type*, i.e. for which \mathfrak{g} contains an involution *J*, rather than a complex structure. Let $P \to M$ be such a *G*-structure and denote by $K = Z_G(J)$ the centralizer of the involution *J*. For any principal connection ω on *P*, we define the twistor space of (P, ω) as the total space of the bundle $Z = P/K \to P/G = M$, which we endow with a *K*-structure $P \to Z$, a field of involutions $\mathcal{J} \in \Gamma(\text{End } TZ)$ and a \mathcal{J} -invariant horizontal distribution \mathcal{H}_Z , see Definition 11. We express the integrability of \mathcal{J} and the (para-)holomorphicity of \mathcal{H}_Z as equations for the curvature and torsion of ω , which generalize the self-duality equation for the Weyl curvature of a pseudo-Riemannian metric of signature (2, 2), see Theorem 1.

A para-quaternionic structure on a vector space V is a Lie subalgebra $Q \subset \text{End } V$ which admits a basis (J_1, J_2, J_3) such that $J_3 = J_1 J_2$ and $J_{\alpha}^2 = \epsilon_{\alpha} \text{Id}$, where $(\epsilon_1, \epsilon_2, \epsilon_3) =$ (-1, 1, 1). A pseudo-Riemannian manifold (M, g) of dimension > 4 endowed with a parallel field $M \ni p \mapsto Q_p \subset \text{End } T_p M$ of g-skew-symmetric para-quaternionic structures is called a para-quaternionic Kähler manifold. The metric g has signature (2n, 2n)and is Einstein [1]. Moreover, para-quaternionic Kähler manifolds are related to certain supersymmetric field theories on space-times with a positive definite rather than a Lorentzian metric [11].

For a para-quaternionic Kähler manifold (M, g, Q), Blair et al. [6, 7] have defined two twistor spaces $Z^{\epsilon} := \{A \in Q \mid A^2 = \epsilon\}, \ \epsilon = \pm 1$, and endowed them with an integrable structure $\mathcal{J} \subset \operatorname{End} TZ^{\epsilon}$ such that $\mathcal{J}^2 = \epsilon \operatorname{Id}$. We recover these results by considering the twistor space associated to the underlying *G*-structure, which is of twistor type, as well as of para-twistor type. More precisely, we consider

$$J \in \mathfrak{sl}(2, \mathbb{R}) \subset \mathfrak{g} = \mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{sp}(\mathbb{R}^{2n}) \subset \mathfrak{gl}(\mathbb{R}^2 \otimes \mathbb{R}^{2n}) = \mathfrak{gl}(4n, \mathbb{R}).$$

Under the assumption that the scalar curvature of g is non-zero, we prove, in addition, that the horizontal distribution \mathcal{H}_Z defines a holomorphic (respectively, para-holomorphic) contact structure on Z and that $(Z^{\epsilon}, \mathcal{J})$ admits a Kähler-Einstein (respectively, para-Kähler-Einstein) metric and determine all Einstein metrics in the canonical one-parameter family of pseudo-Riemannian metrics, see Theorem 3. It turns out that there is always a second Einstein metric.

Finally, we generalize the twistor construction of Kähler submanifolds of a quaternionic Kähler manifold (see [3]) to the case of Kähler and para-Kähler submanifolds (see Definition 14) of a para-quaternionic Kähler manifold (M, g, Q). We prove that any Kähler or para-Kähler submanifold of a para-quaternionic Kähler manifold (M, g, Q)is minimal (Corollary 7). All such submanifolds can be obtained as projections of complex ($\epsilon = -1$), respectively, para-complex ($\epsilon = +1$) submanifolds of Z^{ϵ} which are tangent to the contact distribution, see Theorem 4. It follows that the maximal dimension of a Kähler or para-Kähler submanifold of (M, g, Q) is $(1/2) \dim M$ and that maximal Kähler (respectively, para-Kähler) submanifolds of (M, g, Q) correspond to Legendrian submanifolds of the complex (respectively, para-complex) contact manifold ($Z^{\epsilon}, \mathcal{H}_Z$).

2. (Almost) para-complex manifolds

2.1. Integrability of an almost para-complex structure.

DEFINITION 1. An (almost) para-complex structure, in the weak sense, on a differentiable manifold M is a field of endomorphisms $J \in \text{End } TM$ such that $J^2 = \text{Id. } J$ is called *non-trivial* if $J \neq \pm \text{Id.}$ We say that J is an (almost) para-complex structure, in the strong sense, if the ± 1 -eigenspace distributions $T^{\pm}M$ of J have the same rank. An almost para-complex structure is called *integrable*, or *para-complex structure* if the distributions $T^{\pm}M$ are integrable, or, equivalently, the Nijenhuis tensor N_J , defined by

(2.1)
$$N_J(X, Y) = [X, Y] + [JX, JY] - J[JX, Y] - J[X, JY], X, Y \in TM,$$

vanishes. An (almost) para-complex manifold (M, J) is a manifold M endowed with an (almost) para-complex structure.

Unless otherwise stated, by an (almost) para-complex structure we shall understand here an (almost) para-complex structure in the weak sense.

REMARK. The difference between weak and strong (almost) para-complex manifolds is that $T_p^{1,0}M = \{X + eJX \mid X \in T_pM\} \subset T_pM \otimes C, p \in M$, is a free module over the ring $C := \mathbb{R}[e], e^2 = 1$, of para-complex numbers only in the strong case. In particular, for weak para-complex manifolds, there is no notion of para-holomorphic local coordinates (z^i) on M such that the (dz^i) form a basis of $T_p^{1,0}M$ over C.

Let (V, J) and (U, J_U) be vector spaces endowed with constant para-complex structures. We can decompose the vector space $C^2(U) := U \otimes \bigwedge^2 V^*$ of *U*-valued two-forms on *V* according to type

(2.2)
$$C^{2}(U) = \sum_{p+q=2} C^{p,q}(U),$$

where

$$\begin{aligned} \alpha &\in C^{1,1}(U) \quad \text{if} \quad \alpha(JX, JY) = -\alpha(X, Y) \quad \text{for all} \quad X, Y \in V, \\ \alpha &\in C^{2,0}(U) \quad \text{if} \quad \alpha(JX, Y) = \alpha(X, JY) = J_U \alpha(X, Y) \quad \text{for all} \quad X, Y \in V \end{aligned}$$

and

$$\alpha \in C^{0,2}(U)$$
 if $\alpha(JX, Y) = \alpha(X, JY) = -J_U\alpha(X, Y)$ for all $X, Y \in V$.

Lemma 1. The projections $\pi^{p,q}: C^2(U) \to C^{p,q}(U), \alpha \to \alpha^{p,q}$, are given by:

$$\begin{aligned} &\alpha^{1,1}(X, Y) = \frac{1}{2} (\alpha(X, Y) - \alpha(JX, JY)), \\ &\alpha^{2,0}(X, Y) = \frac{1}{4} (\alpha(X, Y) + \alpha(JX, JY) + J_U \alpha(JX, Y) + J_U \alpha(X, JY)), \\ &\alpha^{0,2}(X, Y) = \frac{1}{4} (\alpha(X, Y) + \alpha(JX, JY) - J_U \alpha(JX, Y) - J_U \alpha(X, JY)). \end{aligned}$$

For scalar valued forms $(U = \mathbb{R})$ we will always assume that $J_U = \text{Id}$.

Let J be an almost para-complex structure on a manifold M and ∇ a linear connection which preserves J. The following lemma shows that J is integrable if and only if the (0, 2) component $T^{0,2} = \pi^{0,2}T$ vanishes.

Proposition 1. Let ∇ be a connection which preserves an almost para-complex structure J on a manifold M. Then the Nijenhuis tensor of J is given by $N_J = -4T^{0,2}$. In particular, J is integrable if and only if $T^{0,2} = 0$.

Proof. Applying Lemma 1 in the case $U = V = T_p M$, $p \in M$, we have

$$T^{0,2}(X, Y) = \frac{1}{4}(T(X, Y) + T(JX, JY) - JT(JX, Y) - JT(X, JY)), \quad X, Y \in TM.$$

Replacing T(X, Y) by $\nabla_X Y - \nabla_Y X - [X, Y]$ in this formula, we get

$$T^{0,2}(X, Y) = -\frac{1}{4}([X, Y] + [JX, JY] - J[JX, Y] - J[X, JY]) = -\frac{1}{4}N_J(X, Y). \quad \Box$$

2.2. Holomorphicity of distributions in almost para-complex manifolds.

DEFINITION 2. Let (M, J) be an almost para-complex manifold of real dimension n. A *J*-invariant distribution $\mathcal{D} = \mathcal{D}_+ \oplus \mathcal{D}_- \subset T^+M \oplus T^-M = TM$ of rank m is called *para-holomorphic* if it is locally defined by equations $\alpha_+^1 = \cdots = \alpha_+^{k_+} = \alpha_-^1 = \cdots = \alpha_+^{k_-} = 0$, such that $k_+ + k_- = n - m$,

$$(2.3) \qquad \qquad \alpha^i_+ \circ J = \pm \alpha^i_+$$

and the (1, 1)-component

$$\pi^{1,1} d\alpha_{+}^{i} = \frac{1}{2} (d\alpha_{+}^{i} - J^{*} d\alpha_{+}^{i})$$

vanishes on $\bigwedge^2 (\mathcal{D}_+ \oplus T^- M)$ and the (1, 1)-component

$$\pi^{1,1} \, d\alpha_{-}^{i} = \frac{1}{2} (d\alpha_{-}^{i} - J^{*} \, d\alpha_{-}^{i})$$

vanishes on $\bigwedge^2 (T^+M \oplus \mathcal{D}_-)$.

Let (M, J) be an almost para-complex manifold of real dimension n endowed with a *J*-invariant distribution $\mathcal{D} \subset TM$ of rank m and a connection ∇ which preserves Jand \mathcal{D} . Then we can define a two-form with values in TM/\mathcal{D} by

$$S(X, Y) := T(X, Y) \mod \mathcal{D}.$$

Since J induces a para-complex structure on the vector bundle TM/D, we can decompose

$$S = S^{2,0} + S^{1,1} + S^{0,2},$$

see Lemma 1.

Proposition 2. Let (M, J) be an almost para-complex manifold. A *J*-invariant distribution $\mathcal{D} = \mathcal{D}_+ \oplus \mathcal{D}_- \subset T^+M \oplus T^-M = TM$ is para-holomorphic if and only if

(2.4)
$$[\Gamma(\mathcal{D}_{\pm}), \Gamma(T^{\mp}M)] \subset \Gamma(T^{\mp}M \oplus \mathcal{D}_{\pm}).$$

Moreover, if ∇ is a connection which preserves J and D, then (2.4) is equivalent to

(2.5)
$$S^{1,1}(JX, \cdot) = -JS^{1,1}(X, \cdot),$$

for all $X \in \mathcal{D}$.

Proof. First we prove that (2.5) is equivalent to the para-holomorphicity of \mathcal{D} . Let \mathcal{D} be a para-holomorphic distribution defined by one-forms α_{\pm}^{i} as in Definition 2. The condition on $\pi^{1,1} d\alpha_{\pm}^{i}$ is equivalent to

$$d\alpha_{+}^{i}(X_{+}, Y_{-}) = 0, \quad X_{+} \in \mathcal{D}_{+}, \quad Y_{-} \in T^{-}M,$$

$$d\alpha_{-}^{i}(X_{+}, Y_{-}) = 0, \quad X_{+} \in T^{+}M, \quad Y_{-} \in \mathcal{D}_{-}.$$

Expressing the exterior derivative in terms of the covariant derivative and torsion we get

$$0 = d\alpha_{+}^{i}(X_{+}, Y_{-}) = (\nabla_{X_{+}}\alpha_{+}^{i})Y_{-} - (\nabla_{Y_{-}}\alpha_{+}^{i})X_{+} + \alpha_{+}^{i}(T(X_{+}, Y_{-})).$$

The first two terms on the right-hand side vanish. In fact, since ∇ preserves the distribution \mathcal{D} , the covariant derivative $\nabla_X \alpha^i_+$ vanishes on $\mathcal{D}_+ \oplus T^- M$ for all $X \in TM$. The last term can be written as

$$0 = \alpha_+^i(T(X_+, Y_-)) = \alpha_+^i(T^{1,1}(X_+, Y_-)),$$

which implies that $T^{1,1}(X_+, Y_-) \in \mathcal{D}_+ \oplus T^-M$ for all $X_+ \in \mathcal{D}_+$ and $Y_- \in T^-M$. A similar calculation for α^i_- shows that $T^{1,1}(X_+, Y_-) \in T^+M \oplus \mathcal{D}_-$ for all $X_+ \in T^+M$ and $Y_- \in \mathcal{D}_-$. This proves that

$$S^{1,1}(\mathcal{D}_+, T^-M) \subset (T^-M + \mathcal{D})/\mathcal{D},$$

$$S^{1,1}(\mathcal{D}_-, T^+M) \subset (T^+M + \mathcal{D})/\mathcal{D}.$$

In particular, $S^{1,1}(\mathcal{D}, \mathcal{D}) = 0$ and $S^{1,1}(JX, \cdot) = -JS^{1,1}(X, \cdot)$ for all $X \in \mathcal{D}$.

To prove the converse, we assume that the torsion of ∇ satisfies (2.5). Let $(\alpha_+^1, \ldots, \alpha_+^{k_+})$ and $(\alpha_-^1, \ldots, \alpha_-^{k_-})$ be local frames of $(\mathcal{D}_+ \oplus T^- M)^{\perp}$ and $(T^+ M \oplus \mathcal{D}_-)^{\perp} \subset T^* M$, respectively. This implies (2.3). Since $\pi^{1,1}\alpha(T^{\pm}M, T^{\pm}M) = 0$ for any two-form α , it is sufficient to check that $\pi^{1,1} d\alpha_+^i(\mathcal{D}_+, T^- M) = \pi^{1,1} d\alpha_-^i(T^+ M, \mathcal{D}_-) = 0$. We calculate for $X_+ \in \mathcal{D}_+$ and $Y_- \in T^- M$:

$$\begin{aligned} \pi^{1,1} d\alpha_+^i(X_+, \, Y_-) &= d\alpha_+^i(X_+, \, Y_-) = (\nabla_{X_+} \alpha_+^i) Y_- - (\nabla_{Y_-} \alpha_+^i) X_+ + \alpha_+^i(T(X_+, \, Y_-)) \\ &= \alpha_+^i(T(X_+, \, Y_-)) = \alpha_+^i(T^{1,1}(X_+, \, Y_-)) = \alpha_+^i(S^{1,1}(X_+, \, Y_-)) \\ &= \alpha_+^i(S^{1,1}(JX_+, \, Y_-)) \stackrel{(2.5)}{=} -\alpha_+^i(JS^{1,1}(X_+, \, Y_-)) = -\alpha_+^i(S^{1,1}(X_+, \, Y_-)). \end{aligned}$$

Therefore, $\pi^{1,1}d\alpha_{\perp}^{i}(X_{+},Y_{-}) = 0$. A similar calculation shows that $\pi^{1,1}d\alpha_{\perp}^{i}(\mathcal{D}_{-},T^{+}M) = 0$.

Now we prove the equivalence of (2.4) and (2.5). The condition (2.5) can be written as

$$T(\mathcal{D}_+, T^{\mp}M) \subset T^{\mp}M \oplus \mathcal{D}_+,$$

Using that ∇ preserves the distributions \mathcal{D}_{\pm} and $T^{\pm}M$, we calculate for $X_{\pm} \in \Gamma(\mathcal{D}_{\pm})$ and $Y_{\pm} \in \Gamma(T^{\pm}M)$

$$T^{\mp}M \oplus \mathcal{D}_{\pm} \ni T(X_{\pm}, Y_{\mp}) = \nabla_{X_{\pm}}Y_{\mp} - \nabla_{Y_{\mp}}X_{\pm} - [X_{\pm}, Y_{\mp}]$$
$$\equiv -[X_{\pm}, Y_{\mp}] \mod T^{\mp}M \oplus \mathcal{D}_{\pm}.$$

This proves the equivalence of (2.4) and (2.5).

Let (M, J) be a para-complex manifold in the strong sense, i.e. the integrable eigendistributions $T^{\pm}M$ are of the same rank. Recall [10] that a *C*-valued one-form $\gamma = \alpha + e\beta$ is of *para-complex type* (1, 0), i.e. $J^*\gamma = e\gamma$, if and only if $\beta = \alpha \circ J$. A (1, 0)-form γ is *para-holomorphic* if $\bar{\partial}\gamma := \pi^{1,1} d\gamma = 0$, which is equivalent to the para-Cauchy-Riemann equations

(2.6)
$$\partial_{-}\alpha_{+} := \pi^{1,1} d\alpha_{+} = \partial_{+}\alpha_{-} := \pi^{1,1} d\alpha_{-} = 0,$$

where $\alpha = \alpha_+ + \alpha_-$ is the *J*-eigenspace decomposition of α .

$$\square$$

Proposition 3. Let (M, J) be a para-complex manifold in the strong sense with eigendistributions $T^{\pm}M$ of rank n and $\mathcal{D} = \mathcal{D}_{+} \oplus \mathcal{D}_{-} \subset T^{+}M \oplus T^{-}M = TM$ a J-invariant distribution such that \mathcal{D}_{\pm} are of the same rank m. Then \mathcal{D} is para-holomorphic if and only if it is locally defined by equations $\gamma^{i} = 0$ (i = 1, ..., k = n - m), where the γ^{i} are para-holomorphic one-forms.

Proof. Let \mathcal{D} be defined by para-holomorphic one-forms $\gamma^i = \alpha_+^i + \alpha_-^i + e(\alpha_+^i - \alpha_-^i)$. The α_+^i satisfy (2.6), which imply the equations in the Definition 2.

To prove the converse, we now assume that the distribution \mathcal{D} is para-holomorphic. Thanks to Proposition 2, this means that

$$[\Gamma(\mathcal{D}_{\pm}), \, \Gamma(T^{\mp}M)] \subset \Gamma(T^{\mp}M \oplus \mathcal{D}_{\pm}).$$

In order to construct para-holomorphic one-forms $\gamma^i = \alpha_+^i + \alpha_-^i + e(\alpha_+^i - \alpha_-^i)$ which define \mathcal{D} , we choose locally linearly independent commuting vector fields $Y_i^{\pm} \in \Gamma(T^{\pm}M)$ which generate distributions $N^{\pm} \subset T^{\pm}M$ complementary to \mathcal{D}_{\pm} . We define one-forms α_+^i vanishing on $\mathcal{D}_{\pm} \oplus T^{\mp}M$ by

$$\alpha^i_+(Y^\pm_i) = \delta^i_i.$$

It is clear that $\alpha_{\pm}^i \circ J = \pm \alpha_{\pm}^i$ and that $\gamma^i := \alpha_{\pm}^i + \alpha_{-}^i + e(\alpha_{\pm}^i - \alpha_{-}^i)$ define \mathcal{D} . Now we check that the γ^i are para-holomorphic, i.e. $\partial_{-}\alpha_{\pm}^i = \partial_{+}\alpha_{-}^i = 0$. It is sufficient to evaluate this equality on (Z^+, Z^-) , where $Z^{\pm} = X^{\pm} \in \Gamma(\mathcal{D}_{\pm})$ or $Z^{\pm} = Y_i^{\pm}$.

$$\partial_{-}\alpha_{+}^{i}(X^{+}, X^{-}) = X^{+}\alpha_{+}^{i}(X^{-}) - X^{-}\alpha_{+}^{i}(X^{+}) - \alpha_{+}^{i}([X^{+}, X^{-}]) = 0,$$

since α^i_+ vanishes on $\mathcal{D}_+ \oplus T^- M$ and $[X^+, X^-] \in T^- M \oplus \mathcal{D}_+$ by (2.4). Similarly,

$$\partial_{-}\alpha_{+}^{i}(X^{+}, Y_{j}^{-}) = X^{+}\alpha_{+}^{i}(Y_{j}^{-}) - Y_{j}^{-}\alpha_{+}^{i}(X^{+}) - \alpha_{+}^{i}([X^{+}, Y_{j}^{-}]) = 0.$$

Finally,

$$\partial_{-}\alpha_{+}^{i}(Y_{j}^{+}, Y_{k}^{-}) = Y_{j}^{+}\alpha_{+}^{i}(Y_{k}^{-}) - Y_{k}^{-}\alpha_{+}^{i}(Y_{j}^{+}) - \alpha_{+}^{i}([Y_{j}^{+}, Y_{k}^{-}]) = 0 - Y_{k}^{-}(\delta_{j}^{i}) - 0 = 0,$$

since, by construction, $[Y_i^+, Y_k^-] = 0$. Similarly, one can check that $\partial_+ \alpha_-^i = 0$.

3. Para-quaternionic manifolds and para-quaternionic Kähler manifolds

DEFINITION 3. Let $(\epsilon_1, \epsilon_2, \epsilon_3) = (-1, 1, 1)$, or a permutation thereof. An *almost para-quaternionic structure* on a differentiable manifold M (of dimension 4n) is a rank 3 subbundle $Q \subset \text{End } TM$, which is locally generated by three anticommuting fields of endomorphisms $J_1, J_2, J_3 = J_1J_2$, such that $J_{\alpha}^2 = \epsilon_{\alpha} \text{Id}$. Such a triple (J_{α}) will be called a *standard local basis* of Q. A linear connection which preserves Q is called an *almost para-quaternionic connection*. An almost para-quaternionic structure Q is called a

para-quaternionic structure if M admits a para-quaternionic connection, i.e. a torsion-free connection which preserves Q. An (almost) para-quaternionic manifold is a manifold endowed with an (almost) para-quaternionic structure.

An almost para-quaternionic Hermitian manifold (M, g, Q) is a pseudo-Riemannian manifold (M, g) endowed with a para-quaternionic structure Q consisting of skew-symmetric endomorphisms. (M, g, Q), n > 1, is called a para-quaternionic Kähler manifold if the Levi-Civita connection preserves Q.

Proposition 4 ([1]). At any point, the curvature tensor R of a para-quaternionic Kähler manifold (M, g, Q) of dimension 4n > 4 admits a decomposition

$$(3.1) R = vR_0 + W$$

where $v = \frac{scal}{(4n(n+2))}$ is the reduced scalar curvature,

$$R_0(X, Y) := +\frac{1}{2} \sum_{\alpha} \epsilon_{\alpha} g(J_{\alpha} X, Y) J_{\alpha} + \frac{1}{4} \left(X \wedge Y - \sum_{\alpha} \epsilon_{\alpha} J_{\alpha} X \wedge J_{\alpha} Y \right), \quad X, Y \in T_p M,$$

is the curvature tensor of the para-quaternionic projective space of the same dimension as M and W is a trace-free Q-invariant algebraic curvature tensor, where Q acts by derivations. In particular, R is Q-invariant.

We define a *para-quaternionic Kähler manifold of dimension* 4 as a pseudo-Riemannian manifold endowed with a parallel skew-symmetric para-quaternionic structure whose curvature tensor admits a decomposition (3.1).

Since the Levi-Civita connection ∇ of a para-quaternionic Kähler manifold preserves the para-quaternionic structure Q, we can write

(3.2)
$$\nabla J_{\alpha} = -\epsilon_{\beta}\omega_{\gamma} \otimes J_{\beta} + \epsilon_{\gamma}\omega_{\beta} \otimes J_{\gamma},$$

where (α, β, γ) is a cyclic permutation of (1, 2, 3). We shall denote by $\rho_{\alpha} := g(J_{\alpha} \cdot, \cdot)$ the *fundamental form* associated with J_{α} and put $\rho'_{\alpha} := -\epsilon_{\alpha}\rho_{\alpha}$.

Proposition 5. The locally defined fundamental forms satisfy the following structure equations

(3.3)
$$\nu \rho'_{\alpha} := -\epsilon_{\alpha} \nu \rho_{\alpha} = \epsilon_{3} (d\omega_{\alpha} - \epsilon_{\alpha} \omega_{\beta} \wedge \omega_{\gamma}),$$

where (α, β, γ) is a cyclic permutation of (1, 2, 3).

Proof. Using Proposition 4 and the fact that

$$[J_{\alpha}, J_{\beta}] = 2\epsilon_3 \epsilon_{\gamma} J_{\gamma},$$

we calculate the action of the curvature operator R(X, Y), $X, Y \in TM$, on J_{α} :

$$[R(X, Y), J_{\alpha}] = [\nu R_0(X, Y), J_{\alpha}] = -\frac{\nu}{2} \sum_{\delta=1}^{3} \rho_{\delta}'(X, Y)[J_{\delta}, J_{\alpha}]$$
$$= \epsilon_{3}\nu(-\epsilon_{\beta}\rho_{\gamma}'(X, Y)J_{\beta} + \epsilon_{\gamma}\rho_{\beta}'(X, Y)J_{\gamma}),$$

where (α, β, γ) is a cyclic permutation of (1, 2, 3). On the other hand, using the equation (3.2), we calculate

$$[R(X, Y), J_{\alpha}] = [\nabla_{X}, \nabla_{Y}]J_{\alpha} - \nabla_{[X,Y]}J_{\alpha}$$

$$= \nabla_{X}(-\epsilon_{\beta}\omega_{\gamma}(Y)J_{\beta} + \epsilon_{\gamma}\omega_{\beta}(Y)J_{\gamma}) - \nabla_{Y}(-\epsilon_{\beta}\omega_{\gamma}(X)J_{\beta} + \epsilon_{\gamma}\omega_{\beta}(X)J_{\gamma})$$

$$- (-\epsilon_{\beta}\omega_{\gamma}([X, Y])J_{\beta} + \epsilon_{\gamma}\omega_{\beta}([X, Y])J_{\gamma})$$

$$= -\epsilon_{\beta} d\omega_{\gamma}(X, Y)J_{\beta} + \epsilon_{\gamma} d\omega_{\beta}(X, Y)J_{\gamma} - \epsilon_{\beta}\omega_{\gamma}(Y)\nabla_{X}J_{\beta} + \epsilon_{\gamma}\omega_{\beta}(Y)\nabla_{X}J_{\gamma}$$

$$+ \epsilon_{\beta}\omega_{\gamma}(X)\nabla_{Y}J_{\beta} - \epsilon_{\gamma}\omega_{\beta}(X)\nabla_{Y}J_{\gamma}.$$

Applying again the equation (3.2), we finally get

$$[R(X, Y), J_{\alpha}] = -\epsilon_{\beta}(d\omega_{\gamma} - \epsilon_{\gamma}\omega_{\alpha} \wedge \omega_{\beta})(X, Y)J_{\beta} + \epsilon_{\gamma}(d\omega_{\beta} - \epsilon_{\beta}\omega_{\gamma} \wedge \omega_{\alpha})(X, Y)J_{\gamma}.$$

Comparing the two formulas for $[R(X, Y), J_{\alpha}]$ we obtain the structure equations.

4. The twistor spaces of a para-quaternionic or para-quaternionic Kähler manifold

4.1. The twistor spaces of a para-quaternionic manifold. In the following, it will be useful to unify complex and para-complex structures in the following definition.

DEFINITION 4. An almost ϵ -complex structure, $\epsilon \in \{-1, 0, 1\}$, on a differentiable manifold M of dimension 2n is a field of endomorphisms $J \in \text{End } TM$ such that $J^2 = \epsilon \text{Id}$ and, moreover, for $\epsilon = +1$ the eigendistributions $T^{\pm}M$ are of rank n and for $\epsilon = 0$ the two distributions ker J and im J have rank n. In other words, an almost -1-complex structure is an almost complex structure and an almost +1-complex structure is an almost para-complex structure in the strong sense.

An ϵ -complex manifold is a differentiable manifold endowed with an integrable (i.e. $N_J = 0$) ϵ -complex structure J.

We shall also use the unifying adjective ϵ -holomorphic as a synonym of 'holomorphic' or 'para-holomorphic', depending on whether $\epsilon = -1$ or $\epsilon = +1$, respectively.

Let (M, Q) be an almost para-quaternionic manifold. We associate with (M, Q) a family of bundles $\pi: Z^s \to M$, with two-dimensional fibres, depending on a parameter $s \in \mathbb{R}$ as follows:

$$Z^{s} := \{ A \in Q \mid A \neq 0, \ A^{2} = s \}.$$

DEFINITION 5. The fibre bundle $\pi: Z^s \to M$ is called the *s*-twistor space of the almost para-quaternionic manifold (M, Q).

Proposition 6. Any almost para-quaternionic connection ∇ on an almost paraquaternionic manifold (M, Q) induces a canonical almost ϵ -complex structure $\mathcal{J}^s = \mathcal{J}^s_{\nabla}$ on the s-twistor space Z^s , where $\epsilon = \operatorname{sgn}(s) \in \{-1, 0, 1\}$.

Proof. Let (I, J, K) be a standard basis of Q_m . Then any element $A \in Q_m$ can be written as A = xI + yJ + zK and $A \in Z^s$ if and only if $-x^2 + y^2 + z^2 = s$. Hence, the fibres of Z^s are two-sheeted hyperboloids for s < 0, one-sheeted hyperboloids for s > 0 and light-cones without origin for s = 0. Each fibre $Z_m^s = \pi^{-1}(m)$ is a homogeneous space of the group SO(1, 2) with one-dimensional stabilizer SO(1, 2)_{As} = SO(2) if s < 0, SO(1, 2)_{As} = SO(1, 1) if s > 0 and SO(1, 2)_{As} \cong (\mathbb{R} , +) if s = 0, where $A_s \in Z^s$. First we define the canonical SO(1, 2)-invariant ϵ -complex structure on Z_m^s , as follows. The three-dimensional vector space $Q_m \subset \text{End } T_m M$ is a Lie subalgebra isomorphic to $\mathfrak{sl}_2(\mathbb{R})$. The adjoint action preserves the indefinite scalar product $\langle A, B \rangle = -(1/(4n))$ tr(AB), $4n = \dim M$, in Q and hence identifies the Lie algebra Qwith $\mathfrak{so}(Q) = \text{Lie SO}(Q) \cong \mathfrak{so}(1, 2)$. Let $A \in Z_m^s \subset Q_m$. Then $Z_m^s = \text{SO}(Q)A$ and the tangent space to Z_m^s at A is identified with $\mathfrak{so}(Q)A \cong \mathfrak{so}(Q)/\mathfrak{so}(Q)_A = \mathfrak{so}(Q)/\mathbb{R}A$. It is easy to check that the adjoint action of (1/2)A on $\mathfrak{so}(Q)/\mathbb{R}A$ defines an SO(Q)invariant ϵ -complex structure J^v on Z_m^s . Now we define an almost ϵ -complex structure \mathcal{J}^s on the twistor space Z^s . We have the decomposition

(4.1)
$$T_z Z^s = T_z^v Z^s + H_z \cong T_z(Z_m^s) \oplus T_{\pi z} M,$$

where $T_z^v Z^s$ is the vertical space of the bundle $\pi: Z^s \to M$ and H_z is the horizontal space of the connection in the bundle π induced by the para-quaternionic connection ∇ of (M, Q). The latter is identified with $T_{\pi z}M$ via the projection $Z^s \to M$. We denote by J^z the tautological ϵ -complex structure on $T_{\pi z}M$ defined by $z \in Z^s$. With respect to the above decomposition we define

$$(4.2) \mathcal{J}_{z}^{s} = J^{v} \oplus J^{z}$$

By construction, \mathcal{J}^s is an almost ϵ -complex structure.

4.2. The twistor spaces of a para-quaternionic Kähler manifold. Let (M, g, Q) be a para-quaternionic Kähler manifold with twistor spaces Z^s . The Levi-Civita connection $\nabla = \nabla^g$ is a para-quaternionic connection and, hence, induces a canonical almost ϵ -complex structure $\mathcal{J}^s = \mathcal{J}^s_{\nabla}$ on Z^s .

Proposition 7. The twistor space Z^s of a para-quaternionic Kähler manifold (M, g, Q) admits a canonical almost ϵ -complex structure \mathcal{J}^{ϵ} , where $\epsilon = \operatorname{sgn}(s)$, and a one-parameter family g_t^s , $t \in \mathbb{R} - \{0\}$, of pseudo-Riemannian metrics such that the

almost ϵ -complex structure \mathcal{J}^s is skew-symmetric, provided that $s \neq 0$. For s = 0 there exists a canonical one-parameter family g_t^0 , $t \in \mathbb{R} - \{0\}$, of symmetric bilinear forms with one-dimensional (vertical) kernel such that \mathcal{J}^s is skew-symmetric. Finally, for $s \neq 0$, the projection $\pi: (Z^s, g_t^s) \to (M, g)$ is a pseudo-Riemannian submersion.

Proof. We denote by $g^{v} := \langle \cdot, \cdot \rangle|_{Z_m^s}$ the induced metric on the fibres $Z_m^s \subset (Q, \langle \cdot, \cdot \rangle)$. It is nondegenerate for $s \neq 0$ and has one-dimensional kernel for s = 0. The ϵ -complex structure J^{v} on Z_m^s is g^{v} -skew-symmetric. With respect to the decomposition (4.1), we define

$$(g_t^s)_z = tg^v \oplus g_{\pi z}.$$

The almost ϵ -complex structure \mathcal{J}^s defined above is skew-symmetric with respect to the field of symmetric bilinear forms g_t^s , which is nondegenerate for $s \neq 0$ and has one-dimensional vertical kernel for s = 0. The above formula for g_t^s shows that the decomposition of TZ into vertical and horizontal space is g_t^s -orthogonal and that the projection induces an isometry $H_z \to T_{\pi z}M$. This proves that π is a pseudo-Riemannian submersion.

The scalar multiplication by $|s|^{1/2} \neq 0$ in the vector bundle $Q \to M$ induces an isometry $(Z^{\epsilon}, g_t^{\epsilon}) \to (Z^s, g_{t/|s|}^s)$, which preserves the almost ϵ -complex structure, where $\epsilon = \operatorname{sgn}(s)$. This shows that it is sufficient to consider only three of the above twistor spaces, namely $Z^+ := Z^{+1}$, $Z^- := Z^{-1}$ and Z^0 . We will study the integrability of the almost ϵ -complex structure \mathcal{J}^{ϵ} and the holomorphicity of the horizontal distribution $H \subset TZ^{\epsilon}$, which is \mathcal{J}^{ϵ} -invariant. For this we extend the *G*-structure approach developed in [2] to the para-case ($\epsilon = 1$).

4.3. Twistor spaces of para-quaternionic (Kähler) manifolds as bundles associated to *G*-structures. In this subsection we interpret the twistor spaces Z^{ϵ} ($\epsilon = -1, 0, 1$) from the point of view of *G*-structures.

Let (M, Q) be a para-quaternionic manifold. Note that $\tilde{Q}_m := \mathbb{R}\operatorname{Id} + Q_m \subset \operatorname{End} T_m M$ is an algebra isomorphic to the algebra of para-quaternions, i.e. to the matrix algebra $\mathbb{R}(2)$. Since any irreducible module of $\mathbb{R}(2)$ is isomorphic to \mathbb{R}^2 , the \tilde{Q}_m -module $T_m M$ is isomorphic to the $\mathbb{R}(2)$ -module $\mathbb{R}^2 \otimes \mathbb{R}^n$, $2n = \dim M$, with the action on the first factor.

DEFINITION 6. Let (M, Q) be an (almost) para-quaternionic manifold. A *para-quaternionic coframe* at $m \in M$ is an isomorphism $\phi: T_m M \xrightarrow{\sim} \mathbb{R}^2 \otimes \mathbb{R}^n$ which maps \tilde{Q}_m into $\mathbb{R}(2)$, i.e.

$$\phi \circ \tilde{Q}_m \circ \phi^{-1} = \mathbb{R}(2) \otimes \mathrm{Id}.$$

Proposition 8. (i) The set P of all para-quaternionic coframes together with the natural projection $\pi^P \colon P \to M$ is a G-structure, i.e. a principal subbundle of the bundle of all coframes with the structure group $G := \operatorname{SL}_2^{\pm}(\mathbb{R}) \otimes \operatorname{GL}_n(\mathbb{R})$, where

$$\operatorname{SL}_{2}^{\pm}(\mathbb{R}) = \{A \in \operatorname{GL}_{2}(\mathbb{R}) \mid \det A = \pm 1\}.$$

(ii) Let $A \in \mathfrak{sl}_2(\mathbb{R}) \otimes \mathrm{Id} \subset \mathfrak{g} = \mathrm{Lie} \, G$ such that $A^2 = \epsilon \mathrm{Id}$ and G_A the stabilizer (i.e. centralizer) of A in G. There is a canonical isomorphism of fibre bundles

$$P/G_A \xrightarrow{\sim} Z^{\epsilon}$$

Proof. (i) It is clear that any two para-quaternionic coframes are related by an element of $GL_2(\mathbb{R}) \otimes GL_n(\mathbb{R}) = SL_2^{\pm}(\mathbb{R}) \otimes GL_n(\mathbb{R})$.

(ii) Let $\phi \in P$ be a coframe at $m \in M$. It induces an algebra isomorphism $\hat{\phi} \colon \mathbb{R}(2) \to \tilde{Q}_m$, $B \mapsto \phi^{-1} B \phi$. The image $\hat{\phi}(A) \in Q_m$ satisfies $\hat{\phi}(A)^2 = \epsilon \operatorname{Id}$, hence $\hat{\phi}(A) \in Z_m^{\epsilon}$. If $k \in G_A$ then $\widehat{k\phi}(A) = \phi^{-1} k^{-1} A k \phi = \hat{\phi}(A)$. So the map $P \to Z^{\epsilon}$, $\phi \mapsto \hat{\phi}(A)$, factorizes to an isomorphism $P/G_A \to Z^{\epsilon}$ of fibre bundles.

Assume now that (M, g, Q) is a para-quaternionic Kähler manifold of dimension 4n, or more generally an almost para-quaternionic Hermitian manifold. On $\mathbb{R}^2 \otimes \mathbb{R}^{2n}$ we fix the standard scalar product $g_{can} = \omega_{\mathbb{R}^2} \otimes \omega_{\mathbb{R}^{2n}}$, where $\omega_{\mathbb{R}^{2n}}$ denotes the standard symplectic structure of \mathbb{R}^{2n} .

DEFINITION 7. Let (M, g, Q) be an almost para-quaternionic Hermitian manifold of dimension 4n. A para-quaternionic Hermitian coframe at $m \in M$ is a linear isometry $\phi: (T_m M, g_m) \xrightarrow{\sim} (\mathbb{R}^2 \otimes \mathbb{R}^{2n}, g_{can})$ which maps \tilde{Q}_m into $\mathbb{R}(2)$.

Proposition 9. The set P of all para-quaternionic Hermitian coframes together with the natural projection $\pi^P: P \to M$ is a G-structure with $G = G_0 \cup \xi G_0$, $G_0 :=$ $SL_2(\mathbb{R}) \otimes Sp(\mathbb{R}^{2n}), \xi = A \otimes B \in SL_2^{\pm}(\mathbb{R}) \otimes GL_n(\mathbb{R})$, det A = -1 and $B^* \omega_{\mathbb{R}^{2n}} = -\omega_{\mathbb{R}^{2n}}$. Moreover, the twistor space Z^{ϵ} is canonically isomorphic to the bundle P/G_A , where $0 \neq A \in \mathfrak{sl}_2(\mathbb{R})$ with $A^2 = \epsilon$ Id.

5. G-structures of para-twistor type and their twistor spaces: obstructions for integrability

5.1. Groups of para-twistor type and para-complex symmetric spaces.

DEFINITION 8. A connected linear Lie group $G \subset GL(V)$, $V = \mathbb{R}^n$, is called of *para-twistor type* if its Lie algebra contains a para-complex structure, i.e. an element J such that $J^2 = Id$. (If G is not connected, we shall assume, in addition, that the conjugation by J preserves G.)

Since the endomorphism J is semi-simple, the adjoint operator ad_J is semi-simple and, hence, we have the direct sum $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$, where $\mathfrak{k} = \ker \operatorname{ad}_J = Z_{\mathfrak{g}}(J)$ and $\mathfrak{m} = [J, \mathfrak{g}]$. It follows that

$$\mathfrak{m} = \{A \in \mathfrak{g} \mid \{J, A\} = AJ + JA = 0\}.$$

This implies that $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k}$ and, hence, that $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ is a symmetric decomposition.

Proposition 10. The orbit $S := \operatorname{Ad}_G(J) \cong G/K$, $K := Z_G(J)$, is an affine symmetric space and carries a canonical G-invariant para-complex structure J^S .

Proof. The involutive automorphism $A \mapsto JAJ^{-1} = JAJ$ of G has K as its fixed point set and defines the symmetry of G/K at the point eK.

The formula $J_{\mathfrak{m}}A = JA = (1/2)[J, A]$, $A \in \mathfrak{m}$, defines a *K*-invariant para-complex structure on \mathfrak{m} , which extends to a *G*-invariant para-complex structure J^S on *S*. The structure J^S is integrable, since it is parallel under the canonical torsion-free connection of the symmetric space *S*.

The projections onto \mathfrak{k} and \mathfrak{m} are given by

(5.1)
$$A \mapsto \frac{1}{2}J\{J, A\} = \frac{1}{2}(A + JAJ),$$

(5.2)
$$A \mapsto \frac{1}{2}J[J, A] = \frac{1}{2}(A - JAJ).$$

5.2. The space of curvature tensors. Let $G \subset GL(V)$ be a linear Lie group of para-twistor type with Lie algebra \mathfrak{g} , $J \in \mathfrak{g}$ a para-complex structure and $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ the corresponding symmetric decomposition; $\mathfrak{k} = Z_{\mathfrak{g}}(J)$ and $\mathfrak{m} = [J, \mathfrak{g}]$. Recall that \mathfrak{m} carries the para-complex structure $J_{\mathfrak{m}} \colon A \mapsto JA = (1/2)[J, A]$. For any subspace $U \subset \operatorname{End} V$ we denote by

$$\mathcal{R}(U) := \left\{ R \in U \otimes \bigwedge^2 V^* \, \middle| \, R \text{ satisfies the first Bianchi identity} \right\}$$

the vector space of algebraic curvature tensor of type U.

The projection $\pi_{\mathfrak{m}} \colon \mathfrak{g} \to \mathfrak{m}$ induces a projection

$$\pi_{\mathfrak{m}} \colon C^2(\mathfrak{g}) \to C^2(\mathfrak{m}).$$

According to (5.2), the projection $\alpha^{\mathfrak{m}} := \pi_{\mathfrak{m}} \alpha \in C^{2}(\mathfrak{m})$ of $\alpha \in C^{2}(\mathfrak{g})$ is given by

(5.3)
$$\alpha^{\mathfrak{m}}(X,Y) = \frac{1}{2}(\alpha(X,Y) - J\alpha(X,Y)J).$$

Recall that, since $\mathfrak{m} \subset \operatorname{End} V$ is endowed with the para-complex structure $J_{\mathfrak{m}}$, we have the decomposition (2.2)

$$C^2(\mathfrak{m}) = \sum_{p+q=2} C^{p,q}(\mathfrak{m}).$$

We put $\pi_{\mathfrak{m}}^{p,q} := \pi^{p,q} \circ \pi_{\mathfrak{m}} \colon C^{2}(\mathfrak{g}) \to C^{p,q}(\mathfrak{m}) \text{ and } \mathcal{R}^{p,q}(\mathfrak{m}) := \mathcal{R}(\mathfrak{m}) \cap C^{p,q}(\mathfrak{m}).$

The action of J as an automorphism of the tensor algebra induces involutions

$$T_J: C^2(\mathfrak{g}) \to C^2(\mathfrak{g}), \quad T_J: C^2(V) \to C^2(V).$$

We denote the ± 1 -eigenspaces of T_J on $C^2(\mathfrak{g})$ by $C^2_{\pm}(\mathfrak{g})$, such that

$$C^2(\mathfrak{g}) = C^2_+(\mathfrak{g}) + C^2_-(\mathfrak{g}),$$

and put $C^2_{\pm}(U) := C^2_{\pm}(\mathfrak{g}) \cap C^2(U)$ and $\mathcal{R}_{\pm}(U) := C^2_{\pm}(\mathfrak{g}) \cap \mathcal{R}(U)$, where $U = \mathfrak{k}, \mathfrak{m}$.

Proposition 11. (i) The eigenspaces of T_J on $C^2(\mathfrak{g})$ are given by

(5.4)
$$C_{+}^{2}(\mathfrak{m}) = C^{1,1}(\mathfrak{m}),$$

(5.5)
$$C_{-}^{2}(\mathfrak{m}) = C^{2,0}(\mathfrak{m}) + C^{0,2}(\mathfrak{m})$$

(ii) The action of T_J on $C^{p,q}(V)$ is given by

$$T_{J}\alpha^{1,1} = -J\alpha^{1,1}$$
$$T_{J}\alpha^{2,0} = J\alpha^{2,0},$$
$$T_{J}\alpha^{0,2} = J\alpha^{0,2}.$$

In particular,

$$C^{1,1}(V) = \ker(T_J + L_J),$$

 $C^{2,0}(V) + C^{0,2}(V) = \ker(T_J - L_J),$

where $L_J \alpha = J \circ \alpha$.

The action of J as a derivation on the tensor algebra induces an endomorphism

$$\alpha \mapsto J \cdot \alpha = [J, \alpha] - \alpha (J \cdot, \cdot) - \alpha (\cdot, J \cdot)$$

of $C^2(\mathfrak{g})$. Similarly, J acts as a derivation on $C^2(V)$.

Proposition 12. (i) The action of J as a derivation on $C^2(\mathfrak{g})$ is given by

$$J \cdot \alpha^{p,q} = 2q J \alpha^{p,q}$$
 for all $\alpha^{p,q} \in C^{p,q}(\mathfrak{m})$

$$J \cdot \alpha = -2\alpha(J \cdot, \cdot) \text{ for all } \alpha \in C^2_+(\mathfrak{k}),$$
$$J \cdot C^2_-(\mathfrak{k}) = 0.$$

In particular, the vector space of J-invariants is given by

(5.6)
$$C^{2}(\mathfrak{g})^{J} = C^{2}_{-}(\mathfrak{k}) + C^{2,0}(\mathfrak{m}).$$

(ii) The action of J as a derivation on $C^2(V)$ is given by

$$J \cdot \alpha^{2,0} = -J\alpha^{2,0},$$

$$J \cdot \alpha^{0,2} = 3J\alpha^{0,2},$$

$$J \cdot \alpha^{1,1} = J\alpha^{1,1}.$$

In particular,

$$C^{2,0}(V) = \ker(D_J + L_J),$$

 $C^{0,2}(V) = \ker(D_J - 3L_J),$
 $C^{1,1}(V) = \ker(D_J - L_J),$

where $D_J \alpha = J \cdot \alpha$.

The proposition shows that $\pi_{\mathfrak{m}}^{1,1}C^2(\mathfrak{g})^J = \pi_{\mathfrak{m}}^{0,2}C^2(\mathfrak{g})^J = 0$ and $\pi_{\mathfrak{m}}^{2,0}C^2(\mathfrak{g})^J = C^{2,0}(\mathfrak{m})$.

Proposition 13. The following holds

 $\begin{array}{ll} (i) \quad \mathcal{R}(\mathfrak{g}) = \mathcal{R}_{+}(\mathfrak{g}) + \mathcal{R}_{-}(\mathfrak{g}), \\ (ii) \quad \mathcal{R}(\mathfrak{m}) = \mathcal{R}_{+}(\mathfrak{m}) + \mathcal{R}_{-}(\mathfrak{m}), \\ (iii) \quad \pi_{\mathfrak{m}} \mathcal{R}_{+}(\mathfrak{g}) = \pi_{\mathfrak{m}}^{1,1} \mathcal{R}_{+}(\mathfrak{g}) \supset \mathcal{R}_{+}(\mathfrak{m}) = \mathcal{R}^{1,1}(\mathfrak{m}), \\ (iv) \quad \pi_{\mathfrak{m}}^{0,2} \mathcal{R}(\mathfrak{g}) = \mathcal{R}^{0,2}(\mathfrak{m}), \\ (v) \quad \pi_{\mathfrak{m}} \mathcal{R}_{-}(\mathfrak{g}) = (\pi_{\mathfrak{m}}^{2,0} + \pi_{\mathfrak{m}}^{0,2}) \mathcal{R}_{-}(\mathfrak{g}) \supset \mathcal{R}_{-}(\mathfrak{m}) = \mathcal{R}^{2,0}(\mathfrak{m}) + \mathcal{R}^{0,2}(\mathfrak{m}). \end{array}$

Proof. (i) and (ii) follow from the fact that $T_J: C^2(\mathfrak{g}) \to C^2(\mathfrak{g})$ preserves the subspaces $\mathcal{R}(\mathfrak{m}) \subset \mathcal{R}(\mathfrak{g}) \subset C^2(\mathfrak{g})$ and (iii) follows from the equation (5.4). The equation (5.5) and (iv) imply (v). Therefore it suffices to prove (iv). For $R \in \mathcal{R}(\mathfrak{g})$ and $X, Y, Z \in V$ we calculate

$$(\pi_{\mathfrak{m}}^{0,2}R)(X, Y) = \frac{1}{4}(R^{\mathfrak{m}}(X, Y) + R^{\mathfrak{m}}(JX, JY) - JR^{\mathfrak{m}}(JX, Y) - JR^{\mathfrak{m}}(X, JY))$$

= $\frac{1}{8}(R(X, Y) - JR(X, Y)J + R(JX, JY) - JR(JX, JY)J)$
 $- JR(JX, Y) + R(JX, Y)J - JR(X, JY) + R(X, JY)J)$

TWISTOR SPACES OF PARA-QUATERNIONIC KÄHLER MANIFOLDS

$$= \frac{1}{8}(R(X, Y) - JR(X, Y)J - JR(JX, Y) - JR(X, JY)) + \frac{1}{8}(-JR(JX, JY)J + R(JX, JY) + R(X, JY)J + R(JX, Y)J) = \frac{1}{8}(J(J \cdot R)(X, Y) - (J \cdot R)(JX, JY)J)$$

and, therefore,

$$\sum_{\text{cyclic}} (\pi_{\mathfrak{m}}^{0,2} R)(X, Y)Z = \frac{1}{8}J \sum_{\text{cyclic}} (J \cdot R)(X, Y)Z - \frac{1}{8} \sum_{\text{cyclic}} (J \cdot R)(JX, JY)JZ = 0,$$

where the sum is over cyclic permutations of (X, Y, Z). Here we used the fact that $A \cdot \mathcal{R}(\mathfrak{g}) \subset \mathcal{R}(\mathfrak{g})$ for any $A \in \mathfrak{g}$.

5.3. *G*-structures with connection and associated K-structures. Let $G \subset$ GL(V), $V = \mathbb{R}^n$, be a linear Lie group.

DEFINITION 9. A *G*-structure on a manifold *M* is *G*-principal bundle $\pi: P \to M$ endowed with a displacement form θ , i.e. a *G*-equivariant *V*-valued one-form such that ker $\theta = T^v P := \ker d\pi$.

We shall identify a point $p \in P$ with the coframe

$$p: T_{\pi(p)}M \to V, \quad X \mapsto \theta_p((d\pi)_p^{-1}(X)).$$

DEFINITION 10. A principal connection in a *G*-principal bundle $\pi: P \to M$ is a *G*-equivariant g-valued one-form $\omega: TP \to \mathfrak{g}$ such that $H := \ker \omega$ is a distribution transversal to the vertical distribution $T^{\nu}P$.

Recall that the wedge product of two one-forms α , β with values in a Lie algebra is the Lie algebra valued two-form given by

$$[\alpha \land \beta](X, Y) := [\alpha(X), \beta(Y)] - [\alpha(Y), \beta(X)].$$

The *curvature* of a connection ω is the g-valued G-equivariant horizontal two-form

$$\Omega = d\omega + \frac{1}{2}[\omega \wedge \omega].$$

If $\pi: P \to M$ is a *G*-structure with displacement form θ , then the *torsion* of ω is the *V*-valued *G*-equivariant horizontal two-form

$$\Theta := d\theta + [\omega \wedge \theta],$$

where the Lie bracket is taken in the affine Lie algebra $V + \mathfrak{g}$.

If θ is the displacement form of a *G*-structure $\pi: P \to M$ and ω a principal connection then:

$$\kappa = \theta + \omega \colon TP \to V \oplus \mathfrak{g}$$

is a *Cartan connection*, i.e. a *G*-equivariant absolute parallelism which extends the canonical vertical parallelism $T^{v}P \rightarrow \mathfrak{g}$. The *curvature* of the Cartan connection κ is defined as the $(V \oplus \mathfrak{g})$ -valued *G*-equivariant horizontal two-form

$$\Omega_{\kappa} := d\kappa + \frac{1}{2} [\kappa \wedge \kappa].$$

Notice that the *V* and g-components of Ω_{κ} are exactly the torsion and curvature forms of ω :

$$\Omega^V_{\kappa} = \Theta, \quad \Omega^{\mathfrak{g}}_{\kappa} = \Omega.$$

Let now $K \subset G$ be a Lie subgroup with Lie algebra \mathfrak{k} and $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ a *K*-invariant direct decomposition of the vector space \mathfrak{g} . Accordingly, any \mathfrak{g} -valued form α on *P* is decomposed as

$$\alpha = \alpha^{\mathfrak{k}} + \alpha^{\mathfrak{m}}.$$

Proposition 14 ([2]). Let $(\pi: P \to M, \theta, \omega)$ be a *G*-structure with a connection and $K \subset G$ a Lie subgroup. Then

$$\pi': P \to Z := P/K$$

is a K-structure with displacement form

$$\theta' := \theta + \omega^{\mathfrak{m}} \colon TP \to V' := V \oplus \mathfrak{m}$$

and connection

$$\omega' := \omega^{\mathfrak{k}}.$$

The curvature Ω' and torsion Θ' of ω' are given by

$$\begin{split} \Theta' &= (\Theta')^V + (\Theta')^{\mathfrak{m}} = (\Theta - [\omega^{\mathfrak{m}} \wedge \theta]) + \Omega^{\mathfrak{m}} - \frac{1}{2} [\omega^{\mathfrak{m}} \wedge \omega^{\mathfrak{m}}]^{\mathfrak{m}}, \\ \Omega' &= \Omega^{\mathfrak{k}} - \frac{1}{2} [\omega^{\mathfrak{m}} \wedge \omega^{\mathfrak{m}}]^{\mathfrak{k}}. \end{split}$$

5.4. The twistor space of a *G*-structure of para-twistor type. Let $G \subset GL(V)$ be a linear Lie group of para-twistor type, $J \in \mathfrak{g}$ a para-complex structure and $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ the corresponding symmetric decomposition; $\mathfrak{k} = Z_{\mathfrak{g}}(J)$ and $\mathfrak{m} = [J, \mathfrak{g}]$. Let $\pi: P \to M$ be a *G*-structure endowed with a principal connection $\omega: TP \to \mathfrak{g}$. (P, ω) will be called a *G*-structure of para-twistor type. The vector space $V' := V \oplus \mathfrak{m}$ has the para-complex structure $J' = J \oplus J_{\mathfrak{m}}$. The natural action of $K = Z_G(J)$ on V' preserves this structure and is identified with a subgroup $K \subset GL(V', C) := \operatorname{Aut}(V', J')$. This implies that the *K*-structure

$$\pi' \colon P \to Z \coloneqq P/K$$

is subordinated to a GL(V', C)-structure, i.e. to an almost para-complex structure \mathcal{J} on Z. At the point $z = \pi' p \in Z$, $p \in P$, the almost para-complex structure \mathcal{J} is defined by:

$$\mathcal{J}_z = \hat{p}^{-1} \circ J' \circ \hat{p},$$

where $\hat{p}: T_z Z \to V'$ is the coframe associated with $p \in P$. It is easily checked that this definition does not depend on $p \in (\pi')^{-1}(z)$.

Similarly, we can associate a para-complex structure $J_z: T_{\pi p}M \to T_{\pi p}M$ with any point $z = Kp \in Z$ by the formula

$$J_z := p \circ J \circ p^{-1},$$

using the isomorphism $p: T_{\pi p}M \to V$. This allows to identify the G/K-bundle $\pi_Z: Z = P/K \to M = P/G$ with a bundle of para-complex structures on the tangent spaces of M.

We denote by $\mathcal{H}_Z = \pi'_* \ker \omega \subset TZ$ the projection of the horizontal distribution of ω to TZ. We call it the *horizontal distribution* of Z.

DEFINITION 11. Let $(\pi : P \to M, \omega)$ be a *G*-structure of para-twistor type and $K = Z_G(J)$. Then the induced *K*-structure $\pi' : P \to Z = P/K$ endowed with the induced connection $\omega' = \pi_{\mathfrak{k}} \circ \omega$, the horizontal distribution \mathcal{H}_Z and the almost paracomplex structure \mathcal{J} is called the *twistor space* associated to the *G*-structure of paratwistor type (P, ω) and to the para-complex structure $J \in \mathfrak{g}$.

Notice that the almost para-complex structure \mathcal{J} and the horizontal distribution \mathcal{H}_Z are invariant under the parallel transport in TZ defined by the connection ω' . Therefore, we can apply Propositions 1 and 2.

Theorem 1. Let $(\pi : P \to M, \omega)$ be a *G*-structure of para-twistor type, where ω is a principal connection with curvature form Ω and torsion form Θ and $(Z, \mathcal{J}, \mathcal{H}_Z)$ the corresponding twistor space. Then

(i) The almost para-complex structure \mathcal{J} on Z is integrable if and only if

(5.7)
$$\pi^{0,2} \circ \Theta = 0 \quad and \quad \pi^{0,2}_{\mathfrak{m}} \circ \Omega = 0,$$

(ii) The horizontal distribution $\mathcal{H}_Z \subset TZ$ is para-holomorphic if and only if

 $\pi_{\mathfrak{m}}^{1,1}\circ\Omega=0,$

where we consider the values of the horizontal forms Θ and Ω at $p \in P$ as

$$\Theta_p: \bigwedge^2 T_{\pi'p}Z \to V \quad and \quad \Omega_p: \bigwedge^2 T_{\pi'p}Z \to \mathfrak{g}.$$

Proof. Since G is of para-twistor type, $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ is a symmetric decomposition and, in particular, $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k}$. By Proposition 14, the torsion of the connection ω' in the K-principal bundle $\pi' \colon P \to Z$ is given by

$$\Theta' = (\Theta')^V + (\Theta')^{\mathfrak{m}} = (\Theta - [\omega^{\mathfrak{m}} \wedge \theta]) + \Omega^{\mathfrak{m}}.$$

The second term $[\omega^{\mathfrak{m}} \wedge \theta]_p$: $\bigwedge^2 T_{\pi' p} Z \to V' = V \oplus \mathfrak{m}, p \in P$, on the right-hand side is of type (2, 0) since

$$\theta' = \theta + \omega^{\mathfrak{m}} \colon T_{\pi' p} Z \to V'$$

is of type (1, 0):

$$\theta' \circ \mathcal{J}_{\pi'p} = (J \oplus J_\mathfrak{m}) \circ \theta'.$$

Therefore the integrability condition $\pi^{0,2}\Theta' = 0$ of Proposition 1 reduces to (5.7).

To prove (ii), we notice that the coframe $\hat{p}: T_{\pi'p}Z \to V' = V \oplus \mathfrak{m}$ maps the horizontal space $(\mathcal{H}_Z)_{\pi'p}$ to V. Therefore the tensor

$$S = T \mod \mathcal{H}_Z$$

corresponds to $(\Theta')^{\mathfrak{m}} = \Omega^{\mathfrak{m}}$ and $S^{1,1}$ corresponds to $\pi_{\mathfrak{m}}^{1,1} \circ \Omega$. The two-form $\Omega^{\mathfrak{m}}$ on P vanishes on the vertical distribution $T^{v}P = \kappa^{-1}(\mathfrak{g})$. This implies that $\pi_{\mathfrak{m}}^{1,1} \circ \Omega$ vanishes on $\hat{p}^{-1}(\mathfrak{m})$. Therefore the para-holomorphicity condition (2.5) of Proposition 2 reduces to $\pi_{\mathfrak{m}}^{1,1} \circ \Omega|_{\mathcal{H}_{Z} \times \mathcal{H}_{Z}} = 0$, which is equivalent to $\pi_{\mathfrak{m}}^{1,1} \circ \Omega = 0$.

Since any $p \in P$ is an isomorphism $p: T_{\pi p}M \to V$ we can identify the horizontal two-forms Θ and Ω with *G*-equivariant functions

$$T: P \to \bigwedge^2 V^* \otimes V$$
 and $R: P \to \bigwedge^2 V^* \otimes \mathfrak{g}.$

In particular, $T + \pi_{\mathfrak{m}} \circ R \colon P \to \bigwedge^2 V^* \otimes V' = C^2(V') = \bigoplus C^{p,q}(V')$. Now we can reformulate the theorem in terms of T and $R_{\mathfrak{m}} \coloneqq \pi_{\mathfrak{m}} \circ R$.

Corollary 1. Under the assumptions of the previous theorem, the following is true. (i) The almost para-complex structure is integrable if and only if T and R_m take values in $C^{2,0}(V') \oplus C^{1,1}(V')$.

(ii) The horizontal distribution is para-holomorphic if and only if $R_{\mathfrak{m}}$ takes values in $C_{-}(\mathfrak{m}) = C^{2,0}(\mathfrak{m}) \oplus C^{0,2}(\mathfrak{m}).$

Both conditions are satisfied if and only if R_m is of type (2,0) and T is of type (2,0)+(1, 1).

Now we choose a local section $p_0: M \to P$ and identify P locally with $M \times G$. We denote by $T^{(p_0)}$ and $R^{(p_0)}$ the restrictions of T and R to $M = M \times \{e\} \subset M \times G$. Then

$$T_{(x,g)} = g_* T_x^{(p_0)} = g T_x^{(p_0)} (g^{-1} \cdot, g^{-1} \cdot)$$

and

$$R_{(x,g)} = g_* R_x^{(p_0)} = g R_x^{(p_0)} (g^{-1} \cdot, g^{-1} \cdot) g^{-1}.$$

This implies, for all $u, v \in V$,

$$\pi_{\mathfrak{m}} R_{(x,g)}(u, v) = \pi_{\mathfrak{m}} g R_x^{(p_0)}(g^{-1}u, g^{-1}v)g^{-1}$$

= $g \pi_{g^{-1}\mathfrak{m}g} R_x^{(p_0)}(g^{-1}u, g^{-1}v)g^{-1} = g_*(\pi_{g^{-1}\mathfrak{m}g} R_x^{(p_0)})(u, v).$

For any para-complex structure $I = gJg^{-1} \in S = G/K$ we have the vector spaces $\mathfrak{m}(I) = [I, \mathfrak{g}] = g\mathfrak{m}g^{-1}$ and $V'(I) = V \oplus \mathfrak{m}(I)$ with the para-complex structures $gJ_{\mathfrak{m}}g^{-1}$ and $I' = gJ'g^{-1}$, respectively.

The above calculation implies that the (p, q) component of T or R_m , with respect to (J, J'), vanishes if and only if the (p, q) component of $T^{(p_0)}$ or $\pi_{\mathfrak{m}(I)} \circ R^{(p_0)}$, with respect to (I, I'), vanishes for all $I \in S$. We will use he symbol $\pi_{\mathfrak{m}(I)}^{p,q} := \pi_I^{p,q} \circ \pi_{\mathfrak{m}(I)}$, where $\pi_I^{p,q} : C^2(\mathfrak{m}(I)) \to C_I^{p,q}(\mathfrak{m}(I))$ is the projection onto the (p, q)-component with respect to (I, I') for any $I \in S$. Similarly we define $\pi_I^{p,q} : C^2(V) \to C_I^{p,q}(V)$ as the projection onto the (p, q)-component with respect to I.

This motivates the definition of the following two G-submodules of $\mathcal{R}(\mathfrak{g})$:

$$\mathcal{R}_{\text{int}}(\mathfrak{g}) \coloneqq \left\{ R \in \mathcal{R}(\mathfrak{g}) \mid \pi_{\mathfrak{m}(I)}^{0,2} R = 0 \text{ for all } I \in S \right\},$$
$$\mathcal{R}_{\text{hol}}(\mathfrak{g}) \coloneqq \left\{ R \in \mathcal{R}(\mathfrak{g}) \mid \pi_{\mathfrak{m}(I)}^{1,1} R = 0 \text{ for all } I \in S \right\}.$$

We also define a *G*-submodule $T_{int}(\mathfrak{g}) \subset C^2(V)$ by

$$\mathcal{T}_{\text{int}}(\mathfrak{g}) := \left\{ T \in C^2(V) \mid \pi_I^{0,2} T = 0 \text{ for all } I \in S \right\}.$$

Corollary 2. Under the assumptions of Theorem 1, the following is true.

(i) The almost para-complex structure \mathcal{J} is integrable if and only if the functions $T^{(p_0)}$ and $R^{(p_0)}$, associated to a local frame p_0 , take values in the G-modules $\mathcal{T}_{int}(\mathfrak{g})$ and $\mathcal{R}_{int}(\mathfrak{g})$, respectively.

(ii) The horizontal distribution is para-holomorphic if and only if $R^{(p_0)}$ takes values in $\mathcal{R}_{hol}(\mathfrak{g})$.

Both conditions are satisfied if and only if $\pi_{\mathfrak{m}(I)}R$ is of type (2, 0) and T is of type (2, 0) + (1, 1) for all $I \in S$.

Corollary 3. Under the assumptions of Theorem 1, the almost para-complex structure \mathcal{J} on the twistor space Z is integrable and the horizontal distribution \mathcal{H}_Z is paraholomorhic if for all $x \in M$ there exists a frame $p \in \pi^{-1}(x)$ such that the curvature $R^{(p)} \in \mathcal{R}(\mathfrak{g})$ takes values in the G-module

$$\mathcal{R}(\mathfrak{g})^{D_S} = \{ R \in \mathcal{R}(\mathfrak{g}) \mid I \cdot R = 0 \text{ for all } I \in S \}$$

and the torsion $T^{(p)}$ satisfies $\pi^{0,2}T^{(p)} = 0$.

Proof. This follows from (5.6) and the previous corollary.

Corollary 4. Let G be a group of para-twistor type such that $\pi_{\mathfrak{m}(I)}\mathcal{R}(\mathfrak{g}) \subset C^{2,0}(\mathfrak{m}(I))$, for all $I \in S$, for example if $\mathcal{R}(\mathfrak{g}) = \mathcal{R}(\mathfrak{g})^{D_S}$. Then for any G-structure $(\pi \colon P \to M, \omega)$ with a torsion-free connection ω , the almost para-complex structure \mathcal{J} on the twistor space Z is integrable and the horizontal distribution \mathcal{H}_Z is para-holomorhic.

6. Integrability and holomorphicity results for the twistor spaces of a paraquaternionic Kähler manifold

Theorem 2. Let (M, g, Q) be a para-quaternionic Kähler manifold and $(Z^{\epsilon}, \mathcal{J}^{\epsilon}, \mathcal{H}_{Z^{\epsilon}})$ its twistor space, where $\epsilon = \pm$, see Sections 4 and 5.4. Then for $\epsilon = -1$ the almost complex structure \mathcal{J}^{ϵ} is integrable and the horizontal distribution is holomorphic. Similarly, for $\epsilon = 1$ the almost para-complex structure \mathcal{J}^{ϵ} is integrable and the horizontal distribution is para-holomorphic.

Proof. By Proposition 9, the para-quaternionic Kähler structure defines a *G*-structure $\pi : P \to M$, where $G \subset GL(\mathbb{R}^2 \otimes \mathbb{R}^{2n})$ is the normalizer of the connected Lie group $G_0 := SL_2(\mathbb{R}) \otimes Sp(\mathbb{R}^{2n})$ in SO(2*n*, 2*n*). Any para-quaternionic coframe $p \in P$ defines an isometry $p: (T_{np}M, g_{np}) \xrightarrow{\sim} (\mathbb{R}^2 \otimes \mathbb{R}^{2n}, g_{can})$, which maps Q_{np} to $\mathfrak{sl}(2, \mathbb{R}) = \mathfrak{sl}(2, \mathbb{R}) \otimes Id$, see Definition 7. The linear group *G* is of para-twistor type and also of twistor type,

i.e. there exists elements $I, J \in \mathfrak{g} = \mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{sp}(\mathbb{R}^{2n})$ such that $I^2 = -\mathrm{Id}$ and $J^2 = \mathrm{Id}$. In fact, we can choose $I = p \circ J_1 \circ p^{-1}$ and $J = p \circ J_2 \circ p^{-1}$. The symmetric space

$$\mathfrak{sl}(2, \mathbb{R}) = \mathfrak{sl}(2, \mathbb{R}) \otimes \mathrm{Id} \supset S^{-} = \mathrm{Ad}_{G}(I) = G/Z_{G}(I) = \mathrm{GL}_{2}(\mathbb{R})/Z_{\mathrm{GL}_{2}(\mathbb{R})}(I)$$
$$= \mathrm{GL}_{2}(\mathbb{R})/\mathrm{GL}_{1}(\mathbb{C}) = \mathrm{SL}_{2}^{\pm}(\mathbb{R})/\mathrm{SO}(2)$$

is the two-sheeted hyperboloid in the three-dimensional Minkowski space $\mathfrak{sl}(2, \mathbb{R}) \cong \mathbb{R}^{2,1}$, whereas the symmetric space

$$\mathfrak{sl}(2, \mathbb{R}) \supset S^+ = \mathrm{Ad}_G(J) = G/Z_G(J) = \mathrm{GL}_2(\mathbb{R})/Z_{\mathrm{GL}_2(\mathbb{R})}(J)$$
$$= \mathrm{GL}_2(\mathbb{R})/\mathrm{GL}_1(C) = \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}(1, 1)$$

is the one-sheeted hyperboloid.

To finish the proof, in the case $\epsilon = +1$ we apply Corollary 4, in the case $\epsilon = -1$ [2] Theorem 7.3, since, by Proposition 4, the space of curvature tensors

$$\mathcal{R}(\mathfrak{g}) = \mathcal{R}(\mathfrak{g})^{\mathfrak{sl}(2,\mathbb{R})} = \mathcal{R}(\mathfrak{g})^{D_S},$$

for $S = S^{\pm}$.

7. The canonical ϵ -Kähler-Einstein metric and contact structure on the twistor space Z^{ϵ} of a para-quaternionic Kähler manifold

DEFINITION 12. An ϵ -Kähler manifold is a pseudo-Riemannian manifold (M, g) together with a parallel skew-symmetric ϵ -complex structure J. An ϵ -Kähler manifold (M, g, J) is called a Kähler manifold if $\epsilon = -1$ and a para-Kähler manifold if $\epsilon = +1$. The parallel symplectic form $\omega = g(J \cdot, \cdot)$ is called the Kähler form.

REMARKS. The metric of a para-Kähler manifold has signature (n, n), since the ± 1 -eigendistributions $T^{\pm}M$ of J are isotropic. Moreover, they are parallel and ω -Lagrangian.

Conversely, a *bi-Lagrangian manifold* [8], i.e. a symplectic manifold (M, ω) with two complementary Lagrangian integrable distributions $T^{\pm}M$, has the structure of a para-Kähler manifold, where $J|_{T^{\pm}M} = \pm Id$ and $g = \omega(J \cdot, \cdot)$.

An integrable skew-symmetric ϵ -complex structure on a pseudo-Riemannian manifold is *parallel*, and hence defines an ϵ -Kähler structure, if and only if the Kähler form ω is closed, see [10] Theorem 1.

DEFINITION 13. An ϵ -holomorphic distribution \mathcal{D} of real codimension 2 on an ϵ -complex manifold Z is called an ϵ -holomorphic *contact structure* if the Frobenius form $[\cdot, \cdot]$: $\bigwedge^2 \mathcal{D} \to TZ/\mathcal{D}$ is non-degenerate.

Theorem 3. Let $(Z^{\epsilon}, \mathcal{J}^{\epsilon})$ be the ϵ -twistor space of a para-quaternionic Kähler manifold (M, g, Q) with non-zero reduced scalar curvature ν . Then

(i) the canonical metric g_t = g_t^ϵ on Z^ϵ is ϵ-Kähler-Einstein if and only if t = -ϵ/ν. Moreover, g_t is Einstein if and only if t = -ϵ/ν or t = -ϵ/(ν(n + 1)).
(ii) The horizontal distribution H_Z ⊂ TZ^ϵ is an ϵ-holomorphic contact structure.

Proof. (i) By Theorem 2 and Proposition 7 the ϵ -complex structure \mathcal{J}^{ϵ} is integrable and g_t -skew-symmetric for all t. By the above remark, to check when $(Z^{\epsilon}, \mathcal{J}^{\epsilon}, g_t)$ is ϵ -Kähler it is sufficient to check when the Kähler form $\omega_t = g_t(\mathcal{J}^{\epsilon}, \cdot, \cdot)$ is closed.

The twistor bundle $Z^{\epsilon} = P/G_A \rightarrow M$, see Proposition 9, is a bundle associated with the principal bundle

$$P' := P/Z_G(GL_2) \rightarrow M = P'/SO_3^{\epsilon}$$

where $SO_3^{\epsilon} = SO(2, 1)$ for $\epsilon = +1$ and $SO_3^{\epsilon} = SO(1, 2) \cong SO(2, 1)$ for $\epsilon = -1$. In other words, P' is the SO_3^{ϵ} -principal bundle of standard bases $p = (J_1, J_2, J_3)$ of Q_x^{ϵ} , $x \in M$, where $J_1^2 = \epsilon Id$, $J_2^2 = Id$ and $J_3^2 = -\epsilon Id$. We have a natural projection

$$\pi_{P'} \colon P' \to Z^{\epsilon} = P'/\mathrm{SO}_2^{\epsilon}, \quad (J_1, J_2, J_3) \mapsto J_1,$$

where $SO_2^{\epsilon} = SO(1, 1)$ for $\epsilon = +1$ and $SO_2^{\epsilon} = SO(2)$ for $\epsilon = -1$ is the stabilizer of $(1, 0, 0)^t \in \mathbb{R}^3$.

The closure of ω_t is equivalent to the closure of its pull back $\omega'_t = \pi^*_{P'}\omega_t$ to P'. The two-form ω'_t can be written as

(7.1)
$$\omega'_{t} = g'_{t}(\mathcal{J}_{1} \cdot , \cdot), \quad g'_{t} = tg^{v} + \pi^{*}_{P'}g.$$

Here $\pi_{P'g}^{*}$ is the pull back of the metric g on M and g^{v} is the metric on the vertical bundle $T^{v}P'$, which corresponds to a suitably normalized ad-invariant scalar product $\langle \cdot, \cdot \rangle$ on $\mathfrak{so}_{3}^{\epsilon} = \operatorname{Lie} \operatorname{SO}_{3}^{\epsilon}$, extended by zero to the horizontal bundle \mathcal{H} associated with the Levi-Civita connection of M. The normalization of the scalar product $\langle \cdot, \cdot \rangle$ on $\mathfrak{so}_{3}^{\epsilon} = \operatorname{ad}(\mathfrak{sl}_{2}(\mathbb{R})) \cong \mathfrak{sl}_{2}(\mathbb{R}) = \operatorname{span}\{J_{1}^{0}, J_{2}^{0}, J_{3}^{0}\}$ is given by

(7.2)
$$-\epsilon \langle \mathrm{ad}_{J^0_{\alpha}}, \mathrm{ad}_{J^0_{\beta}} \rangle = -4\epsilon_a \delta_{\alpha\beta} = 4 \langle J^0_{\alpha}, J^0_{\beta} \rangle,$$

where (J_1^0, J_2^0, J_3^0) is the standard ϵ -quaternionic basis of $\mathfrak{sl}_2(\mathbb{R})$, with the relations

(7.3)
$$(J^0_{\alpha})^2 = \epsilon_{\alpha} \operatorname{Id}, \quad (\epsilon_1, \epsilon_2, \epsilon_3) = (\epsilon, 1, -\epsilon).$$

The above scalar product on $\mathfrak{so}_3^{\epsilon}$ has signature (2, 1) if $\epsilon = +1$ and (1, 2) if $\epsilon = -1$. The factor 4 is chosen such that the canonical projection $(P', g'_t) \to (Z^{\epsilon} = P'/SO_2^{\epsilon}, g_t)$ is a pseudo-Riemannian submersion. Notice that the vertical vectors

$$\operatorname{ad}_{J_2}, \operatorname{ad}_{J_3} \in T_p^{\nu} P' \cong \mathfrak{so}_3^{\epsilon} = \operatorname{ad}(\mathfrak{sl}_2(\mathbb{R})), \quad p \in P',$$

are mapped to

$$\operatorname{ad}_{J_2} J_1 = -2J_3, \quad \operatorname{ad}_{J_3} J_1 = -2\epsilon J_2 \in T^v Z^\epsilon \subset Q_x^\epsilon \cong \mathfrak{sl}_2(\mathbb{R}), \quad x = \pi_{P'}(p).$$

The field $p \mapsto (\mathcal{J}_{\alpha})_p$ is defined at $p = (J_1, J_2, J_3)$ as the following endomorphism of $T_p P' = T^v P' \oplus \mathcal{H}_p \cong \mathfrak{so}_3^{\epsilon} \oplus T_x M$, $x = \pi_{P'}(p)$,

$$\mathcal{J}_{\alpha}|_{\mathcal{H}_{p}} \colon T_{x}M \to T_{x}M, \quad X \mapsto J_{\alpha}X, \quad \mathcal{J}_{\alpha}|_{T^{v}P'} = \frac{1}{2} \operatorname{ad}_{J_{\alpha}^{0}}.$$

It is sufficient to check $d\omega'_t = 0$ on three vectors, each of which are horizontal or vertical. Moreover, it is sufficient to consider the fundamental vertical fields (V_1, V_2, V_3) , which correspond to (J_1^0, J_2^0, J_3^0) and basic horizontal fields X, Y, Z, \ldots on P', i.e. horizontal lifts of vector fields X_M, Y_M, Z_M on M.

Lemma 2. With the above notations we have

(i) $[V_1, V_2] = 2V_3, [V_3, V_1] = -2\epsilon V_2, [V_2, V_3] = -2V_1,$

(ii) the functions $g'_t(V_\alpha, V_\beta)$ and $\omega'_t(V_\alpha, V_\beta)$ are constant for all $\alpha, \beta \in \{1, 2, 3\}$, (iii) $[V_\alpha, X] = 0$, (iv) $[X, Y]^v = -(v/2)\sum_{\alpha} \epsilon_{\alpha} g'_t(\mathcal{J}_{\alpha} X, Y)V_{\alpha} = -(v/2)\sum_{\alpha} \epsilon_{\alpha} g(\mathcal{J}_{\alpha} X_M, Y_M)V_{\alpha}$, where $[X, Y]^v$ is evaluated at the point $p = (\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3) \in P'$, (v) $\mathcal{L}_{V_\alpha} g'_t = 0$, $\mathcal{L}_{V_1} \mathcal{J}_1 = 0$, $\mathcal{L}_{V_2} \mathcal{J}_1 = -2\mathcal{J}_3$, $\mathcal{L}_{V_3} \mathcal{J}_1 = -2\epsilon \mathcal{J}_2$ and (vi) $(\mathcal{L}_X g'_t)(U, V) = 0$ for all $U, V \in T^v P'$.

Proof. (i) follows from the ϵ -quaternionic relations

$$[J_1^0, J_2^0] = 2J_3^0, \quad [J_3^0, J_1^0] = -2\epsilon J_3^0, \quad [J_2^0, J_3^0] = -2J_1^0.$$

(ii) Since the metric g^{ν} corresponds to the ad-invariant scalar product (7.2), the functions

$$g'_t(V_{\alpha}, V_{\beta}) = tg^{\nu}(V_{\alpha}, V_{\beta}) = -4\epsilon t \langle J^0_{\alpha}, J^0_{\beta} \rangle = 4\epsilon t \epsilon_{\alpha} \delta_{\alpha\beta}$$

are constant. Similarly, the functions $\omega'_t(V_\alpha, V_\beta)$ are constant, because, for all fundamental vector fields V_α , the vector field $\mathcal{J}_1 V_\alpha$ is again a fundamental vector field.

(iii) The vector field $[V_{\alpha}, X]$ is horizontal, since the principal action preserves the horizontal distribution. On the other hand, it is mapped to $[0, X_M] = 0$ under the projection $P' \to M$. This shows that $[V_{\alpha}, X] = 0$.

(iv) follows from Proposition 4, since $[X, Y]^v = -\Omega'(X, Y)$, where Ω' stands for the curvature form of the principal bundle $P' \to M$.

(v) $\mathcal{L}_{V_{\alpha}}g'_{t} = 0$ follows from the ad-invariance of g^{v} , cf. (7.1). The remaining equations are obtained from (i) using

$$\mathcal{J}_1 V_1 = 0, \quad \mathcal{J}_1 V_2 = V_3, \quad \mathcal{J}_1 V_3 = \epsilon V_2.$$

Finally, (ii) and (iii) easily imply (vi).

Part (i) and (ii) of the lemma, yields

$$d\omega'_t(V_1, V_2, V_3) = V_1\omega'_t(V_2, V_3) - \omega'_t([V_1, V_2], V_3) + \text{cycl.} = 0.$$

Using part (i), (ii), (v) and (vi) of the lemma, we calculate

$$d\omega_t'(V_\alpha, V_\beta, X) = -\omega_t'([V_\beta, X], V_\alpha) - \omega_t'([X, V_\alpha], V_\beta) = -(\mathcal{L}_X \omega_t')(V_\alpha, V_\beta)$$
$$= -g_t'((\mathcal{L}_X \mathcal{J}_1) V_\alpha, V_\beta) = -g_t'([X, \mathcal{J}_1 V_\alpha] - \mathcal{J}_1[X, V_\alpha], V_\beta)$$
$$= g_t'(X, [V_\beta, \mathcal{J}_1 V_\alpha]) + g_t'(X, [\mathcal{J}_1 V_\beta, V_\alpha]) = 0.$$

By (iii), (iv) and (v) of the lemma, we compute

$$\begin{split} d\omega_t'(V_1, X, Y) &= V_1 \omega_t'(X, Y) - \omega_t'([X, Y], V_1) \\ &= g_t'((\mathcal{L}_{V_1} \mathcal{J}_1) X, Y) + \frac{\nu}{2} \sum_{\alpha=1}^3 \epsilon_{\alpha} g(J_{\alpha} X_M, Y_M) \omega_t'(V_{\alpha}, V_1) \\ &= 0 + \frac{\nu}{2} \sum_{\alpha=1}^3 \epsilon_{\alpha} g(J_{\alpha} X_M, Y_M) g_t'(\mathcal{J}_1 V_{\alpha}, V_1) = 0, \end{split}$$

since $\mathcal{J}_1 T^v P' = \text{span}\{V_2, V_3\}$. Similarly, we calculate

$$\begin{aligned} d\omega_t'(V_2, X, Y) &= V_2 \omega_t'(X, Y) - \omega_t'([X, Y], V_2) \\ &= g_t'((\mathcal{L}_{V_2} \mathcal{J}_1)X, Y) + \frac{\nu}{2} \sum_{\alpha=1}^3 \epsilon_\alpha g(J_\alpha X_M, Y_M) \omega_t'(V_\alpha, V_2) \\ &= -2g_t'(\mathcal{J}_3 X, Y) + \frac{\nu}{2} \sum_{\alpha=1}^3 \epsilon_\alpha g(J_\alpha X_M, Y_M) g_t'(\mathcal{J}_1 V_\alpha, V_2) \\ &= -2g(J_3 X_M, Y_M) + \frac{\nu t}{2} \epsilon_3 g(J_3 X_M, Y_M) g^\nu(\mathcal{J}_1 V_3, V_2) \\ &= -2g(J_3 X_M, Y_M) + \frac{\nu t}{2} (-\epsilon)g(J_3 X_M, Y_M) g^\nu(\epsilon V_2, V_2) \\ &= -2g(J_3 X_M, Y_M) - 2\epsilon \nu t g(J_3 X_M, Y_M), \end{aligned}$$

since $g^{v}(V_2, V_2) = -4\epsilon \langle J_2^0, J_2^0 \rangle = 4\epsilon\epsilon_2 = 4\epsilon$. In the same way, we obtain

$$d\omega'_{t}(V_{3}, X, Y) = -2\epsilon g(J_{2}X_{M}, Y_{M}) + \frac{\nu t}{2} g(J_{2}X_{M}, Y_{M})g^{\nu}(\mathcal{J}_{1}V_{2}, V_{3})$$

$$= -2\epsilon g(J_{2}X_{M}, Y_{M}) + \frac{\nu t}{2} g(J_{2}X_{M}, Y_{M})g^{\nu}(V_{3}, V_{3})$$

$$= -2\epsilon g(J_{2}X_{M}, Y_{M}) - 2\nu t g(J_{2}X_{M}, Y_{M}),$$

since $g^{\nu}(V_3, V_3) = -4\epsilon \langle J_3^0, J_3^0 \rangle = 4\epsilon\epsilon_3 = -4$. This shows that $d\omega'_t(U, X, Y) = 0$ for all vertical vector fields U if and only if $\nu t = -\epsilon$.

It remains to check that $d\omega'_t(X_p, Y_p, Z_p)$ vanishes on three horizontal vectors

$$X_p, Y_p, Z_p \in \mathcal{H}_p, \quad p \in P'.$$

Let $t \mapsto \tilde{c}(t) = (J_1(t), J_2(t), J_3(t)) \in P'$ be the horizontal lift of a curve $t \mapsto c(t) \in M$ such that $\tilde{c}(0) = p$ and $\tilde{c}'(0) = X_p$. Notice that the horizontality of \tilde{c} means that $t \mapsto J_{\alpha}(t)$ is parallel along c.

Let $t \mapsto Y(t) \in \mathcal{H}_{\tilde{c}(t)}$ be the horizontal lift of the vector field

$$t\mapsto Y_M(t):=\|_{c(0)}^{c(t)}\,d\pi_{P'}Y_p\in T_{c(t)}M,$$

which is parallel along the base curve c. The initial value of Y is $Y(0) = Y_p$. It suffices to prove that

$$(\nabla'_{X_p}\omega'_t)(Y_p, Z_p) = g'_t((\nabla'_{X_p}\mathcal{J}_1)Y_p, Z_p) = 0,$$

where ∇' is the Levi-Civita connection of g'_t . We have to check that the horizontal component of

$$(\nabla'_{X_p}\mathcal{J}_1)Y_p = \nabla'_{X_p}(\mathcal{J}_1Y) - \mathcal{J}_1\nabla'_{X_p}Y$$

vanishes. Therefore, we calculate

$$d\pi_{P'}(\nabla'_{X_p}(\mathcal{J}_1Y) - \mathcal{J}_1\nabla'_{X_p}Y) = \nabla_{c'(0)}(J_1(t)Y_M(t)) - J_1(0)\nabla_{c'(0)}Y_M(t)$$
$$= (\nabla_{c'(0)}J_1(t))Y_M(0) = 0.$$

Here we have used two facts: first, that $t \mapsto \mathcal{J}_1 Y(t)$ is a basic horizontal vector field along \tilde{c} , which projects onto

$$d\pi_{P'}\mathcal{J}_1Y(t) = J_1(t)Y_M(t)$$

and, second, that $d\pi_{P'}\nabla'_X Y = \nabla_{X_M}Y_M$ for any two basic horizontal vector fields X, Y (e.g. along a horizontal curve), where ∇ is the Levi-Civita connection in M. The latter is a standard fact about pseudo-Riemannian submersions. This proves that g_t is ϵ -Kähler-Einstein if and only if $t = -\epsilon/\nu$. The above argument proves also the following proposition.

Proposition 15. For any horizontal vectors X, Y, Z on P' and $\alpha = 1, 2, 3$, we have

$$g'_t((\nabla_X \mathcal{J}_\alpha)Y, Z) = 0.$$

Next we study the Einstein equations for the family g'_t . We recall the definition of the O'Neill tensor and the O'Neill formulas for the covariant derivative of a pseudo-Riemannian submersion $\pi: E \to M$ with totally geodesic fibres, see [12, 5]. The O'Neill tensor $A \in \Omega^1(\text{End } TE)$ is a one-form with values in skew-symmetric endomorphisms. It is given by

(7.4)
$$A_U = 0, \quad A_X Y = -A_Y X = (\nabla_X Y)^v = \frac{1}{2} [X, Y]^v, \quad A_X U = (\nabla_X U)^h,$$

where U is a vertical vector field and X, Y are horizontal vector fields. The superscripts v and h stand for the vertical and horizontal components, respectively. If X is a basic horizontal vector field then, in addition

(7.5)
$$A_X U = (\nabla_X U)^h = \nabla_U X.$$

The covariant derivatives in E are given by

(7.6)
$$\nabla_U V = \nabla_U^F V,$$

(7.7)
$$\nabla_U X = (\nabla_U X)^h$$

(7.8)
$$\nabla_X U = (\nabla_X U)^v + A_X U,$$

(7.9)
$$\nabla_X Y = A_X Y + (\nabla_X Y)^h.$$

Here ∇^F and ∇^M denote the covariant derivative in the fibres F and in the base M, respectively. For basic horizontal vector fields X, Y, we have $[U, X]^h = 0$ for any vertical (and hence projectable) vector field U. Moreover, we have

$$(7.10) \qquad (\nabla_X U)^v = [X, U],$$

(7.11)
$$\pi_* \nabla_X Y = \nabla^M_{\pi_* X} \pi_* Y$$

In particular, $\nabla_X Y$ is a projectable vector field on *E*.

Proposition 16 (cf. [12]). Let $\pi: E \to M$ be a pseudo-Riemannian submersion with totally geodesic fibres F. Then the Ricci and scalar curvatures of E are given by:

(7.12)
$$\operatorname{Ric}(U, V) = \operatorname{Ric}^{F}(U, V) + \sum_{i} \epsilon_{i} \langle A_{X_{i}}U, A_{X_{i}}V \rangle,$$

(7.13)
$$\operatorname{Ric}(X, U) = \langle (\operatorname{div} A)X, U \rangle = \sum_{i} \epsilon_{i} \langle (\nabla_{X_{i}} A)_{X_{i}} X, U \rangle,$$

(7.14)
$$\operatorname{Ric}(X, Y) = \operatorname{Ric}^{M}(\pi_{*}X, \pi_{*}Y) - 2\sum_{i} \epsilon_{i} \langle A_{X}X_{i}, A_{Y}X_{i} \rangle,$$

(7.15)
$$\operatorname{scal} = \pi^* \operatorname{scal}^M + \operatorname{scal}^F - \sum_{i,j} \epsilon_i \epsilon_j \langle A_{X_i} X_j, A_{X_i} X_j \rangle.$$

Proposition 17. The divergence div $A \in \Gamma(\text{End } T P')$ of the O'Neill tensor of the principal bundle $P' \to M$ preserves the horizontal distribution. In particular,

$$Ric(X, U) = g'_t((div A)X, U) = 0.$$

Proof. By (7.4) and Lemma 2 (iv), the value of the O'Neill tensor on two basic horizontal vector fields X, Y is given by

(7.16)
$$A_X Y = \frac{1}{2} [X, Y]^{\nu} = -\frac{\nu}{4} \sum_{\alpha} \epsilon_{\alpha} g'_t (\mathcal{J}_{\alpha} X, Y) V_{\alpha}.$$

It is sufficient to prove that $g'_t((\nabla_X A)_Y Z, U) = 0$. This follows from the remark that $\nabla_X V_\alpha = A_X V_\alpha$ is horizontal, by (7.5), and Proposition 15.

The skew-symmetry of A_X and (7.16) imply

(7.17)
$$A_X U = \frac{\nu}{4} \sum_{\alpha} \epsilon_{\alpha} g'_t(U, V_{\alpha}) \mathcal{J}_{\alpha} X$$

In fact,

$$g'_t(A_XU, Y) = -g'_t(U, A_XY) = \frac{\nu}{4} \sum_{\alpha} \epsilon_{\alpha} g'_t(\mathcal{J}_{\alpha}X, Y)g'_t(U, V_{\alpha}).$$

Proposition 18. Let P' be the total space of the principal bundle $P' \to M$ of admissible frames of Q over a para-quaternionic Kähler manifold (M, g, Q). Then the Ricci curvature of the metric g'_t on P' is given by:

(7.18)
$$\operatorname{Ric}(U, V) = -\epsilon \left(\frac{1}{2t} + v^2 nt\right) g'_t(U, V), \quad U, V \in T^{\nu} P',$$

(7.19)
$$\operatorname{Ric}(U, X) = 0,$$

(7.20)
$$\operatorname{Ric}(X, Y) = \left(\nu(n+2) + \frac{3\epsilon\nu^2 t}{2}\right)g_t'(X, Y), \quad X, Y \in \mathcal{H} = (T^{\nu}P')^{\perp}.$$

Proof. We calculate the Ricci curvature using the formulas in Proposition 16. The fibre F is identified with the Lie group SO(2, 1) with a bi-invariant pseudo-Riemannian

metric g'_t , which is related with the Killing form B by

(7.21)
$$g'_t = \frac{\epsilon t}{2} B_t$$

see (7.2). Therefore

(7.22)
$$\operatorname{Ric}^{F} = -\frac{1}{4}B = \frac{-\epsilon}{2t}g'_{t}.$$

We compute the second term in equation (7.12) using (7.17):

$$\sum_{i} \epsilon_{i} \langle A_{X_{i}}U, A_{X_{i}}V \rangle = \sum_{i} \epsilon_{i} \frac{\nu^{2}}{16} \sum_{\alpha} \epsilon_{\alpha}^{2} g_{t}'(U, V_{\alpha}) g_{t}'(V, V_{\alpha}) g_{t}'(\mathcal{J}_{\alpha}X_{i}, \mathcal{J}_{\alpha}X_{i})$$
$$= \frac{\nu^{2}}{16} \sum_{i,\alpha} \epsilon_{i}^{2} (-\epsilon_{\alpha}) g_{t}'(U, V_{\alpha}) g_{t}'(V, V_{\alpha}) = -\epsilon \nu^{2} nt g_{t}'(U, V).$$

This implies the first equation (7.18). The second equation (7.19) was already established in Proposition 17. Since *M* is an Einstein manifold with scalar curvature $scal^{M} = 4n(n+2)v$,

(7.23)
$$\operatorname{Ric}^{M} = \frac{\operatorname{scal}}{4n}g = \nu(n+2)g.$$

We compute the second term in equation (7.14) using (7.16):

$$-2\sum_{i} \epsilon_{i} \langle A_{X}X_{i}, A_{Y}X_{i} \rangle = -2\sum_{i,\alpha} \epsilon_{i} \frac{v^{2}}{16} g_{t}'(\mathcal{J}_{\alpha}X, X_{i})g_{t}'(\mathcal{J}_{\alpha}Y, X_{i})g_{t}'(V_{\alpha}, V_{\alpha})$$
$$= -\frac{v^{2}}{8}\sum_{\alpha} g_{t}'(\mathcal{J}_{\alpha}X, \mathcal{J}_{\alpha}Y)g_{t}'(V_{\alpha}, V_{\alpha})$$
$$= -\frac{v^{2}}{8}\sum_{\alpha} (-\epsilon_{\alpha})g_{t}'(X, Y)(4\epsilon t\epsilon_{\alpha})$$
$$= \frac{3\epsilon v^{2}t}{2}g_{t}'(X, Y).$$

This proves the proposition.

Corollary 5. Let P' be the total space of the principal bundle $P' \to M$ of admissible frames of Q over a para-quaternionic Kähler manifold (M, g, Q) with reduced scalar curvature v. Then the metric g'_t is Einstein if and only if

$$t = \frac{-\epsilon}{\nu}$$
 or $t = \frac{-\epsilon}{\nu(2n+3)}$.

The corresponding Einstein constant is, respectively,

$$c = \left(n + \frac{1}{2}\right)v$$
 and $c = \frac{4n^2 + 14n + 9}{4n + 6}v$.

Next we calculate the Ricci curvature of the metric g_t^{ϵ} on the twistor spaces $Z^{\epsilon} = P'/SO_2^{\epsilon}$, $\epsilon = \pm 1$.

Proposition 19.

(7.24)
$$(A_XY)_{J_1} = \frac{\nu}{2} (g(J_2\pi_*X, \pi_*Y)J_3 - g(J_3\pi_*X, \pi_*Y)J_2) \in T_{J_1}^{\nu}Z = \operatorname{span}\{J_2, J_3\},$$

(7.25)
$$A_X J_2 = -\epsilon_2 \frac{\nu t}{2} \widetilde{J_3 \pi_* X} = -\frac{\nu t}{2} \widetilde{J_3 \pi_* X},$$

(7.26)
$$A_X J_3 = \epsilon_3 \frac{\nu t}{2} \widetilde{J_2 \pi_* X} = -\epsilon \frac{\nu t}{2} \widetilde{J_2 \pi_* X},$$

where X and Y are horizontal vectors and $\tilde{X}_M \in T_{J_1}Z^{\epsilon}$ denotes the horizontal lift of the vector $X_M \in T_{\pi(J_1)}M$.

(7.27)
$$\operatorname{Ric}(U, V) = -\epsilon \left(\frac{1}{t} + v^2 nt\right) g_t^{\epsilon}(U, V),$$

(7.28)
$$\operatorname{Ric}(X, U) = 0,$$

(7.29)
$$\operatorname{Ric}(X, Y) = (\nu(n+2) + \epsilon \nu^2 t) g_t^{\epsilon}(X, Y),$$

where U and V are vertical vectors.

Proof. The equations (7.24)–(7.26) are obtained from (7.16), (7.17) and (7.21). We calculate the Ricci curvature using the formulas in Proposition 16. In fact, the projection $\pi: Z^{\epsilon} \to M$ is a pseudo-Riemannian submersion with totally geodesic fibre $F = SO_3^{\epsilon}/SO_2^{\epsilon}$, where $SO_3^{\epsilon} \cong SO(2, 1)$ and $SO_2^{\epsilon=+1} = SO(1, 1)$ and $SO_2^{\epsilon=-1} = SO(2)$. Here $Z_x^{\epsilon} \subset Q_x^{\epsilon} = \text{span}\{J_1, J_2, J_3\}$, where (J_1, J_2, J_3) is an admissible basis such that $J_{\alpha}^2 = \epsilon_{\alpha} \text{Id}$ and $(\epsilon_1, \epsilon_2, \epsilon_3) = (\epsilon, 1, -\epsilon)$. In both cases, the Lie algebra $\mathfrak{so}_2^{\epsilon} = \mathbb{R} \operatorname{ad}(J_1)$. The fibre F is a two-dimensional symmetric space, with symmetric decomposition

$$\mathfrak{so}_3^\epsilon = \mathfrak{so}_2^\epsilon + \mathfrak{m}, \quad \mathfrak{m} = \mathbb{R} \operatorname{ad}(J_2) + \mathbb{R} \operatorname{ad}(J_3).$$

The curvature tensor is given by

$$R(\mathrm{ad}(J_2), \mathrm{ad}(J_3)) = - \mathrm{ad}_{[J_2, J_3]}|_{\mathfrak{m}} = 2 \mathrm{ad}_{J_1}|_{\mathfrak{m}}$$

and the sectional curvature of the metric $g^F = g_t^{\epsilon}|_F = tg^{\nu}$ is $-\epsilon/t$. In particular,

(7.30)
$$\operatorname{Ric}^{F} = -\epsilon g^{v} = -\frac{\epsilon}{t} g^{F}.$$

Next we compute the second term in equation (7.12) using (7.25):

$$\sum_{i} \epsilon_{i} g_{t}^{\epsilon} (A_{X_{i}} J_{2}, A_{X_{i}} J_{2}) = \frac{\nu^{2} t^{2}}{4} \sum_{i} \epsilon_{i} g(J_{3} \pi_{*} X_{i}, J_{3} \pi_{*} X_{i})$$
$$= \nu^{2} t^{2} n (-\epsilon_{3}) = \epsilon \nu^{2} t^{2} n$$
$$= -\epsilon \nu^{2} t n g_{t}^{\epsilon} (J_{2}, J_{2}),$$

since $g_t^{\epsilon}(J_2, J_2) = -t\epsilon_2 = -t$. The same calculation for $(U, V) = (J_2, J_3)$ and $(U, V) = (J_3, J_3)$ shows that for any two vertical vectors U, V, we have

$$\sum_{i} \epsilon_{i} g_{t}^{\epsilon}(A_{X_{i}}U, A_{X_{i}}V) = -\epsilon v^{2} tn g_{t}^{\epsilon}(U, V).$$

This proves (7.27).

Now we calculate the second term in equation (7.14) using (7.24).

$$\begin{split} &-2\sum_{i}\epsilon_{i}g_{t}^{\epsilon}(A_{X}X_{i},A_{Y}X_{i})\\ &=-\frac{\nu^{2}}{2}\sum_{i}\epsilon_{i}g(J_{2}\pi_{*}X,\pi_{*}X_{i})g(J_{2}\pi_{*}Y,\pi_{*}X_{i})g_{t}^{\epsilon}(J_{3},J_{3})\\ &-\frac{\nu^{2}}{2}\sum_{i}\epsilon_{i}g(J_{3}\pi_{*}X,\pi_{*}X_{i})g(J_{3}\pi_{*}Y,\pi_{*}X_{i})g_{t}^{\epsilon}(J_{2},J_{2})\\ &=-\frac{\nu^{2}}{2}g(J_{2}\pi_{*}X,J_{2}\pi_{*}Y)g_{t}^{\epsilon}(J_{3},J_{3})-\frac{\nu^{2}}{2}g(J_{3}\pi_{*}X,J_{3}\pi_{*}Y)g_{t}^{\epsilon}(J_{2},J_{2})\\ &=-\frac{\nu^{2}}{2}[(-\epsilon_{2})(-t\epsilon_{3})+(-\epsilon_{3})(-t\epsilon_{2})]g_{t}^{\epsilon}(X,Y)=\epsilon\nu^{2}tg_{t}^{\epsilon}(X,Y). \end{split}$$

This proves (7.29).

To prove that $\operatorname{Ric}(X, U) = 0$, by Proposition 16 we have to check that div A preserves the horizontal distribution $\mathcal{H}_Z \subset TZ^{\epsilon}$. It sufficient to prove that

$$g_t^{\epsilon}((\nabla_X A)_Y Z, \mathcal{J}^{\epsilon} U) = 0$$

for all basic horizontal vector fields X, Y, Z and vertical vector fields U. We compute this using the fact that $\nabla \mathcal{J}^{\epsilon} = 0$ and (7.10):

$$g_t^{\epsilon}((\nabla_X A)_Y Z, \mathcal{J}^{\epsilon} U) = X g_t^{\epsilon}(A_Y Z, \mathcal{J}^{\epsilon} U) - g_t^{\epsilon}(A_Y Z, \mathcal{J}^{\epsilon} \nabla_X U)$$
$$= X g_t^{\epsilon}(A_Y Z, \mathcal{J}^{\epsilon} U) - g_t^{\epsilon}(A_Y Z, \mathcal{J}^{\epsilon} [X, U]).$$

Lemma 3. For any basic horizontal vector fields X, Y and vertical vector field U we have

(7.31)
$$g_t^{\epsilon}(A_XY, \mathcal{J}^{\epsilon}U) = \frac{\epsilon \nu t}{2}g(U\pi_*X, \pi_*Y) = -\frac{1}{2}U\omega_t(X, Y),$$

where $\omega_t = g_t^{\epsilon}(\mathcal{J}^{\epsilon} \cdot, \cdot)$ is the ϵ -Kähler form and the value $U_{J_1} \in T_{J_1}^{\nu} Z = \operatorname{span}\{J_2, J_3\} \subset Q_x, x = \pi(J_1)$, of the vertical vector field U at the point $J_1 \in Z^{\epsilon}$ is considered as an endomorphism of $T_x M$.

Proof. The first equation follows from (7.24) and the formulas $\mathcal{J}^{\epsilon} J_2 = J_3$, $\mathcal{J}^{\epsilon} J_3 = \epsilon J_2$. For the second equality we use that [U, X] and [U, Y] are vertical and that ω_t is closed:

$$\mathcal{L}_{U}(\omega_{t}(X, Y)) = (\mathcal{L}_{U}\omega_{t})(X, Y) = (d\iota_{U}\omega_{t})(X, Y)$$
$$= -\omega_{t}(U, [X, Y]) = -2g_{t}^{\epsilon}(\mathcal{J}^{\epsilon}U, A_{X}Y).$$

The following corollary finishes the proof of Theorem 3 (i).

Corollary 6. Let Z^{ϵ} , $\epsilon = \pm 1$, be the twistor spaces of a para-quaternionic Kähler manifold. Then the metric g_t^{ϵ} is Einstein if and only if

$$t = -\frac{\epsilon}{\nu}$$
 or $t = -\frac{\epsilon}{\nu(n+1)}$.

The corresponding Einstein constant is, respectively,

$$c = (n+1)v$$
 and $c = \frac{n^2 + 3n + 1}{n+1}v$.

(ii) By Theorem 2, we know that the horizontal distribution $\mathcal{H}_Z \subset TZ^{\epsilon}$ is holomorphic if $\epsilon = -1$ and para-holomorphic if $\epsilon = -1$. We show that it is a para-holomorphic contact structure if $\epsilon = +1$. The case $\epsilon = -1$ is similar. We have to check that the Frobenius form

$$\mathcal{H}^{1,0}_Z\times\mathcal{H}^{1,0}_Z\ni (Z,\,W)\mapsto ([Z,\,W]\;\mathrm{mod}\;\mathcal{H}^{1,0}_Z)\in T^{1,0}Z^\epsilon/\mathcal{H}^{1,0}_Z$$

of $\mathcal{H}_{Z}^{1,0}$ is nondegenerate.

Let *X* and *Y* be basic horizontal vector fields on *P'* and $Z = X + e\mathcal{J}_1 X$ and $W = Y + e\mathcal{J}_1 Y$ the corresponding sections of $\mathcal{H}^{1,0} \subset \mathcal{H} \otimes C = \mathcal{H} + e\mathcal{H}$ the (+*e*)-eigenbundle of the *C*-linear extension of \mathcal{J}_1 on $\mathcal{H} \otimes C$. Notice that $\mathcal{J}_1^2|_{\mathcal{H}} = \epsilon \operatorname{Id} = \operatorname{Id}$, since $\epsilon = +1$. Let us calculate, with the help of part (iv) of Lemma 2, the vertical component of [Z, W]

at any point $p = (J_1, J_2, J_3) \in P'$:

$$\begin{split} [Z, W]^{v} &= -\frac{v}{2} \sum_{\alpha} \epsilon_{\alpha} (g(J_{\alpha}X_{M}, Y_{M}) + g(J_{\alpha}J_{1}X_{M}, J_{1}Y_{M}))V_{\alpha} \\ &- e \frac{v}{2} \sum_{\alpha} \epsilon_{\alpha} (g(J_{\alpha}X_{M}, J_{1}Y_{M}) + g(J_{\alpha}J_{1}X_{M}, Y_{M}))V_{\alpha} \\ &= -v(\rho_{2}(X_{M}, Y_{M})V_{2} - \rho_{3}(X_{M}, Y_{M})V_{3}) \\ &+ ev(\rho_{3}(X_{M}, Y_{M})V_{2} - \rho_{2}(X_{M}, Y_{M})V_{3}) \\ &= -v(\rho_{2}(X_{M}, Y_{M}) - e\rho_{3}(X_{M}, Y_{M}))(V_{2} + eV_{3}), \end{split}$$

where $\rho_{\alpha} = g(J_{\alpha} \cdot, \cdot)$. This shows that the Frobenius form of $\mathcal{H}^{1,0} \subset TP' \otimes C$ is nondegenerate. Let us denote by \tilde{X}_M and \tilde{Y}_M the horizontal lifts of X_M and Y_M to vector fields on Z^{ϵ} . We put $\tilde{Z} := X_M + e\mathcal{J}^{\epsilon}X_M$ and $\tilde{W} := Y_M + e\mathcal{J}^{\epsilon}Y_M$. Thanks to the above formula, we can calculate the vertical component of $[\tilde{Z}, \tilde{W}]$ at the point $z = J_1 \in Z^{\epsilon}$, which is the image of $p = (J_1, J_2, J_3) \in P'$ under the natural projection $P' \to Z^{\epsilon} = P'/SO_2^{\epsilon}$.

$$[\tilde{Z}, \tilde{W}]^{\nu} = -\nu(\rho_2(X_M, Y_M) - e\rho_3(X_M, Y_M))([J_2, J_1] + e[J_3, J_1])$$

= $2\nu(\rho_2(X_M, Y_M) - e\rho_3(X_M, Y_M))(J_3 + eJ_2).$

This shows that $\mathcal{H}_Z \subset TZ^{\epsilon}$ is a para-holomorphic contact structure if $\epsilon = +1$.

8. Twistor construction of minimal submanifolds of para-quaternionic Kähler manifolds

8.1. Kähler and para-Kähler submanifolds of para-quaternionic Kähler manifolds.

DEFINITION 14. Let (M, g, Q) be a para-quaternionic Kähler manifold of dimension 4*n*. An ϵ -Kähler submanifold ($\epsilon = \pm 1$) of *M* is a triple (N, J^{ϵ}, g_N) , where *N* is a 2*m*-dimensional *g*-nondegenerate submanifold of *M*, $g_N = g|_N$ is the induced pseudo-Riemannian metric and J^{ϵ} is a parallel section of the para-quaternionic bundle $Q|_N$ such that $J^{\epsilon}TN = TN$ and $(J^{\epsilon})^2 = \epsilon$ Id. For $\epsilon = -1$ (M, J^{ϵ}, g_N) is called also a Kähler submanifold and for $\epsilon = +1$ it is called a para-Kähler submanifold.

We shall include J^{ϵ} into a local frame $(J_1 = J^{\epsilon}, J_2, J_3 = J_1J_2 = -J_2J_1)$ of $Q|_N$ such that $J_2^2 = \text{Id.}$ Such frames (J_{α}) will be called *adapted* to the ϵ -Kähler submanifold $N \subset M$.

Proposition 20. Let (M, g, Q) be a para-quaternionic Kähler manifold of dimension 4n with non-zero reduced scalar curvature v and N a g-nondegenerate submanifold

of M endowed with a section $J^{\epsilon} \in \Gamma(N, Q)$ such that $(J^{\epsilon})^2 = \epsilon \operatorname{Id}$ and $J^{\epsilon}TN = TN$. Let (J_{α}) be a standard local basis of Q such that $J_1|_N = J^{\epsilon}$. Then the triple (N, J^{ϵ}, g_N) is an ϵ -Kähler submanifold if and only if $\omega_2|_N = \omega_3|_N = 0$ or, equivalently, $J_2TN \perp TN$. In particular, the dimension of an ϵ -Kähler submanifold $N \subset M$ is at most 2n.

Proof. It is clear that J_1 is parallel if and only if $\omega_2|_N = \omega_3|_N = 0$, see (3.2). Moreover, if $\omega_2|_N = \omega_3|_N = 0$, then, by the structure equation (3.3), we have that $\rho_2|_N = \rho_3|_N = 0$. Conversely, assume that $J_2TN \perp TN$, i.e. $\rho_2|_N = \rho_3|_N = 0$. Differentiating the structure equations for ρ_2 and ρ_3 , we get

$$\nu d\rho_{\alpha}' = -\epsilon_{\alpha} \nu \rho_{\beta}' \wedge \omega_{\gamma} + \epsilon_{\alpha} \nu \omega_{\beta} \wedge \rho_{\gamma'}$$

Restricting this equation for $\alpha = 2, 3$ to the submanifold N yields

$$\rho_1 \wedge \omega_2|_N = \rho_1 \wedge \omega_3|_N = 0.$$

This shows that $\omega_2|_N = \omega_3|_N = 0$, i.e. that $J^{\epsilon} \in \Gamma(N, Q)$ is parallel.

Proposition 21. The shape operator A of an ϵ -Kähler submanifold (N, J^{ϵ}, g_N) of a para-quaternionic Kähler manifold (M, g, Q) anticommutes with $J := J^{\epsilon}|_{TN}$.

Proof. Let ξ be a normal vector field on *N*. Then the shape operator $A^{\xi} \in \Gamma(\operatorname{End} TN)$ is defined by

$$g(A^{\xi}X, Y) = -g(\nabla_X \xi, Y) = -g(\nabla_Y \xi, X) = g(\xi, \nabla_Y X).$$

Thus

$$g(A^{\xi}JX, Y) = g(\xi, \nabla_Y(JX)) = g(\xi, J\nabla_Y X) = -g(J\xi, \nabla_Y X) = -g(J\xi, \nabla_X Y)$$
$$= g(\xi, J\nabla_X Y) = g(\xi, \nabla_X(JY)) = g(A^{\xi}X, JY) = -g(JA^{\xi}X, Y). \quad \Box$$

Corollary 7. Any ϵ -Kähler submanifold of a para-quaternionic Kähler manifold is minimal.

Proof. Since A^{ξ} anticommutes with J, we have $A^{\xi} = -JA^{\xi}J^{-1}$. Hence tr $A^{\xi} = -\text{tr } A^{\xi} = 0$.

8.2. Twistor construction of Kähler and para-Kähler submanifolds of paraquaternionic Kähler manifolds. Let (M, g, Q) be a para-quaternionic Kähler manifold and $\pi_Z : Z^{\epsilon} \to M$ its ϵ -twistor space with the horizontal distribution \mathcal{H}_Z . For any ϵ -Kähler submanifold (N, J^{ϵ}, g_N) the section $J^{\epsilon} : N \to Z^{\epsilon} \subset Q$ defines an embedding of N into Z^{ϵ} . The image $\tilde{N} = J^{\epsilon}(N) \subset Z^{\epsilon}$ is called *the canonical lift* of

N in the twistor space Z^{ϵ} . The following theorem gives the description of ϵ -Kähler submanifolds of *M* in terms of ϵ -complex horizontal submanifolds of Z^{ϵ} , i.e. submanifolds $L \subset Z^{\epsilon}$ such that $\mathcal{J}^{\epsilon}TL = TL$ and $TL \subset \mathcal{H}_Z$.

Theorem 4. Let (N, J^{ϵ}, g_N) be an ϵ -Kähler submanifold of a para-quaternionic Kähler manifold (M, g, Q) and $\tilde{N} = J^{\epsilon}(N) \subset Z^{\epsilon}$ its canonical lift. Then

(i) $\tilde{N} \subset Z^{\epsilon}$ is an ϵ -complex horizontal submanifold which is nondegenerate with respect to the canonical one-parameter family of metrics g_t^{ϵ} on Z^{ϵ} . Moreover, in the case $\epsilon = +1$ the restriction of \mathcal{J}^{ϵ} to \tilde{N} is a para-complex structure in the strong sense. (ii) Conversely, let $L \subset Z^{\epsilon}$ be an ϵ -complex horizontal submanifold which is non-degenerate with respect to g_t^{ϵ} and such that $\pi_Z|_L: L \to \pi_Z(L) \subset M$ is a diffeomorphism. Then its projection $(N = \pi_Z(L), J^{\epsilon}, g_N)$ is a (minimal) ϵ -Kähler submanifold of M, where

$$J^{\epsilon} = d\pi_Z \circ \mathcal{J}^{\epsilon} \circ (d\pi_Z)^{-1} \colon TN \to TN, \quad g_N = g|_N.$$

Proof. (i) Since J^{ϵ} is parallel, the submanifold $\tilde{N} = J^{\epsilon}(N) \subset Z^{\epsilon}$, is horizontal. Its tangent bundle $T\tilde{N} \subset \mathcal{H}_Z$ is \mathcal{J}^{ϵ} -invariant, since

$$d\pi_Z \circ \mathcal{J}^\epsilon = J^\epsilon \circ d\pi_Z,$$

on the horizontal distribution \mathcal{H}_Z , by the definition of \mathcal{J}^{ϵ} , see (4.2). In the case $\epsilon = +1$, J^{ϵ} is a para-complex structure in the strong sense, because J^{ϵ} is skew-symmetric for the metric g_N . Since $(T_z \tilde{N}, \mathcal{J}_z^{\epsilon}|_{\tilde{N}}) \cong (T_x N, J_x^{\epsilon})$, $x = \pi_Z(z)$, \mathcal{J}^{ϵ} restricts to a para-complex structure in the strong sense on \tilde{N} .

(ii) The ϵ -complex structure $J^{\epsilon} \in \Gamma(N, Q^{\epsilon})$ is parallel, since $L = \tilde{N}$ is horizontal. This proves that (N, J^{ϵ}, g_N) is an ϵ -Kähler submanifold of M.

REMARK. The nondegeneracy assumption on the metric $g_t^{\epsilon}|L$ is essential even if we assume that dim L = 2n. Indeed there exist 2*n*-dimensional J^{ϵ} -invariant isotropic subspaces $U \subset T_x M$.

References

- D.V. Alekseevsky and V. Cortés: *Classification of pseudo-Riemannian symmetric spaces of quaternionic Kähler type*; in Lie Groups and Invariant Theory, Amer. Math. Soc. Transl. (2) 213, Amer. Math. Soc., Providence, RI., 2005, 33–62.
- D.V. Alekseevsky and M.M. Graev: G-structures of twistor type and their twistor spaces, J. Geom. Phys. 10 (1993), 203–229.
- [3] D.V. Alekseevsky and S. Marchiafava: A twistor construction of Kähler submanifolds of a quaternionic Kähler manifold, Ann. Mat. Pura Appl. (4) 184 (2005), 53–74.

- [4] M.F. Atiyah, N.J. Hitchin and I.M. Singer: Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425–461.
- [5] A.L. Besse: Einstein Manifolds, Springer-Verlag, Berlin, 1987.
- [6] D.E. Blair, J. Davidov and O. Muškarov: *Hyperbolic twistor spaces*, Rocky Mountain J. Math. **35** (2005), 1437–1465.
- [7] D.E. Blair: A product twistor space, Serdica Math. J. 28 (2002), 163–174.
- [8] R.L. Bryant: Bochner-Kähler metrics, J. Amer. Math. Soc. 14 (2001), 623-715.
- [9] M. Mamone Capria and S.M. Salamon: *Yang-Mills fields on quaternionic spaces*, Nonlinearity 1 (1988), 517–530.
- [10] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig: Special geometry of Euclidean supersymmetry I: Vector multiplets, J. High Energy Phys. (2004), 028, 73.
- [11] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig: Special geometry of Euclidean supersymmetry II: hypermultiplets and the c-map, J. High Energy Phys. (2005), 025, 37.
- [12] B. O'Neill: The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.
- [13] R. Penrose: Twistor algebra, J. Mathematical Phys. 8 (1967), 345–366.
- [14] R. Penrose: The twistor programme, Rep. Mathematical Phys. 12 (1977), 65-76.
- [15] S. Salamon: Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171.

Dmitri Alekseevsky The University of Edinburgh and Maxwell Institute for Mathematical Sciences JCMB, The Kings buildings, Edinburgh, EH9 3JZ UK e-mail: D.Aleksee@ed.ac.uk

Vicente Cortés Universität Hamburg Department Mathematik und Zentrum für Mathematische Physik Bundesstraße 55, D-20146 Hamburg Germany e-mail: cortes@math.uni-hamburg.de