THE TWISTOR SPACES OF A PARA-QUATERNIONIC KÄHLER MANIFOLD

Dmitri ALEKSEEVSKY and Vicente CORTÉS

(Received December 18, 2006, revised April 18, 2007)

Abstract

We develop the twistor theory of G-structures for which the (linear) Lie algebra of the structure group contains an involution, instead of a complex structure. The twistor space Z of such a G-structure is endowed with a field of involutions $\mathcal{J} \in$ $\Gamma($ End $T Z)$ and a \mathcal{J}-invariant distribution \mathcal{H}_{Z}. We study the conditions for the integrability of \mathcal{J} and for the (para-)holomorphicity of \mathcal{H}_{Z}. Then we apply this theory to para-quaternionic Kähler manifolds of non-zero scalar curvature, which admit two natural twistor spaces $\left(Z^{\epsilon}, \mathcal{J}, \mathcal{H}_{Z}\right), \epsilon= \pm 1$, such that $\mathcal{J}^{2}=\epsilon \mathrm{Id}$. We prove that in both cases \mathcal{J} is integrable (recovering results of Blair, Davidov and Muškarov) and that \mathcal{H}_{Z} defines a holomorphic $(\epsilon=-1)$ or para-holomorphic $(\epsilon=+1)$ contact structure. Furthermore, we determine all the solutions of the Einstein equation for the canonical one-parameter family of pseudo-Riemannian metrics on Z^{ϵ}. In particular, we find that there is a unique Kähler-Einstein $(\epsilon=$ $-1)$ or para-Kähler-Einstein $(\epsilon=+1)$ metric. Finally, we prove that any Kähler or para-Kähler submanifold of a para-quaternionic Kähler manifold is minimal and describe all such submanifolds in terms of complex $(\epsilon=-1)$, respectively, para-complex $(\epsilon=+1)$ submanifolds of Z^{ϵ} tangent to the contact distribution.

Contents

2. (Almost) para-complex manifolds .. 218
2.1. Integrability of an almost para-complex structure. 218
2.2. Holomorphicity of distributions in almost para-complex manifolds. 219
3. Para-quaternionic manifolds and para-quaternionic Kähler manifolds ... 222
4. The twistor spaces of a para-quaternionic or para-quaternionic Kähler 224
4.1. The twistor spaces of a para-quaternionic manifold. 224
4.2. The twistor spaces of a para-quaternionic Kähler manifold. 225
4.3. Twistor spaces of para-quaternionic (Kähler) manifolds as bundles
associated to G-structures. .. 226

5.1. Groups of para-twistor type and para-complex symmetric spaces. 227
5.2. The space of curvature tensors. .. 228
5.3. G-structures with connection and associated K-structures. 231
5.4. The twistor space of a G-structure of para-twistor type. 233
6. Integrability and holomorphicity results for the twistor spaces of a para-quaternionic Kähler manifold 236
7. The canonical ϵ-Kähler-Einstein metric and contact structure on the twistor space Z^{ϵ} of a para-quaternionic Kähler manifold 237
8. Twistor construction of minimal submanifolds of para-quaternionic Kähler manifolds 248
8.1. Kähler and para-Kähler submanifolds of para-quaternionic Kähler manifolds. 248
8.2 Twistor construction of Kähler and para-Kähler submanifolds of para-quaternionic Kähler manifolds. 249

1. Introduction

Twistor methods were originally introduced by Penrose with the aim of providing a mathematical framework which could lead to a synthesis of quantum theory and relativity [13, 14]. They have proven very fruitful for the construction and systematic study of various geometric objects governed by non-linear partial differential equations such as Yang-Mills connections, Einstein metrics, harmonic maps and minimal submanifolds.

Given a geometric problem on a real differentiable manifold M endowed with certain geometric structure S, the twistor approach is to try to translate the given problem into a problem of complex geometry an a complex manifold Z, called the twistor space, which is the total space of a bundle over M. In most cases, Z can be defined as the bundle of all complex structures in the tangent spaces of M which are compatible with the geometric structure S and it comes with a natural almost complex structure \mathcal{J}, the integrability of which has to be derived from the properties of the structure S.

In the case of a four-dimensional oriented Riemannian manifold M, for instance, the fibre at $p \in M$ of the twistor bundle $Z \rightarrow M$ consists of all skew-symmetric complex structures in $T_{p} M$, which induce the given orientation [4]. It is identified with the Riemann sphere $\mathbb{C} P^{1}$ and, thus, carries a natural complex structure. On the other hand, the Levi-Civita connection of M induces a horizontal (i.e. transversal to the fibers) distribution $\mathcal{H}_{Z} \subset T Z$ and the horizontal spaces carry a tautological complex structure. Putting the complex structures on vertical and horizontal spaces together, one obtains a canonical almost complex structure \mathcal{J} on Z. By the results of Atiyah, Hitchin and Singer, \mathcal{J} is integrable if and only if the Weyl curvature tensor of M is self-dual and, in that case, self-dual Yang-Mills vector bundles on M correspond to certain holomorphic vector bundles on Z. Salamon et al. have extended these constructions from four to higher dimensions, with the role of the self-dual four-dimensional Riemannian manifold played by a quaternionic Kähler manifold [15, 9]. In [3] the twistor method was used to construct (minimal) Kähler submanifolds of quaternionic Kähler manifolds.

A G-structure is called of twistor type if the (linear) Lie algebra $\mathfrak{g}=$ Lie G of the structure group contains a complex structure, i.e. an element J such that $J^{2}=-\mathrm{Id}$. The twistor theory of G-structures of twistor type is developped in [2], see also references therein. This includes the case of quaternionic Kähler manifolds, for which the
structure group is $G=\operatorname{Sp}(1) \operatorname{Sp}(n)$.
In this paper, we develop a similar theory for G-structures of para-twistor type, i.e. for which \mathfrak{g} contains an involution J, rather than a complex structure. Let $P \rightarrow M$ be such a G-structure and denote by $K=Z_{G}(J)$ the centralizer of the involution J. For any principal connection ω on P, we define the twistor space of (P, ω) as the total space of the bundle $Z=P / K \rightarrow P / G=M$, which we endow with a K-structure $P \rightarrow Z$, a field of involutions $\mathcal{J} \in \Gamma(\operatorname{End} T Z)$ and a \mathcal{J}-invariant horizontal distribution \mathcal{H}_{Z}, see Definition 11. We express the integrability of \mathcal{J} and the (para-)holomorphicity of \mathcal{H}_{Z} as equations for the curvature and torsion of ω, which generalize the self-duality equation for the Weyl curvature of a pseudo-Riemannian metric of signature (2, 2), see Theorem 1.

A para-quaternionic structure on a vector space V is a Lie subalgebra $Q \subset$ End V which admits a basis $\left(J_{1}, J_{2}, J_{3}\right)$ such that $J_{3}=J_{1} J_{2}$ and $J_{\alpha}^{2}=\epsilon_{\alpha}$ Id, where $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=$ $(-1,1,1)$. A pseudo-Riemannian manifold (M, g) of dimension >4 endowed with a parallel field $M \ni p \mapsto Q_{p} \subset$ End $T_{p} M$ of g-skew-symmetric para-quaternionic structures is called a para-quaternionic Kähler manifold. The metric g has signature $(2 n, 2 n)$ and is Einstein [1]. Moreover, para-quaternionic Kähler manifolds are related to certain supersymmetric field theories on space-times with a positive definite rather than a Lorentzian metric [11].

For a para-quaternionic Kähler manifold (M, g, Q), Blair et al. [6, 7] have defined two twistor spaces $Z^{\epsilon}:=\left\{A \in Q \mid A^{2}=\epsilon\right\}, \epsilon= \pm 1$, and endowed them with an integrable structure $\mathcal{J} \subset \operatorname{End} T Z^{\epsilon}$ such that $\mathcal{J}^{2}=\epsilon \mathrm{Id}$. We recover these results by considering the twistor space associated to the underlying G-structure, which is of twistor type, as well as of para-twistor type. More precisely, we consider

$$
J \in \mathfrak{s l}(2, \mathbb{R}) \subset \mathfrak{g}=\mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s p}\left(\mathbb{R}^{2 n}\right) \subset \mathfrak{g l}\left(\mathbb{R}^{2} \otimes \mathbb{R}^{2 n}\right)=\mathfrak{g l}(4 n, \mathbb{R}) .
$$

Under the assumption that the scalar curvature of g is non-zero, we prove, in addition, that the horizontal distribution \mathcal{H}_{Z} defines a holomorphic (respectively, para-holomorphic) contact structure on Z and that $\left(Z^{\epsilon}, \mathcal{J}\right)$ admits a Kähler-Einstein (respectively, para-Kähler-Einstein) metric and determine all Einstein metrics in the canonical oneparameter family of pseudo-Riemannian metrics, see Theorem 3. It turns out that there is always a second Einstein metric.

Finally, we generalize the twistor construction of Kähler submanifolds of a quaternionic Kähler manifold (see [3]) to the case of Kähler and para-Kähler submanifolds (see Definition 14) of a para-quaternionic Kähler manifold (M, g, Q). We prove that any Kähler or para-Kähler submanifold of a para-quaternionic Kähler manifold (M, g, Q) is minimal (Corollary 7). All such submanifolds can be obtained as projections of complex $(\epsilon=-1)$, respectively, para-complex $(\epsilon=+1)$ submanifolds of Z^{ϵ} which are tangent to the contact distribution, see Theorem 4. It follows that the maximal dimension of a Kähler or para-Kähler submanifold of (M, g, Q) is $(1 / 2) \operatorname{dim} M$ and that maximal Kähler (respectively, para-Kähler) submanifolds of (M, g, Q) correspond to Legendrian
submanifolds of the complex (respectively, para-complex) contact manifold $\left(Z^{\epsilon}, \mathcal{H}_{Z}\right)$.

2. (Almost) para-complex manifolds

2.1. Integrability of an almost para-complex structure.

DEFINITION 1. An (almost) para-complex structure, in the weak sense, on a differentiable manifold M is a field of endomorphisms $J \in \operatorname{End} T M$ such that $J^{2}=\mathrm{Id} . J$ is called non-trivial if $J \neq \pm \mathrm{Id}$. We say that J is an (almost) para-complex structure, in the strong sense, if the ± 1-eigenspace distributions $T^{ \pm} M$ of J have the same rank. An almost para-complex structure is called integrable, or para-complex structure if the distributions $T^{ \pm} M$ are integrable, or, equivalently, the Nijenhuis tensor N_{J}, defined by

$$
\begin{equation*}
N_{J}(X, Y)=[X, Y]+[J X, J Y]-J[J X, Y]-J[X, J Y], \quad X, Y \in T M, \tag{2.1}
\end{equation*}
$$

vanishes. An (almost) para-complex manifold (M, J) is a manifold M endowed with an (almost) para-complex structure.

Unless otherwise stated, by an (almost) para-complex structure we shall understand here an (almost) para-complex structure in the weak sense.

Remark. The difference between weak and strong (almost) para-complex manifolds is that $T_{p}^{1,0} M=\left\{X+e J X \mid X \in T_{p} M\right\} \subset T_{p} M \otimes C, p \in M$, is a free module over the ring $C:=\mathbb{R}[e], e^{2}=1$, of para-complex numbers only in the strong case. In particular, for weak para-complex manifolds, there is no notion of para-holomorphic local coordinates $\left(z^{i}\right)$ on M such that the $\left(d z^{i}\right)$ form a basis of $T_{p}^{1,0} M$ over C.

Let (V, J) and $\left(U, J_{U}\right)$ be vector spaces endowed with constant para-complex structures. We can decompose the vector space $C^{2}(U):=U \otimes \bigwedge^{2} V^{*}$ of U-valued two-forms on V according to type

$$
\begin{equation*}
C^{2}(U)=\sum_{p+q=2} C^{p, q}(U), \tag{2.2}
\end{equation*}
$$

where

$$
\begin{array}{lll}
\alpha \in C^{1,1}(U) & \text { if } & \alpha(J X, J Y)=-\alpha(X, Y) \text { for all } \quad X, Y \in V, \\
\alpha \in C^{2,0}(U) & \text { if } & \alpha(J X, Y)=\alpha(X, J Y)=J_{U} \alpha(X, Y) \quad \text { for all } \quad X, Y \in V
\end{array}
$$

and

$$
\alpha \in C^{0,2}(U) \quad \text { if } \quad \alpha(J X, Y)=\alpha(X, J Y)=-J_{U} \alpha(X, Y) \quad \text { for all } \quad X, Y \in V
$$

Lemma 1. The projections $\pi^{p, q}: C^{2}(U) \rightarrow C^{p, q}(U), \alpha \rightarrow \alpha^{p, q}$, are given by:

$$
\begin{aligned}
& \alpha^{1,1}(X, Y)=\frac{1}{2}(\alpha(X, Y)-\alpha(J X, J Y)), \\
& \alpha^{2,0}(X, Y)=\frac{1}{4}\left(\alpha(X, Y)+\alpha(J X, J Y)+J_{U} \alpha(J X, Y)+J_{U} \alpha(X, J Y)\right), \\
& \alpha^{0,2}(X, Y)=\frac{1}{4}\left(\alpha(X, Y)+\alpha(J X, J Y)-J_{U} \alpha(J X, Y)-J_{U} \alpha(X, J Y)\right) .
\end{aligned}
$$

For scalar valued forms $(U=\mathbb{R})$ we will always assume that $J_{U}=\mathrm{Id}$.
Let J be an almost para-complex structure on a manifold M and ∇ a linear connection which preserves J. The following lemma shows that J is integrable if and only if the $(0,2)$ component $T^{0,2}=\pi^{0,2} T$ vanishes.

Proposition 1. Let ∇ be a connection which preserves an almost para-complex structure J on a manifold M. Then the Nijenhuis tensor of J is given by $N_{J}=-4 T^{0,2}$. In particular, J is integrable if and only if $T^{0,2}=0$.

Proof. Applying Lemma 1 in the case $U=V=T_{p} M, p \in M$, we have

$$
T^{0,2}(X, Y)=\frac{1}{4}(T(X, Y)+T(J X, J Y)-J T(J X, Y)-J T(X, J Y)), \quad X, Y \in T M .
$$

Replacing $T(X, Y)$ by $\nabla_{X} Y-\nabla_{Y} X-[X, Y]$ in this formula, we get

$$
T^{0,2}(X, Y)=-\frac{1}{4}([X, Y]+[J X, J Y]-J[J X, Y]-J[X, J Y])=-\frac{1}{4} N_{J}(X, Y)
$$

2.2. Holomorphicity of distributions in almost para-complex manifolds.

Definition 2. Let (M, J) be an almost para-complex manifold of real dimension n. A J-invariant distribution $\mathcal{D}=\mathcal{D}_{+} \oplus \mathcal{D}_{-} \subset T^{+} M \oplus T^{-} M=T M$ of rank m is called para-holomorphic if it is locally defined by equations $\alpha_{+}^{1}=\cdots=\alpha_{+}^{k_{+}}=\alpha_{-}^{1}=$ $\cdots=\alpha_{-}^{k_{-}}=0$, such that $k_{+}+k_{-}=n-m$,

$$
\begin{equation*}
\alpha_{ \pm}^{i} \circ J= \pm \alpha_{ \pm}^{i} \tag{2.3}
\end{equation*}
$$

and the (1,1)-component

$$
\pi^{1,1} d \alpha_{+}^{i}=\frac{1}{2}\left(d \alpha_{+}^{i}-J^{*} d \alpha_{+}^{i}\right)
$$

vanishes on $\bigwedge^{2}\left(\mathcal{D}_{+} \oplus T^{-} M\right)$ and the (1, 1)-component

$$
\pi^{1,1} d \alpha_{-}^{i}=\frac{1}{2}\left(d \alpha_{-}^{i}-J^{*} d \alpha_{-}^{i}\right)
$$

vanishes on $\bigwedge^{2}\left(T^{+} M \oplus \mathcal{D}_{-}\right)$.
Let (M, J) be an almost para-complex manifold of real dimension n endowed with a J-invariant distribution $\mathcal{D} \subset T M$ of rank m and a connection ∇ which preserves J and \mathcal{D}. Then we can define a two-form with values in $T M / \mathcal{D}$ by

$$
S(X, Y):=T(X, Y) \quad \bmod \mathcal{D} .
$$

Since J induces a para-complex structure on the vector bundle $T M / \mathcal{D}$, we can decompose

$$
S=S^{2,0}+S^{1,1}+S^{0,2}
$$

see Lemma 1.
Proposition 2. Let (M, J) be an almost para-complex manifold. A J-invariant distribution $\mathcal{D}=\mathcal{D}_{+} \oplus \mathcal{D}_{-} \subset T^{+} M \oplus T^{-} M=T M$ is para-holomorphic if and only if

$$
\begin{equation*}
\left[\Gamma\left(\mathcal{D}_{ \pm}\right), \Gamma\left(T^{\mp} M\right)\right] \subset \Gamma\left(T^{\mp} M \oplus \mathcal{D}_{ \pm}\right) \tag{2.4}
\end{equation*}
$$

Moreover, if ∇ is a connection which preserves J and \mathcal{D}, then (2.4) is equivalent to

$$
\begin{equation*}
S^{1,1}(J X, \cdot)=-J S^{1,1}(X, \cdot) \tag{2.5}
\end{equation*}
$$

for all $X \in \mathcal{D}$.
Proof. First we prove that (2.5) is equivalent to the para-holomorphicity of \mathcal{D}. Let \mathcal{D} be a para-holomorphic distribution defined by one-forms $\alpha_{ \pm}^{i}$ as in Definition 2. The condition on $\pi^{1,1} d \alpha_{ \pm}^{i}$ is equivalent to

$$
\begin{array}{ll}
d \alpha_{+}^{i}\left(X_{+}, Y_{-}\right)=0, \quad X_{+} \in \mathcal{D}_{+}, \quad Y_{-} \in T^{-} M \\
d \alpha_{-}^{i}\left(X_{+}, Y_{-}\right)=0, \quad X_{+} \in T^{+} M, \quad Y_{-} \in \mathcal{D}_{-}
\end{array}
$$

Expressing the exterior derivative in terms of the covariant derivative and torsion we get

$$
0=d \alpha_{+}^{i}\left(X_{+}, Y_{-}\right)=\left(\nabla_{X_{+}} \alpha_{+}^{i}\right) Y_{-}-\left(\nabla_{Y_{-}} \alpha_{+}^{i}\right) X_{+}+\alpha_{+}^{i}\left(T\left(X_{+}, Y_{-}\right)\right)
$$

The first two terms on the right-hand side vanish. In fact, since ∇ preserves the distribution \mathcal{D}, the covariant derivative $\nabla_{X} \alpha_{+}^{i}$ vanishes on $\mathcal{D}_{+} \oplus T^{-} M$ for all $X \in T M$. The last term can be written as

$$
0=\alpha_{+}^{i}\left(T\left(X_{+}, Y_{-}\right)\right)=\alpha_{+}^{i}\left(T^{1,1}\left(X_{+}, Y_{-}\right)\right)
$$

which implies that $T^{1,1}\left(X_{+}, Y_{-}\right) \in \mathcal{D}_{+} \oplus T^{-} M$ for all $X_{+} \in \mathcal{D}_{+}$and $Y_{-} \in T^{-} M$. A similar calculation for α_{-}^{i} shows that $T^{1,1}\left(X_{+}, Y_{-}\right) \in T^{+} M \oplus \mathcal{D}_{-}$for all $X_{+} \in T^{+} M$ and $Y_{-} \in \mathcal{D}_{-}$. This proves that

$$
\begin{aligned}
& S^{1,1}\left(\mathcal{D}_{+}, T^{-} M\right) \subset\left(T^{-} M+\mathcal{D}\right) / \mathcal{D} \\
& S^{1,1}\left(\mathcal{D}_{-}, T^{+} M\right) \subset\left(T^{+} M+\mathcal{D}\right) / \mathcal{D}
\end{aligned}
$$

In particular, $S^{1,1}(\mathcal{D}, \mathcal{D})=0$ and $S^{1,1}(J X, \cdot)=-J S^{1,1}(X, \cdot)$ for all $X \in \mathcal{D}$.
To prove the converse, we assume that the torsion of ∇ satisfies (2.5). Let $\left(\alpha_{+}^{1}, \ldots, \alpha_{+}^{k_{+}}\right)$and $\left(\alpha_{-}^{1}, \ldots, \alpha_{-}^{k_{-}}\right)$be local frames of $\left(\mathcal{D}_{+} \oplus T^{-} M\right)^{\perp}$ and $\left(T^{+} M \oplus \mathcal{D}_{-}\right)^{\perp} \subset$ $T^{*} M$, respectively. This implies (2.3). Since $\pi^{1,1} \alpha\left(T^{ \pm} M, T^{ \pm} M\right)=0$ for any two-form α, it is sufficient to check that $\pi^{1,1} d \alpha_{+}^{i}\left(\mathcal{D}_{+}, T^{-} M\right)=\pi^{1,1} d \alpha_{-}^{i}\left(T^{+} M, \mathcal{D}_{-}\right)=0$. We calculate for $X_{+} \in \mathcal{D}_{+}$and $Y_{-} \in T^{-} M$:

$$
\begin{aligned}
\pi^{1,1} d \alpha_{+}^{i}\left(X_{+}, Y_{-}\right) & =d \alpha_{+}^{i}\left(X_{+}, Y_{-}\right)=\left(\nabla_{X_{+}} \alpha_{+}^{i}\right) Y_{-}-\left(\nabla_{Y_{-}} \alpha_{+}^{i}\right) X_{+}+\alpha_{+}^{i}\left(T\left(X_{+}, Y_{-}\right)\right) \\
& =\alpha_{+}^{i}\left(T\left(X_{+}, Y_{-}\right)\right)=\alpha_{+}^{i}\left(T^{1,1}\left(X_{+}, Y_{-}\right)\right)=\alpha_{+}^{i}\left(S^{1,1}\left(X_{+}, Y_{-}\right)\right) \\
& =\alpha_{+}^{i}\left(S^{1,1}\left(J X_{+}, Y_{-}\right)\right) \stackrel{(2.5)}{=}-\alpha_{+}^{i}\left(J S^{1,1}\left(X_{+}, Y_{-}\right)\right)=-\alpha_{+}^{i}\left(S^{1,1}\left(X_{+}, Y_{-}\right)\right)
\end{aligned}
$$

Therefore, $\pi^{1,1} d \alpha_{+}^{i}\left(X_{+}, Y_{-}\right)=0$. A similar calculation shows that $\pi^{1,1} d \alpha_{-}^{i}\left(\mathcal{D}_{-}, T^{+} M\right)=0$.
Now we prove the equivalence of (2.4) and (2.5). The condition (2.5) can be written as

$$
T\left(\mathcal{D}_{ \pm}, T^{\mp} M\right) \subset T^{\mp} M \oplus \mathcal{D}_{ \pm}
$$

Using that ∇ preserves the distributions $\mathcal{D}_{ \pm}$and $T^{ \pm} M$, we calculate for $X_{ \pm} \in \Gamma\left(\mathcal{D}_{ \pm}\right)$ and $Y_{ \pm} \in \Gamma\left(T^{ \pm} M\right)$

$$
\begin{aligned}
T^{\mp} M \oplus \mathcal{D}_{ \pm} \ni T\left(X_{ \pm}, Y_{\mp}\right) & =\nabla_{X_{ \pm}} Y_{\mp}-\nabla_{Y_{\mp}} X_{ \pm}-\left[X_{ \pm}, Y_{\mp}\right] \\
& \equiv-\left[X_{ \pm}, Y_{\mp}\right] \quad \bmod T^{\mp} M \oplus \mathcal{D}_{ \pm}
\end{aligned}
$$

This proves the equivalence of (2.4) and (2.5).

Let (M, J) be a para-complex manifold in the strong sense, i.e. the integrable eigendistributions $T^{ \pm} M$ are of the same rank. Recall [10] that a C-valued one-form $\gamma=\alpha+e \beta$ is of para-complex type $(1,0)$, i.e. $J^{*} \gamma=e \gamma$, if and only if $\beta=\alpha \circ J$. A (1,0)-form γ is para-holomorphic if $\bar{\partial} \gamma:=\pi^{1,1} d \gamma=0$, which is equivalent to the para-Cauchy-Riemann equations

$$
\begin{equation*}
\partial_{-} \alpha_{+}:=\pi^{1,1} d \alpha_{+}=\partial_{+} \alpha_{-}:=\pi^{1,1} d \alpha_{-}=0 \tag{2.6}
\end{equation*}
$$

where $\alpha=\alpha_{+}+\alpha_{-}$is the J-eigenspace decomposition of α.

Proposition 3. Let (M, J) be a para-complex manifold in the strong sense with eigendistributions $T^{ \pm} M$ of rank n and $\mathcal{D}=\mathcal{D}_{+} \oplus \mathcal{D}_{-} \subset T^{+} M \oplus T^{-} M=T M$ a J-invariant distribution such that $\mathcal{D}_{ \pm}$are of the same rank m. Then \mathcal{D} is para-holomorphic if and only if it is locally defined by equations $\gamma^{i}=0(i=1, \ldots, k=n-m)$, where the γ^{i} are para-holomorphic one-forms.

Proof. Let \mathcal{D} be defined by para-holomorphic one-forms $\gamma^{i}=\alpha_{+}^{i}+\alpha_{-}^{i}+e\left(\alpha_{+}^{i}-\alpha_{-}^{i}\right)$. The $\alpha_{ \pm}^{i}$ satisfy (2.6), which imply the equations in the Definition 2 .

To prove the converse, we now assume that the distribution \mathcal{D} is para-holomorphic. Thanks to Proposition 2, this means that

$$
\left[\Gamma\left(\mathcal{D}_{ \pm}\right), \Gamma\left(T^{\mp} M\right)\right] \subset \Gamma\left(T^{\mp} M \oplus \mathcal{D}_{ \pm}\right)
$$

In order to construct para-holomorphic one-forms $\gamma^{i}=\alpha_{+}^{i}+\alpha_{-}^{i}+e\left(\alpha_{+}^{i}-\alpha_{-}^{i}\right)$ which define \mathcal{D}, we choose locally linearly independent commuting vector fields $Y_{i}^{ \pm} \in \Gamma\left(T^{ \pm} M\right)$ which generate distributions $N^{ \pm} \subset T^{ \pm} M$ complementary to $\mathcal{D}_{ \pm}$. We define one-forms $\alpha_{ \pm}^{i}$ vanishing on $\mathcal{D}_{ \pm} \oplus T^{\mp} M$ by

$$
\alpha_{ \pm}^{i}\left(Y_{j}^{ \pm}\right)=\delta_{j}^{i} .
$$

It is clear that $\alpha_{ \pm}^{i} \circ J= \pm \alpha_{ \pm}^{i}$ and that $\gamma^{i}:=\alpha_{+}^{i}+\alpha_{-}^{i}+e\left(\alpha_{+}^{i}-\alpha_{-}^{i}\right)$ define \mathcal{D}. Now we check that the γ^{i} are para-holomorphic, i.e. $\partial_{-} \alpha_{+}^{i}=\partial_{+} \alpha_{-}^{i}=0$. It is sufficient to evaluate this equality on $\left(Z^{+}, Z^{-}\right)$, where $Z^{ \pm}=X^{ \pm} \in \Gamma\left(\mathcal{D}_{ \pm}\right)$or $Z^{ \pm}=Y_{i}^{ \pm}$.

$$
\partial_{-} \alpha_{+}^{i}\left(X^{+}, X^{-}\right)=X^{+} \alpha_{+}^{i}\left(X^{-}\right)-X^{-} \alpha_{+}^{i}\left(X^{+}\right)-\alpha_{+}^{i}\left(\left[X^{+}, X^{-}\right]\right)=0,
$$

since α_{+}^{i} vanishes on $\mathcal{D}_{+} \oplus T^{-} M$ and $\left[X^{+}, X^{-}\right] \in T^{-} M \oplus \mathcal{D}_{+}$by (2.4). Similarly,

$$
\partial_{-} \alpha_{+}^{i}\left(X^{+}, Y_{j}^{-}\right)=X^{+} \alpha_{+}^{i}\left(Y_{j}^{-}\right)-Y_{j}^{-} \alpha_{+}^{i}\left(X^{+}\right)-\alpha_{+}^{i}\left(\left[X^{+}, Y_{j}^{-}\right]\right)=0 .
$$

Finally,

$$
\partial_{-} \alpha_{+}^{i}\left(Y_{j}^{+}, Y_{k}^{-}\right)=Y_{j}^{+} \alpha_{+}^{i}\left(Y_{k}^{-}\right)-Y_{k}^{-} \alpha_{+}^{i}\left(Y_{j}^{+}\right)-\alpha_{+}^{i}\left(\left[Y_{j}^{+}, Y_{k}^{-}\right]\right)=0-Y_{k}^{-}\left(\delta_{j}^{i}\right)-0=0,
$$

since, by construction, $\left[Y_{j}^{+}, Y_{k}^{-}\right]=0$. Similarly, one can check that $\partial_{+} \alpha_{-}^{i}=0$.

3. Para-quaternionic manifolds and para-quaternionic Kähler manifolds

Definition 3. Let $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=(-1,1,1)$, or a permutation thereof. An almost para-quaternionic structure on a differentiable manifold M (of dimension $4 n$) is a rank 3 subbundle $Q \subset$ End $T M$, which is locally generated by three anticommuting fields of endomorphisms $J_{1}, J_{2}, J_{3}=J_{1} J_{2}$, such that $J_{\alpha}^{2}=\epsilon_{\alpha}$ Id. Such a triple $\left(J_{\alpha}\right)$ will be called a standard local basis of Q. A linear connection which preserves Q is called an almost para-quaternionic connection. An almost para-quaternionic structure Q is called a
para-quaternionic structure if M admits a para-quaternionic connection, i.e. a torsionfree connection which preserves Q. An (almost) para-quaternionic manifold is a manifold endowed with an (almost) para-quaternionic structure.

An almost para-quaternionic Hermitian manifold (M, g, Q) is a pseudo-Riemannian manifold (M, g) endowed with a para-quaternionic structure Q consisting of skewsymmetric endomorphisms. $(M, g, Q), n>1$, is called a para-quaternionic Kähler manifold if the Levi-Civita connection preserves Q.

Proposition 4 ([1]). At any point, the curvature tensor R of a para-quaternionic Kähler manifold (M, g, Q) of dimension $4 n>4$ admits a decomposition

$$
\begin{equation*}
R=v R_{0}+W, \tag{3.1}
\end{equation*}
$$

where $v=\operatorname{scal} /(4 n(n+2))$ is the reduced scalar curvature,

$$
R_{0}(X, Y):=+\frac{1}{2} \sum_{\alpha} \epsilon_{\alpha} g\left(J_{\alpha} X, Y\right) J_{\alpha}+\frac{1}{4}\left(X \wedge Y-\sum_{\alpha} \epsilon_{\alpha} J_{\alpha} X \wedge J_{\alpha} Y\right), \quad X, Y \in T_{p} M,
$$

is the curvature tensor of the para-quaternionic projective space of the same dimension as M and W is a trace-free Q-invariant algebraic curvature tensor, where Q acts by derivations. In particular, R is Q-invariant.

We define a para-quaternionic Kähler manifold of dimension 4 as a pseudo-Riemannian manifold endowed with a parallel skew-symmetric para-quaternionic structure whose curvature tensor admits a decomposition (3.1).

Since the Levi-Civita connection ∇ of a para-quaternionic Kähler manifold preserves the para-quaternionic structure Q, we can write

$$
\begin{equation*}
\nabla J_{\alpha}=-\epsilon_{\beta} \omega_{\gamma} \otimes J_{\beta}+\epsilon_{\gamma} \omega_{\beta} \otimes J_{\gamma}, \tag{3.2}
\end{equation*}
$$

where (α, β, γ) is a cyclic permutation of $(1,2,3)$. We shall denote by $\rho_{\alpha}:=g\left(J_{\alpha} \cdot, \cdot\right)$ the fundamental form associated with J_{α} and put $\rho_{\alpha}^{\prime}:=-\epsilon_{\alpha} \rho_{\alpha}$.

Proposition 5. The locally defined fundamental forms satisfy the following structure equations

$$
\begin{equation*}
\nu \rho_{\alpha}^{\prime}:=-\epsilon_{\alpha} \nu \rho_{\alpha}=\epsilon_{3}\left(d \omega_{\alpha}-\epsilon_{\alpha} \omega_{\beta} \wedge \omega_{\gamma}\right), \tag{3.3}
\end{equation*}
$$

where (α, β, γ) is a cyclic permutation of $(1,2,3)$.
Proof. Using Proposition 4 and the fact that

$$
\left[J_{\alpha}, J_{\beta}\right]=2 \epsilon_{3} \epsilon_{\gamma} J_{\gamma},
$$

we calculate the action of the curvature operator $R(X, Y), X, Y \in T M$, on J_{α} :

$$
\begin{aligned}
{\left[R(X, Y), J_{\alpha}\right] } & =\left[\nu R_{0}(X, Y), J_{\alpha}\right]=-\frac{v}{2} \sum_{\delta=1}^{3} \rho_{\delta}^{\prime}(X, Y)\left[J_{\delta}, J_{\alpha}\right] \\
& =\epsilon_{3} \nu\left(-\epsilon_{\beta} \rho_{\gamma}^{\prime}(X, Y) J_{\beta}+\epsilon_{\gamma} \rho_{\beta}^{\prime}(X, Y) J_{\gamma}\right),
\end{aligned}
$$

where (α, β, γ) is a cyclic permutation of $(1,2,3)$. On the other hand, using the equation (3.2), we calculate

$$
\begin{aligned}
{\left[R(X, Y), J_{\alpha}\right]=} & {\left[\nabla_{X}, \nabla_{Y}\right] J_{\alpha}-\nabla_{[X, Y]} J_{\alpha} } \\
= & \nabla_{X}\left(-\epsilon_{\beta} \omega_{\gamma}(Y) J_{\beta}+\epsilon_{\gamma} \omega_{\beta}(Y) J_{\gamma}\right)-\nabla_{Y}\left(-\epsilon_{\beta} \omega_{\gamma}(X) J_{\beta}+\epsilon_{\gamma} \omega_{\beta}(X) J_{\gamma}\right) \\
& -\left(-\epsilon_{\beta} \omega_{\gamma}([X, Y]) J_{\beta}+\epsilon_{\gamma} \omega_{\beta}([X, Y]) J_{\gamma}\right) \\
= & -\epsilon_{\beta} d \omega_{\gamma}(X, Y) J_{\beta}+\epsilon_{\gamma} d \omega_{\beta}(X, Y) J_{\gamma}-\epsilon_{\beta} \omega_{\gamma}(Y) \nabla_{X} J_{\beta}+\epsilon_{\gamma} \omega_{\beta}(Y) \nabla_{X} J_{\gamma} \\
& +\epsilon_{\beta} \omega_{\gamma}(X) \nabla_{Y} J_{\beta}-\epsilon_{\gamma} \omega_{\beta}(X) \nabla_{Y} J_{\gamma} .
\end{aligned}
$$

Applying again the equation (3.2), we finally get

$$
\left[R(X, Y), J_{\alpha}\right]=-\epsilon_{\beta}\left(d \omega_{\gamma}-\epsilon_{\gamma} \omega_{\alpha} \wedge \omega_{\beta}\right)(X, Y) J_{\beta}+\epsilon_{\gamma}\left(d \omega_{\beta}-\epsilon_{\beta} \omega_{\gamma} \wedge \omega_{\alpha}\right)(X, Y) J_{\gamma}
$$

Comparing the two formulas for $\left[R(X, Y), J_{\alpha}\right]$ we obtain the structure equations.

4. The twistor spaces of a para-quaternionic or para-quaternionic Kähler manifold

4.1. The twistor spaces of a para-quaternionic manifold. In the following, it will be useful to unify complex and para-complex structures in the following definition.

Definition 4. An almost ϵ-complex structure, $\epsilon \in\{-1,0,1\}$, on a differentiable manifold M of dimension $2 n$ is a field of endomorphisms $J \in \operatorname{End} T M$ such that $J^{2}=\epsilon \mathrm{Id}$ and, moreover, for $\epsilon=+1$ the eigendistributions $T^{ \pm} M$ are of rank n and for $\epsilon=0$ the two distributions $\operatorname{ker} J$ and $\operatorname{im} J$ have rank n. In other words, an almost -1 -complex structure is an almost complex structure and an almost +1 -complex structure is an almost para-complex structure in the strong sense.

An ϵ-complex manifold is a differentiable manifold endowed with an integrable (i.e. $N_{J}=0$) ϵ-complex structure J.

We shall also use the unifying adjective ϵ-holomorphic as a synonym of 'holomorphic' or 'para-holomorphic', depending on whether $\epsilon=-1$ or $\epsilon=+1$, respectively.

Let (M, Q) be an almost para-quaternionic manifold. We associate with (M, Q) a family of bundles $\pi: Z^{s} \rightarrow M$, with two-dimensional fibres, depending on a parameter $s \in \mathbb{R}$ as follows:

$$
Z^{s}:=\left\{A \in Q \mid A \neq 0, A^{2}=s\right\} .
$$

Definition 5. The fibre bundle $\pi: Z^{s} \rightarrow M$ is called the s-twistor space of the almost para-quaternionic manifold (M, Q).

Proposition 6. Any almost para-quaternionic connection ∇ on an almost paraquaternionic manifold (M, Q) induces a canonical almost ϵ-complex structure $\mathcal{J}^{s}=\mathcal{J}_{\nabla}^{s}$ on the s-twistor space Z^{s}, where $\epsilon=\operatorname{sgn}(s) \in\{-1,0,1\}$.

Proof. Let (I, J, K) be a standard basis of Q_{m}. Then any element $A \in Q_{m}$ can be written as $A=x I+y J+z K$ and $A \in Z^{s}$ if and only if $-x^{2}+y^{2}+z^{2}=s$. Hence, the fibres of Z^{s} are two-sheeted hyperboloids for $s<0$, one-sheeted hyperboloids for $s>0$ and light-cones without origin for $s=0$. Each fibre $Z_{m}^{s}=\pi^{-1}(m)$ is a homogeneous space of the group $\mathrm{SO}(1,2)$ with one-dimensional stabilizer $\operatorname{SO}(1,2)_{A_{s}}=$ $\mathrm{SO}(2)$ if $s<0, \mathrm{SO}(1,2)_{A_{s}}=\mathrm{SO}(1,1)$ if $s>0$ and $\mathrm{SO}(1,2)_{A_{s}} \cong(\mathbb{R},+)$ if $s=0$, where $A_{s} \in Z^{s}$. First we define the canonical $\operatorname{SO}(1,2)$-invariant ϵ-complex structure on Z_{m}^{s}, as follows. The three-dimensional vector space $Q_{m} \subset$ End $T_{m} M$ is a Lie subalgebra isomorphic to $\mathfrak{s l}_{2}(\mathbb{R})$. The adjoint action preserves the indefinite scalar product $\langle A, B\rangle=-(1 /(4 n)) \operatorname{tr}(A B), 4 n=\operatorname{dim} M$, in Q and hence identifies the Lie algebra Q with $\mathfrak{s o}(Q)=\operatorname{Lie} \operatorname{SO}(Q) \cong \mathfrak{s o}(1,2)$. Let $A \in Z_{m}^{s} \subset Q_{m}$. Then $Z_{m}^{s}=\operatorname{SO}(Q) A$ and the tangent space to Z_{m}^{s} at A is identified with $\mathfrak{s o}(Q) A \cong \mathfrak{s o}(Q) / \mathfrak{s o}(Q)_{A}=\mathfrak{s o}(Q) / \mathbb{R} A$. It is easy to check that the adjoint action of $(1 / 2) A$ on $\mathfrak{s o}(Q) / \mathbb{R} A$ defines an $\operatorname{SO}(Q)$ invariant ϵ-complex structure J^{v} on Z_{m}^{s}. Now we define an almost ϵ-complex structure \mathcal{J}^{s} on the twistor space Z^{s}. We have the decomposition

$$
\begin{equation*}
T_{z} Z^{s}=T_{z}^{v} Z^{s}+H_{z} \cong T_{z}\left(Z_{m}^{s}\right) \oplus T_{\pi z} M, \tag{4.1}
\end{equation*}
$$

where $T_{z}^{v} Z^{s}$ is the vertical space of the bundle $\pi: Z^{s} \rightarrow M$ and H_{z} is the horizontal space of the connection in the bundle π induced by the para-quaternionic connection ∇ of (M, Q). The latter is identified with $T_{\pi z} M$ via the projection $Z^{s} \rightarrow M$. We denote by J^{z} the tautological ϵ-complex structure on $T_{\pi z} M$ defined by $z \in Z^{s}$. With respect to the above decomposition we define

$$
\begin{equation*}
\mathcal{J}_{z}^{s}=J^{v} \oplus J^{z} \tag{4.2}
\end{equation*}
$$

By construction, \mathcal{J}^{s} is an almost ϵ-complex structure.
4.2. The twistor spaces of a para-quaternionic Kähler manifold. Let (M, g, Q) be a para-quaternionic Kähler manifold with twistor spaces Z^{s}. The Levi-Civita connection $\nabla=\nabla^{g}$ is a para-quaternionic connection and, hence, induces a canonical almost ϵ-complex structure $\mathcal{J}^{s}=\mathcal{J}_{\nabla}^{S}$ on Z^{s}.

Proposition 7. The twistor space Z^{s} of a para-quaternionic Kähler manifold (M, g, Q) admits a canonical almost ϵ-complex structure \mathcal{J}^{ϵ}, where $\epsilon=\operatorname{sgn}(s)$, and a one-parameter family $g_{t}^{s}, t \in \mathbb{R}-\{0\}$, of pseudo-Riemannian metrics such that the
almost ϵ-complex structure \mathcal{J}^{s} is skew-symmetric, provided that $s \neq 0$. For $s=0$ there exists a canonical one-parameter family $g_{t}^{0}, t \in \mathbb{R}-\{0\}$, of symmetric bilinear forms with one-dimensional (vertical) kernel such that \mathcal{J}^{s} is skew-symmetric. Finally, for $s \neq 0$, the projection $\pi:\left(Z^{s}, g_{t}^{s}\right) \rightarrow(M, g)$ is a pseudo-Riemannian submersion.

Proof. We denote by $g^{v}:=\left.\langle\cdot, \cdot\rangle\right|_{Z_{m}^{s}}$ the induced metric on the fibres $Z_{m}^{s} \subset$ $(Q,\langle\cdot, \cdot\rangle)$. It is nondegenerate for $s \neq 0$ and has one-dimensional kernel for $s=0$. The ϵ-complex structure J^{v} on Z_{m}^{s} is g^{v}-skew-symmetric. With respect to the decomposition (4.1), we define

$$
\left(g_{t}^{s}\right)_{z}=t g^{v} \oplus g_{\pi z}
$$

The almost ϵ-complex structure \mathcal{J}^{s} defined above is skew-symmetric with respect to the field of symmetric bilinear forms g_{t}^{s}, which is nondegenerate for $s \neq 0$ and has one-dimensional vertical kernel for $s=0$. The above formula for g_{t}^{s} shows that the decomposition of $T Z$ into vertical and horizontal space is g_{t}^{s}-orthogonal and that the projection induces an isometry $H_{z} \rightarrow T_{\pi z} M$. This proves that π is a pseudo-Riemannian submersion.

The scalar multiplication by $|s|^{1 / 2} \neq 0$ in the vector bundle $Q \rightarrow M$ induces an isometry $\left(Z^{\epsilon}, g_{t}^{\epsilon}\right) \rightarrow\left(Z^{s}, g_{t /|s|}^{s}\right)$, which preserves the almost ϵ-complex structure, where $\epsilon=\operatorname{sgn}(s)$. This shows that it is sufficient to consider only three of the above twistor spaces, namely $Z^{+}:=Z^{+1}, Z^{-}:=Z^{-1}$ and Z^{0}. We will study the integrability of the almost ϵ-complex structure \mathcal{J}^{ϵ} and the holomorphicity of the horizontal distribution $H \subset T Z^{\epsilon}$, which is \mathcal{J}^{ϵ}-invariant. For this we extend the G-structure approach developed in [2] to the para-case $(\epsilon=1)$.
4.3. Twistor spaces of para-quaternionic (Kähler) manifolds as bundles associated to \boldsymbol{G}-structures. In this subsection we interpret the twistor spaces $Z^{\epsilon} \quad(\epsilon=$ $-1,0,1$) from the point of view of G-structures.

Let (M, Q) be a para-quaternionic manifold. Note that $\tilde{Q}_{m}:=\mathbb{R} \operatorname{Id}+Q_{m} \subset$ End $T_{m} M$ is an algebra isomorphic to the algebra of para-quaternions, i.e. to the matrix algebra $\mathbb{R}(2)$. Since any irreducible module of $\mathbb{R}(2)$ is isomorphic to \mathbb{R}^{2}, the \tilde{Q}_{m}-module $T_{m} M$ is isomorphic to the $\mathbb{R}(2)$-module $\mathbb{R}^{2} \otimes \mathbb{R}^{n}, 2 n=\operatorname{dim} M$, with the action on the first factor.

DEFINITION 6. Let (M, Q) be an (almost) para-quaternionic manifold. A paraquaternionic coframe at $m \in M$ is an isomorphism $\phi: T_{m} M \xrightarrow{\sim} \mathbb{R}^{2} \otimes \mathbb{R}^{n}$ which maps \tilde{Q}_{m} into $\mathbb{R}(2)$, i.e.

$$
\phi \circ \tilde{Q}_{m} \circ \phi^{-1}=\mathbb{R}(2) \otimes \mathrm{Id}
$$

Proposition 8. (i) The set P of all para-quaternionic coframes together with the natural projection $\pi^{P}: P \rightarrow M$ is a G-structure, i.e. a principal subbundle of the bundle of all coframes with the structure group $G:=\mathrm{SL}_{2}^{ \pm}(\mathbb{R}) \otimes \mathrm{GL}_{n}(\mathbb{R})$, where

$$
\mathrm{SL}_{2}^{ \pm}(\mathbb{R})=\left\{A \in \mathrm{GL}_{2}(\mathbb{R}) \mid \operatorname{det} A= \pm 1\right\}
$$

(ii) Let $A \in \mathfrak{s l}_{2}(\mathbb{R}) \otimes \operatorname{Id} \subset \mathfrak{g}=\operatorname{Lie} G$ such that $A^{2}=\epsilon \operatorname{Id}$ and G_{A} the stabilizer (i.e. centralizer) of A in G. There is a canonical isomorphism of fibre bundles

$$
P / G_{A} \xrightarrow{\sim} Z^{\epsilon} .
$$

Proof. (i) It is clear that any two para-quaternionic coframes are related by an element of $\mathrm{GL}_{2}(\mathbb{R}) \otimes \mathrm{GL}_{n}(\mathbb{R})=\mathrm{SL}_{2}^{ \pm}(\mathbb{R}) \otimes \mathrm{GL}_{n}(\mathbb{R})$.
(ii) Let $\phi \in P$ be a coframe at $m \in M$. It induces an algebra isomorphism $\hat{\phi}: \mathbb{R}(2) \rightarrow \tilde{Q}_{m}, B \mapsto \phi^{-1} B \phi$. The image $\hat{\phi}(A) \in Q_{m}$ satisfies $\hat{\phi}(A)^{2}=\epsilon \mathrm{Id}$, hence $\hat{\phi}(A) \in Z_{m}^{\epsilon}$. If $k \in G_{A}$ then $\widehat{k \phi}(A)=\phi^{-1} k^{-1} A k \phi=\hat{\phi}(A)$. So the map $P \rightarrow Z^{\epsilon}$, $\phi \mapsto \hat{\phi}(A)$, factorizes to an isomorphism $P / G_{A} \rightarrow Z^{\epsilon}$ of fibre bundles.

Assume now that (M, g, Q) is a para-quaternionic Kähler manifold of dimension $4 n$, or more generally an almost para-quaternionic Hermitian manifold. On $\mathbb{R}^{2} \otimes \mathbb{R}^{2 n}$ we fix the standard scalar product $g_{\text {can }}=\omega_{\mathbb{R}^{2}} \otimes \omega_{\mathbb{R}^{2 n}}$, where $\omega_{\mathbb{R}^{2 n}}$ denotes the standard symplectic structure of $\mathbb{R}^{2 n}$.

Definition 7. Let (M, g, Q) be an almost para-quaternionic Hermitian manifold of dimension $4 n$. A para-quaternionic Hermitian coframe at $m \in M$ is a linear isometry $\phi:\left(T_{m} M, g_{m}\right) \xrightarrow{\sim}\left(\mathbb{R}^{2} \otimes \mathbb{R}^{2 n}, g_{\text {can }}\right)$ which maps \tilde{Q}_{m} into $\mathbb{R}(2)$.

Proposition 9. The set P of all para-quaternionic Hermitian coframes together with the natural projection $\pi^{P}: P \rightarrow M$ is a G-structure with $G=G_{0} \cup \xi G_{0}, G_{0}:=$ $\mathrm{SL}_{2}(\mathbb{R}) \otimes \operatorname{Sp}\left(\mathbb{R}^{2 n}\right), \xi=A \otimes B \in \mathrm{SL}_{2}^{ \pm}(\mathbb{R}) \otimes \mathrm{GL}_{n}(\mathbb{R})$, $\operatorname{det} A=-1$ and $B^{*} \omega_{\mathbb{R}^{2 n}}=-\omega_{\mathbb{R}^{2 n}}$. Moreover, the twistor space Z^{ϵ} is canonically isomorphic to the bundle P / G_{A}, where $0 \neq A \in \mathfrak{s l}_{2}(\mathbb{R})$ with $A^{2}=\epsilon \mathrm{Id}$.

5. G-structures of para-twistor type and their twistor spaces: obstructions for integrability

5.1. Groups of para-twistor type and para-complex symmetric spaces.

Definition 8. A connected linear Lie group $G \subset G L(V), V=\mathbb{R}^{n}$, is called of para-twistor type if its Lie algebra contains a para-complex structure, i.e. an element J such that $J^{2}=$ Id. (If G is not connected, we shall assume, in addition, that the conjugation by J preserves G.)

Since the endomorphism J is semi-simple, the adjoint operator ad_{J} is semi-simple and, hence, we have the direct sum $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$, where $\mathfrak{k}=\operatorname{kerad}_{J}=Z_{\mathfrak{g}}(J)$ and $\mathfrak{m}=[J, \mathfrak{g}]$. It follows that

$$
\mathfrak{m}=\{A \in \mathfrak{g} \mid\{J, A\}=A J+J A=0\} .
$$

This implies that $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k}$ and, hence, that $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ is a symmetric decomposition.
Proposition 10. The orbit $S:=\operatorname{Ad}_{G}(J) \cong G / K, K:=Z_{G}(J)$, is an affine symmetric space and carries a canonical G-invariant para-complex structure J^{S}.

Proof. The involutive automorphism $A \mapsto J A J^{-1}=J A J$ of G has K as its fixed point set and defines the symmetry of G / K at the point $e K$.

The formula $J_{\mathfrak{m}} A=J A=(1 / 2)[J, A], A \in \mathfrak{m}$, defines a K-invariant para-complex structure on \mathfrak{m}, which extends to a G-invariant para-complex structure J^{S} on S. The structure J^{S} is integrable, since it is parallel under the canonical torsion-free connection of the symmetric space S.

The projections onto \mathfrak{k} and \mathfrak{m} are given by

$$
\begin{align*}
A & \mapsto \frac{1}{2} J\{J, A\}=\frac{1}{2}(A+J A J), \tag{5.1}\\
A & \mapsto \frac{1}{2} J[J, A]=\frac{1}{2}(A-J A J) . \tag{5.2}
\end{align*}
$$

5.2. The space of curvature tensors. Let $G \subset \mathrm{GL}(V)$ be a linear Lie group of para-twistor type with Lie algebra $\mathfrak{g}, J \in \mathfrak{g}$ a para-complex structure and $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ the corresponding symmetric decomposition; $\mathfrak{k}=Z_{\mathfrak{g}}(J)$ and $\mathfrak{m}=[J, \mathfrak{g}]$. Recall that \mathfrak{m} carries the para-complex structure $J_{\mathfrak{m}}: A \mapsto J A=(1 / 2)[J, A]$. For any subspace $U \subset$ End V we denote by

$$
\mathcal{R}(U):=\left\{R \in U \otimes \bigwedge^{2} V^{*} \mid R \text { satisfies the first Bianchi identity }\right\}
$$

the vector space of algebraic curvature tensor of type U.
The projection $\pi_{\mathfrak{m}}: \mathfrak{g} \rightarrow \mathfrak{m}$ induces a projection

$$
\pi_{\mathfrak{m}}: C^{2}(\mathfrak{g}) \rightarrow C^{2}(\mathfrak{m})
$$

According to (5.2), the projection $\alpha^{\mathfrak{m}}:=\pi_{\mathfrak{m}} \alpha \in C^{2}(\mathfrak{m})$ of $\alpha \in C^{2}(\mathfrak{g})$ is given by

$$
\begin{equation*}
\alpha^{\mathfrak{m}}(X, Y)=\frac{1}{2}(\alpha(X, Y)-J \alpha(X, Y) J) \tag{5.3}
\end{equation*}
$$

Recall that, since $\mathfrak{m} \subset$ End V is endowed with the para-complex structure $J_{\mathfrak{m}}$, we have the decomposition (2.2)

$$
C^{2}(\mathfrak{m})=\sum_{p+q=2} C^{p, q}(\mathfrak{m})
$$

We put $\pi_{\mathfrak{m}}^{p, q}:=\pi^{p, q} \circ \pi_{\mathfrak{m}}: C^{2}(\mathfrak{g}) \rightarrow C^{p, q}(\mathfrak{m})$ and $\mathcal{R}^{p, q}(\mathfrak{m}):=\mathcal{R}(\mathfrak{m}) \cap C^{p, q}(\mathfrak{m})$.
The action of J as an automorphism of the tensor algebra induces involutions

$$
T_{J}: C^{2}(\mathfrak{g}) \rightarrow C^{2}(\mathfrak{g}), \quad T_{J}: C^{2}(V) \rightarrow C^{2}(V) .
$$

We denote the ± 1-eigenspaces of T_{J} on $C^{2}(\mathfrak{g})$ by $C_{ \pm}^{2}(\mathfrak{g})$, such that

$$
C^{2}(\mathfrak{g})=C_{+}^{2}(\mathfrak{g})+C_{-}^{2}(\mathfrak{g}),
$$

and put $C_{ \pm}^{2}(U):=C_{ \pm}^{2}(\mathfrak{g}) \cap C^{2}(U)$ and $\mathcal{R}_{ \pm}(U):=C_{ \pm}^{2}(\mathfrak{g}) \cap \mathcal{R}(U)$, where $U=\mathfrak{k}, \mathfrak{m}$.
Proposition 11. (i) The eigenspaces of T_{J} on $C^{2}(\mathfrak{g})$ are given by

$$
\begin{align*}
C_{+}^{2}(\mathfrak{m}) & =C^{1,1}(\mathfrak{m}), \tag{5.4}\\
C_{-}^{2}(\mathfrak{m}) & =C^{2,0}(\mathfrak{m})+C^{0,2}(\mathfrak{m}) . \tag{5.5}
\end{align*}
$$

(ii) The action of T_{J} on $C^{p, q}(V)$ is given by

$$
\begin{aligned}
& T_{J} \alpha^{1,1}=-J \alpha^{1,1}, \\
& T_{J} \alpha^{2,0}=J \alpha^{2,0} \\
& T_{J} \alpha^{0,2}=J \alpha^{0,2}
\end{aligned}
$$

In particular,

$$
\begin{aligned}
C^{1,1}(V) & =\operatorname{ker}\left(T_{J}+L_{J}\right), \\
C^{2,0}(V)+C^{0,2}(V) & =\operatorname{ker}\left(T_{J}-L_{J}\right),
\end{aligned}
$$

where $L_{J} \alpha=J \circ \alpha$.
The action of J as a derivation on the tensor algebra induces an endomorphism

$$
\alpha \mapsto J \cdot \alpha=[J, \alpha]-\alpha(J \cdot, \cdot)-\alpha(\cdot, J \cdot)
$$

of $C^{2}(\mathfrak{g})$. Similarly, J acts as a derivation on $C^{2}(V)$.
Proposition 12. (i) The action of J as a derivation on $C^{2}(\mathfrak{g})$ is given by

$$
J \cdot \alpha^{p, q}=2 q J \alpha^{p, q} \quad \text { for all } \quad \alpha^{p, q} \in C^{p, q}(\mathfrak{m}),
$$

$$
\begin{aligned}
J \cdot \alpha & =-2 \alpha(J \cdot, \cdot) \quad \text { for all } \quad \alpha \in C_{+}^{2}(\mathfrak{k}), \\
J \cdot C_{-}^{2}(\mathfrak{k}) & =0 .
\end{aligned}
$$

In particular, the vector space of J-invariants is given by

$$
\begin{equation*}
C^{2}(\mathfrak{g})^{J}=C_{-}^{2}(\mathfrak{k})+C^{2,0}(\mathfrak{m}) \tag{5.6}
\end{equation*}
$$

(ii) The action of J as a derivation on $C^{2}(V)$ is given by

$$
\begin{aligned}
& J \cdot \alpha^{2,0}=-J \alpha^{2,0} \\
& J \cdot \alpha^{0,2}=3 J \alpha^{0,2} \\
& J \cdot \alpha^{1,1}=J \alpha^{1,1}
\end{aligned}
$$

In particular,

$$
\begin{aligned}
& C^{2,0}(V)=\operatorname{ker}\left(D_{J}+L_{J}\right) \\
& C^{0,2}(V)=\operatorname{ker}\left(D_{J}-3 L_{J}\right) \\
& C^{1,1}(V)=\operatorname{ker}\left(D_{J}-L_{J}\right)
\end{aligned}
$$

where $D_{J} \alpha=J \cdot \alpha$.
The proposition shows that $\pi_{\mathfrak{m}}^{1,1} C^{2}(\mathfrak{g})^{J}=\pi_{\mathfrak{m}}^{0,2} C^{2}(\mathfrak{g})^{J}=0$ and $\pi_{\mathfrak{m}}^{2,0} C^{2}(\mathfrak{g})^{J}=C^{2,0}(\mathfrak{m})$.
Proposition 13. The following holds
(i) $\mathcal{R}(\mathfrak{g})=\mathcal{R}_{+}(\mathfrak{g})+\mathcal{R}_{-}(\mathfrak{g})$,
(ii) $\mathcal{R}(\mathfrak{m})=\mathcal{R}_{+}(\mathfrak{m})+\mathcal{R}_{-}(\mathfrak{m})$,
(iii) $\pi_{\mathfrak{m}} \mathcal{R}_{+}(\mathfrak{g})=\pi_{\mathfrak{m}}^{1,1} \mathcal{R}_{+}(\mathfrak{g}) \supset \mathcal{R}_{+}(\mathfrak{m})=\mathcal{R}^{1,1}(\mathfrak{m})$,
(iv) $\pi_{\mathfrak{m}}^{0,2} \mathcal{R}(\mathfrak{g})=\mathcal{R}^{0,2}(\mathfrak{m})$,
(v) $\pi_{\mathfrak{m}} \mathcal{R}_{-}(\mathfrak{g})=\left(\pi_{\mathfrak{m}}^{2,0}+\pi_{\mathfrak{m}}^{0,2}\right) \mathcal{R}_{-}(\mathfrak{g}) \supset \mathcal{R}_{-}(\mathfrak{m})=\mathcal{R}^{2,0}(\mathfrak{m})+\mathcal{R}^{0,2}(\mathfrak{m})$.

Proof. (i) and (ii) follow from the fact that $T_{J}: C^{2}(\mathfrak{g}) \rightarrow C^{2}(\mathfrak{g})$ preserves the subspaces $\mathcal{R}(\mathfrak{m}) \subset \mathcal{R}(\mathfrak{g}) \subset C^{2}(\mathfrak{g})$ and (iii) follows from the equation (5.4). The equation (5.5) and (iv) imply (v). Therefore it suffices to prove (iv). For $R \in \mathcal{R}(\mathfrak{g})$ and $X, Y, Z \in V$ we calculate

$$
\begin{aligned}
\left(\pi_{\mathfrak{m}}^{0,2} R\right)(X, Y)= & \frac{1}{4}\left(R^{\mathfrak{m}}(X, Y)+R^{\mathfrak{m}}(J X, J Y)-J R^{\mathfrak{m}}(J X, Y)-J R^{\mathfrak{m}}(X, J Y)\right) \\
= & \frac{1}{8}(R(X, Y)-J R(X, Y) J+R(J X, J Y)-J R(J X, J Y) J \\
& \quad-J R(J X, Y)+R(J X, Y) J-J R(X, J Y)+R(X, J Y) J)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{8}(R(X, Y)-J R(X, Y) J-J R(J X, Y)-J R(X, J Y)) \\
& \quad+\frac{1}{8}(-J R(J X, J Y) J+R(J X, J Y)+R(X, J Y) J+R(J X, Y) J) \\
= & \frac{1}{8}(J(J \cdot R)(X, Y)-(J \cdot R)(J X, J Y) J)
\end{aligned}
$$

and, therefore,

$$
\sum_{\text {cyclic }}\left(\pi_{\mathfrak{m}}^{0,2} R\right)(X, Y) Z=\frac{1}{8} J \sum_{\text {cyclic }}(J \cdot R)(X, Y) Z-\frac{1}{8} \sum_{\text {cyclic }}(J \cdot R)(J X, J Y) J Z=0,
$$

where the sum is over cyclic permutations of (X, Y, Z). Here we used the fact that $A \cdot \mathcal{R}(\mathfrak{g}) \subset \mathcal{R}(\mathfrak{g})$ for any $A \in \mathfrak{g}$.
5.3. \boldsymbol{G}-structures with connection and associated \boldsymbol{K}-structures. Let $G \subset$ $\mathrm{GL}(V), V=\mathbb{R}^{n}$, be a linear Lie group.

Definition 9. A G-structure on a manifold M is G-principal bundle $\pi: P \rightarrow$ M endowed with a displacement form θ, i.e. a G-equivariant V-valued one-form such that $\operatorname{ker} \theta=T^{v} P:=\operatorname{ker} d \pi$.

We shall identify a point $p \in P$ with the coframe

$$
p: T_{\pi(p)} M \rightarrow V, \quad X \mapsto \theta_{p}\left((d \pi)_{p}^{-1}(X)\right) .
$$

Definition 10. A principal connection in a G-principal bundle $\pi: P \rightarrow M$ is a G-equivariant \mathfrak{g}-valued one-form $\omega: T P \rightarrow \mathfrak{g}$ such that $H:=\operatorname{ker} \omega$ is a distribution transversal to the vertical distribution $T^{v} P$.

Recall that the wedge product of two one-forms α, β with values in a Lie algebra is the Lie algebra valued two-form given by

$$
[\alpha \wedge \beta](X, Y):=[\alpha(X), \beta(Y)]-[\alpha(Y), \beta(X)] .
$$

The curvature of a connection ω is the \mathfrak{g}-valued G-equivariant horizontal two-form

$$
\Omega=d \omega+\frac{1}{2}[\omega \wedge \omega] .
$$

If $\pi: P \rightarrow M$ is a G-structure with displacement form θ, then the torsion of ω is the V-valued G-equivariant horizontal two-form

$$
\Theta:=d \theta+[\omega \wedge \theta]
$$

where the Lie bracket is taken in the affine Lie algebra $V+\mathfrak{g}$.
If θ is the displacement form of a G-structure $\pi: P \rightarrow M$ and ω a principal connection then:

$$
\kappa=\theta+\omega: T P \rightarrow V \oplus \mathfrak{g}
$$

is a Cartan connection, i.e. a G-equivariant absolute parallelism which extends the canonical vertical parallelism $T^{v} P \rightarrow \mathfrak{g}$. The curvature of the Cartan connection κ is defined as the $(V \oplus \mathfrak{g})$-valued G-equivariant horizontal two-form

$$
\Omega_{\kappa}:=d \kappa+\frac{1}{2}[\kappa \wedge \kappa] .
$$

Notice that the V and \mathfrak{g}-components of Ω_{κ} are exactly the torsion and curvature forms of ω :

$$
\Omega_{\kappa}^{V}=\Theta, \quad \Omega_{\kappa}^{\mathfrak{g}}=\Omega .
$$

Let now $K \subset G$ be a Lie subgroup with Lie algebra \mathfrak{k} and $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ a K-invariant direct decomposition of the vector space \mathfrak{g}. Accordingly, any \mathfrak{g}-valued form α on P is decomposed as

$$
\alpha=\alpha^{\mathfrak{k}}+\alpha^{\mathrm{m}} .
$$

Proposition 14 ([2]). Let ($\pi: P \rightarrow M, \theta, \omega$) be a G-structure with a connection and $K \subset G$ a Lie subgroup. Then

$$
\pi^{\prime}: P \rightarrow Z:=P / K
$$

is a K-structure with displacement form

$$
\theta^{\prime}:=\theta+\omega^{\mathfrak{m}}: T P \rightarrow V^{\prime}:=V \oplus \mathfrak{m}
$$

and connection

$$
\omega^{\prime}:=\omega^{\mathfrak{k}} .
$$

The curvature Ω^{\prime} and torsion Θ^{\prime} of ω^{\prime} are given by

$$
\begin{aligned}
& \Theta^{\prime}=\left(\Theta^{\prime}\right)^{V}+\left(\Theta^{\prime}\right)^{\mathfrak{m}}=\left(\Theta-\left[\omega^{\mathfrak{m}} \wedge \theta\right]\right)+\Omega^{\mathfrak{m}}-\frac{1}{2}\left[\omega^{\mathfrak{m}} \wedge \omega^{\mathfrak{m}}\right]^{\mathfrak{m}} \\
& \Omega^{\prime}=\Omega^{\mathfrak{k}}-\frac{1}{2}\left[\omega^{\mathfrak{m}} \wedge \omega^{\mathfrak{m}}\right]^{\mathfrak{k}}
\end{aligned}
$$

5.4. The twistor space of a \boldsymbol{G}-structure of para-twistor type. Let $G \subset \mathrm{GL}(V)$ be a linear Lie group of para-twistor type, $J \in \mathfrak{g}$ a para-complex structure and $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ the corresponding symmetric decomposition; $\mathfrak{k}=Z_{\mathfrak{g}}(J)$ and $\mathfrak{m}=[J, \mathfrak{g}]$. Let $\pi: P \rightarrow M$ be a G-structure endowed with a principal connection $\omega: T P \rightarrow \mathfrak{g} .(P, \omega)$ will be called a G-structure of para-twistor type. The vector space $V^{\prime}:=V \oplus \mathfrak{m}$ has the paracomplex structure $J^{\prime}=J \oplus J_{\mathfrak{m}}$. The natural action of $K=Z_{G}(J)$ on V^{\prime} preserves this structure and is identified with a subgroup $K \subset \operatorname{GL}\left(V^{\prime}, C\right):=\operatorname{Aut}\left(V^{\prime}, J^{\prime}\right)$. This implies that the K-structure

$$
\pi^{\prime}: P \rightarrow Z:=P / K
$$

is subordinated to a $\operatorname{GL}\left(V^{\prime}, C\right)$-structure, i.e. to an almost para-complex structure \mathcal{J} on Z. At the point $z=\pi^{\prime} p \in Z, p \in P$, the almost para-complex structure \mathcal{J} is defined by:

$$
\mathcal{J}_{z}=\hat{p}^{-1} \circ J^{\prime} \circ \hat{p},
$$

where $\hat{p}: T_{z} Z \rightarrow V^{\prime}$ is the coframe associated with $p \in P$. It is easily checked that this definition does not depend on $p \in\left(\pi^{\prime}\right)^{-1}(z)$.

Similarly, we can associate a para-complex structure $J_{z}: T_{\pi p} M \rightarrow T_{\pi p} M$ with any point $z=K p \in Z$ by the formula

$$
J_{z}:=p \circ J \circ p^{-1},
$$

using the isomorphism $p: T_{\pi p} M \rightarrow V$. This allows to identify the G / K-bundle $\pi_{Z}: Z=$ $P / K \rightarrow M=P / G$ with a bundle of para-complex structures on the tangent spaces of M.

We denote by $\mathcal{H}_{Z}=\pi_{*}^{\prime} \operatorname{ker} \omega \subset T Z$ the projection of the horizontal distribution of ω to $T Z$. We call it the horizontal distribution of Z.

Definition 11. Let ($\pi: P \rightarrow M, \omega$) be a G-structure of para-twistor type and $K=Z_{G}(J)$. Then the induced K-structure $\pi^{\prime}: P \rightarrow Z=P / K$ endowed with the induced connection $\omega^{\prime}=\pi_{\mathfrak{k}} \circ \omega$, the horizontal distribution \mathcal{H}_{Z} and the almost paracomplex structure \mathcal{J} is called the twistor space associated to the G-structure of paratwistor type (P, ω) and to the para-complex structure $J \in \mathfrak{g}$.

Notice that the almost para-complex structure \mathcal{J} and the horizontal distribution \mathcal{H}_{Z} are invariant under the parallel transport in $T Z$ defined by the connection ω^{\prime}. Therefore, we can apply Propositions 1 and 2.

Theorem 1. Let $(\pi: P \rightarrow M, \omega)$ be a G-structure of para-twistor type, where ω is a principal connection with curvature form Ω and torsion form Θ and $\left(Z, \mathcal{J}, \mathcal{H}_{Z}\right)$ the corresponding twistor space. Then
(i) The almost para-complex structure \mathcal{J} on Z is integrable if and only if

$$
\begin{equation*}
\pi^{0,2} \circ \Theta=0 \quad \text { and } \quad \pi_{\mathfrak{m}}^{0,2} \circ \Omega=0 \tag{5.7}
\end{equation*}
$$

(ii) The horizontal distribution $\mathcal{H}_{Z} \subset T Z$ is para-holomorphic if and only if

$$
\pi_{\mathfrak{m}}^{1,1} \circ \Omega=0
$$

where we consider the values of the horizontal forms Θ and Ω at $p \in P$ as

$$
\Theta_{p}: \bigwedge^{2} T_{\pi^{\prime} p} Z \rightarrow V \quad \text { and } \quad \Omega_{p}: \bigwedge^{2} T_{\pi^{\prime} p} Z \rightarrow \mathfrak{g}
$$

Proof. Since G is of para-twistor type, $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ is a symmetric decomposition and, in particular, $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k}$. By Proposition 14, the torsion of the connection ω^{\prime} in the K-principal bundle $\pi^{\prime}: P \rightarrow Z$ is given by

$$
\Theta^{\prime}=\left(\Theta^{\prime}\right)^{V}+\left(\Theta^{\prime}\right)^{\mathfrak{m}}=\left(\Theta-\left[\omega^{\mathfrak{m}} \wedge \theta\right]\right)+\Omega^{\mathfrak{m}}
$$

The second term $\left[\omega^{\mathfrak{m}} \wedge \theta\right]_{p}: \bigwedge^{2} T_{\pi^{\prime} p} Z \rightarrow V^{\prime}=V \oplus \mathfrak{m}, p \in P$, on the right-hand side is of type $(2,0)$ since

$$
\theta^{\prime}=\theta+\omega^{\mathfrak{m}}: T_{\pi^{\prime} p} Z \rightarrow V^{\prime}
$$

is of type $(1,0)$:

$$
\theta^{\prime} \circ \mathcal{J}_{\pi^{\prime} p}=\left(J \oplus J_{\mathfrak{m}}\right) \circ \theta^{\prime}
$$

Therefore the integrability condition $\pi^{0,2} \Theta^{\prime}=0$ of Proposition 1 reduces to (5.7).
To prove (ii), we notice that the coframe $\hat{p}: T_{\pi^{\prime} p} Z \rightarrow V^{\prime}=V \oplus \mathfrak{m}$ maps the horizontal space $\left(\mathcal{H}_{Z}\right)_{\pi^{\prime} p}$ to V. Therefore the tensor

$$
S=T \quad \bmod \mathcal{H}_{Z}
$$

corresponds to $\left(\Theta^{\prime}\right)^{\mathfrak{m}}=\Omega^{\mathfrak{m}}$ and $S^{1,1}$ corresponds to $\pi_{\mathfrak{m}}^{1,1} \circ \Omega$. The two-form $\Omega^{\mathfrak{m}}$ on P vanishes on the vertical distribution $T^{v} P=\kappa^{-1}(\mathfrak{g})$. This implies that $\pi_{\mathfrak{m}}^{1,1} \circ \Omega$ vanishes on $\hat{p}^{-1}(\mathfrak{m})$. Therefore the para-holomorphicity condition (2.5) of Proposition 2 reduces to $\left.\pi_{\mathfrak{m}}^{1,1} \circ \Omega\right|_{\mathcal{H}_{z} \times \mathcal{H}_{Z}}=0$, which is equivalent to $\pi_{\mathfrak{m}}^{1,1} \circ \Omega=0$.

Since any $p \in P$ is an isomorphism $p: T_{\pi p} M \rightarrow V$ we can identify the horizontal two-forms Θ and Ω with G-equivariant functions

$$
T: P \rightarrow \bigwedge^{2} V^{*} \otimes V \quad \text { and } \quad R: P \rightarrow \bigwedge^{2} V^{*} \otimes \mathfrak{g}
$$

In particular, $T+\pi_{\mathfrak{m}} \circ R: P \rightarrow \bigwedge^{2} V^{*} \otimes V^{\prime}=C^{2}\left(V^{\prime}\right)=\oplus C^{p, q}\left(V^{\prime}\right)$. Now we can reformulate the theorem in terms of T and $R_{\mathfrak{m}}:=\pi_{\mathfrak{m}} \circ R$.

Corollary 1. Under the assumptions of the previous theorem, the following is true.
(i) The almost para-complex structure is integrable if and only if T and $R_{\mathfrak{m}}$ take values in $C^{2,0}\left(V^{\prime}\right) \oplus C^{1,1}\left(V^{\prime}\right)$.
(ii) The horizontal distribution is para-holomorphic if and only if $R_{\mathfrak{m}}$ takes values in $C_{-}(\mathfrak{m})=C^{2,0}(\mathfrak{m}) \oplus C^{0,2}(\mathfrak{m})$.
Both conditions are satisfied if and only if $R_{\mathfrak{m}}$ is of type $(2,0)$ and T is of type $(2,0)+$ (1, 1).

Now we choose a local section $p_{0}: M \rightarrow P$ and identify P locally with $M \times G$. We denote by $T^{\left(p_{0}\right)}$ and $R^{\left(p_{0}\right)}$ the restrictions of T and R to $M=M \times\{e\} \subset M \times G$. Then

$$
T_{(x, g)}=g_{*} T_{x}^{\left(p_{0}\right)}=g T_{x}^{\left(p_{0}\right)}\left(g^{-1} \cdot, g^{-1} \cdot\right)
$$

and

$$
R_{(x, g)}=g_{*} R_{x}^{\left(p_{0}\right)}=g R_{x}^{\left(p_{0}\right)}\left(g^{-1} \cdot, g^{-1} \cdot\right) g^{-1} .
$$

This implies, for all $u, v \in V$,

$$
\begin{aligned}
\pi_{\mathfrak{m}} R_{(x, g)}(u, v) & =\pi_{\mathfrak{m}} g R_{x}^{\left(p_{0}\right)}\left(g^{-1} u, g^{-1} v\right) g^{-1} \\
& =g \pi_{g^{-1} \mathfrak{m} g} R_{x}^{\left(p_{0}\right)}\left(g^{-1} u, g^{-1} v\right) g^{-1}=g_{*}\left(\pi_{g^{-1} \mathfrak{m} g} R_{x}^{\left(p_{0}\right)}\right)(u, v) .
\end{aligned}
$$

For any para-complex structure $I=g J g^{-1} \in S=G / K$ we have the vector spaces $\mathfrak{m}(I)=$ $[I, \mathfrak{g}]=g \mathfrak{m} g^{-1}$ and $V^{\prime}(I)=V \oplus \mathfrak{m}(I)$ with the para-complex structures $g J_{\mathfrak{m}} g^{-1}$ and $I^{\prime}=g J^{\prime} g^{-1}$, respectively.

The above calculation implies that the (p, q) component of T or $R_{\mathfrak{m}}$, with respect to (J, J^{\prime}), vanishes if and only if the (p, q) component of $T^{\left(p_{0}\right)}$ or $\pi_{\mathfrak{m}(I)} \circ R^{\left(p_{0}\right)}$, with respect to $\left(I, I^{\prime}\right)$, vanishes for all $I \in S$. We will use he symbol $\pi_{\mathfrak{m}(I)}^{p, q}:=\pi_{I}^{p, q} \circ \pi_{\mathfrak{m}(I)}$, where $\pi_{I}^{p, q}: C^{2}(\mathfrak{m}(I)) \rightarrow C_{I}^{p, q}(\mathfrak{m}(I))$ is the projection onto the (p, q)-component with respect to $\left(I, I^{\prime}\right)$ for any $I \in S$. Similarly we define $\pi_{I}^{p, q}: C^{2}(V) \rightarrow C_{I}^{p, q}(V)$ as the projection onto the (p, q)-component with respect to I.

This motivates the definition of the following two G-submodules of $\mathcal{R}(\mathfrak{g})$:

$$
\begin{aligned}
& \mathcal{R}_{\text {int }}(\mathfrak{g}):=\left\{R \in \mathcal{R}(\mathfrak{g}) \mid \pi_{\mathfrak{m}(I)}^{0,2} R=0 \text { for all } I \in S\right\}, \\
& \mathcal{R}_{\mathrm{hol}}(\mathfrak{g}):=\left\{R \in \mathcal{R}(\mathfrak{g}) \mid \pi_{\mathfrak{m}(I)}^{1,1} R=0 \text { for all } I \in S\right\} .
\end{aligned}
$$

We also define a G-submodule $\mathcal{T}_{\text {int }}(\mathfrak{g}) \subset C^{2}(V)$ by

$$
\mathcal{T}_{\text {int }}(\mathfrak{g}):=\left\{T \in C^{2}(V) \mid \pi_{I}^{0,2} T=0 \text { for all } I \in S\right\} .
$$

Corollary 2. Under the assumptions of Theorem 1, the following is true.
(i) The almost para-complex structure \mathcal{J} is integrable if and only if the functions $T^{\left(p_{0}\right)}$ and $R^{\left(p_{0}\right)}$, associated to a local frame p_{0}, take values in the G-modules $\mathcal{T}_{\text {int }}(\mathfrak{g})$ and $\mathcal{R}_{\text {int }}(\mathfrak{g})$, respectively.
(ii) The horizontal distribution is para-holomorphic if and only if $R^{\left(p_{0}\right)}$ takes values in $\mathcal{R}_{\text {hol }}(\mathfrak{g})$.
Both conditions are satisfied if and only if $\pi_{\mathfrak{m}(I)} R$ is of type $(2,0)$ and T is of type $(2,0)+(1,1)$ for all $I \in S$.

Corollary 3. Under the assumptions of Theorem 1, the almost para-complex structure \mathcal{J} on the twistor space Z is integrable and the horizontal distribution \mathcal{H}_{Z} is paraholomorhic if for all $x \in M$ there exists a frame $p \in \pi^{-1}(x)$ such that the curvature $R^{(p)} \in \mathcal{R}(\mathfrak{g})$ takes values in the G-module

$$
\mathcal{R}(\mathfrak{g})^{D_{S}}=\{R \in \mathcal{R}(\mathfrak{g}) \mid I \cdot R=0 \text { for all } I \in S\}
$$

and the torsion $T^{(p)}$ satisfies $\pi^{0,2} T^{(p)}=0$.

Proof. This follows from (5.6) and the previous corollary.

Corollary 4. Let G be a group of para-twistor type such that $\pi_{\mathfrak{m}(I)} \mathcal{R}(\mathfrak{g}) \subset$ $C^{2,0}(\mathfrak{m}(I))$, for all $I \in S$, for example if $\mathcal{R}(\mathfrak{g})=\mathcal{R}(\mathfrak{g})^{D_{S}}$. Then for any G-structure $(\pi: P \rightarrow M, \omega)$ with a torsion-free connection ω, the almost para-complex structure \mathcal{J} on the twistor space Z is integrable and the horizontal distribution \mathcal{H}_{Z} is paraholomorhic.

6. Integrability and holomorphicity results for the twistor spaces of a paraquaternionic Kähler manifold

Theorem 2. Let (M, g, Q) be a para-quaternionic Kähler manifold and $\left(Z^{\epsilon}, \mathcal{J}^{\epsilon}, \mathcal{H}_{Z^{\epsilon}}\right)$ its twistor space, where $\epsilon= \pm$, see Sections 4 and 5.4. Then for $\epsilon=-1$ the almost complex structure \mathcal{J}^{ϵ} is integrable and the horizontal distribution is holomorphic. Similarly, for $\epsilon=1$ the almost para-complex structure \mathcal{J}^{ϵ} is integrable and the horizontal distribution is para-holomorphic.

Proof. By Proposition 9, the para-quaternionic Kähler structure defines a G-structure $\pi: P \rightarrow M$, where $G \subset \mathrm{GL}\left(\mathbb{R}^{2} \otimes \mathbb{R}^{2 n}\right)$ is the normalizer of the connected Lie group $G_{0}:=\mathrm{SL}_{2}(\mathbb{R}) \otimes \operatorname{Sp}\left(\mathbb{R}^{2 n}\right)$ in $\operatorname{SO}(2 n, 2 n)$. Any para-quaternionic coframe $p \in P$ defines an isometry $p:\left(T_{\pi p} M, g_{\pi p}\right) \xrightarrow{\sim}\left(\mathbb{R}^{2} \otimes \mathbb{R}^{2 n}, g_{\text {can }}\right)$, which maps $Q_{\pi p}$ to $\mathfrak{s l}(2, \mathbb{R})=\mathfrak{s l}(2, \mathbb{R}) \otimes \mathrm{Id}$, see Definition 7. The linear group G is of para-twistor type and also of twistor type,
i.e. there exists elements $I, J \in \mathfrak{g}=\mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s p}\left(\mathbb{R}^{2 n}\right)$ such that $I^{2}=-\mathrm{Id}$ and $J^{2}=\mathrm{Id}$. In fact, we can choose $I=p \circ J_{1} \circ p^{-1}$ and $J=p \circ J_{2} \circ p^{-1}$. The symmetric space

$$
\begin{aligned}
\mathfrak{s l}(2, \mathbb{R})=\mathfrak{s l}(2, \mathbb{R}) \otimes \mathrm{Id} \supset S^{-} & =\operatorname{Ad}_{G}(I)=G / Z_{G}(I)=\mathrm{GL}_{2}(\mathbb{R}) / Z_{\mathrm{GL}_{2}(\mathbb{R})}(I) \\
& =\mathrm{GL}_{2}(\mathbb{R}) / \mathrm{GL}_{1}(\mathbb{C})=\mathrm{SL}_{2}^{ \pm}(\mathbb{R}) / \mathrm{SO}(2)
\end{aligned}
$$

is the two-sheeted hyperboloid in the three-dimensional Minkowski space $\mathfrak{s l}(2, \mathbb{R}) \cong$ $\mathbb{R}^{2,1}$, whereas the symmetric space

$$
\begin{aligned}
\mathfrak{s l}(2, \mathbb{R}) \supset S^{+} & =\operatorname{Ad}_{G}(J)=G / Z_{G}(J)=\mathrm{GL}_{2}(\mathbb{R}) / Z_{\mathrm{GL}_{2}(\mathbb{R})}(J) \\
& =\mathrm{GL}_{2}(\mathbb{R}) / \mathrm{GL}_{1}(C)=\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}(1,1)
\end{aligned}
$$

is the one-sheeted hyperboloid.
To finish the proof, in the case $\epsilon=+1$ we apply Corollary 4 , in the case $\epsilon=-1$ [2] Theorem 7.3, since, by Proposition 4, the space of curvature tensors

$$
\mathcal{R}(\mathfrak{g})=\mathcal{R}(\mathfrak{g})^{\mathfrak{s}(2, \mathbb{R})}=\mathcal{R}(\mathfrak{g})^{D_{s}},
$$

for $S=S^{ \pm}$.

7. The canonical ϵ-Kähler-Einstein metric and contact structure on the twistor space $Z^{\boldsymbol{\epsilon}}$ of a para-quaternionic Kähler manifold

Definition 12. An ϵ-Kähler manifold is a pseudo-Riemannian manifold (M, g) together with a parallel skew-symmetric ϵ-complex structure J. An ϵ-Kähler manifold (M, g, J) is called a Kähler manifold if $\epsilon=-1$ and a para-Kähler manifold if $\epsilon=+1$. The parallel symplectic form $\omega=g(J \cdot, \cdot)$ is called the Kähler form.

Remarks. The metric of a para-Kähler manifold has signature (n, n), since the ± 1-eigendistributions $T^{ \pm} M$ of J are isotropic. Moreover, they are parallel and ω-Lagrangian.

Conversely, a bi-Lagrangian manifold [8], i.e. a symplectic manifold (M, ω) with two complementary Lagrangian integrable distributions $T^{ \pm} M$, has the structure of a para-Kähler manifold, where $\left.J\right|_{T^{ \pm} M}= \pm \mathrm{Id}$ and $g=\omega(J \cdot, \cdot)$.

An integrable skew-symmetric ϵ-complex structure on a pseudo-Riemannian manifold is parallel, and hence defines an ϵ-Kähler structure, if and only if the Kähler form ω is closed, see [10] Theorem 1.

DEFINITION 13. An ϵ-holomorphic distribution \mathcal{D} of real codimension 2 on an ϵ-complex manifold Z is called an ϵ-holomorphic contact structure if the Frobenius form $[\cdot, \cdot]: \bigwedge^{2} \mathcal{D} \rightarrow T Z / \mathcal{D}$ is non-degenerate.

Theorem 3. Let $\left(Z^{\epsilon}, \mathcal{J}^{\epsilon}\right)$ be the ϵ-twistor space of a para-quaternionic Kähler manifold (M, g, Q) with non-zero reduced scalar curvature ν. Then
(i) the canonical metric $g_{t}=g_{t}^{\epsilon}$ on Z^{ϵ} is ϵ-Kähler-Einstein if and only if $t=-\epsilon / \nu$. Moreover, g_{t} is Einstein if and only if $t=-\epsilon / v$ or $t=-\epsilon /(\nu(n+1))$.
(ii) The horizontal distribution $\mathcal{H}_{Z} \subset T Z^{\epsilon}$ is an ϵ-holomorphic contact structure.

Proof. (i) By Theorem 2 and Proposition 7 the ϵ-complex structure \mathcal{J}^{ϵ} is integrable and g_{t}-skew-symmetric for all t. By the above remark, to check when $\left(Z^{\epsilon}, \mathcal{J}^{\epsilon}, g_{t}\right)$ is ϵ-Kähler it is sufficient to check when the Kähler form $\omega_{t}=g_{t}\left(\mathcal{J}^{\epsilon} \cdot, \cdot\right)$ is closed.

The twistor bundle $Z^{\epsilon}=P / G_{A} \rightarrow M$, see Proposition 9, is a bundle associated with the principal bundle

$$
P^{\prime}:=P / Z_{G}\left(\mathrm{GL}_{2}\right) \rightarrow M=P^{\prime} / \mathrm{SO}_{3}^{\epsilon},
$$

where $\mathrm{SO}_{3}^{\epsilon}=\mathrm{SO}(2,1)$ for $\epsilon=+1$ and $\mathrm{SO}_{3}^{\epsilon}=\mathrm{SO}(1,2) \cong \mathrm{SO}(2,1)$ for $\epsilon=-1$. In other words, P^{\prime} is the $\mathrm{SO}_{3}^{\epsilon}$-principal bundle of standard bases $p=\left(J_{1}, J_{2}, J_{3}\right)$ of $Q_{x}^{\epsilon}, x \in M$, where $J_{1}^{2}=\epsilon \mathrm{Id}, J_{2}^{2}=\mathrm{Id}$ and $J_{3}^{2}=-\epsilon \mathrm{Id}$. We have a natural projection

$$
\pi_{P^{\prime}}: P^{\prime} \rightarrow Z^{\epsilon}=P^{\prime} / \mathrm{SO}_{2}^{\epsilon}, \quad\left(J_{1}, J_{2}, J_{3}\right) \mapsto J_{1}
$$

where $\mathrm{SO}_{2}^{\epsilon}=\mathrm{SO}(1,1)$ for $\epsilon=+1$ and $\mathrm{SO}_{2}^{\epsilon}=\mathrm{SO}(2)$ for $\epsilon=-1$ is the stabilizer of $(1,0,0)^{t} \in \mathbb{R}^{3}$.

The closure of ω_{t} is equivalent to the closure of its pull back $\omega_{t}^{\prime}=\pi_{P^{\prime}}^{*} \omega_{t}$ to P^{\prime}. The two-form ω_{t}^{\prime} can be written as

$$
\begin{equation*}
\omega_{t}^{\prime}=g_{t}^{\prime}\left(\mathcal{J}_{1} \cdot, \cdot\right), \quad g_{t}^{\prime}=\operatorname{tg}^{v}+\pi_{P^{\prime}}^{*} g \tag{7.1}
\end{equation*}
$$

Here $\pi_{P^{\prime}}^{*} g$ is the pull back of the metric g on M and g^{v} is the metric on the vertical bundle $T^{v} P^{\prime}$, which corresponds to a suitably normalized ad-invariant scalar product $\langle\cdot, \cdot\rangle$ on $\mathfrak{S o}_{3}^{\epsilon}=\mathrm{Lie} \mathrm{SO}_{3}^{\epsilon}$, extended by zero to the horizontal bundle \mathcal{H} associated with the Levi-Civita connection of M. The normalization of the scalar product $\langle\cdot, \cdot\rangle$ on $\mathfrak{s o}_{3}^{\epsilon}=\operatorname{ad}\left(\mathfrak{s l}_{2}(\mathbb{R})\right) \cong \mathfrak{s l}_{2}(\mathbb{R})=\operatorname{span}\left\{J_{1}^{0}, J_{2}^{0}, J_{3}^{0}\right\}$ is given by

$$
\begin{equation*}
-\epsilon\left\langle\operatorname{ad}_{J_{\alpha}^{0}}, \operatorname{ad}_{J_{\beta}^{0}}\right\rangle=-4 \epsilon_{a} \delta_{\alpha \beta}=4\left\langle J_{\alpha}^{0}, J_{\beta}^{0}\right\rangle, \tag{7.2}
\end{equation*}
$$

where $\left(J_{1}^{0}, J_{2}^{0}, J_{3}^{0}\right)$ is the standard ϵ-quaternionic basis of $\mathfrak{s l}_{2}(\mathbb{R})$, with the relations

$$
\begin{equation*}
\left(J_{\alpha}^{0}\right)^{2}=\epsilon_{\alpha} \operatorname{Id}, \quad\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=(\epsilon, 1,-\epsilon) \tag{7.3}
\end{equation*}
$$

The above scalar product on $\mathfrak{s o}_{3}^{\epsilon}$ has signature $(2,1)$ if $\epsilon=+1$ and $(1,2)$ if $\epsilon=-1$. The factor 4 is chosen such that the canonical projection $\left(P^{\prime}, g_{t}^{\prime}\right) \rightarrow\left(Z^{\epsilon}=P^{\prime} / \mathrm{SO}_{2}^{\epsilon}, g_{t}\right)$
is a pseudo-Riemannian submersion. Notice that the vertical vectors

$$
\operatorname{ad}_{J_{2}}, \operatorname{ad}_{J_{3}} \in T_{p}^{v} P^{\prime} \cong \mathfrak{s o}_{3}^{\epsilon}=\operatorname{ad}\left(\mathfrak{s l}_{2}(\mathbb{R})\right), \quad p \in P^{\prime}
$$

are mapped to

$$
\operatorname{ad}_{J_{2}} J_{1}=-2 J_{3}, \quad \operatorname{ad}_{J_{3}} J_{1}=-2 \epsilon J_{2} \in T^{v} Z^{\epsilon} \subset Q_{x}^{\epsilon} \cong \mathfrak{s l}_{2}(\mathbb{R}), \quad x=\pi_{P^{\prime}}(p) .
$$

The field $p \mapsto\left(\mathcal{J}_{\alpha}\right)_{p}$ is defined at $p=\left(J_{1}, J_{2}, J_{3}\right)$ as the following endomorphism of $T_{p} P^{\prime}=T^{v} P^{\prime} \oplus \mathcal{H}_{p} \cong \mathfrak{s o}_{3}^{\epsilon} \oplus T_{x} M, x=\pi_{P^{\prime}}(p)$,

$$
\left.\mathcal{J}_{\alpha}\right|_{\mathcal{H}_{p}}: T_{x} M \rightarrow T_{x} M, \quad X \mapsto J_{\alpha} X,\left.\quad \mathcal{J}_{\alpha}\right|_{T^{v} P^{\prime}}=\frac{1}{2} \operatorname{ad}_{J_{\alpha}^{0}} .
$$

It is sufficient to check $d \omega_{t}^{\prime}=0$ on three vectors, each of which are horizontal or vertical. Moreover, it is sufficient to consider the fundamental vertical fields $\left(V_{1}, V_{2}, V_{3}\right)$, which correspond to $\left(J_{1}^{0}, J_{2}^{0}, J_{3}^{0}\right)$ and basic horizontal fields X, Y, Z, \ldots on P^{\prime}, i.e. horizontal lifts of vector fields X_{M}, Y_{M}, Z_{M} on M.

Lemma 2. With the above notations we have
(i) $\left[V_{1}, V_{2}\right]=2 V_{3},\left[V_{3}, V_{1}\right]=-2 \epsilon V_{2},\left[V_{2}, V_{3}\right]=-2 V_{1}$,
(ii) the functions $g_{t}^{\prime}\left(V_{\alpha}, V_{\beta}\right)$ and $\omega_{t}^{\prime}\left(V_{\alpha}, V_{\beta}\right)$ are constant for all $\alpha, \beta \in\{1,2,3\}$,
(iii) $\left[V_{\alpha}, X\right]=0$,
(iv) $[X, Y]^{v}=-(\nu / 2) \sum_{\alpha} \epsilon_{\alpha} g_{t}^{\prime}\left(\mathcal{J}_{\alpha} X, Y\right) V_{\alpha}=-(v / 2) \sum_{\alpha} \epsilon_{\alpha} g\left(J_{\alpha} X_{M}, Y_{M}\right) V_{\alpha}$, where $[X, Y]^{v}$ is evaluated at the point $p=\left(J_{1}, J_{2}, J_{3}\right) \in P^{\prime}$,
(v) $\mathcal{L}_{V_{\alpha}} g_{t}^{\prime}=0, \mathcal{L}_{V_{1}} \mathcal{J}_{1}=0, \mathcal{L}_{V_{2}} \mathcal{J}_{1}=-2 \mathcal{J}_{3}, \mathcal{L}_{V_{3}} \mathcal{J}_{1}=-2 \epsilon \mathcal{J}_{2}$ and
(vi) $\left(\mathcal{L}_{X} g_{t}^{\prime}\right)(U, V)=0$ for all $U, V \in T^{v} P^{\prime}$.

Proof. (i) follows from the ϵ-quaternionic relations

$$
\left[J_{1}^{0}, J_{2}^{0}\right]=2 J_{3}^{0}, \quad\left[J_{3}^{0}, J_{1}^{0}\right]=-2 \in J_{3}^{0}, \quad\left[J_{2}^{0}, J_{3}^{0}\right]=-2 J_{1}^{0} .
$$

(ii) Since the metric g^{v} corresponds to the ad-invariant scalar product (7.2), the functions

$$
g_{t}^{\prime}\left(V_{\alpha}, V_{\beta}\right)=\operatorname{tg}^{v}\left(V_{\alpha}, V_{\beta}\right)=-4 \epsilon t\left\langle J_{\alpha}^{0}, J_{\beta}^{0}\right\rangle=4 \epsilon t \epsilon_{\alpha} \delta_{\alpha \beta}
$$

are constant. Similarly, the functions $\omega_{t}^{\prime}\left(V_{\alpha}, V_{\beta}\right)$ are constant, because, for all fundamental vector fields V_{α}, the vector field $\mathcal{J}_{1} V_{\alpha}$ is again a fundamental vector field.
(iii) The vector field $\left[V_{\alpha}, X\right]$ is horizontal, since the principal action preserves the horizontal distribution. On the other hand, it is mapped to $\left[0, X_{M}\right]=0$ under the projection $P^{\prime} \rightarrow M$. This shows that $\left[V_{\alpha}, X\right]=0$.
(iv) follows from Proposition 4, since $[X, Y]^{v}=-\Omega^{\prime}(X, Y)$, where Ω^{\prime} stands for the curvature form of the principal bundle $P^{\prime} \rightarrow M$.
(v) $\mathcal{L}_{V_{\alpha}} g_{t}^{\prime}=0$ follows from the ad-invariance of g^{v}, cf. (7.1). The remaining equations are obtained from (i) using

$$
\mathcal{J}_{1} V_{1}=0, \quad \mathcal{J}_{1} V_{2}=V_{3}, \quad \mathcal{J}_{1} V_{3}=\epsilon V_{2}
$$

Finally, (ii) and (iii) easily imply (vi).
Part (i) and (ii) of the lemma, yields

$$
d \omega_{t}^{\prime}\left(V_{1}, V_{2}, V_{3}\right)=V_{1} \omega_{t}^{\prime}\left(V_{2}, V_{3}\right)-\omega_{t}^{\prime}\left(\left[V_{1}, V_{2}\right], V_{3}\right)+\text { cycl. }=0
$$

Using part (i), (ii), (v) and (vi) of the lemma, we calculate

$$
\begin{aligned}
d \omega_{t}^{\prime}\left(V_{\alpha}, V_{\beta}, X\right) & =-\omega_{t}^{\prime}\left(\left[V_{\beta}, X\right], V_{\alpha}\right)-\omega_{t}^{\prime}\left(\left[X, V_{\alpha}\right], V_{\beta}\right)=-\left(\mathcal{L}_{X} \omega_{t}^{\prime}\right)\left(V_{\alpha}, V_{\beta}\right) \\
& =-g_{t}^{\prime}\left(\left(\mathcal{L}_{X} \mathcal{J}_{1}\right) V_{\alpha}, V_{\beta}\right)=-g_{t}^{\prime}\left(\left[X, \mathcal{J}_{1} V_{\alpha}\right]-\mathcal{J}_{1}\left[X, V_{\alpha}\right], V_{\beta}\right) \\
& =g_{t}^{\prime}\left(X,\left[V_{\beta}, \mathcal{J}_{1} V_{\alpha}\right]\right)+g_{t}^{\prime}\left(X,\left[\mathcal{J}_{1} V_{\beta}, V_{\alpha}\right]\right)=0 .
\end{aligned}
$$

By (iii), (iv) and (v) of the lemma, we compute

$$
\begin{aligned}
d \omega_{t}^{\prime}\left(V_{1}, X, Y\right) & =V_{1} \omega_{t}^{\prime}(X, Y)-\omega_{t}^{\prime}\left([X, Y], V_{1}\right) \\
& =g_{t}^{\prime}\left(\left(\mathcal{L}_{V_{1}} \mathcal{J}_{1}\right) X, Y\right)+\frac{v}{2} \sum_{\alpha=1}^{3} \epsilon_{\alpha} g\left(J_{\alpha} X_{M}, Y_{M}\right) \omega_{t}^{\prime}\left(V_{\alpha}, V_{1}\right) \\
& =0+\frac{v}{2} \sum_{\alpha=1}^{3} \epsilon_{\alpha} g\left(J_{\alpha} X_{M}, Y_{M}\right) g_{t}^{\prime}\left(\mathcal{J}_{1} V_{\alpha}, V_{1}\right)=0,
\end{aligned}
$$

since $\mathcal{J}_{1} T^{v} P^{\prime}=\operatorname{span}\left\{V_{2}, V_{3}\right\}$. Similarly, we calculate

$$
\begin{aligned}
d \omega_{t}^{\prime}\left(V_{2}, X, Y\right) & =V_{2} \omega_{t}^{\prime}(X, Y)-\omega_{t}^{\prime}\left([X, Y], V_{2}\right) \\
& =g_{t}^{\prime}\left(\left(\mathcal{L}_{V_{2}} \mathcal{J}_{1}\right) X, Y\right)+\frac{\nu}{2} \sum_{\alpha=1}^{3} \epsilon_{\alpha} g\left(J_{\alpha} X_{M}, Y_{M}\right) \omega_{t}^{\prime}\left(V_{\alpha}, V_{2}\right) \\
& =-2 g_{t}^{\prime}\left(\mathcal{J}_{3} X, Y\right)+\frac{v}{2} \sum_{\alpha=1}^{3} \epsilon_{\alpha} g\left(J_{\alpha} X_{M}, Y_{M}\right) g_{t}^{\prime}\left(\mathcal{J}_{1} V_{\alpha}, V_{2}\right) \\
& =-2 g\left(J_{3} X_{M}, Y_{M}\right)+\frac{\nu t}{2} \epsilon_{3} g\left(J_{3} X_{M}, Y_{M}\right) g^{v}\left(\mathcal{J}_{1} V_{3}, V_{2}\right) \\
& =-2 g\left(J_{3} X_{M}, Y_{M}\right)+\frac{\nu t}{2}(-\epsilon) g\left(J_{3} X_{M}, Y_{M}\right) g^{v}\left(\epsilon V_{2}, V_{2}\right) \\
& =-2 g\left(J_{3} X_{M}, Y_{M}\right)-2 \epsilon \nu t g\left(J_{3} X_{M}, Y_{M}\right),
\end{aligned}
$$

since $g^{v}\left(V_{2}, V_{2}\right)=-4 \epsilon\left\langle J_{2}^{0}, J_{2}^{0}\right\rangle=4 \epsilon \epsilon_{2}=4 \epsilon$. In the same way, we obtain

$$
\begin{aligned}
d \omega_{t}^{\prime}\left(V_{3}, X, Y\right) & =-2 \epsilon g\left(J_{2} X_{M}, Y_{M}\right)+\frac{v t}{2} g\left(J_{2} X_{M}, Y_{M}\right) g^{v}\left(\mathcal{J}_{1} V_{2}, V_{3}\right) \\
& =-2 \epsilon g\left(J_{2} X_{M}, Y_{M}\right)+\frac{v t}{2} g\left(J_{2} X_{M}, Y_{M}\right) g^{v}\left(V_{3}, V_{3}\right) \\
& =-2 \epsilon g\left(J_{2} X_{M}, Y_{M}\right)-2 v t g\left(J_{2} X_{M}, Y_{M}\right),
\end{aligned}
$$

since $g^{v}\left(V_{3}, V_{3}\right)=-4 \epsilon\left\langle J_{3}^{0}, J_{3}^{0}\right\rangle=4 \epsilon \epsilon_{3}=-4$. This shows that $d \omega_{t}^{\prime}(U, X, Y)=0$ for all vertical vector fields U if and only if $v t=-\epsilon$.

It remains to check that $d \omega_{t}^{\prime}\left(X_{p}, Y_{p}, Z_{p}\right)$ vanishes on three horizontal vectors

$$
X_{p}, Y_{p}, Z_{p} \in \mathcal{H}_{p}, \quad p \in P^{\prime}
$$

Let $t \mapsto \tilde{c}(t)=\left(J_{1}(t), J_{2}(t), J_{3}(t)\right) \in P^{\prime}$ be the horizontal lift of a curve $t \mapsto c(t) \in M$ such that $\tilde{c}(0)=p$ and $\tilde{c}^{\prime}(0)=X_{p}$. Notice that the horizontality of \tilde{c} means that $t \mapsto$ $J_{\alpha}(t)$ is parallel along c.

Let $t \mapsto Y(t) \in \mathcal{H}_{\tilde{c}(t)}$ be the horizontal lift of the vector field

$$
t \mapsto Y_{M}(t):=\|_{c(0)}^{c(t)} d \pi_{P^{\prime}} Y_{p} \in T_{c(t)} M,
$$

which is parallel along the base curve c. The initial value of Y is $Y(0)=Y_{p}$. It suffices to prove that

$$
\left(\nabla_{X_{p}}^{\prime} \omega_{t}^{\prime}\right)\left(Y_{p}, Z_{p}\right)=g_{t}^{\prime}\left(\left(\nabla_{X_{p}}^{\prime} \mathcal{J}_{1}\right) Y_{p}, Z_{p}\right)=0
$$

where ∇^{\prime} is the Levi-Civita connection of g_{t}^{\prime}. We have to check that the horizontal component of

$$
\left(\nabla_{X_{p}}^{\prime} \mathcal{J}_{1}\right) Y_{p}=\nabla_{X_{p}}^{\prime}\left(\mathcal{J}_{1} Y\right)-\mathcal{J}_{1} \nabla_{X_{p}}^{\prime} Y
$$

vanishes. Therefore, we calculate

$$
\begin{aligned}
d \pi_{P^{\prime}}\left(\nabla_{X_{p}}^{\prime}\left(\mathcal{J}_{1} Y\right)-\mathcal{J}_{1} \nabla_{X_{p}}^{\prime} Y\right) & =\nabla_{c^{\prime}(0)}\left(J_{1}(t) Y_{M}(t)\right)-J_{1}(0) \nabla_{c^{\prime}(0)} Y_{M}(t) \\
& =\left(\nabla_{c^{\prime}(0)} J_{1}(t)\right) Y_{M}(0)=0 .
\end{aligned}
$$

Here we have used two facts: first, that $t \mapsto \mathcal{J}_{1} Y(t)$ is a basic horizontal vector field along \tilde{c}, which projects onto

$$
d \pi_{P^{\prime}} \mathcal{J}_{1} Y(t)=J_{1}(t) Y_{M}(t)
$$

and, second, that $d \pi_{P^{\prime}} \nabla_{X}^{\prime} Y=\nabla_{X_{M}} Y_{M}$ for any two basic horizontal vector fields X, Y (e.g. along a horizontal curve), where ∇ is the Levi-Civita connection in M. The latter is a standard fact about pseudo-Riemannian submersions. This proves that g_{t} is ϵ-Kähler-Einstein if and only if $t=-\epsilon / \nu$. The above argument proves also the following proposition.

Proposition 15. For any horizontal vectors X, Y, Z on P^{\prime} and $\alpha=1,2,3$, we have

$$
g_{t}^{\prime}\left(\left(\nabla_{X} \mathcal{J}_{\alpha}\right) Y, Z\right)=0
$$

Next we study the Einstein equations for the family g_{t}^{\prime}. We recall the definition of the O'Neill tensor and the O'Neill formulas for the covariant derivative of a pseudoRiemannian submersion $\pi: E \rightarrow M$ with totally geodesic fibres, see [12, 5]. The O'Neill tensor $A \in \Omega^{1}$ (End $T E$) is a one-form with values in skew-symmetric endomorphisms. It is given by

$$
\begin{equation*}
A_{U}=0, \quad A_{X} Y=-A_{Y} X=\left(\nabla_{X} Y\right)^{v}=\frac{1}{2}[X, Y]^{v}, \quad A_{X} U=\left(\nabla_{X} U\right)^{h} \tag{7.4}
\end{equation*}
$$

where U is a vertical vector field and X, Y are horizontal vector fields. The superscripts v and h stand for the vertical and horizontal components, respectively. If X is a basic horizontal vector field then, in addition

$$
\begin{equation*}
A_{X} U=\left(\nabla_{X} U\right)^{h}=\nabla_{U} X \tag{7.5}
\end{equation*}
$$

The covariant derivatives in E are given by

$$
\begin{align*}
& \nabla_{U} V=\nabla_{U}^{F} V \tag{7.6}\\
& \nabla_{U} X=\left(\nabla_{U} X\right)^{h} \tag{7.7}\\
& \nabla_{X} U=\left(\nabla_{X} U\right)^{v}+A_{X} U \tag{7.8}\\
& \nabla_{X} Y=A_{X} Y+\left(\nabla_{X} Y\right)^{h} \tag{7.9}
\end{align*}
$$

Here ∇^{F} and ∇^{M} denote the covariant derivative in the fibres F and in the base M, respectively. For basic horizontal vector fields X, Y, we have $[U, X]^{h}=0$ for any vertical (and hence projectable) vector field U. Moreover, we have

$$
\begin{align*}
\left(\nabla_{X} U\right)^{v} & =[X, U] \tag{7.10}\\
\pi_{*} \nabla_{X} Y & =\nabla_{\pi_{*} X}^{M} \pi_{*} Y \tag{7.11}
\end{align*}
$$

In particular, $\nabla_{X} Y$ is a projectable vector field on E.
Proposition 16 (cf. [12]). Let $\pi: E \rightarrow M$ be a pseudo-Riemannian submersion with totally geodesic fibres F. Then the Ricci and scalar curvatures of E are given by:

$$
\begin{align*}
& \operatorname{Ric}(U, V)=\operatorname{Ric}^{F}(U, V)+\sum_{i} \epsilon_{i}\left\langle A_{X_{i}} U, A_{X_{i}} V\right\rangle \tag{7.12}\\
& \operatorname{Ric}(X, U)=\langle(\operatorname{div} A) X, U\rangle=\sum_{i} \epsilon_{i}\left\langle\left(\nabla_{X_{i}} A\right)_{X_{i}} X, U\right\rangle \tag{7.13}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Ric}(X, Y) & =\operatorname{Ric}^{M}\left(\pi_{*} X, \pi_{*} Y\right)-2 \sum_{i} \epsilon_{i}\left\langle A_{X} X_{i}, A_{Y} X_{i}\right\rangle, \tag{7.14}\\
\text { scal } & =\pi^{*} \operatorname{scal}^{M}+\operatorname{scal}^{F}-\sum_{i, j} \epsilon_{i} \epsilon_{j}\left\langle A_{X_{i}} X_{j}, A_{X_{i}} X_{j}\right\rangle . \tag{7.15}
\end{align*}
$$

Proposition 17. The divergence $\operatorname{div} A \in \Gamma\left(\operatorname{End} T P^{\prime}\right)$ of the O^{\prime} Neill tensor of the principal bundle $P^{\prime} \rightarrow M$ preserves the horizontal distribution. In particular,

$$
\operatorname{Ric}(X, U)=g_{t}^{\prime}((\operatorname{div} A) X, U)=0
$$

Proof. By (7.4) and Lemma 2 (iv), the value of the O'Neill tensor on two basic horizontal vector fields X, Y is given by

$$
\begin{equation*}
A_{X} Y=\frac{1}{2}[X, Y]^{v}=-\frac{v}{4} \sum_{\alpha} \epsilon_{\alpha} g_{t}^{\prime}\left(\mathcal{J}_{\alpha} X, Y\right) V_{\alpha} . \tag{7.16}
\end{equation*}
$$

It is sufficient to prove that $g_{t}^{\prime}\left(\left(\nabla_{X} A\right)_{Y} Z, U\right)=0$. This follows from the remark that $\nabla_{X} V_{\alpha}=A_{X} V_{\alpha}$ is horizontal, by (7.5), and Proposition 15.

The skew-symmetry of A_{X} and (7.16) imply

$$
\begin{equation*}
A_{X} U=\frac{v}{4} \sum_{\alpha} \epsilon_{\alpha} g_{t}^{\prime}\left(U, V_{\alpha}\right) \mathcal{J}_{\alpha} X \tag{7.17}
\end{equation*}
$$

In fact,

$$
g_{t}^{\prime}\left(A_{X} U, Y\right)=-g_{t}^{\prime}\left(U, A_{X} Y\right)=\frac{v}{4} \sum_{\alpha} \epsilon_{\alpha} g_{t}^{\prime}\left(\mathcal{J}_{\alpha} X, Y\right) g_{t}^{\prime}\left(U, V_{\alpha}\right)
$$

Proposition 18. Let P^{\prime} be the total space of the principal bundle $P^{\prime} \rightarrow M$ of admissible frames of Q over a para-quaternionic Kähler manifold (M, g, Q). Then the Ricci curvature of the metric g_{t}^{\prime} on P^{\prime} is given by:

$$
\begin{align*}
& \operatorname{Ric}(U, V)=-\epsilon\left(\frac{1}{2 t}+v^{2} n t\right) g_{t}^{\prime}(U, V), \quad U, V \in T^{v} P^{\prime} \tag{7.18}\\
& \operatorname{Ric}(U, X)=0 \tag{7.19}\\
& \operatorname{Ric}(X, Y)=\left(v(n+2)+\frac{3 \epsilon v^{2} t}{2}\right) g_{t}^{\prime}(X, Y), \quad X, Y \in \mathcal{H}=\left(T^{v} P^{\prime}\right)^{\perp} . \tag{7.20}
\end{align*}
$$

Proof. We calculate the Ricci curvature using the formulas in Proposition 16. The fibre F is identified with the Lie group $\mathrm{SO}(2,1)$ with a bi-invariant pseudo-Riemannian
metric g_{t}^{\prime}, which is related with the Killing form B by

$$
\begin{equation*}
g_{t}^{\prime}=\frac{\epsilon t}{2} B \tag{7.21}
\end{equation*}
$$

see (7.2). Therefore

$$
\begin{equation*}
\operatorname{Ric}^{F}=-\frac{1}{4} B=\frac{-\epsilon}{2 t} g_{t}^{\prime} \tag{7.22}
\end{equation*}
$$

We compute the second term in equation (7.12) using (7.17):

$$
\begin{aligned}
\sum_{i} \epsilon_{i}\left\langle A_{X_{i}} U, A_{X_{i}} V\right\rangle & =\sum_{i} \epsilon_{i} \frac{v^{2}}{16} \sum_{\alpha} \epsilon_{\alpha}^{2} g_{t}^{\prime}\left(U, V_{\alpha}\right) g_{t}^{\prime}\left(V, V_{\alpha}\right) g_{t}^{\prime}\left(\mathcal{J}_{\alpha} X_{i}, \mathcal{J}_{\alpha} X_{i}\right) \\
& =\frac{\nu^{2}}{16} \sum_{i, \alpha} \epsilon_{i}^{2}\left(-\epsilon_{\alpha}\right) g_{t}^{\prime}\left(U, V_{\alpha}\right) g_{t}^{\prime}\left(V, V_{\alpha}\right)=-\epsilon v^{2} n t g_{t}^{\prime}(U, V) .
\end{aligned}
$$

This implies the first equation (7.18). The second equation (7.19) was already established in Proposition 17. Since M is an Einstein manifold with scalar curvature scal $^{M}=4 n(n+2) \nu$,

$$
\begin{equation*}
\operatorname{Ric}^{M}=\frac{\text { scal }}{4 n} g=v(n+2) g . \tag{7.23}
\end{equation*}
$$

We compute the second term in equation (7.14) using (7.16):

$$
\begin{aligned}
-2 \sum_{i} \epsilon_{i}\left\langle A_{X} X_{i}, A_{Y} X_{i}\right\rangle & =-2 \sum_{i, \alpha} \epsilon_{i} \frac{v^{2}}{16} g_{t}^{\prime}\left(\mathcal{J}_{\alpha} X, X_{i}\right) g_{t}^{\prime}\left(\mathcal{J}_{\alpha} Y, X_{i}\right) g_{t}^{\prime}\left(V_{\alpha}, V_{\alpha}\right) \\
& =-\frac{v^{2}}{8} \sum_{\alpha} g_{t}^{\prime}\left(\mathcal{J}_{\alpha} X, \mathcal{J}_{\alpha} Y\right) g_{t}^{\prime}\left(V_{\alpha}, V_{\alpha}\right) \\
& =-\frac{v^{2}}{8} \sum_{\alpha}\left(-\epsilon_{\alpha}\right) g_{t}^{\prime}(X, Y)\left(4 \epsilon t \epsilon_{\alpha}\right) \\
& =\frac{3 \epsilon v^{2} t}{2} g_{t}^{\prime}(X, Y)
\end{aligned}
$$

This proves the proposition.
Corollary 5. Let P^{\prime} be the total space of the principal bundle $P^{\prime} \rightarrow M$ of admissible frames of Q over a para-quaternionic Kähler manifold (M, g, Q) with reduced scalar curvature ν. Then the metric g_{t}^{\prime} is Einstein if and only if

$$
t=\frac{-\epsilon}{\nu} \quad \text { or } \quad t=\frac{-\epsilon}{v(2 n+3)} .
$$

The corresponding Einstein constant is, respectively,

$$
c=\left(n+\frac{1}{2}\right) v \quad \text { and } \quad c=\frac{4 n^{2}+14 n+9}{4 n+6} v .
$$

Next we calculate the Ricci curvature of the metric g_{t}^{ϵ} on the twistor spaces $Z^{\epsilon}=$ $P^{\prime} / \mathrm{SO}_{2}^{\epsilon}, \epsilon= \pm 1$.

Proposition 19.

$$
\begin{align*}
\left(A_{X} Y\right)_{J_{1}} & =\frac{v}{2}\left(g\left(J_{2} \pi_{*} X, \pi_{*} Y\right) J_{3}-g\left(J_{3} \pi_{*} X, \pi_{*} Y\right) J_{2}\right) \in T_{J_{1}}^{v} Z=\operatorname{span}\left\{J_{2}, J_{3}\right\}, \tag{7.24}\\
A_{X} J_{2} & =-\epsilon_{2} \frac{v t}{2} \widetilde{J_{3} \pi_{*} X}=-\frac{v t}{2} \widetilde{J_{3} \pi_{*} X}, \tag{7.25}\\
A_{X} J_{3} & =\epsilon_{3} \frac{v t}{2} \widetilde{J_{2} \pi_{*} X}=-\epsilon \frac{v t}{2} \widetilde{J_{2} \pi_{*} X}, \tag{7.26}
\end{align*}
$$

where X and Y are horizontal vectors and $\tilde{X}_{M} \in T_{J_{1}} Z^{\epsilon}$ denotes the horizontal lift of the vector $X_{M} \in T_{\pi\left(J_{1}\right)} M$.

$$
\begin{align*}
& \operatorname{Ric}(U, V)=-\epsilon\left(\frac{1}{t}+v^{2} n t\right) g_{t}^{\epsilon}(U, V) \tag{7.27}\\
& \operatorname{Ric}(X, U)=0 \tag{7.28}\\
& \operatorname{Ric}(X, Y)=\left(v(n+2)+\epsilon v^{2} t\right) g_{t}^{\epsilon}(X, Y) \tag{7.29}
\end{align*}
$$

where U and V are vertical vectors.

Proof. The equations (7.24)-(7.26) are obtained from (7.16), (7.17) and (7.21). We calculate the Ricci curvature using the formulas in Proposition 16. In fact, the projection $\pi: Z^{\epsilon} \rightarrow M$ is a pseudo-Riemannian submersion with totally geodesic fibre $F=\mathrm{SO}_{3}^{\epsilon} / \mathrm{SO}_{2}^{\epsilon}$, where $\mathrm{SO}_{3}^{\epsilon} \cong \mathrm{SO}(2,1)$ and $\mathrm{SO}_{2}^{\epsilon++1}=\mathrm{SO}(1,1)$ and $\mathrm{SO}_{2}^{\epsilon=-1}=\mathrm{SO}(2)$. Here $Z_{x}^{\epsilon} \subset Q_{x}^{\epsilon}=\operatorname{span}\left\{J_{1}, J_{2}, J_{3}\right\}$, where $\left(J_{1}, J_{2}, J_{3}\right)$ is an admissible basis such that $J_{\alpha}^{2}=\epsilon_{\alpha} \mathrm{Id}$ and $\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)=(\epsilon, 1,-\epsilon)$. In both cases, the Lie algebra $\mathfrak{s o}_{2}^{\epsilon}=\mathbb{R} \operatorname{ad}\left(J_{1}\right)$. The fibre F is a two-dimensional symmetric space, with symmetric decomposition

$$
\mathfrak{s o}_{3}^{\epsilon}=\mathfrak{s o}_{2}^{\epsilon}+\mathfrak{m}, \quad \mathfrak{m}=\mathbb{R} \operatorname{ad}\left(J_{2}\right)+\mathbb{R} \operatorname{ad}\left(J_{3}\right) .
$$

The curvature tensor is given by

$$
R\left(\operatorname{ad}\left(J_{2}\right), \operatorname{ad}\left(J_{3}\right)\right)=-\left.\operatorname{ad}_{\left[J_{2}, J_{3}\right]}\right|_{\mathfrak{m}}=\left.2 \operatorname{ad}_{J_{1}}\right|_{\mathfrak{m}}
$$

and the sectional curvature of the metric $g^{F}=\left.g_{t}^{\epsilon}\right|_{F}=t g^{v}$ is $-\epsilon / t$. In particular,

$$
\begin{equation*}
\operatorname{Ric}^{F}=-\epsilon g^{v}=-\frac{\epsilon}{t} g^{F} . \tag{7.30}
\end{equation*}
$$

Next we compute the second term in equation (7.12) using (7.25):

$$
\begin{aligned}
\sum_{i} \epsilon_{i} g_{t}^{\epsilon}\left(A_{X_{i}} J_{2}, A_{X_{i}} J_{2}\right) & =\frac{v^{2} t^{2}}{4} \sum_{i} \epsilon_{i} g\left(J_{3} \pi_{*} X_{i}, J_{3} \pi_{*} X_{i}\right) \\
& =v^{2} t^{2} n\left(-\epsilon_{3}\right)=\epsilon v^{2} t^{2} n \\
& =-\epsilon v^{2} t n g_{t}^{\epsilon}\left(J_{2}, J_{2}\right),
\end{aligned}
$$

since $g_{t}^{\epsilon}\left(J_{2}, J_{2}\right)=-t \epsilon_{2}=-t$. The same calculation for $(U, V)=\left(J_{2}, J_{3}\right)$ and $(U, V)=$ (J_{3}, J_{3}) shows that for any two vertical vectors U, V, we have

$$
\sum_{i} \epsilon_{i} g_{t}^{\epsilon}\left(A_{X_{i}} U, A_{X_{i}} V\right)=-\epsilon v^{2} \operatorname{tng}_{t}^{\epsilon}(U, V)
$$

This proves (7.27).
Now we calculate the second term in equation (7.14) using (7.24).

$$
\begin{aligned}
- & 2 \sum_{i} \epsilon_{i} g_{t}^{\epsilon}\left(A_{X} X_{i}, A_{Y} X_{i}\right) \\
= & -\frac{v^{2}}{2} \sum_{i} \epsilon_{i} g\left(J_{2} \pi_{*} X, \pi_{*} X_{i}\right) g\left(J_{2} \pi_{*} Y, \pi_{*} X_{i}\right) g_{t}^{\epsilon}\left(J_{3}, J_{3}\right) \\
& -\frac{v^{2}}{2} \sum_{i} \epsilon_{i} g\left(J_{3} \pi_{*} X, \pi_{*} X_{i}\right) g\left(J_{3} \pi_{*} Y, \pi_{*} X_{i}\right) g_{t}^{\epsilon}\left(J_{2}, J_{2}\right) \\
= & -\frac{v^{2}}{2} g\left(J_{2} \pi_{*} X, J_{2} \pi_{*} Y\right) g_{t}^{\epsilon}\left(J_{3}, J_{3}\right)-\frac{v^{2}}{2} g\left(J_{3} \pi_{*} X, J_{3} \pi_{*} Y\right) g_{t}^{\epsilon}\left(J_{2}, J_{2}\right) \\
= & -\frac{v^{2}}{2}\left[\left(-\epsilon_{2}\right)\left(-t \epsilon_{3}\right)+\left(-\epsilon_{3}\right)\left(-t \epsilon_{2}\right)\right] g_{t}^{\epsilon}(X, Y)=\epsilon v^{2} t g_{t}^{\epsilon}(X, Y) .
\end{aligned}
$$

This proves (7.29).
To prove that $\operatorname{Ric}(X, U)=0$, by Proposition 16 we have to check that $\operatorname{div} A$ preserves the horizontal distribution $\mathcal{H}_{Z} \subset T Z^{\epsilon}$. It sufficient to prove that

$$
g_{t}^{\epsilon}\left(\left(\nabla_{X} A\right)_{Y} Z, \mathcal{J}^{\epsilon} U\right)=0
$$

for all basic horizontal vector fields X, Y, Z and vertical vector fields U. We compute this using the fact that $\nabla \mathcal{J}^{\epsilon}=0$ and (7.10):

$$
\begin{aligned}
g_{t}^{\epsilon}\left(\left(\nabla_{X} A\right)_{Y} Z, \mathcal{J}^{\epsilon} U\right) & =X g_{t}^{\epsilon}\left(A_{Y} Z, \mathcal{J}^{\epsilon} U\right)-g_{t}^{\epsilon}\left(A_{Y} Z, \mathcal{J}^{\epsilon} \nabla_{X} U\right) \\
& =X g_{t}^{\epsilon}\left(A_{Y} Z, \mathcal{J}^{\epsilon} U\right)-g_{t}^{\epsilon}\left(A_{Y} Z, \mathcal{J}^{\epsilon}[X, U]\right) .
\end{aligned}
$$

Lemma 3. For any basic horizontal vector fields X, Y and vertical vector field U we have

$$
\begin{equation*}
g_{t}^{\epsilon}\left(A_{X} Y, \mathcal{J}^{\epsilon} U\right)=\frac{\epsilon \nu t}{2} g\left(U \pi_{*} X, \pi_{*} Y\right)=-\frac{1}{2} U \omega_{t}(X, Y) \tag{7.31}
\end{equation*}
$$

where $\omega_{t}=g_{t}^{\epsilon}\left(\mathcal{J}^{\epsilon} \cdot, \cdot\right)$ is the ϵ-Kähler form and the value $U_{J_{1}} \in T_{J_{1}}^{v} Z=\operatorname{span}\left\{J_{2}, J_{3}\right\} \subset$ $Q_{x}, x=\pi\left(J_{1}\right)$, of the vertical vector field U at the point $J_{1} \in Z^{\epsilon}$ is considered as an endomorphism of $T_{x} M$.

Proof. The first equation follows from (7.24) and the formulas $\mathcal{J}^{\epsilon} J_{2}=J_{3}, \mathcal{J}^{\epsilon} J_{3}=$ ϵJ_{2}. For the second equality we use that $[U, X]$ and $[U, Y]$ are vertical and that ω_{t} is closed:

$$
\begin{aligned}
\mathcal{L}_{U}\left(\omega_{t}(X, Y)\right) & =\left(\mathcal{L}_{U} \omega_{t}\right)(X, Y)=\left(d \iota_{U} \omega_{t}\right)(X, Y) \\
& =-\omega_{t}(U,[X, Y])=-2 g_{t}^{\epsilon}\left(\mathcal{J}^{\epsilon} U, A_{X} Y\right) .
\end{aligned}
$$

The following corollary finishes the proof of Theorem 3 (i).

Corollary 6. Let $Z^{\epsilon}, \epsilon= \pm 1$, be the twistor spaces of a para-quaternionic Kähler manifold. Then the metric g_{t}^{ϵ} is Einstein if and only if

$$
t=-\frac{\epsilon}{v} \quad \text { or } \quad t=-\frac{\epsilon}{v(n+1)} .
$$

The corresponding Einstein constant is, respectively,

$$
c=(n+1) v \quad \text { and } \quad c=\frac{n^{2}+3 n+1}{n+1} \nu .
$$

(ii) By Theorem 2, we know that the horizontal distribution $\mathcal{H}_{Z} \subset T Z^{\epsilon}$ is holomorphic if $\epsilon=-1$ and para-holomorphic if $\epsilon=-1$. We show that it is a para-holomorphic contact structure if $\epsilon=+1$. The case $\epsilon=-1$ is similar. We have to check that the Frobenius form

$$
\mathcal{H}_{Z}^{1,0} \times \mathcal{H}_{Z}^{1,0} \ni(Z, W) \mapsto\left([Z, W] \bmod \mathcal{H}_{Z}^{1,0}\right) \in T^{1,0} Z^{\epsilon} / \mathcal{H}_{Z}^{1,0}
$$

of $\mathcal{H}_{Z}^{1,0}$ is nondegenerate.
Let X and Y be basic horizontal vector fields on P^{\prime} and $Z=X+e \mathcal{J}_{1} X$ and $W=$ $Y+e \mathcal{J}_{1} Y$ the corresponding sections of $\mathcal{H}^{1,0} \subset \mathcal{H} \otimes C=\mathcal{H}+e \mathcal{H}$ the ($+e$)-eigenbundle of the C-linear extension of \mathcal{J}_{1} on $\mathcal{H} \otimes C$. Notice that $\left.\mathcal{J}_{1}^{2}\right|_{\mathcal{H}}=\epsilon \mathrm{Id}=\mathrm{Id}$, since $\epsilon=+1$. Let us calculate, with the help of part (iv) of Lemma 2, the vertical component of $[Z, W]$
at any point $p=\left(J_{1}, J_{2}, J_{3}\right) \in P^{\prime}$:

$$
\begin{aligned}
{[Z, W]^{v}=} & -\frac{v}{2} \sum_{\alpha} \epsilon_{\alpha}\left(g\left(J_{\alpha} X_{M}, Y_{M}\right)+g\left(J_{\alpha} J_{1} X_{M}, J_{1} Y_{M}\right)\right) V_{\alpha} \\
& -e \frac{v}{2} \sum_{\alpha} \epsilon_{\alpha}\left(g\left(J_{\alpha} X_{M}, J_{1} Y_{M}\right)+g\left(J_{\alpha} J_{1} X_{M}, Y_{M}\right)\right) V_{\alpha} \\
= & -v\left(\rho_{2}\left(X_{M}, Y_{M}\right) V_{2}-\rho_{3}\left(X_{M}, Y_{M}\right) V_{3}\right) \\
& +e v\left(\rho_{3}\left(X_{M}, Y_{M}\right) V_{2}-\rho_{2}\left(X_{M}, Y_{M}\right) V_{3}\right) \\
= & -v\left(\rho_{2}\left(X_{M}, Y_{M}\right)-e \rho_{3}\left(X_{M}, Y_{M}\right)\right)\left(V_{2}+e V_{3}\right),
\end{aligned}
$$

where $\rho_{\alpha}=g\left(J_{\alpha} \cdot, \cdot\right)$. This shows that the Frobenius form of $\mathcal{H}^{1,0} \subset T P^{\prime} \otimes C$ is nondegenerate. Let us denote by \tilde{X}_{M} and \tilde{Y}_{M} the horizontal lifts of X_{M} and Y_{M} to vector fields on Z^{ϵ}. We put $\tilde{Z}:=X_{M}+e \mathcal{J}^{\epsilon} X_{M}$ and $\tilde{W}:=Y_{M}+e \mathcal{J}^{\epsilon} Y_{M}$. Thanks to the above formula, we can calculate the vertical component of $[\tilde{Z}, \tilde{W}]$ at the point $z=J_{1} \in Z^{\epsilon}$, which is the image of $p=\left(J_{1}, J_{2}, J_{3}\right) \in P^{\prime}$ under the natural projection $P^{\prime} \rightarrow Z^{\epsilon}=P^{\prime} / \mathrm{SO}_{2}^{\epsilon}$.

$$
\begin{aligned}
{[\tilde{Z}, \tilde{W}]^{v} } & =-v\left(\rho_{2}\left(X_{M}, Y_{M}\right)-e \rho_{3}\left(X_{M}, Y_{M}\right)\right)\left(\left[J_{2}, J_{1}\right]+e\left[J_{3}, J_{1}\right]\right) \\
& =2 v\left(\rho_{2}\left(X_{M}, Y_{M}\right)-e \rho_{3}\left(X_{M}, Y_{M}\right)\right)\left(J_{3}+e J_{2}\right)
\end{aligned}
$$

This shows that $\mathcal{H}_{Z} \subset T Z^{\epsilon}$ is a para-holomorphic contact structure if $\epsilon=+1$.

8. Twistor construction of minimal submanifolds of para-quaternionic Kähler manifolds

8.1. Kähler and para-Kähler submanifolds of para-quaternionic Kähler man-

 ifolds.Definition 14. Let (M, g, Q) be a para-quaternionic Kähler manifold of dimension $4 n$. An ϵ-Kähler submanifold $(\epsilon= \pm 1)$ of M is a triple $\left(N, J^{\epsilon}, g_{N}\right)$, where N is a $2 m$-dimensional g-nondegenerate submanifold of $M, g_{N}=\left.g\right|_{N}$ is the induced pseudoRiemannian metric and J^{ϵ} is a parallel section of the para-quaternionic bundle $\left.Q\right|_{N}$ such that $J^{\epsilon} T N=T N$ and $\left(J^{\epsilon}\right)^{2}=\epsilon \mathrm{Id}$. For $\epsilon=-1\left(M, J^{\epsilon}, g_{N}\right)$ is called also a Kähler submanifold and for $\epsilon=+1$ it is called a para-Kähler submanifold.

We shall include J^{ϵ} into a local frame $\left(J_{1}=J^{\epsilon}, J_{2}, J_{3}=J_{1} J_{2}=-J_{2} J_{1}\right)$ of $\left.Q\right|_{N}$ such that $J_{2}^{2}=$ Id. Such frames $\left(J_{\alpha}\right)$ will be called adapted to the ϵ-Kähler submanifold $N \subset M$.

Proposition 20. Let (M, g, Q) be a para-quaternionic Kähler manifold of dimension $4 n$ with non-zero reduced scalar curvature v and N a g-nondegenerate submanifold
of M endowed with a section $J^{\epsilon} \in \Gamma(N, Q)$ such that $\left(J^{\epsilon}\right)^{2}=\epsilon \operatorname{Id}$ and $J^{\epsilon} T N=T N$. Let $\left(J_{\alpha}\right)$ be a standard local basis of Q such that $\left.J_{1}\right|_{N}=J^{\epsilon}$. Then the triple $\left(N, J^{\epsilon}, g_{N}\right)$ is an ϵ-Kähler submanifold if and only if $\left.\omega_{2}\right|_{N}=\left.\omega_{3}\right|_{N}=0$ or, equivalently, $J_{2} T N \perp T N$. In particular, the dimension of an ϵ-Kähler submanifold $N \subset M$ is at most $2 n$.

Proof. It is clear that J_{1} is parallel if and only if $\left.\omega_{2}\right|_{N}=\left.\omega_{3}\right|_{N}=0$, see (3.2). Moreover, if $\left.\omega_{2}\right|_{N}=\left.\omega_{3}\right|_{N}=0$, then, by the structure equation (3.3), we have that $\left.\rho_{2}\right|_{N}=\left.\rho_{3}\right|_{N}=0$. Conversely, assume that $J_{2} T N \perp T N$, i.e. $\left.\rho_{2}\right|_{N}=\left.\rho_{3}\right|_{N}=0$. Differentiating the structure equations for ρ_{2} and ρ_{3}, we get

$$
\nu d \rho_{\alpha}^{\prime}=-\epsilon_{\alpha} \nu \rho_{\beta}^{\prime} \wedge \omega_{\gamma}+\epsilon_{\alpha} \nu \omega_{\beta} \wedge \rho_{\gamma^{\prime}} .
$$

Restricting this equation for $\alpha=2,3$ to the the submanifold N yields

$$
\left.\rho_{1} \wedge \omega_{2}\right|_{N}=\left.\rho_{1} \wedge \omega_{3}\right|_{N}=0
$$

This shows that $\left.\omega_{2}\right|_{N}=\left.\omega_{3}\right|_{N}=0$, i.e. that $J^{\epsilon} \in \Gamma(N, Q)$ is parallel.
Proposition 21. The shape operator A of an ϵ-Kähler submanifold $\left(N, J^{\epsilon}, g_{N}\right)$ of a para-quaternionic Kähler manifold (M, g, Q) anticommutes with $J:=\left.J^{\epsilon}\right|_{T N}$.

Proof. Let ξ be a normal vector field on N. Then the shape operator $A^{\xi} \in \Gamma(\operatorname{End} T N)$ is defined by

$$
g\left(A^{\xi} X, Y\right)=-g\left(\nabla_{X} \xi, Y\right)=-g\left(\nabla_{Y} \xi, X\right)=g\left(\xi, \nabla_{Y} X\right)
$$

Thus

$$
\begin{aligned}
g\left(A^{\xi} J X, Y\right) & =g\left(\xi, \nabla_{Y}(J X)\right)=g\left(\xi, J \nabla_{Y} X\right)=-g\left(J \xi, \nabla_{Y} X\right)=-g\left(J \xi, \nabla_{X} Y\right) \\
& =g\left(\xi, J \nabla_{X} Y\right)=g\left(\xi, \nabla_{X}(J Y)\right)=g\left(A^{\xi} X, J Y\right)=-g\left(J A^{\xi} X, Y\right) .
\end{aligned}
$$

Corollary 7. Any ϵ-Kähler submanifold of a para-quaternionic Kähler manifold is minimal.

Proof. Since A^{ξ} anticommutes with J, we have $A^{\xi}=-J A^{\xi} J^{-1}$. Hence $\operatorname{tr} A^{\xi}=$ $-\operatorname{tr} A^{\xi}=0$.
8.2. Twistor construction of Kähler and para-Kähler submanifolds of paraquaternionic Kähler manifolds. Let (M, g, Q) be a para-quaternionic Kähler manifold and $\pi_{Z}: Z^{\epsilon} \rightarrow M$ its ϵ-twistor space with the horizontal distribution \mathcal{H}_{Z}. For any ϵ-Kähler submanifold $\left(N, J^{\epsilon}, g_{N}\right)$ the section $J^{\epsilon}: N \rightarrow Z^{\epsilon} \subset Q$ defines an embedding of N into Z^{ϵ}. The image $\tilde{N}=J^{\epsilon}(N) \subset Z^{\epsilon}$ is called the canonical lift of
N in the twistor space Z^{ϵ}. The following theorem gives the description of ϵ-Kähler submanifolds of M in terms of ϵ-complex horizontal submanifolds of Z^{ϵ}, i.e. submanifolds $L \subset Z^{\epsilon}$ such that $\mathcal{J}^{\epsilon} T L=T L$ and $T L \subset \mathcal{H}_{Z}$.

Theorem 4. Let $\left(N, J^{\epsilon}, g_{N}\right)$ be an ϵ-Kähler submanifold of a para-quaternionic Kähler manifold (M, g, Q) and $\tilde{N}=J^{\epsilon}(N) \subset Z^{\epsilon}$ its canonical lift. Then
(i) $\tilde{N} \subset Z^{\epsilon}$ is an ϵ-complex horizontal submanifold which is nondegenerate with respect to the canonical one-parameter family of metrics g_{t}^{ϵ} on Z^{ϵ}. Moreover, in the case $\epsilon=+1$ the restriction of \mathcal{J}^{ϵ} to \tilde{N} is a para-complex structure in the strong sense. (ii) Conversely, let $L \subset Z^{\epsilon}$ be an ϵ-complex horizontal submanifold which is nondegenerate with respect to g_{t}^{ϵ} and such that $\left.\pi_{Z}\right|_{L}: L \rightarrow \pi_{Z}(L) \subset M$ is a diffeomorphism. Then its projection $\left(N=\pi_{Z}(L), J^{\epsilon}, g_{N}\right)$ is a (minimal) ϵ-Kähler submanifold of M, where

$$
J^{\epsilon}=d \pi_{Z} \circ \mathcal{J}^{\epsilon} \circ\left(d \pi_{Z}\right)^{-1}: T N \rightarrow T N, \quad g_{N}=\left.g\right|_{N}
$$

Proof. (i) Since J^{ϵ} is parallel, the submanifold $\tilde{N}=J^{\epsilon}(N) \subset Z^{\epsilon}$, is horizontal. Its tangent bundle $T \tilde{N} \subset \mathcal{H}_{Z}$ is \mathcal{J}^{ϵ}-invariant, since

$$
d \pi_{Z} \circ \mathcal{J}^{\epsilon}=J^{\epsilon} \circ d \pi_{Z}
$$

on the horizontal distribution \mathcal{H}_{Z}, by the definition of \mathcal{J}^{ϵ}, see (4.2). In the case $\epsilon=$ $+1, J^{\epsilon}$ is a para-complex structure in the strong sense, because J^{ϵ} is skew-symmetric for the metric g_{N}. Since $\left(T_{z} \tilde{N},\left.\mathcal{J}_{z}^{\epsilon}\right|_{\tilde{N}}\right) \cong\left(T_{x} N, J_{x}^{\epsilon}\right), x=\pi_{Z}(z), \mathcal{J}^{\epsilon}$ restricts to a paracomplex structure in the strong sense on \tilde{N}.
(ii) The ϵ-complex structure $J^{\epsilon} \in \Gamma\left(N, Q^{\epsilon}\right)$ is parallel, since $L=\tilde{N}$ is horizontal. This proves that $\left(N, J^{\epsilon}, g_{N}\right)$ is an ϵ-Kähler submanifold of M.

REmARK. The nondegeneracy assumption on the metric $g_{t}^{\epsilon} \mid L$ is essential even if we assume that $\operatorname{dim} L=2 n$. Indeed there exist $2 n$-dimensional J^{ϵ}-invariant isotropic subspaces $U \subset T_{x} M$.

References

[1] D.V. Alekseevsky and V. Cortés: Classification of pseudo-Riemannian symmetric spaces of quaternionic Kähler type; in Lie Groups and Invariant Theory, Amer. Math. Soc. Transl. (2) 213, Amer. Math. Soc., Providence, RI., 2005, 33-62.
[2] D.V. Alekseevsky and M.M. Graev: G-structures of twistor type and their twistor spaces, J. Geom. Phys. 10 (1993), 203-229.
[3] D.V. Alekseevsky and S. Marchiafava: A twistor construction of Kähler submanifolds of a quaternionic Kähler manifold, Ann. Mat. Pura Appl. (4) 184 (2005), 53-74.
[4] M.F. Atiyah, N.J. Hitchin and I.M. Singer: Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461.
[5] A.L. Besse: Einstein Manifolds, Springer-Verlag, Berlin, 1987.
[6] D.E. Blair, J. Davidov and O. Muškarov: Hyperbolic twistor spaces, Rocky Mountain J. Math. 35 (2005), 1437-1465.
[7] D.E. Blair: A product twistor space, Serdica Math. J. 28 (2002), 163-174.
[8] R.L. Bryant: Bochner-Kähler metrics, J. Amer. Math. Soc. 14 (2001), 623-715.
[9] M. Mamone Capria and S.M. Salamon: Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517-530.
[10] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig: Special geometry of Euclidean supersymmetry I: Vector multiplets, J. High Energy Phys. (2004), 028, 73.
[11] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig: Special geometry of Euclidean supersymmetry II: hypermultiplets and the c-map, J. High Energy Phys. (2005), 025, 37.
[12] B. O'Neill: The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
[13] R. Penrose: Twistor algebra, J. Mathematical Phys. 8 (1967), 345-366.
[14] R. Penrose: The twistor programme, Rep. Mathematical Phys. 12 (1977), 65-76.
[15] S. Salamon: Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171.
Dmitri Alekseevsky
The University of Edinburgh
and Maxwell Institute for Mathematical Sciences
JCMB, The Kings buildings, Edinburgh, EH9 3JZ
UK
e-mail: D.Aleksee@ed.ac.uk
Vicente Cortés
Universität Hamburg
Department Mathematik und Zentrum für Mathematische Physik
Bundesstraße 55, D-20146 Hamburg
Germany
e-mail: cortes@math.uni-hamburg.de

