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Abstract
We develop the twistor theory ofG-structures for which the (linear) Lie algebra

of the structure group contains an involution, instead of a complex structure. The
twistor spaceZ of such aG-structure is endowed with a field of involutionsJ ∈0(EndT Z) and a J -invariant distributionHZ . We study the conditions for the
integrability of J and for the (para-)holomorphicity ofHZ . Then we apply this
theory to para-quaternionic Kähler manifolds of non-zero scalar curvature, which
admit two natural twistor spaces(Z� , J , HZ), � = ±1, such thatJ 2 = �Id. We
prove that in both casesJ is integrable (recovering results of Blair, Davidov
and Mŭskarov) and thatHZ defines a holomorphic (� = −1) or para-holomorphic
(� = +1) contact structure. Furthermore, we determine all the solutions of the
Einstein equation for the canonical one-parameter family of pseudo-Riemannian
metrics on Z� . In particular, we find that there is a unique Kähler-Einstein (� =
−1) or para-Kähler-Einstein (� = +1) metric. Finally, we prove that any Kähler
or para-Kähler submanifold of a para-quaternionic Kähler manifold is minimal
and describe all such submanifolds in terms of complex (� = −1), respectively,
para-complex (� = +1) submanifolds ofZ� tangent to the contact distribution.
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1. Introduction

Twistor methods were originally introduced by Penrose withthe aim of providing
a mathematical framework which could lead to a synthesis of quantum theory and rel-
ativity [13, 14]. They have proven very fruitful for the construction and systematic
study of various geometric objects governed by non-linear partial differential equations
such as Yang-Mills connections, Einstein metrics, harmonicmaps and minimal sub-
manifolds.

Given a geometric problem on a real differentiable manifoldM endowed with cer-
tain geometric structureS, the twistor approach is to try to translate the given prob-
lem into a problem of complex geometry an a complex manifoldZ, called the twistor
space, which is the total space of a bundle overM. In most cases,Z can be defined as
the bundle of all complex structures in the tangent spaces ofM which are compatible
with the geometric structureS and it comes with a natural almost complex structure
J , the integrability of which has to be derived from the properties of the structureS.

In the case of a four-dimensional oriented Riemannian manifold M, for instance,
the fibre atp ∈ M of the twistor bundleZ → M consists of all skew-symmetric com-
plex structures inTpM, which induce the given orientation [4]. It is identified with the
Riemann sphereCP1 and, thus, carries a natural complex structure. On the otherhand,
the Levi-Civita connection ofM induces a horizontal (i.e. transversal to the fibers) dis-
tribution HZ ⊂ T Z and the horizontal spaces carry a tautological complex structure.
Putting the complex structures on vertical and horizontal spaces together, one obtains
a canonical almost complex structureJ on Z. By the results of Atiyah, Hitchin and
Singer,J is integrable if and only if the Weyl curvature tensor ofM is self-dual and, in
that case, self-dual Yang-Mills vector bundles onM correspond to certain holomorphic
vector bundles onZ. Salamon et al. have extended these constructions from fourto
higher dimensions, with the role of the self-dual four-dimensional Riemannian manifold
played by a quaternionic Kähler manifold [15, 9]. In [3] the twistor method was used
to construct (minimal) Kähler submanifolds of quaternionic Kähler manifolds.

A G-structure is called oftwistor typeif the (linear) Lie algebrag = Lie G of the
structure group contains a complex structure, i.e. an element J such thatJ2 = −Id.
The twistor theory ofG-structures of twistor type is developped in [2], see also refer-
ences therein. This includes the case of quaternionic Kähler manifolds, for which the
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structure group isG = Sp(1)Sp(n).
In this paper, we develop a similar theory forG-structures ofpara-twistor type,

i.e. for whichg contains an involutionJ, rather than a complex structure. LetP→ M
be such aG-structure and denote byK = ZG(J) the centralizer of the involutionJ.
For any principal connection! on P, we define the twistor space of (P, !) as the
total space of the bundleZ = P=K → P=G = M, which we endow with aK -structure
P→ Z, a field of involutionsJ ∈ 0(EndT Z) and aJ -invariant horizontal distribution
HZ , see Definition 11. We express the integrability ofJ and the (para-)holomorphicity
of HZ as equations for the curvature and torsion of!, which generalize the self-duality
equation for the Weyl curvature of a pseudo-Riemannian metric of signature (2, 2), see
Theorem 1.

A para-quaternionic structureon a vector spaceV is a Lie subalgebraQ ⊂ EndV
which admits a basis (J1, J2, J3) such thatJ3 = J1J2 and J2� = ��Id, where (�1, �2, �3) =
(−1, 1, 1). A pseudo-Riemannian manifold (M, g) of dimension> 4 endowed with a
parallel field M ∋ p 7→ Qp ⊂ EndTpM of g-skew-symmetric para-quaternionic struc-
tures is called apara-quaternionic Kähler manifold. The metricg has signature (2n, 2n)
and is Einstein [1]. Moreover, para-quaternionic Kähler manifolds are related to cer-
tain supersymmetric field theories on space-times with a positive definite rather than a
Lorentzian metric [11].

For a para-quaternionic Kähler manifold (M, g, Q), Blair et al. [6, 7] have de-
fined two twistor spacesZ� := {A ∈ Q | A2 = �}, � = ±1, and endowed them with an
integrable structureJ ⊂ EndT Z� such thatJ 2 = �Id. We recover these results by con-
sidering the twistor space associated to the underlyingG-structure, which is of twistor
type, as well as of para-twistor type. More precisely, we consider

J ∈ sl(2, R) ⊂ g = sl(2, R)⊕ sp(R2n) ⊂ gl(R2 ⊗ R2n) = gl(4n, R).

Under the assumption that the scalar curvature ofg is non-zero, we prove, in addition,
that the horizontal distributionHZ defines a holomorphic (respectively, para-holomorphic)
contact structure onZ and that (Z� , J ) admits a Kähler-Einstein (respectively, para-
Kähler-Einstein) metric and determine all Einstein metrics in the canonical one-
parameter family of pseudo-Riemannian metrics, see Theorem 3. It turns out that there
is always a second Einstein metric.

Finally, we generalize the twistor construction of Kähler submanifolds of a quater-
nionic Kähler manifold (see [3]) to the case of Kähler and para-Kähler submanifolds
(see Definition 14) of a para-quaternionic Kähler manifold (M, g, Q). We prove that
any Kähler or para-Kähler submanifold of a para-quaternionic Kähler manifold (M, g, Q)
is minimal (Corollary 7). All such submanifolds can be obtained as projections of com-
plex (� = −1), respectively, para-complex (� = +1) submanifolds ofZ� which are tan-
gent to the contact distribution, see Theorem 4. It follows that the maximal dimension
of a Kähler or para-Kähler submanifold of (M, g, Q) is (1=2) dimM and that maximal
Kähler (respectively, para-Kähler) submanifolds of (M, g, Q) correspond to Legendrian
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submanifolds of the complex (respectively, para-complex)contact manifold (Z� , HZ).

2. (Almost) para-complex manifolds

2.1. Integrability of an almost para-complex structure.

DEFINITION 1. An (almost) para-complex structure, in the weak sense, on a dif-
ferentiable manifoldM is a field of endomorphismsJ ∈ EndT M such thatJ2 = Id. J
is callednon-trivial if J 6= ±Id. We say thatJ is an (almost) para-complex structure,
in the strong sense, if the ±1-eigenspace distributionsT±M of J have the same rank.
An almost para-complex structure is calledintegrable, or para-complex structureif the
distributionsT±M are integrable, or, equivalently, the Nijenhuis tensorNJ , defined by

(2.1) NJ(X, Y) = [X, Y] + [ J X, JY] − J[ J X, Y] − J[X, JY], X, Y ∈ T M,

vanishes. An (almost) para-complex manifold(M, J) is a manifold M endowed with
an (almost) para-complex structure.

Unless otherwise stated, by an (almost) para-complex structure we shall understand
here an (almost) para-complex structure in the weak sense.

REMARK . The difference between weak and strong (almost) para-complex man-
ifolds is that T1,0

p M = {X + eJ X | X ∈ TpM} ⊂ TpM ⊗ C, p ∈ M, is a free module

over the ringC := R[e], e2 = 1, of para-complex numbers only in the strong case. In
particular, for weak para-complex manifolds, there is no notion of para-holomorphic
local coordinates (zi ) on M such that the (dzi ) form a basis ofT1,0

p M over C.

Let (V , J) and (U , JU ) be vector spaces endowed with constant para-complex struc-
tures. We can decompose the vector spaceC2(U ) := U⊗

∧2 V∗ of U -valued two-forms
on V according to type

(2.2) C2(U ) =
∑

p+q=2

Cp,q(U ),

where

� ∈ C1,1(U ) if �(J X, JY) = −�(X, Y) for all X, Y ∈ V ,

� ∈ C2,0(U ) if �(J X, Y) = �(X, JY) = JU�(X, Y) for all X, Y ∈ V

and

� ∈ C0,2(U ) if �(J X, Y) = �(X, JY) = −JU�(X, Y) for all X, Y ∈ V .
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Lemma 1. The projections� p,q : C2(U )→ Cp,q(U ), �→ � p,q, are given by:

�1,1(X, Y) =
1

2
(�(X, Y)− �(J X, JY)),

�2,0(X, Y) =
1

4
(�(X, Y) + �(J X, JY) + JU�(J X, Y) + JU�(X, JY)),

�0,2(X, Y) =
1

4
(�(X, Y) + �(J X, JY)− JU�(J X, Y)− JU�(X, JY)).

For scalar valued forms (U = R) we will always assume thatJU = Id.
Let J be an almost para-complex structure on a manifoldM and∇ a linear con-

nection which preservesJ. The following lemma shows thatJ is integrable if and
only if the (0, 2) componentT0,2 = �0,2T vanishes.

Proposition 1. Let ∇ be a connection which preserves an almost para-complex
structure J on a manifold M. Then the Nijenhuis tensor of J is given by NJ =−4T0,2.
In particular, J is integrable if and only if T0,2 = 0.

Proof. Applying Lemma 1 in the caseU = V = TpM, p ∈ M, we have

T0,2(X, Y) =
1

4
(T(X, Y) + T(J X, JY)− J T(J X, Y)− J T(X, JY)), X, Y ∈ T M.

ReplacingT(X, Y) by ∇XY − ∇Y X − [X, Y] in this formula, we get

T0,2(X, Y) = −1

4
([X, Y] + [ J X, JY] − J[ J X, Y] − J[X, JY]) = −1

4
NJ(X, Y).

2.2. Holomorphicity of distributions in almost para-complex manifolds.

DEFINITION 2. Let (M, J) be an almost para-complex manifold of real dimen-
sion n. A J-invariant distributionD = D+ ⊕ D− ⊂ T+M ⊕ T−M = T M of rank m
is called para-holomorphicif it is locally defined by equations�1

+ = · · · = �k+
+ = �1

− =

· · · = �k−
− = 0, such thatk+ + k− = n−m,

(2.3) �i
± ◦ J = ±�i

±

and the (1, 1)-component

�1,1 d�i
+ =

1

2
(d�i

+ − J∗ d�i
+)

vanishes on
∧2(D+ ⊕ T−M) and the (1, 1)-component

�1,1 d�i
− =

1

2
(d�i
− − J∗ d�i

−)
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vanishes on
∧2(T+M ⊕ D−).

Let (M, J) be an almost para-complex manifold of real dimensionn endowed with
a J-invariant distributionD ⊂ T M of rank m and a connection∇ which preservesJ
andD. Then we can define a two-form with values inT M=D by

S(X, Y) := T(X, Y) mod D.

Since J induces a para-complex structure on the vector bundleT M=D, we can de-
compose

S = S2,0 + S1,1 + S0,2,

see Lemma 1.

Proposition 2. Let (M, J) be an almost para-complex manifold. A J-invariant
distribution D = D+ ⊕ D− ⊂ T+M ⊕ T−M = T M is para-holomorphic if and only if

(2.4) [0(D±), 0(T∓M)] ⊂ 0(T∓M ⊕ D±).

Moreover, if ∇ is a connection which preserves J andD, then (2.4) is equivalent to

(2.5) S1,1(J X, · ) = −J S1,1(X, · ),

for all X ∈ D.

Proof. First we prove that (2.5) is equivalent to the para-holomorphicity of D.
Let D be a para-holomorphic distribution defined by one-forms�i

± as in Definition 2.
The condition on�1,1 d�i

± is equivalent to

d�i
+(X+, Y−) = 0, X+ ∈ D+, Y− ∈ T−M,

d�i
−(X+, Y−) = 0, X+ ∈ T+M, Y− ∈ D−.

Expressing the exterior derivative in terms of the covariant derivative and torsion we get

0 = d�i
+(X+, Y−) = (∇X+�i

+)Y− − (∇Y−�i
+)X+ + �i

+(T(X+, Y−)).

The first two terms on the right-hand side vanish. In fact, since ∇ preserves the dis-
tribution D, the covariant derivative∇X�i

+ vanishes onD+ ⊕ T−M for all X ∈ T M.
The last term can be written as

0 = �i
+(T(X+, Y−)) = �i

+(T1,1(X+, Y−)),
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which implies thatT1,1(X+, Y−) ∈ D+ ⊕ T−M for all X+ ∈ D+ and Y− ∈ T−M. A
similar calculation for�i

− shows thatT1,1(X+, Y−) ∈ T+M ⊕ D− for all X+ ∈ T+M
and Y− ∈ D−. This proves that

S1,1(D+, T−M) ⊂ (T−M + D)=D,

S1,1(D−, T+M) ⊂ (T+M + D)=D.

In particular, S1,1(D, D) = 0 and S1,1(J X, · ) = −J S1,1(X, · ) for all X ∈ D.
To prove the converse, we assume that the torsion of∇ satisfies (2.5). Let(�1

+, : : : ,�k+
+
)

and
(�1
−, : : : ,�k−

−
)

be local frames of (D+⊕T−M)⊥ and (T+M⊕D−)⊥ ⊂
T∗M, respectively. This implies (2.3). Since�1,1�(T±M, T±M) = 0 for any two-form�, it is sufficient to check that�1,1 d�i

+(D+, T−M) = �1,1d�i
−(T+M, D−) = 0. We cal-

culate for X+ ∈ D+ and Y− ∈ T−M:

�1,1d�i
+(X+, Y−) = d�i

+(X+, Y−) = (∇X+�i
+)Y− − (∇Y−�i

+)X+ + �i
+(T(X+, Y−))

= �i
+(T(X+, Y−)) = �i

+(T1,1(X+, Y−)) = �i
+(S1,1(X+, Y−))

= �i
+(S1,1(J X+, Y−))

(2.5)
= −�i

+(J S1,1(X+, Y−)) = −�i
+(S1,1(X+, Y−)).

Therefore,�1,1d�i
+(X+,Y−) = 0. A similar calculation shows that�1,1d�i

−(D−,T+M) = 0.
Now we prove the equivalence of (2.4) and (2.5). The condition (2.5) can be writ-

ten as

T(D±, T∓M) ⊂ T∓M ⊕ D±.

Using that∇ preserves the distributionsD± and T±M, we calculate forX± ∈ 0(D±)
and Y± ∈ 0(T±M)

T∓M ⊕ D± ∋ T(X±, Y∓) = ∇X±Y∓ − ∇Y∓X± − [X±, Y∓]

≡ −[X±, Y∓] mod T∓M ⊕ D±.

This proves the equivalence of (2.4) and (2.5).

Let (M, J) be a para-complex manifold in the strong sense, i.e. the integrable
eigendistributionsT±M are of the same rank. Recall [10] that aC-valued one-form = � + e� is of para-complex type(1, 0), i.e. J∗ = e , if and only if � = � ◦ J.
A (1, 0)-form  is para-holomorphicif �̄ := �1,1 d = 0, which is equivalent to the
para-Cauchy-Riemann equations

(2.6) �−�+ := �1,1d�+ = �+�− := �1,1d�− = 0,

where� = �+ + �− is the J-eigenspace decomposition of�.
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Proposition 3. Let (M, J) be a para-complex manifold in the strong sense with
eigendistributions T±M of rank n andD = D+⊕D− ⊂ T+M⊕T−M = T M a J-invariant
distribution such thatD± are of the same rank m. ThenD is para-holomorphic if and
only if it is locally defined by equations i = 0 (i = 1, : : : , k = n −m), where the i

are para-holomorphic one-forms.

Proof. LetD be defined by para-holomorphic one-forms i = �i
+ +�i

−+e(�i
+−�i

−).
The �i

± satisfy (2.6), which imply the equations in the Definition 2.
To prove the converse, we now assume that the distributionD is para-holomorphic.

Thanks to Proposition 2, this means that

[0(D±), 0(T∓M)] ⊂ 0(T∓M ⊕ D±).

In order to construct para-holomorphic one-forms i = �i
+ + �i

− + e(�i
+− �i

−) which de-
fine D, we choose locally linearly independent commuting vector fieldsY±i ∈ 0(T±M)
which generate distributionsN± ⊂ T±M complementary toD±. We define one-forms�i
± vanishing onD± ⊕ T∓M by

�i
±(Y±j ) = Æi

j .

It is clear that�i
± ◦ J = ±�i

± and that i := �i
+ + �i

− + e(�i
+ − �i

−) define D. Now
we check that the i are para-holomorphic, i.e.�−�i

+ = �+�i
− = 0. It is sufficient to

evaluate this equality on (Z+, Z−), where Z± = X± ∈ 0(D±) or Z± = Y±i .

�−�i
+(X+, X−) = X+�i

+(X−)− X−�i
+(X+)− �i

+([X+, X−]) = 0,

since�i
+ vanishes onD+ ⊕ T−M and [X+, X−] ∈ T−M ⊕ D+ by (2.4). Similarly,

�−�i
+(X+, Y−j ) = X+�i

+(Y−j )− Y−j �i
+(X+)− �i

+([X+, Y−j ]) = 0.

Finally,

�−�i
+(Y+

j , Y−k ) = Y+
j �i

+(Y−k )− Y−k �i
+(Y+

j )− �i
+([Y+

j , Y−k ]) = 0− Y−k (Æi
j )− 0 = 0,

since, by construction, [Y+
j , Y−k ] = 0. Similarly, one can check that�+�i

− = 0.

3. Para-quaternionic manifolds and para-quaternionic Kähler manifolds

DEFINITION 3. Let (�1, �2, �3) = (−1, 1, 1), or a permutation thereof. Analmost
para-quaternionic structureon a differentiable manifoldM (of dimension 4n) is a rank 3
subbundleQ ⊂ EndT M, which is locally generated by three anticommuting fields of
endomorphismsJ1, J2, J3 = J1J2, such thatJ2� = ��Id. Such a triple (J�) will be called
a standard local basisof Q. A linear connection which preservesQ is called anal-
most para-quaternionic connection. An almost para-quaternionic structureQ is called a
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para-quaternionic structureif M admits apara-quaternionic connection, i.e. a torsion-
free connection which preservesQ. An (almost) para-quaternionic manifoldis a man-
ifold endowed with an (almost) para-quaternionic structure.

An almost para-quaternionic Hermitian manifold(M, g, Q) is a pseudo-Riemannian
manifold (M, g) endowed with a para-quaternionic structureQ consisting of skew-
symmetric endomorphisms. (M, g, Q), n > 1, is called apara-quaternionic Kähler
manifold if the Levi-Civita connection preservesQ.

Proposition 4 ([1]). At any point, the curvature tensor R of a para-quaternionic
Kähler manifold(M, g, Q) of dimension4n > 4 admits a decomposition

(3.1) R = �R0 + W,

where� = scal=(4n(n + 2)) is the reduced scalar curvature,

R0(X, Y) := +
1

2

∑

� ��g(J�X, Y)J� +
1

4

(
X ∧ Y −

∑

� �� J�X ∧ J�Y

)
, X, Y ∈ TpM,

is the curvature tensor of the para-quaternionic projective space of the same dimension
as M and W is a trace-free Q-invariant algebraic curvature tensor, where Q acts by
derivations. In particular, R is Q-invariant.

We define apara-quaternionic Kähler manifold of dimension4 as a pseudo-Riemannian
manifold endowed with a parallel skew-symmetric para-quaternionic structure whose
curvature tensor admits a decomposition (3.1).

Since the Levi-Civita connection∇ of a para-quaternionic Kähler manifold pre-
serves the para-quaternionic structureQ, we can write

(3.2) ∇ J� = −��! ⊗ J� + �!� ⊗ J ,

where (�, �,  ) is a cyclic permutation of (1, 2, 3). We shall denote by�� := g(J� · , · )
the fundamental formassociated withJ� and put� ′� := −����.

Proposition 5. The locally defined fundamental forms satisfy the followingstruc-
ture equations

(3.3) �� ′� := −����� = �3(d!� − ��!� ∧ ! ),

where (�, �,  ) is a cyclic permutation of(1, 2, 3).

Proof. Using Proposition 4 and the fact that

[ J�, J� ] = 2�3� J ,
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we calculate the action of the curvature operatorR(X, Y), X, Y ∈ T M, on J�:

[R(X, Y), J�] = [�R0(X, Y), J�] = −�
2

3∑

Æ=1

� ′Æ(X, Y)[ JÆ, J�]

= �3�(−��� ′ (X, Y)J� + �� ′�(X, Y)J ),

where (�, �,  ) is a cyclic permutation of (1, 2, 3). On the other hand, usingthe equa-
tion (3.2), we calculate

[R(X, Y), J�] = [∇X, ∇Y] J� − ∇[X,Y] J�
= ∇X(−��! (Y)J� + �!�(Y)J )− ∇Y(−��! (X)J� + �!�(X)J )

− (−��! ([X, Y]) J� + �!�([X, Y]) J )

= −�� d! (X, Y)J� + � d!�(X, Y)J − ��! (Y)∇X J� + �!�(Y)∇X J
+ ��! (X)∇Y J� − �!�(X)∇Y J .

Applying again the equation (3.2), we finally get

[R(X, Y), J�] = −��(d! − �!� ∧ !�)(X, Y)J� + � (d!� − ��! ∧ !�)(X, Y)J .

Comparing the two formulas for [R(X, Y), J�] we obtain the structure equations.

4. The twistor spaces of a para-quaternionic or para-quaternionic Kähler
manifold

4.1. The twistor spaces of a para-quaternionic manifold. In the following, it
will be useful to unify complex and para-complex structuresin the following definition.

DEFINITION 4. An almost �-complex structure, � ∈ {−1, 0, 1}, on a differen-
tiable manifold M of dimension 2n is a field of endomorphismsJ ∈ EndT M such
that J2 = �Id and, moreover, for� = +1 the eigendistributionsT±M are of rankn and
for � = 0 the two distributions kerJ and imJ have rankn. In other words, an al-
most−1-complex structure is an almost complex structure and an almost +1-complex
structure is an almost para-complex structure in the strongsense.

An �-complex manifoldis a differentiable manifold endowed with an integrable
(i.e. NJ = 0) �-complex structureJ.

We shall also use the unifying adjective�-holomorphicas a synonym of ‘holomorphic’
or ‘para-holomorphic’, depending on whether� = −1 or � = +1, respectively.

Let (M, Q) be an almost para-quaternionic manifold. We associate with (M, Q) a
family of bundles� : Zs→ M, with two-dimensional fibres, depending on a parameter
s ∈ R as follows:

Zs := {A ∈ Q | A 6= 0, A2 = s}.
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DEFINITION 5. The fibre bundle� : Zs→ M is called thes-twistor spaceof the
almost para-quaternionic manifold (M, Q).

Proposition 6. Any almost para-quaternionic connection∇ on an almost para-
quaternionic manifold(M, Q) induces a canonical almost�-complex structureJ s = J s

∇
on the s-twistor space Zs, where� = sgn(s) ∈ {−1, 0, 1}.

Proof. Let (I , J, K ) be a standard basis ofQm. Then any elementA ∈ Qm

can be written asA = x I + y J + zK and A ∈ Zs if and only if −x2 + y2 + z2 = s.
Hence, the fibres ofZs are two-sheeted hyperboloids fors < 0, one-sheeted hyper-
boloids fors> 0 and light-cones without origin fors = 0. Each fibreZs

m = �−1(m) is a
homogeneous space of the group SO(1, 2) with one-dimensional stabilizer SO(1, 2)As =
SO(2) if s < 0, SO(1, 2)As = SO(1, 1) if s > 0 and SO(1, 2)As

∼= (R, +) if s = 0,
where As ∈ Zs. First we define the canonical SO(1, 2)-invariant�-complex structure
on Zs

m, as follows. The three-dimensional vector spaceQm ⊂ EndTmM is a Lie sub-
algebra isomorphic tosl2(R). The adjoint action preserves the indefinite scalar product
〈A, B〉 = −(1=(4n)) tr(AB), 4n = dim M, in Q and hence identifies the Lie algebraQ
with so(Q) = Lie SO(Q) ∼= so(1, 2). Let A ∈ Zs

m ⊂ Qm. Then Zs
m = SO(Q)A and

the tangent space toZs
m at A is identified withso(Q)A ∼= so(Q)=so(Q)A = so(Q)=RA.

It is easy to check that the adjoint action of (1=2)A on so(Q)=RA defines an SO(Q)-
invariant�-complex structureJv on Zs

m. Now we define an almost�-complex structure
J s on the twistor spaceZs. We have the decomposition

(4.1) TzZs = Tv
z Zs + Hz

∼= Tz(Z
s
m)⊕ T�zM,

where Tv
z Zs is the vertical space of the bundle� : Zs→ M and Hz is the horizontal

space of the connection in the bundle� induced by the para-quaternionic connection∇
of (M, Q). The latter is identified withT�zM via the projectionZs→ M. We denote
by Jz the tautological�-complex structure onT�zM defined byz ∈ Zs. With respect
to the above decomposition we define

(4.2) J s
z = Jv ⊕ Jz

By construction,J s is an almost�-complex structure.

4.2. The twistor spaces of a para-quaternionic Kähler manifold. Let (M, g, Q)
be a para-quaternionic Kähler manifold with twistor spacesZs. The Levi-Civita con-
nection∇ = ∇g is a para-quaternionic connection and, hence, induces a canonical al-
most �-complex structureJ s = J s

∇ on Zs.

Proposition 7. The twistor space Zs of a para-quaternionic Kähler manifold
(M, g, Q) admits a canonical almost�-complex structureJ � , where � = sgn(s), and
a one-parameter family gst , t ∈ R − {0}, of pseudo-Riemannian metrics such that the
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almost�-complex structureJ s is skew-symmetric, provided that s6= 0. For s = 0 there
exists a canonical one-parameter family g0

t , t ∈ R − {0}, of symmetric bilinear forms
with one-dimensional(vertical) kernel such thatJ s is skew-symmetric. Finally, for
s 6= 0, the projection� : (Zs, gs

t )→ (M, g) is a pseudo-Riemannian submersion.

Proof. We denote bygv := 〈 · , · 〉|Zs
m

the induced metric on the fibresZs
m ⊂

(Q, 〈 · , · 〉). It is nondegenerate fors 6= 0 and has one-dimensional kernel fors = 0.
The �-complex structureJv on Zs

m is gv-skew-symmetric. With respect to the decom-
position (4.1), we define

(gs
t )z = tgv ⊕ g�z.

The almost�-complex structureJ s defined above is skew-symmetric with respect to
the field of symmetric bilinear formsgs

t , which is nondegenerate fors 6= 0 and has
one-dimensional vertical kernel fors = 0. The above formula forgs

t shows that the de-
composition ofT Z into vertical and horizontal space isgs

t -orthogonal and that the pro-
jection induces an isometryHz→ T�zM. This proves that� is a pseudo-Riemannian
submersion.

The scalar multiplication by|s|1=2 6= 0 in the vector bundleQ → M induces an
isometry (Z� , g�t )→ (Zs, gs

t=|s|), which preserves the almost�-complex structure, where� = sgn(s). This shows that it is sufficient to consider only three of the above twistor
spaces, namelyZ+ := Z+1, Z− := Z−1 and Z0. We will study the integrability of the
almost �-complex structureJ � and the holomorphicity of the horizontal distribution
H ⊂ T Z� , which is J �-invariant. For this we extend theG-structure approach devel-
oped in [2] to the para-case (� = 1).

4.3. Twistor spaces of para-quaternionic (Kähler) manifolds as bundles as-
sociated to G-structures. In this subsection we interpret the twistor spacesZ� (� =
−1, 0, 1) from the point of view ofG-structures.

Let (M, Q) be a para-quaternionic manifold. Note thatQ̃m := RId+Qm ⊂ EndTmM
is an algebra isomorphic to the algebra of para-quaternions, i.e. to the matrix algebra
R(2). Since any irreducible module ofR(2) is isomorphic toR2, the Q̃m-moduleTmM
is isomorphic to theR(2)-moduleR2 ⊗ Rn, 2n = dim M, with the action on the first
factor.

DEFINITION 6. Let (M, Q) be an (almost) para-quaternionic manifold. Apara-

quaternionic coframeat m ∈ M is an isomorphism� : TmM
∼→ R2 ⊗ Rn which maps

Q̃m into R(2), i.e.

� ◦ Q̃m ◦ �−1 = R(2)⊗ Id.
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Proposition 8. (i) The set P of all para-quaternionic coframes together with the
natural projection� P : P→ M is a G-structure, i.e. a principal subbundle of the bun-
dle of all coframes with the structure group G:= SL±2 (R)⊗ GLn(R), where

SL±2 (R) = {A ∈ GL2(R) | det A = ±1}.

(ii) Let A∈ sl2(R)⊗ Id ⊂ g = Lie G such that A2 = �Id and GA the stabilizer(i.e. cen-
tralizer) of A in G. There is a canonical isomorphism of fibre bundles

P=GA
∼→ Z� .

Proof. (i) It is clear that any two para-quaternionic coframes are related by an
element of GL2(R)⊗ GLn(R) = SL±2 (R)⊗ GLn(R).

(ii) Let � ∈ P be a coframe atm ∈ M. It induces an algebra isomorphism�̂ : R(2)→ Q̃m, B 7→ �−1B�. The image�̂(A) ∈ Qm satisfies�̂(A)2 = �Id, hence�̂(A) ∈ Z�m. If k ∈ GA then k̂�(A) = �−1k−1Ak� = �̂(A). So the mapP → Z� ,� 7→ �̂(A), factorizes to an isomorphismP=GA→ Z� of fibre bundles.

Assume now that (M, g, Q) is a para-quaternionic Kähler manifold of dimension
4n, or more generally an almost para-quaternionic Hermitian manifold. On R2 ⊗ R2n

we fix the standard scalar productgcan = !R2 ⊗ !R2n , where!R2n denotes the standard
symplectic structure ofR2n.

DEFINITION 7. Let (M, g, Q) be an almost para-quaternionic Hermitian mani-
fold of dimension 4n. A para-quaternionic Hermitian coframeat m ∈ M is a linear

isometry� : (TmM, gm)
∼→ (R2 ⊗ R2n, gcan) which mapsQ̃m into R(2).

Proposition 9. The set P of all para-quaternionic Hermitian coframes together
with the natural projection� P : P → M is a G-structure with G= G0 ∪ �G0, G0 :=
SL2(R) ⊗ Sp(R2n), � = A⊗ B ∈ SL±2 (R) ⊗ GLn(R), detA = −1 and B∗!R2n = −!R2n .
Moreover, the twistor space Z� is canonically isomorphic to the bundle P=GA, where
0 6= A ∈ sl2(R) with A2 = �Id.

5. G-structures of para-twistor type and their twistor spaces: obstructions
for integrability

5.1. Groups of para-twistor type and para-complex symmetric spaces.

DEFINITION 8. A connected linear Lie groupG ⊂ GL(V), V = Rn, is called of
para-twistor typeif its Lie algebra contains a para-complex structure, i.e. an element
J such thatJ2 = Id. (If G is not connected, we shall assume, in addition, that the
conjugation byJ preservesG.)
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Since the endomorphismJ is semi-simple, the adjoint operator adJ is semi-simple and,
hence, we have the direct sumg = k + m, wherek = ker adJ = Zg(J) and m = [J, g]. It
follows that

m = {A ∈ g | {J, A} = AJ + J A = 0}.

This implies that [m, m] ⊂ k and, hence, thatg = k + m is a symmetric decomposition.

Proposition 10. The orbit S:= AdG(J) ∼= G=K , K := ZG(J), is an affine sym-
metric space and carries a canonical G-invariant para-complex structure JS.

Proof. The involutive automorphismA 7→ J AJ−1 = J AJ of G has K as its fixed
point set and defines the symmetry ofG=K at the pointeK.

The formula Jm A = J A = (1=2)[J, A], A ∈ m, defines aK -invariant para-complex
structure onm, which extends to aG-invariant para-complex structureJS on S. The
structureJS is integrable, since it is parallel under the canonical torsion-free connec-
tion of the symmetric spaceS.

The projections ontok and m are given by

A 7→ 1

2
J{J, A} =

1

2
(A + J AJ),(5.1)

A 7→ 1

2
J[ J, A] =

1

2
(A− J AJ).(5.2)

5.2. The space of curvature tensors. Let G ⊂ GL(V) be a linear Lie group of
para-twistor type with Lie algebrag, J ∈ g a para-complex structure andg = k + m

the corresponding symmetric decomposition;k = Zg(J) and m = [J, g]. Recall that
m carries the para-complex structureJm : A 7→ J A = (1=2)[J, A]. For any subspace
U ⊂ EndV we denote by

R(U ) :=

{
R ∈ U ⊗

2∧
V∗ R satisfies the first Bianchi identity

}

the vector space of algebraic curvature tensor of typeU .
The projection�m : g→ m induces a projection

�m : C2(g)→ C2(m).

According to (5.2), the projection�m := �m� ∈ C2(m) of � ∈ C2(g) is given by

(5.3) �m(X, Y) =
1

2
(�(X, Y)− J�(X, Y)J).



TWISTOR SPACES OFPARA-QUATERNIONIC KÄHLER MANIFOLDS 229

Recall that, sincem ⊂ EndV is endowed with the para-complex structureJm, we have
the decomposition (2.2)

C2(m) =
∑

p+q=2

Cp,q(m).

We put� p,q
m := � p,q ◦ �m : C2(g)→ Cp,q(m) andRp,q(m) := R(m) ∩ Cp,q(m).

The action ofJ as an automorphism of the tensor algebra induces involutions

TJ : C2(g)→ C2(g), TJ : C2(V)→ C2(V).

We denote the±1-eigenspaces ofTJ on C2(g) by C2
±(g), such that

C2(g) = C2
+(g) + C2

−(g),

and putC2
±(U ) := C2

±(g) ∩ C2(U ) andR±(U ) := C2
±(g) ∩R(U ), whereU = k, m.

Proposition 11. (i) The eigenspaces of TJ on C2(g) are given by

C2
+(m) = C1,1(m),(5.4)

C2
−(m) = C2,0(m) + C0,2(m).(5.5)

(ii) The action of TJ on Cp,q(V) is given by

TJ�1,1 = −J�1,1,

TJ�2,0 = J�2,0,

TJ�0,2 = J�0,2.

In particular,

C1,1(V) = ker(TJ + L J),

C2,0(V) + C0,2(V) = ker(TJ − L J),

where LJ� = J ◦ �.

The action ofJ as a derivation on the tensor algebra induces an endomorphism

� 7→ J · � = [J, �] − �(J · , · )− �( · , J · )

of C2(g). Similarly, J acts as a derivation onC2(V).

Proposition 12. (i) The action of J as a derivation on C2(g) is given by

J · � p,q = 2q J� p,q for all � p,q ∈ Cp,q(m),
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J · � = −2�(J · , · ) for all � ∈ C2
+(k),

J · C2
−(k) = 0.

In particular, the vector space of J -invariants is given by

(5.6) C2(g)J = C2
−(k) + C2,0(m).

(ii) The action of J as a derivation on C2(V) is given by

J · �2,0 = −J�2,0,

J · �0,2 = 3J�0,2,

J · �1,1 = J�1,1.

In particular,

C2,0(V) = ker(DJ + L J),

C0,2(V) = ker(DJ − 3L J),

C1,1(V) = ker(DJ − L J),

where DJ� = J · �.

The proposition shows that�1,1
m C2(g)J = �0,2

m C2(g)J = 0 and�2,0
m C2(g)J = C2,0(m).

Proposition 13. The following holds
(i) R(g) = R+(g) + R−(g),
(ii) R(m) = R+(m) + R−(m),
(iii) �mR+(g) = �1,1

m R+(g) ⊃ R+(m) = R1,1(m),
(iv) �0,2

m R(g) = R0,2(m),
(v) �mR−(g) = (�2,0

m + �0,2
m )R−(g) ⊃ R−(m) = R2,0(m) + R0,2(m).

Proof. (i) and (ii) follow from the fact thatTJ : C2(g)→ C2(g) preserves the sub-
spacesR(m) ⊂ R(g) ⊂ C2(g) and (iii) follows from the equation (5.4). The equa-
tion (5.5) and (iv) imply (v). Therefore it suffices to prove (iv). For R ∈ R(g) and
X, Y, Z ∈ V we calculate

(�0,2
m R)(X, Y) =

1

4
(Rm(X, Y) + Rm(J X, JY)− J Rm(J X, Y)− J Rm(X, JY))

=
1

8
(R(X, Y)− J R(X, Y)J + R(J X, JY)− J R(J X, JY)J

− J R(J X, Y) + R(J X, Y)J − J R(X, JY) + R(X, JY)J)



TWISTOR SPACES OFPARA-QUATERNIONIC KÄHLER MANIFOLDS 231

=
1

8
(R(X, Y)− J R(X, Y)J − J R(J X, Y)− J R(X, JY))

+
1

8
(−J R(J X, JY)J + R(J X, JY) + R(X, JY)J + R(J X, Y)J)

=
1

8
(J(J · R)(X, Y)− (J · R)(J X, JY)J)

and, therefore,

∑

cyclic

(�0,2
m R)(X, Y)Z =

1

8
J
∑

cyclic

(J · R)(X, Y)Z − 1

8

∑

cyclic

(J · R)(J X, JY)J Z = 0,

where the sum is over cyclic permutations of (X, Y, Z). Here we used the fact that
A ·R(g) ⊂ R(g) for any A ∈ g.

5.3. G-structures with connection and associatedK -structures. Let G ⊂
GL(V), V = Rn, be a linear Lie group.

DEFINITION 9. A G-structureon a manifoldM is G-principal bundle� : P→
M endowed with a displacement form� , i.e. a G-equivariantV-valued one-form such
that ker� = TvP := kerd� .

We shall identify a pointp ∈ P with the coframe

p : T�(p)M → V , X 7→ �p
(
(d�)−1

p (X)
)
.

DEFINITION 10. A principal connectionin a G-principal bundle� : P→ M is
a G-equivariantg-valued one-form! : T P→ g such thatH := ker! is a distribution
transversal to the vertical distributionTvP.

Recall that the wedge product of two one-forms�, � with values in a Lie algebra is
the Lie algebra valued two-form given by

[� ∧ �](X, Y) := [�(X), �(Y)] − [�(Y), �(X)].

The curvatureof a connection! is the g-valuedG-equivariant horizontal two-form

� = d! +
1

2
[! ∧ !].

If � : P→ M is a G-structure with displacement form� , then thetorsion of ! is the
V-valuedG-equivariant horizontal two-form

2 := d� + [! ∧ � ],
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where the Lie bracket is taken in the affine Lie algebraV + g.
If � is the displacement form of aG-structure� : P→ M and! a principal con-

nection then:

� = � + ! : T P→ V ⊕ g

is a Cartan connection, i.e. a G-equivariant absolute parallelism which extends the
canonical vertical parallelismTvP → g. The curvature of the Cartan connection�
is defined as the (V ⊕ g)-valued G-equivariant horizontal two-form

�� := d� +
1

2
[� ∧ �].

Notice that theV andg-components of�� are exactly the torsion and curvature forms
of !:

�V� = 2, �g� = �.

Let now K ⊂ G be a Lie subgroup with Lie algebrak and g = k + m a K -invariant
direct decomposition of the vector spaceg. Accordingly, anyg-valued form� on P
is decomposed as

� = �k + �m.

Proposition 14 ([2]). Let (� : P→ M, � , !) be a G-structure with a connection
and K ⊂ G a Lie subgroup. Then

� ′ : P→ Z := P=K

is a K-structure with displacement form

� ′ := � + !m : T P→ V ′ := V ⊕ m

and connection

!′ := !k.

The curvature�′ and torsion2′ of !′ are given by

2′ = (2′)V + (2′)m = (2− [!m ∧ � ]) + �m − 1

2
[!m ∧ !m]m,

�′ = �k − 1

2
[!m ∧ !m]k.
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5.4. The twistor space of aG-structure of para-twistor type. Let G ⊂GL(V)
be a linear Lie group of para-twistor type,J ∈ g a para-complex structure andg = k+m

the corresponding symmetric decomposition;k = Zg(J) andm = [J, g]. Let � : P→ M
be a G-structure endowed with a principal connection! : T P → g. (P, !) will be
called aG-structure of para-twistor type. The vector spaceV ′ := V ⊕ m has the para-
complex structureJ ′ = J ⊕ Jm. The natural action ofK = ZG(J) on V ′ preserves this
structure and is identified with a subgroupK ⊂ GL(V ′, C) := Aut(V ′, J ′). This implies
that theK -structure

� ′ : P→ Z := P=K

is subordinated to a GL(V ′, C)-structure, i.e. to an almost para-complex structureJ

on Z. At the point z = � ′p ∈ Z, p ∈ P, the almost para-complex structureJ is de-
fined by:

Jz = p̂−1 ◦ J ′ ◦ p̂,

where p̂ : TzZ → V ′ is the coframe associated withp ∈ P. It is easily checked that
this definition does not depend onp ∈ (� ′)−1(z).

Similarly, we can associate a para-complex structureJz: T� pM → T� pM with any
point z = K p ∈ Z by the formula

Jz := p ◦ J ◦ p−1,

using the isomorphismp: T� pM→ V . This allows to identify theG=K -bundle�Z: Z =
P=K → M = P=G with a bundle of para-complex structures on the tangent spaces
of M.

We denote byHZ = � ′∗ ker! ⊂ T Z the projection of the horizontal distribution of! to T Z. We call it thehorizontal distributionof Z.

DEFINITION 11. Let (� : P→ M, !) be a G-structure of para-twistor type and
K = ZG(J). Then the inducedK -structure� ′ : P → Z = P=K endowed with the
induced connection!′ = �k ◦ !, the horizontal distributionHZ and the almost para-
complex structureJ is called thetwistor spaceassociated to theG-structure of para-
twistor type (P, !) and to the para-complex structureJ ∈ g.

Notice that the almost para-complex structureJ and the horizontal distributionHZ

are invariant under the parallel transport inT Z defined by the connection!′. There-
fore, we can apply Propositions 1 and 2.

Theorem 1. Let (� : P→ M, !) be a G-structure of para-twistor type, where!
is a principal connection with curvature form� and torsion form2 and (Z, J , HZ)
the corresponding twistor space. Then
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(i) The almost para-complex structureJ on Z is integrable if and only if

(5.7) �0,2 ◦2 = 0 and �0,2
m ◦� = 0,

(ii) The horizontal distributionHZ ⊂ T Z is para-holomorphic if and only if

�1,1
m ◦� = 0,

where we consider the values of the horizontal forms2 and � at p ∈ P as

2p :
2∧

T� ′ pZ→ V and �p :
2∧

T� ′ pZ→ g.

Proof. SinceG is of para-twistor type,g = k + m is a symmetric decomposition
and, in particular, [m, m] ⊂ k. By Proposition 14, the torsion of the connection!′ in
the K -principal bundle� ′ : P→ Z is given by

2′ = (2′)V + (2′)m = (2− [!m ∧ � ]) + �m.

The second term [!m ∧ � ] p :
∧2 T� ′ pZ→ V ′ = V ⊕ m, p ∈ P, on the right-hand side

is of type (2, 0) since

� ′ = � + !m : T� ′ pZ→ V ′

is of type (1, 0):

� ′ ◦ J� ′ p = (J ⊕ Jm) ◦ � ′.
Therefore the integrability condition�0,22′ = 0 of Proposition 1 reduces to (5.7).

To prove (ii), we notice that the coframêp: T� ′ pZ→ V ′ = V ⊕ m maps the hori-
zontal space (HZ)� ′ p to V . Therefore the tensor

S = T mod HZ

corresponds to (2′)m = �m and S1,1 corresponds to�1,1
m ◦�. The two-form�m on P

vanishes on the vertical distributionTvP = �−1(g). This implies that�1,1
m ◦� vanishes

on p̂−1(m). Therefore the para-holomorphicity condition (2.5) of Proposition 2 reduces
to �1,1

m ◦�|HZ×HZ = 0, which is equivalent to�1,1
m ◦� = 0.

Since anyp ∈ P is an isomorphismp: T� pM → V we can identify the horizontal
two-forms2 and� with G-equivariant functions

T : P→
2∧

V∗ ⊗ V and R: P→
2∧

V∗ ⊗ g.

In particular, T + �m ◦ R: P →
∧2 V∗ ⊗ V ′ = C2(V ′) = ⊕Cp,q(V ′). Now we can

reformulate the theorem in terms ofT and Rm := �m ◦ R.
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Corollary 1. Under the assumptions of the previous theorem, the following is true.
(i) The almost para-complex structure is integrable if and onlyif T and Rm take val-
ues in C2,0(V ′)⊕ C1,1(V ′).
(ii) The horizontal distribution is para-holomorphic if and only if Rm takes values in
C−(m) = C2,0(m)⊕ C0,2(m).
Both conditions are satisfied if and only if Rm is of type(2, 0) and T is of type(2, 0)+
(1, 1).

Now we choose a local sectionp0 : M → P and identify P locally with M × G.
We denote byT (p0) and R(p0) the restrictions ofT and R to M = M × {e} ⊂ M × G.
Then

T(x,g) = g∗T
(p0)
x = gT(p0)

x (g−1 · , g−1 · )

and

R(x,g) = g∗R
(p0)
x = gR(p0)

x (g−1 · , g−1 · )g−1.

This implies, for allu, v ∈ V ,

�m R(x,g)(u, v) = �mgR(p0)
x (g−1u, g−1v)g−1

= g�g−1mg R(p0)
x (g−1u, g−1v)g−1 = g∗(�g−1mg R(p0)

x )(u, v).

For any para-complex structureI = gJg−1 ∈ S= G=K we have the vector spacesm(I ) =
[ I , g] = gmg−1 and V ′(I ) = V ⊕ m(I ) with the para-complex structuresgJmg−1 and
I ′ = gJ′g−1, respectively.

The above calculation implies that the (p, q) component ofT or Rm, with respect
to (J, J ′), vanishes if and only if the (p, q) component ofT (p0) or �m(I ) ◦ R(p0), with
respect to (I , I ′), vanishes for allI ∈ S. We will use he symbol� p,q

m(I ) := � p,q
I ◦ �m(I ),

where� p,q
I : C2(m(I ))→ Cp,q

I (m(I )) is the projection onto the (p, q)-component with
respect to (I , I ′) for any I ∈ S. Similarly we define� p,q

I : C2(V)→ Cp,q
I (V) as the

projection onto the (p, q)-component with respect toI .
This motivates the definition of the following twoG-submodules ofR(g):

Rint(g) :=
{

R ∈ R(g)
∣∣ �0,2

m(I ) R = 0 for all I ∈ S
}
,

Rhol(g) :=
{

R ∈ R(g)
∣∣ �1,1

m(I ) R = 0 for all I ∈ S
}
.

We also define aG-submoduleTint(g) ⊂ C2(V) by

Tint(g) :=
{
T ∈ C2(V)

∣∣ �0,2
I T = 0 for all I ∈ S

}
.
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Corollary 2. Under the assumptions ofTheorem 1,the following is true.
(i) The almost para-complex structureJ is integrable if and only if the functions T(p0)

and R(p0), associated to a local frame p0, take values in the G-modulesTint(g) and
Rint(g), respectively.
(ii) The horizontal distribution is para-holomorphic if and only if R(p0) takes values
in Rhol(g).
Both conditions are satisfied if and only if�m(I ) R is of type(2, 0) and T is of type
(2, 0) + (1, 1) for all I ∈ S.

Corollary 3. Under the assumptions ofTheorem 1,the almost para-complex struc-
ture J on the twistor space Z is integrable and the horizontal distribution HZ is para-
holomorhic if for all x∈ M there exists a frame p∈ �−1(x) such that the curvature
R(p) ∈ R(g) takes values in the G-module

R(g)DS = {R ∈ R(g) | I · R = 0 for all I ∈ S}

and the torsion T(p) satisfies�0,2T (p) = 0.

Proof. This follows from (5.6) and the previous corollary.

Corollary 4. Let G be a group of para-twistor type such that�m(I )R(g) ⊂
C2,0(m(I )), for all I ∈ S, for example ifR(g) = R(g)DS. Then for any G-structure
(� : P → M, !) with a torsion-free connection!, the almost para-complex structure
J on the twistor space Z is integrable and the horizontal distribution HZ is para-
holomorhic.

6. Integrability and holomorphicity results for the twisto r spaces of a para-
quaternionic Kähler manifold

Theorem 2. Let (M, g, Q) be a para-quaternionic Kähler manifold and
(Z� , J � , HZ� ) its twistor space, where� = ±, seeSections 4and 5.4. Then for� =−1
the almost complex structureJ � is integrable and the horizontal distribution is holo-
morphic. Similarly, for � = 1 the almost para-complex structureJ � is integrable and
the horizontal distribution is para-holomorphic.

Proof. By Proposition 9, the para-quaternionic Kähler structure defines aG-structure� : P → M, where G ⊂ GL(R2 ⊗ R2n) is the normalizer of the connected Lie group
G0 := SL2(R)⊗Sp(R2n) in SO(2n, 2n). Any para-quaternionic coframep ∈ P defines an

isometry p: (T� pM,g� p)
∼→ (R2⊗R2n,gcan), which mapsQ� p to sl(2,R) = sl(2,R)⊗ Id,

see Definition 7. The linear groupG is of para-twistor type and also of twistor type,
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i.e. there exists elementsI , J ∈ g = sl(2, R)⊕ sp(R2n) such thatI 2 = −Id and J2 = Id.
In fact, we can chooseI = p ◦ J1 ◦ p−1 and J = p ◦ J2 ◦ p−1. The symmetric space

sl(2, R) = sl(2, R)⊗ Id ⊃ S− = AdG(I ) = G=ZG(I ) = GL2(R)=ZGL2(R)(I )

= GL2(R)=GL1(C) = SL±2 (R)=SO(2)

is the two-sheeted hyperboloid in the three-dimensional Minkowski spacesl(2, R) ∼=
R2,1, whereas the symmetric space

sl(2, R) ⊃ S+ = AdG(J) = G=ZG(J) = GL2(R)=ZGL2(R)(J)

= GL2(R)=GL1(C) = SL2(R)=SO(1, 1)

is the one-sheeted hyperboloid.
To finish the proof, in the case� = +1 we apply Corollary 4, in the case� = −1

[2] Theorem 7.3, since, by Proposition 4, the space of curvature tensors

R(g) = R(g)sl(2,R) = R(g)DS,

for S = S±.

7. The canonical �-Kähler-Einstein metric and contact structure on the
twistor space Z� of a para-quaternionic Kähler manifold

DEFINITION 12. An �-Kähler manifoldis a pseudo-Riemannian manifold (M, g)
together with a parallel skew-symmetric�-complex structureJ. An �-Kähler manifold
(M, g, J) is called aKähler manifold if � = −1 and apara-Kähler manifoldif � = +1.
The parallel symplectic form! = g(J · , · ) is called theKähler form.

REMARKS. The metric of a para-Kähler manifold has signature (n, n), since the
±1-eigendistributionsT±M of J are isotropic. Moreover, they are parallel and!-Lagrangian.

Conversely, abi-Lagrangian manifold[8], i.e. a symplectic manifold (M, !) with
two complementary Lagrangian integrable distributionsT±M, has the structure of a
para-Kähler manifold, whereJ|T±M = ±Id and g = !(J · , · ).

An integrable skew-symmetric�-complex structure on a pseudo-Riemannian man-
ifold is parallel, and hence defines an�-Kähler structure, if and only if the Kähler
form ! is closed, see [10] Theorem 1.

DEFINITION 13. An �-holomorphic distributionD of real codimension 2 on an�-complex manifoldZ is called an�-holomorphic contact structureif the Frobenius
form [ · , · ] :

∧2 D→ T Z=D is non-degenerate.

Theorem 3. Let (Z� , J �) be the�-twistor space of a para-quaternionic Kähler
manifold (M, g, Q) with non-zero reduced scalar curvature�. Then
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(i) the canonical metric gt = g�t on Z� is �-Kähler-Einstein if and only if t= −�=�.
Moreover, gt is Einstein if and only if t= −�=� or t = −�=(�(n + 1)).
(ii) The horizontal distributionHZ ⊂ T Z� is an �-holomorphic contact structure.

Proof. (i) By Theorem 2 and Proposition 7 the�-complex structureJ � is inte-
grable andgt -skew-symmetric for allt . By the above remark, to check when (Z� ,J � , gt )
is �-Kähler it is sufficient to check when the Kähler form!t = gt (J � · , · ) is closed.

The twistor bundleZ� = P=GA → M, see Proposition 9, is a bundle associated
with the principal bundle

P′ := P=ZG(GL2)→ M = P′=SO�3,

where SO�3 = SO(2, 1) for� = +1 and SO�3 = SO(1, 2)∼= SO(2, 1) for� = −1. In other
words, P′ is the SO�3-principal bundle of standard basesp = (J1, J2, J3) of Q�

x, x ∈ M,
where J2

1 = �Id, J2
2 = Id and J2

3 = −�Id. We have a natural projection

�P′ : P′→ Z� = P′=SO�2, (J1, J2, J3) 7→ J1,

where SO�2 = SO(1, 1) for � = +1 and SO�2 = SO(2) for � = −1 is the stabilizer of
(1, 0, 0)t ∈ R3.

The closure of!t is equivalent to the closure of its pull back!′t = �∗P′!t to P′.
The two-form!′t can be written as

(7.1) !′t = g′t (J1 · , · ), g′t = tgv + �∗P′g.

Here�∗P′g is the pull back of the metricg on M and gv is the metric on the vertical
bundle TvP′, which corresponds to a suitably normalized ad-invariant scalar product
〈 · , · 〉 on so�3 = Lie SO�3, extended by zero to the horizontal bundleH associated with
the Levi-Civita connection ofM. The normalization of the scalar product〈 · , · 〉 on
so�3 = ad(sl2(R)) ∼= sl2(R) = span{J0

1 , J0
2 , J0

3 } is given by

(7.2) −�〈adJ0� , adJ0� 〉 = −4�aÆ�� = 4〈J0� , J0� 〉,
where (J0

1 , J0
2 , J0

3 ) is the standard�-quaternionic basis ofsl2(R), with the relations

(7.3) (J0� )2 = ��Id, (�1, �2, �3) = (�, 1,−�).
The above scalar product onso�3 has signature (2, 1) if� = +1 and (1, 2) if� = −1.
The factor 4 is chosen such that the canonical projection (P′, g′t )→ (Z� = P′=SO�2, gt )
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is a pseudo-Riemannian submersion. Notice that the vertical vectors

adJ2, adJ3 ∈ Tv
p P′ ∼= so�3 = ad(sl2(R)), p ∈ P′,

are mapped to

adJ2 J1 = −2J3, adJ3 J1 = −2�J2 ∈ TvZ� ⊂ Q�
x
∼= sl2(R), x = �P′ (p).

The field p 7→ (J�)p is defined atp = (J1, J2, J3) as the following endomorphism of
Tp P′ = TvP′ ⊕ Hp

∼= so�3 ⊕ Tx M, x = �P′ (p),

J�|Hp : Tx M → Tx M, X 7→ J�X, J�|Tv P′ =
1

2
adJ0� .

It is sufficient to checkd!′t = 0 on three vectors, each of which are horizontal or ver-
tical. Moreover, it is sufficient to consider the fundamentalvertical fields (V1, V2, V3),
which correspond to (J0

1 , J0
2 , J0

3 ) and basic horizontal fieldsX,Y, Z, : : : on P′, i.e. hor-
izontal lifts of vector fieldsXM , YM , ZM on M.

Lemma 2. With the above notations we have
(i) [V1, V2] = 2V3, [V3, V1] = −2�V2, [V2, V3] = −2V1,
(ii) the functions g′t (V�, V�) and !′t (V�, V�) are constant for all�, � ∈ {1, 2, 3},
(iii) [ V�, X] = 0,
(iv) [ X,Y]v =−(�=2)

∑� ��g′t (J�X,Y)V� =−(�=2)
∑� ��g(J�XM ,YM )V�, where[X,Y]v

is evaluated at the point p= (J1, J2, J3) ∈ P′,
(v) LV� g′t = 0, LV1J1 = 0, LV2J1 = −2J3, LV3J1 = −2�J2 and
(vi) (LXg′t )(U , V) = 0 for all U , V ∈ TvP′.

Proof. (i) follows from the�-quaternionic relations

[ J0
1 , J0

2 ] = 2J0
3 , [J0

3 , J0
1 ] = −2�J0

3 , [J0
2 , J0

3 ] = −2J0
1 .

(ii) Since the metricgv corresponds to the ad-invariant scalar product (7.2), the
functions

g′t (V�, V�) = tgv(V�, V�) = −4�t〈J0� , J0� 〉 = 4�t��Æ��
are constant. Similarly, the functions!′t (V�, V�) are constant, because, for all funda-
mental vector fieldsV�, the vector fieldJ1V� is again a fundamental vector field.

(iii) The vector field [V�, X] is horizontal, since the principal action preserves
the horizontal distribution. On the other hand, it is mappedto [0, XM ] = 0 under the
projection P′→ M. This shows that [V�, X] = 0.

(iv) follows from Proposition 4, since [X, Y]v = −�′(X, Y), where�′ stands for
the curvature form of the principal bundleP′→ M.
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(v) LV� g′t = 0 follows from the ad-invariance ofgv, cf. (7.1). The remaining
equations are obtained from (i) using

J1V1 = 0, J1V2 = V3, J1V3 = �V2.

Finally, (ii) and (iii) easily imply (vi).

Part (i) and (ii) of the lemma, yields

d!′t (V1, V2, V3) = V1!′t (V2, V3)− !′t ([V1, V2], V3) + cycl. = 0.

Using part (i), (ii), (v) and (vi) of the lemma, we calculate

d!′t (V�, V� , X) = −!′t ([V� , X], V�)− !′t ([X, V�], V�) = −(LX!′t )(V�, V�)

= −g′t ((LXJ1)V�, V�) = −g′t ([X, J1V�] − J1[X, V�], V�)

= g′t (X, [V� , J1V�]) + g′t (X, [J1V� , V�]) = 0.

By (iii), (iv) and (v) of the lemma, we compute

d!′t (V1, X, Y) = V1!′t (X, Y)− !′t ([X, Y], V1)

= g′t ((LV1J1)X, Y) +
�
2

3∑

�=1

��g(J�XM , YM )!′t (V�, V1)

= 0 +
�
2

3∑

�=1

��g(J�XM , YM )g′t (J1V�, V1) = 0,

sinceJ1TvP′ = span{V2, V3}. Similarly, we calculate

d!′t (V2, X, Y) = V2!′t (X, Y)− !′t ([X, Y], V2)

= g′t ((LV2J1)X, Y) +
�
2

3∑

�=1

��g(J�XM , YM )!′t (V�, V2)

= −2g′t (J3X, Y) +
�
2

3∑

�=1

��g(J�XM , YM )g′t (J1V�, V2)

= −2g(J3XM , YM ) +
�t

2
�3g(J3XM , YM )gv(J1V3, V2)

= −2g(J3XM , YM ) +
�t

2
(−�)g(J3XM , YM )gv(�V2, V2)

= −2g(J3XM , YM )− 2��tg(J3XM , YM ),
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since gv(V2, V2) = −4�〈J0
2 , J0

2 〉 = 4��2 = 4�. In the same way, we obtain

d!′t (V3, X, Y) = −2�g(J2XM , YM ) +
�t

2
g(J2XM , YM )gv(J1V2, V3)

= −2�g(J2XM , YM ) +
�t

2
g(J2XM , YM )gv(V3, V3)

= −2�g(J2XM , YM )− 2�tg(J2XM , YM ),

sincegv(V3, V3) = −4�〈J0
3 , J0

3 〉 = 4��3 = −4. This shows thatd!′t (U , X, Y) = 0 for all
vertical vector fieldsU if and only if �t = −�.

It remains to check thatd!′t (Xp, Yp, Zp) vanishes on three horizontal vectors

Xp, Yp, Zp ∈ Hp, p ∈ P′.

Let t 7→ c̃(t) = (J1(t), J2(t), J3(t)) ∈ P′ be the horizontal lift of a curvet 7→ c(t) ∈ M
such thatc̃(0) = p and c̃′(0) = Xp. Notice that the horizontality of̃c means thatt 7→
J�(t) is parallel alongc.

Let t 7→ Y(t) ∈ Hc̃(t) be the horizontal lift of the vector field

t 7→ YM (t) := ‖c(t)
c(0) d�P′Yp ∈ Tc(t)M,

which is parallel along the base curvec. The initial value ofY is Y(0) = Yp. It suffices
to prove that

(∇ ′Xp
!′t )(Yp, Zp) = g′t ((∇ ′Xp

J1)Yp, Zp) = 0,

where∇ ′ is the Levi-Civita connection ofg′t . We have to check that the horizontal
component of

(∇ ′Xp
J1)Yp = ∇ ′Xp

(J1Y)− J1∇ ′Xp
Y

vanishes. Therefore, we calculate

d�P′ (∇ ′Xp
(J1Y)− J1∇ ′Xp

Y) = ∇c′(0)(J1(t)YM (t))− J1(0)∇c′(0)YM (t)

= (∇c′(0)J1(t))YM (0) = 0.

Here we have used two facts: first, thatt 7→ J1Y(t) is a basic horizontal vector field
along c̃, which projects onto

d�P′J1Y(t) = J1(t)YM (t)

and, second, thatd�P′∇ ′XY = ∇XM YM for any two basic horizontal vector fieldsX, Y
(e.g. along a horizontal curve), where∇ is the Levi-Civita connection inM. The lat-
ter is a standard fact about pseudo-Riemannian submersions. This proves thatgt is�-Kähler-Einstein if and only ift =−�=�. The above argument proves also the follow-
ing proposition.
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Proposition 15. For any horizontal vectors X, Y, Z on P′ and� = 1, 2, 3,we have

g′t ((∇XJ�)Y, Z) = 0.

Next we study the Einstein equations for the familyg′t . We recall the definition of
the O’Neill tensor and the O’Neill formulas for the covariant derivative of a pseudo-
Riemannian submersion� : E → M with totally geodesic fibres, see [12, 5]. The
O’Neill tensor A ∈ �1(EndT E) is a one-form with values in skew-symmetric endo-
morphisms. It is given by

(7.4) AU = 0, AXY = −AY X = (∇XY)v =
1

2
[X, Y]v, AXU = (∇XU )h,

where U is a vertical vector field andX, Y are horizontal vector fields. The super-
scriptsv and h stand for the vertical and horizontal components, respectively. If X is
a basic horizontal vector field then, in addition

(7.5) AXU = (∇XU )h = ∇U X.

The covariant derivatives inE are given by

∇U V = ∇F
U V ,(7.6)

∇U X = (∇U X)h,(7.7)

∇XU = (∇XU )v + AXU ,(7.8)

∇XY = AXY + (∇XY)h.(7.9)

Here∇F and∇M denote the covariant derivative in the fibresF and in the baseM,
respectively. For basic horizontal vector fieldsX, Y, we have [U , X]h = 0 for any
vertical (and hence projectable) vector fieldU . Moreover, we have

(∇XU )v = [X, U ],(7.10)

�∗∇XY = ∇M�∗X�∗Y.(7.11)

In particular,∇XY is a projectable vector field onE.

Proposition 16 (cf. [12]). Let � : E → M be a pseudo-Riemannian submersion
with totally geodesic fibres F. Then the Ricci and scalar curvatures of E are given by:

Ric(U , V) = RicF (U , V) +
∑

i

�i 〈AXi U , AXi V〉,(7.12)

Ric(X, U ) = 〈(div A)X, U〉 =
∑

i

�i 〈(∇Xi A)Xi X, U〉,(7.13)
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Ric(X, Y) = RicM (�∗X, �∗Y)− 2
∑

i

�i 〈AX Xi , AY Xi 〉,(7.14)

scal =�∗scalM + scalF −
∑

i , j

�i � j 〈AXi X j , AXi X j 〉.(7.15)

Proposition 17. The divergencediv A ∈ 0(EndT P′) of the O’Neill tensor of the
principal bundle P′→ M preserves the horizontal distribution. In particular,

Ric(X, U ) = g′t ((div A)X, U ) = 0.

Proof. By (7.4) and Lemma 2 (iv), the value of the O’Neill tensor on two basic
horizontal vector fieldsX, Y is given by

(7.16) AXY =
1

2
[X, Y]v = −�

4

∑

� ��g′t (J�X, Y)V�.

It is sufficient to prove thatg′t ((∇X A)Y Z, U ) = 0. This follows from the remark that
∇XV� = AXV� is horizontal, by (7.5), and Proposition 15.

The skew-symmetry ofAX and (7.16) imply

(7.17) AXU =
�
4

∑

� ��g′t (U , V�)J�X.

In fact,

g′t (AXU , Y) = −g′t (U , AXY) =
�
4

∑

� ��g′t (J�X, Y)g′t (U , V�).

Proposition 18. Let P′ be the total space of the principal bundle P′ → M of
admissible frames of Q over a para-quaternionic Kähler manifold (M, g, Q). Then
the Ricci curvature of the metric g′t on P′ is given by:

Ric(U , V) = −�( 1

2t
+ �2nt

)
g′t (U , V), U , V ∈ TvP′,(7.18)

Ric(U , X) = 0,(7.19)

Ric(X, Y) =

(�(n + 2) +
3��2t

2

)
g′t (X, Y), X, Y ∈ H = (TvP′)⊥.(7.20)

Proof. We calculate the Ricci curvature using the formulas in Proposition 16. The
fibre F is identified with the Lie group SO(2, 1) with a bi-invariant pseudo-Riemannian
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metric g′t , which is related with the Killing formB by

(7.21) g′t =
�t
2

B,

see (7.2). Therefore

(7.22) RicF = −1

4
B =
−�
2t

g′t .

We compute the second term in equation (7.12) using (7.17):

∑

i

�i 〈AXi U , AXi V〉 =
∑

i

�i
�2

16

∑

� �2�g′t (U , V�)g′t (V , V�)g′t (J�Xi , J�Xi )

=
�2

16

∑

i ,� �
2
i (−��)g′t (U , V�)g′t (V , V�) = −��2ntg′t (U , V).

This implies the first equation (7.18). The second equation (7.19) was already es-
tablished in Proposition 17. SinceM is an Einstein manifold with scalar curvature
scalM = 4n(n + 2)�,

(7.23) RicM =
scal

4n
g = �(n + 2)g.

We compute the second term in equation (7.14) using (7.16):

−2
∑

i

�i 〈AX Xi , AY Xi 〉 = −2
∑

i ,� �i
�2

16
g′t (J�X, Xi )g

′
t (J�Y, Xi )g

′
t (V�, V�)

= −�2

8

∑

� g′t (J�X, J�Y)g′t (V�, V�)

= −�2

8

∑

� (−��)g′t (X, Y)(4�t��)

=
3��2t

2
g′t (X, Y).

This proves the proposition.

Corollary 5. Let P′ be the total space of the principal bundle P′ → M of ad-
missible frames of Q over a para-quaternionic Kähler manifold (M, g, Q) with reduced
scalar curvature�. Then the metric g′t is Einstein if and only if

t =
−�� or t =

−��(2n + 3)
.
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The corresponding Einstein constant is, respectively,

c =

(
n +

1

2

)� and c=
4n2 + 14n + 9

4n + 6
�.

Next we calculate the Ricci curvature of the metricg�t on the twistor spacesZ� =
P′=SO�2, � = ±1.

Proposition 19.

(AXY)J1 =
�
2

(g(J2�∗X, �∗Y)J3 − g(J3�∗X, �∗Y)J2) ∈ Tv
J1

Z = span{J2, J3},(7.24)

AX J2 = −�2
�t

2
J̃3�∗X = −�t

2
J̃3�∗X,(7.25)

AX J3 = �3
�t

2
J̃2�∗X = −� �t

2
J̃2�∗X,(7.26)

where X and Y are horizontal vectors and̃XM ∈ TJ1 Z� denotes the horizontal lift of
the vector XM ∈ T�(J1)M.

Ric(U , V) = −�(1

t
+ �2nt

)
g�t (U , V),(7.27)

Ric(X, U ) = 0,(7.28)

Ric(X, Y) = (�(n + 2) +��2t)g�t (X, Y),(7.29)

where U and V are vertical vectors.

Proof. The equations (7.24)–(7.26) are obtained from (7.16), (7.17) and (7.21).
We calculate the Ricci curvature using the formulas in Proposition 16. In fact, the
projection� : Z� → M is a pseudo-Riemannian submersion with totally geodesic fibre
F = SO�3=SO�2, where SO�3 ∼= SO(2, 1) and SO�=+1

2 = SO(1, 1) and SO�=−1
2 = SO(2). Here

Z�x ⊂ Q�
x = span{J1, J2, J3}, where (J1, J2, J3) is an admissible basis such thatJ2� = ��Id

and (�1, �2, �3) = (�, 1,−�). In both cases, the Lie algebraso�2 = R ad(J1). The fibre F
is a two-dimensional symmetric space, with symmetric decomposition

so�3 = so�2 + m, m = R ad(J2) + R ad(J3).

The curvature tensor is given by

R(ad(J2), ad(J3)) = − ad[ J2, J3] |m = 2 adJ1|m

and the sectional curvature of the metricgF = g�t |F = tgv is −�=t . In particular,

(7.30) RicF = −�gv = −�
t

gF .
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Next we compute the second term in equation (7.12) using (7.25):

∑

i

�i g
�
t (AXi J2, AXi J2) =

�2t2

4

∑

i

�i g(J3�∗Xi , J3�∗Xi )

= �2t2n(−�3) = ��2t2n

= −��2tng�t (J2, J2),

sinceg�t (J2, J2) = −t�2 = −t . The same calculation for (U , V) = (J2, J3) and (U , V) =
(J3, J3) shows that for any two vertical vectorsU , V , we have

∑

i

�i g
�
t (AXi U , AXi V) = −��2tng�t (U , V).

This proves (7.27).
Now we calculate the second term in equation (7.14) using (7.24).

−2
∑

i

�i g
�
t (AX Xi , AY Xi )

= −�2

2

∑

i

�i g(J2�∗X, �∗Xi )g(J2�∗Y, �∗Xi )g
�
t (J3, J3)

− �2

2

∑

i

�i g(J3�∗X, �∗Xi )g(J3�∗Y, �∗Xi )g
�
t (J2, J2)

= −�2

2
g(J2�∗X, J2�∗Y)g�t (J3, J3)− �2

2
g(J3�∗X, J3�∗Y)g�t (J2, J2)

= −�2

2
[(−�2)(−t�3) + (−�3)(−t�2)]g�t (X, Y) = ��2tg�t (X, Y).

This proves (7.29).

To prove that Ric(X, U ) = 0, by Proposition 16 we have to check that divA pre-
serves the horizontal distributionHZ ⊂ T Z� . It sufficient to prove that

g�t ((∇X A)Y Z, J �U ) = 0

for all basic horizontal vector fieldsX, Y, Z and vertical vector fieldsU . We compute
this using the fact that∇J � = 0 and (7.10):

g�t ((∇X A)Y Z, J �U ) = Xg�t (AY Z, J �U )− g�t (AY Z, J �∇XU )

= Xg�t (AY Z, J �U )− g�t (AY Z, J � [X, U ]).
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Lemma 3. For any basic horizontal vector fields X, Y and vertical vector field
U we have

(7.31) g�t (AXY, J �U ) =
��t

2
g(U�∗X, �∗Y) = −1

2
U!t (X, Y),

where!t = g�t (J � · , · ) is the �-Kähler form and the value UJ1 ∈ Tv
J1

Z = span{J2, J3} ⊂
Qx, x = �(J1), of the vertical vector field U at the point J1 ∈ Z� is considered as an
endomorphism of Tx M.

Proof. The first equation follows from (7.24) and the formulas J � J2 = J3, J � J3 =�J2. For the second equality we use that [U , X] and [U , Y] are vertical and that!t is
closed:

LU (!t (X, Y)) = (LU!t )(X, Y) = (d�U!t )(X, Y)

= −!t (U , [X, Y]) = −2g�t (J �U , AXY).

The following corollary finishes the proof of Theorem 3 (i).

Corollary 6. Let Z� , � =±1, be the twistor spaces of a para-quaternionic Kähler
manifold. Then the metric g�t is Einstein if and only if

t = − �� or t = − ��(n + 1)
.

The corresponding Einstein constant is, respectively,

c = (n + 1)� and c=
n2 + 3n + 1

n + 1
�.

(ii) By Theorem 2, we know that the horizontal distributionHZ ⊂ T Z� is holo-
morphic if� =−1 and para-holomorphic if� =−1. We show that it is a para-holomorphic
contact structure if� = +1. The case� = −1 is similar. We have to check that the
Frobenius form

H1,0
Z ×H1,0

Z ∋ (Z, W) 7→ ([Z, W] modH1,0
Z ) ∈ T1,0Z�=H1,0

Z

of H1,0
Z is nondegenerate.

Let X and Y be basic horizontal vector fields onP′ and Z = X + eJ1X and W =
Y+eJ1Y the corresponding sections ofH1,0⊂H⊗C = H+eH the (+e)-eigenbundle of
the C-linear extension ofJ1 on H⊗C. Notice thatJ 2

1 |H = �Id = Id, since� = +1. Let
us calculate, with the help of part (iv) of Lemma 2, the vertical component of [Z, W]
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at any pointp = (J1, J2, J3) ∈ P′:

[Z, W]v = −�
2

∑

� ��(g(J�XM , YM ) + g(J� J1XM , J1YM ))V�
− e

�
2

∑

� ��(g(J�XM , J1YM ) + g(J� J1XM , YM ))V�
= −�(�2(XM , YM )V2 − �3(XM , YM )V3)

+ e�(�3(XM , YM )V2 − �2(XM , YM )V3)

= −�(�2(XM , YM )− e�3(XM , YM ))(V2 + eV3),

where �� = g(J� · , · ). This shows that the Frobenius form ofH1,0 ⊂ T P′ ⊗ C is
nondegenerate. Let us denote byX̃M and ỸM the horizontal lifts of XM and YM to
vector fields onZ� . We put Z̃ := XM + eJ �XM and W̃ := YM + eJ �YM . Thanks to
the above formula, we can calculate the vertical component of [ Z̃, W̃] at the point
z = J1 ∈ Z� , which is the image ofp = (J1, J2, J3) ∈ P′ under the natural projection
P′→ Z� = P′=SO�2.

[ Z̃, W̃]v = −�(�2(XM , YM )− e�3(XM , YM ))([ J2, J1] + e[ J3, J1])

= 2�(�2(XM , YM )− e�3(XM , YM ))(J3 + eJ2).

This shows thatHZ ⊂ T Z� is a para-holomorphic contact structure if� = +1.

8. Twistor construction of minimal submanifolds of para-quaternionic Kähler
manifolds

8.1. Kähler and para-Kähler submanifolds of para-quaternionic Kähler man-
ifolds.

DEFINITION 14. Let (M, g, Q) be a para-quaternionic Kähler manifold of dimen-
sion 4n. An �-Kähler submanifold(� =±1) of M is a triple (N, J� , gN), whereN is a
2m-dimensionalg-nondegenerate submanifold ofM, gN = g|N is the induced pseudo-
Riemannian metric andJ� is a parallel section of the para-quaternionic bundleQ|N
such thatJ�T N = T N and (J�)2 = �Id. For � =−1 (M, J� , gN) is called also aKähler
submanifoldand for � = +1 it is called apara-Kähler submanifold.

We shall includeJ� into a local frame (J1 = J� , J2, J3 = J1J2 = −J2J1) of Q|N
such thatJ2

2 = Id. Such frames (J�) will be calledadaptedto the�-Kähler submanifold
N ⊂ M.

Proposition 20. Let (M, g, Q) be a para-quaternionic Kähler manifold of dimen-
sion4n with non-zero reduced scalar curvature� and N a g-nondegenerate submanifold
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of M endowed with a section J� ∈ 0(N, Q) such that(J�)2 = �Id and J�T N = T N. Let
(J�) be a standard local basis of Q such that J1|N = J� . Then the triple(N, J� , gN) is
an �-Kähler submanifold if and only if!2|N = !3|N = 0 or, equivalently, J2T N ⊥ T N.
In particular, the dimension of an�-Kähler submanifold N⊂ M is at most2n.

Proof. It is clear thatJ1 is parallel if and only if!2|N = !3|N = 0, see (3.2).
Moreover, if !2|N = !3|N = 0, then, by the structure equation (3.3), we have that�2|N = �3|N = 0. Conversely, assume thatJ2T N ⊥ T N, i.e. �2|N = �3|N = 0. Dif-
ferentiating the structure equations for�2 and �3, we get

�d� ′� = −���� ′� ∧ ! + ���!� ∧ � ′ .
Restricting this equation for� = 2, 3 to the the submanifoldN yields

�1 ∧ !2|N = �1 ∧ !3|N = 0.

This shows that!2|N = !3|N = 0, i.e. thatJ� ∈ 0(N, Q) is parallel.

Proposition 21. The shape operator A of an�-Kähler submanifold(N, J� , gN)
of a para-quaternionic Kähler manifold(M, g, Q) anticommutes with J:= J� |T N.

Proof. Let� be a normal vector field onN. Then the shape operatorA� ∈ 0(EndT N)
is defined by

g(A� X, Y) = −g(∇X� , Y) = −g(∇Y� , X) = g(� , ∇Y X).

Thus

g(A� J X, Y) = g(� , ∇Y(J X)) = g(� , J∇Y X) = −g(J� , ∇Y X) = −g(J� , ∇XY)

= g(� , J∇XY) = g(� , ∇X(JY)) = g(A� X, JY) = −g(J A� X, Y).

Corollary 7. Any �-Kähler submanifold of a para-quaternionic Kähler manifold
is minimal.

Proof. SinceA� anticommutes withJ, we haveA� = −J A� J−1. Hence trA� =
−tr A� = 0.

8.2. Twistor construction of Kähler and para-Kähler submanifolds of para-
quaternionic Kähler manifolds. Let (M, g, Q) be a para-quaternionic Kähler man-
ifold and �Z : Z� → M its �-twistor space with the horizontal distributionHZ . For
any �-Kähler submanifold (N, J� , gN) the sectionJ� : N → Z� ⊂ Q defines an em-
bedding of N into Z� . The imageÑ = J�(N) ⊂ Z� is called the canonical lift of
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N in the twistor spaceZ� . The following theorem gives the description of�-Kähler
submanifolds ofM in terms of �-complex horizontal submanifolds ofZ� , i.e. sub-
manifolds L ⊂ Z� such thatJ �T L = T L and T L ⊂ HZ .

Theorem 4. Let (N, J� , gN) be an�-Kähler submanifold of a para-quaternionic
Kähler manifold(M, g, Q) and Ñ = J�(N) ⊂ Z� its canonical lift. Then
(i) Ñ ⊂ Z� is an �-complex horizontal submanifold which is nondegenerate with re-
spect to the canonical one-parameter family of metrics g�

t on Z� . Moreover, in the
case� = +1 the restriction ofJ � to Ñ is a para-complex structure in the strong sense.
(ii) Conversely, let L ⊂ Z� be an �-complex horizontal submanifold which is non-
degenerate with respect to g�t and such that�Z |L : L→ �Z(L) ⊂ M is a diffeomorphism.
Then its projection(N = �Z(L), J� , gN) is a (minimal) �-Kähler submanifold of M,
where

J� = d�Z ◦ J � ◦ (d�Z)−1 : T N→ T N, gN = g|N .

Proof. (i) SinceJ� is parallel, the submanifold̃N = J�(N) ⊂ Z� , is horizontal.
Its tangent bundleT Ñ ⊂ HZ is J �-invariant, since

d�Z ◦ J � = J� ◦ d�Z ,

on the horizontal distributionHZ , by the definition ofJ � , see (4.2). In the case� =
+1, J� is a para-complex structure in the strong sense, becauseJ� is skew-symmetric
for the metricgN . Since (TzÑ, J �

z |Ñ) ∼= (Tx N, J�x ), x = �Z(z), J � restricts to a para-
complex structure in the strong sense onÑ.

(ii) The �-complex structureJ� ∈ 0(N, Q�) is parallel, sinceL = Ñ is horizontal.
This proves that (N, J� , gN) is an �-Kähler submanifold ofM.

REMARK . The nondegeneracy assumption on the metricg�t |L is essential even if
we assume that dimL = 2n. Indeed there exist 2n-dimensionalJ�-invariant isotropic
subspacesU ⊂ Tx M.
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