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1. Introduction

The steady-state wave propagation problems in homogeneous media are
governed by first order systems of the form

(AN =g,
where

A= 31 4,D;

(D;=(1/i)d/0x;, A;’s are m X m hermitian matrices).
Let A be a perturbed system of A° having the following form:

(1.1) A:E@ﬂépu@a+mm- (x€9),

where Q is an exterior domain with smooth boundary, that is, R"\Q is compact.
In this paper we consider a steady-state wave propagation problem in inhomo-
geneous media. The steady-state wave propagation problem treated here is the
following:

(A—ANv=g for x€Q (g: given)
(1.2) v satisfies 4 (or —) radiation condition
v(x) EN(x) for x€0Q,

where N(x) is a prescribed vector subspaces of C" depending smoothly on
x€0Q. The coefficients and N(x) satisfy the conditions given later, which
includes the wave propagation in crystals. Our purpose here is to prove Rellich
uniqueness theorem and to establish the limiting absorption principle. The
most difficult point is how to define the radiation condition, because the ex-
istence of the singularities and the parabolic points of the slowness surface
complicates the behavior at infinity of the solution. However in our previous
paper [4] we obtain the expansion formula at infinity of the Green function of
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A’—) under some conditions which includes the wave propagation problem

in crystals. We use the result of [4] crucially.
In [4] we assume that the space dimension 7 is odd. This is also assumed

here. The conditions for A are the following:

Ai) E(x) is hermitian, positive definit, bounded and measurable in x€Q,
Aj(x)’s are hermitian and continuously differentiable with respect to x, B(x) is
continuous with respect to x.

Aii) The operator A is formally self-adjoint, that is,

i=

z"}&;_f'(’f)_zi{B(x)—B(x)*} for x€Q.
Xj

Aiii) Outside of a sufficiently large ball, say for |x|>R, E(x)=1,
Aj(x)=A; (constant) and B(x)=0.

Note that, by Ai), 4;’s are hermitian.

Aiv) N(x) is maximally conservative, that is,
(2 Ajx)n®))f =0  forany £&N(x)

and N(x) is not properly contained in any other subspace of C™ having this
property. (n(x)=(m(x), +*+, n,(x)) is the outer unit normal of 8Q at x).
Av) A satisfies the following condition:
1) A°is strongly propagative.
2) The symbol of A° satisfies Si)~Svi) of [4, section 1]*).
3) If n>3, we assume

| K(s)| = Const. dists(s, Zs) -

(K(s) is the Gaussian curvature of S. Zs is the set which containes all algebraic
singularities and all parabolic points of S. The exact definition is given in [4,
page 579]).

Avi) rank A(x, n(x)) = Const. near 9Q.

Avii) For any Ry<r'<r and any u€ D(A)S TI(A)

,é": IDjulla,, < Const. {lullo,+||Aulla,} ,

where Q,= {|x| <7} N Q’”u”Qr:(SQ u(x)*E(x)u(x)dx)"* and JI(A) is the nullspace
of A. ’

*) Here we correct the assumption Si) in page 579. “‘(n—d)-dimensional”’ must be replaced with
“(n—1—d)-dimensional”.
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ReMarg If A has the form
A - E(x)-l 2 A,D, )
i=1

Q=R" and E(x)EC(R"), then the assumption Avii) follows from Ai)~Av).
(See J.R. Schulenberger and C.H. Wilcox [12]).

The main Theorem of this paper is as follows:
Theorem 1.1. Let \ER\{0}. If v.E L% (Q) satisfies
(A=A =0  for x€Q

(1.3) V.. satisfies + radiation condition
v.EN(x) for x€0Q,

then v.€ L¥(Q).
Especially v =0 if N&Eo,(A).

We shall apply Theorem 1.1 and establish the limiting absorption principle
(Theorem 5.1), which assures the existence of the solution of the steady-state
wave propagation problem (1.2). Then, the eigenfunction expansion theorem
for A (Theorem 6.1) can be derived from Theorem 5.1. Here the generalized
eigenfunction will be obtained as the unique solution of the following steady-
state wave propagation problem.

(A—NENPHE) = ((E)—NER) (= P,(%))
(1.4) &7 satisfies 4- radiation condition
DFe=N(x) for x€0Q

(Aj()’s are eigenvalues of A%() and Isj(f)’s are projections to the eigenspaces.
See [4, section 2]).

The theory of eigenfunction expansion is developed mainly for the Schrod-
inger equation and the d’Alembert equation (see, for example T. Ikebe [2],
C.H. Wilcox [15]). For example in the case of the d’Alembert equation the
steady-state wave propagation problem is to solve the Helmholtz equation under
the Sommerfeld radiation condition. So the generalized eigenfunction is charac-
terized as the unique solution of the Helmholtz equation satisfying the Som-
merfeld radiation condition. For first order systems K. Mochizuki [6] treated
isotropic systems, that is, the systems whose slowness surface (defined by [4,
(0.7)]) consists of some concentric spheres. J.R. Schulenberger and C.H.
Wilcox [8] treated the systems whose slowness surface is smooth and strictly
convex. They found radiation conditions attached the steady-state wave prop-
agation problem and obtained the generalized eigenfunctions as the unique
solutions of steady-state wave propagation problems. But there are many
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important systems in physics which are not included in their theories. The wave
propagation problem in crystals is one of such systems. There are some liter-
atures related to the wave propagation in crystals (H. Tamura [13], R. Weder
[14]). In these papers they show the limiting absorption principle, and their
theories assure the existence of the generalized eigenfunctions. Concerning
their results it is conjectured that these generalized eigenfunctions can be char-
acterized as the unique solutions of steady-state wave propagation problems
under suitable radiation conditions. But this fact has not yet been shown.
Our Theorem 1.1 shows that the above conjecture holds.

The paper is organized as follows. In section 2 some fundamental facts
related to the unperturbed system are shown. In section 3 the radiation con-
dition will be defined and the Rellich uniqueness theorem for the unperturbed
system A°—) will be proved. Section 4 is devoted to prove Theorem 1.1,
that is, the Rellich uniqueness theorem for A—X. In section 5 the limiting
absorption principle will be established. In section 6 the eigenfunction expan-
sion theorem will be stated briefly.

The author would like to express his sincere gratitude to Professor M.
Ikawa for his kind suggestions and constant help.

2. Some fact related to the unperturbed (homogeneous) system

First we shall consider the equation
(2.1) (AN—Du=f,

where {&C\ {0} and feC7(R"). In this section some properties which play
an important role in the followring sections are prepared.

The Green function G and G, are defined in [4, (0.5) and (0.6)]. They
satisfy

{(A"—C)G(x, &) = 8(x)1 ”

2.2)
(A*—N)Ga(x, N) = 8(x)T

Let D be a bounded open set of R", and let U be an open ball in R" with
center at origin. Bounded domains X and W are taken with
W4+UcX and XccD.
Let ¢ be a smooth function with
{ 1 for xeX
¢= 0 for x€R"\D

and #=¢u. U’'S U is another open ball with center at origin and we put
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1 for x€U’
¥(x) = "
0 for x€R"\U.
Then the following theorem holds (J.R. Schulenberger [7]).
Theorem 2.1. If a distribution u satisfies
ANu—8fu=0 in R"
for E&C\ {0}, then u satisfies for any x€ W

u(x) = ux(A°—EI)(1—4r)G(x, §)
= [(A°—&Dal*(1—)G(x, &) .
RemMark Theorem 2.1 holds for any G which satisfies (2.2).
Denote by A a subset of complex plane
A = { = A€ (or A—1E); NE]a, b] and E€(0, &}

for [a, )] R"\ {0} and §>0. Let{&A and let feCF(R"). Then the solution
u=u(x, §) of (2.1) has the following representations

u(, §) = FHA()—ED) )]
(23) = O+ 12 ([ b1 7601 i) ar

—o0

where 7T(s) is the polar reciplocal map on S ([4, page 579]), Is(s)zlﬁ,,(s) (projec-
tion to the eigenspace associated with \;) if s€S,, ¢, is a function given by
(2.15) of [4] and #°(x, §) is a function satisfying

|d%(x, £)| <C |x]™*

for some constant C independent of & and »=x/|x|. The proof of (2.3) is
almost the same as that of (2.25) of [4] (the case of the Green function). The
formula (2.3) implies the following lemma.

Lemma 2.2. For any >0 it follows that
lu(x, £)| =Co|x|°

with a constant C, independent of n and tEA. Moreover u(x, A4-1€) converges to
a limit u(x, \) uniformly for & on A. Then it follows that

lus(x, M) | =Colx]°.

The proof of Lemma 2.2 is almost the same as that of the last part of The-
orem 7.1 of [4].
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The following theorem can be proved in the same way as the proof of
Theorem 7.1 of [4].

Theorem 2.3. Under the same assumption of Theorem 7.1 of [4] the limit
us(x, \) = linol u(x, A1€)
e

exists and u.(x, \) satisfies

pCEM) 1 .
ui(x, x) — 2 ethIlT(s)l le - (n-1)/2 I A I (n—-1)/2

y=1

° IK(S) I —1/2| T(S) I —lp(s)"p'sign(ﬂ)(s) |l=s(y)(in)+qi(x) 7\') ’

where q. satisfies that for any p with 1= p<<1+4-1/I (I of Theorem 7.1 of [4]) there
exists v=v,>>0 such that

(2.4)

(25) | g, A)| SC () ] =D~
and
(2.6) Clp)EL¥(S*Y).

(s (n)=s5"""()=5"() with B=p(y). See [4, page 606~page 607]. +r, and
r_ are defined in [4, page 586]).

3. The Rellich uniqueness theorem for unperturbed (homogene-
ous) system

To begin with we shall formulate the radiation condition, which is suitable
for our problem.

In section 1 we introduced a set Zs. Here we introduce the other sets.
Let Zy be the polar reciprocal image of Zs (see [4, page 580]). Then we denote
by Zs and Z by

Zs={rs; rER, s&Z}
and
Zy={rw; rER, wEZy},

respectively. (In [4] we denote these sets by Z and Z, respectively.)
Let P, be a class of all complex-valued functions R(y, £) defined on
(S"\Zy) x R" with the following properties:

i) R(n, &)= a,(n)t” (a polynomial of &), where a,()EC=(S*\Zy).
i)  R(y, A (4%))=0, R(y, AsP(F7))=£0

for ")’=1, 2) °tty P(:f:’?), VES”_I\ZW'
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Remark that P, (and 2_) are not empty. In fact the function
pCxm
Run, &) =11 (s —A0s"(:£n)

satisfies the conditions i) and ii) above.
Next we shall construct a function B, P, which satisfies

(3.1) Ry, 5)eP, and 1—R,(—n )P, .

Let Ri(n, £)=32 ay()€" be a function of P. and Ry ,(», &)= bu(n)&" be
a function which satisfies

R (0, M (F)) =Rl AsP(Fm)) 7.
R, , can be constructed in the following way. Put
Pi(n, §) = 33 (E—AP(F)?

and

(v, §) = pi(n, E) -+ D5(n, &) -+ Poien(n, £)
- {pE(n, MO(Fn)) -+ B, AsP(F))
oo pﬁ?ﬂ)(’?) M(y)(:Fﬂ))} —l:

where pF denotes the omission of the factor pF. Then

I, AMs®(Fy)) = Oys .

So put

Resln, §) = 33 Raln, Ms(F)) o, £)
Define
(62 Ruln, £) = Rusln, ERul, £) = 3} amlbu(n)™

Then R, satisfies (3.1) because R, satisfies
Ri(n, M(Ln)) =0, Rufy, M(Fn)) =1
and
Ru(—n, MD(Ln)) = Ru(—n, M) (F(—n))) = 1.
Next we give the definition of 4 radiation condition for the operator A—AX.

DerFINITION A function u& L, (Q) is said to satisfy - radiation condi-

tion when u satisfies
Ri) uis smooth in {|x|>Rg} for a large R, positive.
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Rii) |u(x)| =C,<x)° for any c>0 and for some constant C,.
Riii) There exists a funciion C(y)€L?(S*™) for any 1= p<2 if n<<3, or
for some p>1 if n=3 such that

(@) | = C(y) | x| =D/

Riv) Let a(¢)EC=(R") be a function which satisfies supp @ C R"\Zs and
have polynomial order at infinity, and let B(x) & C*(R") be a function such that

6.3) sw={] § Ian

1 if |x|=Ry+1.
Then there exists some constant C, g such that
(34) |a(D.)(Bu) | =C,,plx| =72,
and it holds that for any RE P, and for any X C5(S*\Zy)
3.5) |X(m)R(n, D.)[ot(D:)(Bu)]| < Cayp,x|x] 7.

RemARk 1 If there exists a function B,& C=(R") with (3.3) which satisfies
(3.4) and (3.5), then any @ with (3.3) satisfies (3.4) and (3.5). In fact, since both
Bo and B have the property (3.3),

Lu—pLBu =0 for |x|=<Ryand |x|=R,}+1.

Then Bu—pBusCy(R") for any function u satisfying the radiation condition,
and since a(D,) is a pseudodifferential operator of finite order, a(D,)[Bu—Bwu]E
S. Hence

a(D,)[Bu] = a(D,)[Bu— Bou]+a(D;)[Bou]
satisfies (3.4) and (3.5).
RemARk 2 A solution u of
(A—Nu=f for feCFR"

satisfies 4 radiation condition if and only if # satisfies Ri)~Riii) for R,=0
and (3.4) and (3.5) for @=1. This fact is clear from the hypoellipticity of
A'—([10]).

First we prove the existence theorem.
Theorem 3.1. Puz
uw, §) = FA()—ED/()]  (CEC\R and fECTR")

and
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us(x, A) = lel\r‘n u(x, N1€).
0

Then u.(x, \) is a solution of
(N =1
which satisfies 4 radiation condition.
Proof. Clearly it holds that
(A —Q)u(x, £) = f.

The both sides of this equation converge as £\(0 in the sense of &', and this
implies that #.(x, A) is a solution.

As for the radiation condition u.(x, A) satisfies Ri) clearly from the hypoel-
lipticity of A°—2, Rii) from (2.7) and Riii) from Theorem 2.3. Then it remains
only to prove that u, satisfies Riv). From Remark 2 it is enough to prove the
case of B=1. Operate a(D,) to the both side of (A*—{)u(x, {)=f. Since both
a(g)and A°(E)— are independent of x, they commutes. Thus it follows that

(A°—8)a(D,)u = a(D,)f .
In the same way as in the case of the Green function we can represent

i
e r—L

o Ssefrs-x B(s)| T(s)| = ax(rs) f(rs)(rs)2S) dr ,

a(D,)u(x, §) = u,,o(x, §)+S

where
[g,0(%, )| =Cylx|™
(C, is independemt of =S*! and {€A).

Note that supp () CR"\Zs. Put
v(x, 1) = sse"“}s(s)l T(s)| "ex(rs)f (rs) py(rs) &S .
It is an integral on a smooth surface. Then we apply the usual stationary

phase method to this integral, and we have

pCn) ) _
o(x, 7) = ygl (zn.)—(n—l)/zexlxllT(s)l IIK(s) | -1z

<1 T(s) | P (5) o(r5)x(rs) f (74 (5) | s=iind
. x| '(”-l)/z_{_p(ﬁl)(zﬂ)-("‘1)/2eflxllT(8)l—l
Y=1

< | K(s)] ~¥2| T(s) | = B(s)ps(rs)ex(rs) F ()
"\]I‘_(S) I:=s(7)(—n) le ~(”—1)IZ+QO(x’ T) ’
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where
lqo(x, )| S Cyl] ~+0%.
Thus it holds that
(D, )u(x, §) = (principal part)+¢(x, £),
where
lg(x, £)| =C,lx| ™2™  for any » with 0=<v<1/2.
Moreover '

121\1.(1)’1 a(D,)u(x, A£i€)
has the same property. The continuity of pseudo differential operators in S’
implies
121\1.51 a(Dyu(x, A1-1€) = a(D,)us(x, \) .
Then
€30 : -
a(D,yus(x, \) = 12=1 (2m)~ DIz GNTWOITY | | =D/ | o] = (a=1/2

* IK(S) | _llzl T(s) I “lls(s)a(xs)f(m) "l"sisn(:l:}\)(s) l:=s(7)(tq)+4¢.i(x: 7\') )

where
| gw,+(%, )| SC,pylx| "2 for any » with 0=<v<1/2.

This shows that #.(x, \) satisfies Riv). Q.E.D.

In order to prove the uniqueness theorem we prepare several lemmas
(Lemma 3.2~3.8).

Lemma 3.2. When |x| =2|y|, it holds that
b DG u(mx—y, M) SCyfa) %] =%,

where C,(n)EL(S*™") for some p>1.
2) For any R(y, £)E P, there exists v>0 such that for any X C5(S*\Zy)

lx(’?)R(ﬂy D,)Gi(x——y’ 7&)' gcy'x(,)) lxl —(n—1)l2=V ,
where C, x(7)EL*(S*™") for some p>1.
Proof.

G(x—y, £) = F e "H(AE)—LI)7]
= F$u(E)e”PH(AYE) —ED)]+F [ de(E)e” HAE)—ED) 7]



STEADY-STATE WAVE PROPAGATION PROBLEM 615

= S” M( Sse""‘ls(s) | T(s)| “2py(rs)e~d S)dr

oy —E
+Gy(x—y,0).

Then |x|=2]|y]| implies
|Gox—y, D) =Cilx—y| ' Ci((1/2)[=])~" .

Details are omitted since they are similar to the proof of Theorem 7.1 of [4].
Q.E.D.

Remark that, when |x| =2|y|, we have |x|~|x—2y]| as |x|—>co.

Lemma 3.3. Let y=CF(R") be a function such that

0 if [¢|>2
"’(t)z{l ;: 1] <1.
Fix £>0 and put
@y (x) = (A—N)(1—(E]%]))Gx(x, N)
and
k) = {x; e7'<|x—y| <267%.
Then we have

1) supp @(x)Ck).
2) P¥r—y)=—33 4/DpElx—y)Culx—y, V) for xR

3) |DF(x—y)| =Cy(n)E™+D2,
where Cy(n) € L*(S™™?) for some p>1.

We often omit A of G for simplicity (G .(x)=G +(x, \)).

Proof. 1) +(€lx|)=1for |x| <€, so PE(x)=0 for |x| <€™*;Yr(E|x]|)=0
for |x|>2&7" and (A°—\)G o (x)=0 for |x|>267", so ®¥(x)=0 for |x|>2&7%,

2) It is sufficient to prove the case of y=0. For xEk., we have from
the definition

Df(x) = —(M—A(E]51)G () = — 3] A,DAE )G a(x) -

3) We have Dr(€|x—y|)=0(EM) uniformly for » and y. On k] it holds
that |x—y| ~&™. So by the above remark |x|~&™. Then Lemma 3.2 implies
|Go(x—y) | SC)(n) | 2] " DS Cy ()€~
Then the inequality of 3) follows from 2). Q.E.D.

Let R, be a function given in (3.2).
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Lemma 34. For x€kl, x= x|y, put
W (x) = (1—Re(—, D) -@(x-+y)
Then for any XEC5(S"\Zy)
XYL (3) | S G, ()0
where o>1 and Cy, ,(7)ELX(S™™) for some p>1.
Proof. Letxck!. By Lemma 3.3 and (3.2)
W(w) = (1= Ro(—, D) I-@¥(x-+3)
= Hx+9)+ 3} as(— bl —)DEH(E A (el x4y ) Cl+)
= D(x+9)+(33 4D (El w3 DS ar(—n)bu(—)
D" Ga(w+9)+ Qo
= @(x-+9)+ 33 A/(D(Elx+31) R(—n, DIGa(w+3)+0s

— g A(Dppr(E|x+ty] ))Gi(x-l—y)-|—j§”1 A (Dr(Elx+y])
*R(—, D)G u(x+5)+Qu,
where
Qo= ng} Ajlséz Cy(DEX)(Elx+y]) ‘g a(—n)ou(— D IGG (5 4-y) .
From Lemma 3.2 1)
[X(7) Qo S C, ()& *D2 = Cy () E™HI2

for Cy,,(7)€L?(S*™), p>1. On the other hand, since 1—R.(—7, £)EP,,
Lemma 3.2 2) implies

[X(7)(1—R(—7, D,))G(x+y)| S Cy, ()"
This gives the conclusion. QE.D.

Since € is sufficiently small, we may assume that « is smooth in k). From
the remark after Lemma 3.2

(3.6) R Ck, = {x; (2[3)87'< | x| <4€7}
follows if |x|>2]y].

Lemma 3.5. Let u, be a solution of (A°—N\)u=0 which satisfies 4 radiation
condition. For any function a(£) with supp a CR"\Zs and for any XEC=(S*™)
we have
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tim | X(r)(Rur, D)a(D,yus(w)) @2(x—y)dw = 0.

Proof. R.(y, £)E Py, and so for x&k!
| Re(n, D,)ot(DJus() | SC || -
for any »<<1/2. By Lemma 3.3 it holds that
| DE(y—x)| SCy(n)€™V2  for C,(q)SLYS*™).
Hence we have

1], X0 (Ratr, D.)ex(D ()i (y—a)d|

e—1

< Const. S E-Dirrgutizg=nt1] | | Ss”_l |X(7)C\(n) | dn

(2/3)e~1
= Const. &*%6¢™! = Const. &§". Q.E.D.
Lemma 3.6. Put
AE(y) = (a(D)us)*@(y) .
Then 121{101 #(y)=0 for any yER".

Proof. Let y=R" be fixed, and 8 be any positive number. Since
Co,,(n)EL}(S*™"), there exist two open sets U and ¥ with the properties

ZyNS*icUccVcsS*!?
and

3.7) SV Cou+ Coo(m)dy <8 .

Put XEC(S"\Zy) as

0 if €U
X(,;)={ coT .
1 if peS*™\V.

Then

) = | (D) @x(y—s)de
=| (D) @sy—nx(af1x)dx

+., (@Dl Dy —)(1—X (] | 2] v

I

1M1
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From (3.7)

llfl = Cm, Co’y(n)(l—X(n)) dﬂj" Ix[ - (n=D)/2g(n+)/2] | x|

ke
42!

I,
. CuCorla)1—X(a
<Const. & .

8'(”-‘1)/28 m+l)/2€—n+1d lxl
(2/3e7 !
Let
Je= S ¥ X(n) {aus(x)— Ri(n, D,)ous(x)} @ y—x)dx .
By Lemma 3.5
. L _
(3.8) 121{13_ (I! ﬂ]!) =0 .
Now

Je= S X o(x)— (] as(n)bu(n) DL ) (%))} Dy —x)dx

Since P(D,)®%(y—x)=0 on 0k (for any polynomial P), we have by integration
by parts

Je= S (%) {¢$(y—x)X(n)—§ D (X(n)ay(n)bu(n) DE(y—x))dx .

Now | DZ(X(7)ay(n)bu(7)| £ Cs,x|x|'". Since X does not have its support near
Zy, the following integration on k? is integrable with respect to 7. Then we
have

[, (sl Xm)as(m)oun)) @y — )|

-2
<C S“ g2, g, gDz, g-n+1] lx| <Cle.
T Jemet =

Thus
Jo= | (au(@)xt) @2(y—2)
| —[3 a@bulm)(— 1) D@ y—x)t dx+ O
where |Q,| =Cy€.

Now the transformation of variables x of the right hand side of J, to —=x
and the fact that D7 {®F(y—x)} =(—1)""1(D3DF)(y—«) imply
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Jo= (=1 | _ (@us(—a)x(—n){@i(+y)
[ @b —DE Ry Os

= (=1 | _, (@us(—)X(—n) {1~ Bl —n, DY@ (w+9)d+Q,

= (=1 | X—n)awul—a) w10,

Hence

421
<C : n=1)/20 (n+1)/2+0 g —n+1 X
69 | Ju| <Const Sw.—le ¢ & "d | x| +Q
=CyE°+&) =2C¢° .
Thus (3.8) and (3.9) give
PR 1 . .
lim I'; = lim (Je—Jo)+1im J, = 0.
Hence
I + . 2
lim |[43(y)| Slim | I7] =C8 .

Since & can be taken arbitrally, we have

lim #%(y) = 0. QE.D.

Lemma 3.7. Let u, be a solution of (A°—\)yu=0 satisfying -+ radiation
condition. Then we have

a(Dyuy(x)=0
for any () with supp a(E)C R"\Zs.
Proof. Operate a(D,) to the both sides of (A>—A)u=0. Then
(A’—Na(D.)u. =0.
From Theorem 2.1
oy = (o) *DE(x) for any €>0.
On the other hand Lemma 3.6 implies
() = lim (@ pE() = 0
for any x&R". This gives the conclusion. Q.E.D.

Finally we prove the following fact which is related to the Sobolev spaces.
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Lemma 3.8. If a distribution u satisfies

1) usH™* for s<1
il) supp uCM, which is an at most n—2 dimensional compact submanifold,

then u=0.

Proof. If s<0, the lemma is clear. So we consider the case of s>0.
Since # has compact support, the conclusion of lemma is equivalent to that
(4, #)=0 for any p=C~(R").

First we show (%, 1)=0. Put

i) = p(dist(x, M),
where p C7(R') with
1 if [t]<1/2
=1, |
0 if |z]>1.
Then
(w, 1) = (, po)+(, 1—o,) .

Since supp uC M, (u, 1 —¢p,)=0. Thus

(3.10) (u, 1) = (u, @) .
The assumption i) gives
3.11) [, @) | =Ml -5 llpell, -

By the fact that 0<<s<<1 the interpolation inequality implies for any & with
0<o<l1

(3.12) ll@ells = 8ll@elli+ C 8~ [glo -

From the definition of @, and the fact that dim M <n—2 we have
(3.13) lpdh=C, and lplb=<Ce*.
The estimates (3.12) and (3.13) imply
lpell, = Ci8+C - CE?87479)
Then, by putting §=E"~/* we obtain
llpell,=C,e*+C-Cif .
Hence ||@|[;—0 as &-0. (3.10), (3.11) and the above fact give
|, )| = 0.



STEADY-STATE WAVE PROPAGATION PROBLEM 621

Thus (u#, 1)=0 follows.
Next we show (%, )=0 for any o =C=(R"). Note that @u also satisfies
the conditions i) and ii). Thus the above arguments gives

(pu, 1)=0.
Then we have
(#, @) = (pu, 1) = 0. Q.E.D.

21

We denote the set {g=L¥ R"); supp g is compact} by L%, (R").

Now we prove the uniqueness theorem of (A°—\)u=g for gL’ (R").

Theorem 3.9. Let g be a function of L’ (R"). For n&R\{0} the solu-
tion of

(3.14) { (A=njux =g

u.. satisfies + radiation condition
is unique if it exists.
Proof. Obviously it suffices to show that a solution w.. of

{(A"—x)wi =0

w, satisfies 4 radiation condition .

must be identically zero. We shall see that the Fourier transformation .
satisfies the condition i) and ii) of Lemma 3.8. Then #.=0, that is w.=0.
From Lemma 3.7

a(D,)ws(x) =0
for any a=a(£) with supp a CR"\Zs. The Fourier transformation gives
a(§)w.(§)=0.

Here %.(&) is a distribution of §{. Since « is any function which does not have
its support in Zj,

(3.15) supp W.CZs

follows. On the other hand it holds that

(3.16) supp wCAS .

This fact follows from

(3.17) (@+(+), ¥(+)) =0

for any Y& S with supp yCR"\AS. In order to prove (3.17) put
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(&) = {(AO(E)_WI)_W‘(E) if ESsuppr
7 0 if EeEsupp .

Since A%&)—AlI is non-singular on support of 4, @ is a function of S. Then

(@+(E), W(E)) = (@=(8), (AE)—M)p(8))
= (M) M)+ (£), P()) -

Here w, satisfies (A"—A)w.=0. Then by the Fourier transformation

(A(E)—MD)d+(8) = 0.
This implies (3.17).
From (3.15) and (3.16)
(3.18) supp @W.(£)CAS N Zs

follows. Here ASNZs=AZs, and from Si) and Sii) AZs is an at most n—2
dimensional submanifold. This shows the condition ii) of Lemma 3.8.

From Rii) and Riii) of the radiation condition it follows that for any >0
and for any 0 with 0<f<1

I‘wi(x) lzé C},"" C(n)1+a<x>-—(1+o)(n—l)/z+a-(l-0) .

The case of n>3. Since C(n)€L*(S*™") for any p with 1= p<2, C(n)'*? is
integrable on S*7! for any € with 0<<@<1. If @ is sufficiently close to 1 and
o sufficiently small, it follows

(1+0)(n—1)2—o(1—0)>n—2.
So
(1+6)(n—1)2—c(1—0)+25s>n

for some s with 0<<s<<1. Then
IROIERETLE

(3.19) <ci- S Cln)dy s:<x>"‘"'lx|""d x|

sn—1

o oo
< oo,

This implies that @.(§)€H 5, that is, #,. satisfies the condition i) of Lemma
3.8.

The case of n=3. Since C(y)& L*(S*) for some p>1, C(n)'*? is integrable
on S*7! for sufficiently small 6.
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(148)n—1)2—o(1—0) = (1+6)—o(1—0)>(1+-6)—0c
for n=3. Then
(1+0)—a(1—0)>1
for sufficiently small . So
(140)—o(1—6)+25>3 (=n)

for some s with 0<<s<<1. Then in the same way as (3.19)
[ <o lmae)ide< oo

This implies that @.({)eH ™, the condition i) of Lemma 3.8. Q.E.D.
From Theorems 3.1 and 3.9 we have

Theorem 3.10. Let f€ CF(R") and n = R"\{0}. Then there exists a
unique solution of the problem

{ (A Ny = f

u. satisfies + radiation condition .

4. The Rellich uniqueness theorem for the perturbed system

This section is devoted to prove Theorem 1.1. Since the proof is very
long, we divide the proof into some steps.

4.1. Outline of the proof.

In [8] J.R. Schulenberger and C.H. Wilcox proved the Rellich uniqueness
theorem for the steady-state wave propagation problem for inhomogeneous
anisotropic media which is uniformly propagative out of a compact set. We
shall extend their method and prove Theorem 1.1.

Let v4 be a function of L{(0) satisfying (1.3). We take a cut off func-
tion

0 |x|=R
D o= %l 2Ryt 1,
where R, is a number larger than R of Aiii), and put w.=g8(x)v:. Then
4.2) (A—Nws = BE)(A—N)v:+(A'B)o.=A(VB)vs .

Since supp VRC {R,= || = Ry+1}, A%V B)v.. has a compact support. We put
(4.3) gﬂ: = AO(V,B)'Ui .
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Then we have a steady-state wave propagation problem in homogeneous media
(44) (A—NJoo = g

From Ri) of the radiation condition we may assume that v.(x) is smooth in
|x]| <R, Then, g.€C7(R") from (4.3) because the support of V3 is compact
in Q. From Theorem 3.10 w, is the unique solution of (4.4) and it is repre-
sented as

ws = wa(w, 1) = lim F{(AE)—(L£i6)]) £u(E)] -
Moreover Theorem 2.3 implies
(45)  wa( N) = S eNAITO g =wm0 [ | ambe
y=1

‘ 'K(S) I —-1/2‘ T(S) I _lp(s)é‘i(xs)‘l"sign(i)\)(s) Is=s(7)(ivl)+q:t(x1 7\') .

We call the summation part of (4.5) the leading term and g.(x, \) the re-
mainder term. As in the argument in [8] the main part of ours is also to show
that the leading term is equal to zero. When the system is uniformly prop-
agative, it is known that the remainder term has the estimate which assures
the square integrability. But in our case the decreasing order of the remainder
term is not so good that the square integrability cannot be obtained automatical-
ly. Thus even after showing that the leading term vanishes, we need more
delicate considerations in order to show that w, belongs to L*). This is
given in section 4.6.

In order to show that the leading term vanishes, first remark that

(4.6) Stsn_lvi_‘A"(n)-vidS —0

holds. Indeed by a fundamental calculus we can show for any » which satisfies
u(x) € N(x)
4.7) ((A—N)u, u)g,—(u, (A—2N))5, = (1/7) Ssn_lu*A"(n)udS ,

where B,={|x| <t} N Q and
(u, v)p = S w*E(x)vdx  for DCQ.
D

By substituting #=wv.. into (4.7) we get (4.6). Note that we cannot substitute
the expansion (4.5) into (4.6) because ¢, has singularities, we shall use a cut
off function a(£) which does not have its support near Zs, and operate a(D,)
(pseudodifferential operator with symbol «) to the both sides of (4.4). Then
we have
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(4.8) (A—Na(DJeos = a(D,)g

From Theorem 3.10 a(D,)w.. is a unique solution of (4.6) satisfying the radia-
tion condition. In section 4.3 we calculate the leading term of a(D,)w.. by the
use of the expansion formula of a(D,)w. which corresponds to (4.5), and in
section 4.4 we show a suitable remainder estimate for large . The conclusion
here is

Sts"' 1 [a(D‘)wi]*Ao(ﬂ) [a(D,)wi]dS
B

P
— 33 2 @O K11 T P 4a00) [V T(5)aS+o(1)
(J is a positive function defined on S. It is given later). Since w.=wv.. for
|x| >R, we have

[, Dy A a(D.ye.las > | | otA%)o.ds = 0

as a—1. Therefore, by taking the limit of #—oco0 and @—1, we can obtain that
the left hand side of (4.9) tends to zero, and then we can obtain that the lead-
ing term of (4.5) is equal to zero. This part of the proof is given in section
4.5.

As stated above we prove that the remainder term belongs to L? in section
4.6. Here we use Lemma 3.8 and some conditions of the slowness surface.

4.2. Preparations.

Hereafter we consider only the case of + radiation condition, and write
g+=g for symplicity. (The same arguments are applicable for the case of —
radiation condition).

Let U,V be two open sets of S*~! satisfying

Zs;NS*'cV and Uc Clnterior of V¢
and let (&) be a function of C*(R") satisfying

a(§) = ay(E)ay(§), 0=eai®)=1 G=12)),

(1 if gllEleU
(4.10) al(s)—{o if glEleV
and

(1 if |E]>(2/3)Cs
(4.11) az(f)—{o if &l <(1/2)Cs,

where Cs is a constant which satisfies
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Sc{CF<|EI<Cst.
Such a Cg exists since the system is strongly propagative. We take this func-

tion a and consider (4.6). Since g €CF(R"), a(D,)gS. Thus (2.3) implies

a(D)w(x, ) = wx, §)+S:|:+’;

(4.12)
o Sse"m}-‘)(m T(s) | ~ex(r) 3 (rs) pu(rs) S ) r ,

where w(x, §) is a solution of (A’—{)w=g((=C\R). Clearly a(D,)w(x, {)
satisfies (A"—{)aw=ag. Since w(x, A+iE) converges to w.(¥, A) in &, the
weak continuity of pseudodifferential operators implies that a(D,)w(x, §) con-
verges to a(D,)w.(x, ) as &0 weakly in &’. Now put u(x, {)=a(D,)w(x, ).
Then

Uy (x, A): = lgi\r‘lo} u(x, N+-1€) = C((D,)ZU.,.(x, A).
Next decompose u(x, §) as
5 B
u(x, £) = 0, £+ 31 S (%, 8),

where # is that of (4.12) and

T A ([ e POITE) e e )ar

(For SP see [4, page 607]). Put

(4.13) w5, 8) = |

W (x, A) = lg{xol u#(x, A+18) .
Then
5 B
Uy (%, \) = 52=1 Euﬁ’(x, A)+ud (%, N) .

By (4.10) «(£) does not have its support in the neighborhood of Zs. Thus
the integrand of (4.13) has its support in the interior of a smooth surface. Then
we can use Proposition 3.2 of [4] to let €—0, and we have

(4.149) (2, N) = wB(x, N)+¢8(x, N,
where
et’Mz]]T(s)|'1 l x| —(n-1)/2 l A (n—1)/2 | K(s) l -1/z| T(s) | -1

4.15)  uf(x, ) = . ls(s) a(A$)E(AS)Vsigna(®) | s=sBYm) (€0
0 (n£Qf)
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and
[g8(x, M) | =C |x]| 72,

where C is independent of 7&.S5*™* and depends on A and a. For simplicity
we set

(4.16) Y¥(n, \) = { | K() 7] T(S)I_lp (5) E(AS)Vreigna(s) | s=s87 (nEQP)

0 (@«0f)
Our purpose here is to prove
(4.17) P(5)g(as) =0  for seS\Zs.

It is equivalent to
‘1"&7(77, A') =0 for B = 1) 2’ R 15’ Y= 1) 2’ °tty B’ 776‘5'”_1\211’ .
Note the following equalities:
(@4 (A—N)v1)8,—(A—N)vs, V4 )3,
= |, @@ A, o4+ Bayo.)
—(3} A(x)D v+ B(x)os) *E(#)E(®)o}dx
— {, (B [(A0)*D o, —(Dyo)* A (x)0.]
+o¥(B(x)— B(x)*)v4} dx
= (W), {31 A W0 00, + @) Ay(w)os]
+ov¥«i(B(x)—B(x)*)v, } dx
= (1), (3[40, A (o) +@m)*A (o]
—2 0%(8,4,(%))04 +v% - i(B(x)— B(x)*)v4} dx
= (1| S10,0t4,w)0.)dx

SNo¥d (®)vyni(x)dS

9B j=1

P4 Ay (5] | 2))osdS

=1
=11
=)

for t=Ry+1. Since (A—A)v,=0in Q and v,=w, for t=R,+1, we have

18"
s"_lvi‘A"(n)mdS

¢
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(4.18) S WA, dS = 0.
t n—1
In order to prove (4.17) we prove (4.9). The equality

uy(x, A) = a(Dyw(x, A) = éyslugv(x, M)+ ud(x, A)

implies
S IRCISOTS
t n—1
P
—nn S UEY* A ()ut'dS
B=17=1Jts""!
BY\k AO(5)q,B7,

+ 2 N tas+ 3 | @) Amputras)

+ () FA)utdS
ts"~
=: Il+Iz+Ia .
4.3. 'The leading term of a(D,)w..
In this subsection we calculate I;. Put
W8 = {tx; x€ W},
OF = {x; x = rw, we W, 0= NQ
and
T = 3(Q"AB)YN Zy .

(A denotes the symmetric difference). Then, since %} is smooth in a neigh-
borhood of Qf'AB, and 8(Q"AB,) is piecewise smooth, it follows from the same
way as that of (4.18) that

= (@ Amutras
- SW OOV

(4.20) +Srﬂmt<s»-1\gs> (WB)* A(n(x))udd T

i {1, (A —N)ul") 508" — (A" — M), 4EY) 087
—(u&y, (AO—X)uﬁy)Qf"'\B,+((A0_7\a)uﬁy, uﬁy)n‘;”\m}
=:Iy+Ip+1y
(P is defined in [4, page 607]).
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Lemma 4.1. lim I,,=0. The convergence may not be uniform for a.

t>o0

Proof. Since T'¥"C Zy, a(s*(x)) does not have its support in a neighborhood
of 9. In fact s’ maps a neighborhood of T'?" into a neighborhood of Zg, and
a does not have its support there. Thus in a neighborhood of T'#Y

(%, ) =0,
that is,
w(x, N) = ¢%(x, N) .
On the other hand, since A%%) is analytic, there exists a constant Cj,o such that

[A%n)| =Cp. Then it follows from (4.15) that

cqt
|I;| < Const. SI~§7|xI'”dF§Const.Sl x|~ | %] "~d | x|

cot

= Const. (cg*—cY)27!.

Hence I,,—0 as t—co, Q.E.D.
Next I, is treated. We decompose #%" in the following way. Put
S = S,nSPcs
and
XE1(E) = { 1 if EE.C%Y: = {& = rs; r>0, s&€SH}

0 otherwise .
Let

uf(x, ) = FalEXRE) PAEEBIuE )]

Note that a does not have its support in a neighborhood of Zs. Then the fol-
lowing can be verified in the same way as the case of the Green function:

(s, £) = i, )+ |17

S
o gskeffz-sﬁk(s) | T(s) |~ a(rs)XEX(rs) g (rs)dS)dr ,

where

[uid(%, £)| = Cylx| ™
with C, independent of »=x/|x| and {&A. Here X§'(rs)=0 if sS% and
X3P (rs)=1if s&€S§". Then

ug‘)/(x’ &) = u%(x, §)+S°_:° lr—§

( ssfy eiwspk(s) | T(s)| “*ax(rs) & (rs)dS)dr .

(4.21)
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Thus the fact S® "’=‘LpJ S%" and (4.10) imply
=1

)| uf? (%, &) = é} uid(x, £)+1u(x, €) .

k=1

Put ul?(x, §)=— 53 l(x, £). Then

P
(%, §) = D uf(x, §).
k=0
Moreover, since a does not have its support in the neighborhood of the boundary
of S, (4.21) implies the existence of
ufs (2, A): = 1:\1})1 wf'(x, v\ +i€) in &
and the equality
g, (%, %) = (s, N)

k=0

in the similar way as before. Then

Iy = 1,%0 l{(ugy-n (AO—X)H?:’+)B‘,\Q§7—("' )B;\nf‘y_('")0';"\&‘*‘('")0?"\3:} .

Lemma 4.2. Let Q; be an open domain of Q depending on t>0 which
satisfies

dist (4, 0)=ct

for some constant c. Then for any k, 150 it holds that

(874, (A"—N)uf?))g, = o(1) as t—>oo .

Proof. From (4.21)
[, | S C [x] -0
follows. Moreover (4.20) implies
(A—EYu(, ) = (DD, PyD.)g

(& =n+16). Since u¥(x, §)—>uf":(x, A) in &, the limit as E—0 of the above
equality is

(A= Ny, N) = (D XD, PUD.)g -
Thus

(s, (A°—N)uf) = (ufs, a(DYXE(D)P(D,)g) -

Here it holds that
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(4.22) a(D.)XH(D,)B(D.)g = O(| x| ™)
uniformly for . In fact from (4.10) and (4.11) it follows that & does not have
its support on the discontinuous points of X§” and £,. So a(D,)X?’(D,)lS,(D,)g
is smooth in R*. 'Then (4.22) follows from the integration by parts. Hence
|, (A—N)uft)a, | < Const. x| =% x| == | *~1d ||
ct
=Const. ¢~V Q.E.D.

Lemma 4.3. lim I;,=0. The limit may not be uniform for .
t->o0

Proof. In the case of & or /=0 we follow the calculus of (4.18) conversely,
and we have

i {oe} = S (UB?, V* A (), dS .

tSn -1y wBYuTE?

Since (4.21) imlies |uf”, | <C |x|™* and |47, | <C |x|~*"D%, it follows that

|2{--} | =Const. S PIRCRI

$1Sn-1Y W,ﬂy U I‘ey
=<Const, ¢~ @Dizgn-1 — Const, ¢~ @+/2

Hence
1{.}:0(1) as t—>o0

for % or [=0.
In the case of 2+0 and / #0 we use Lemma 4.2 for Q,=Qf"\B,. Itis clear
that B\Q§" and Qf"\B, satisfy the condition of Lemma 4.2. Then

I; = o(1) as t—>oo
follows. ‘ Q.E.D.
Lemma 4.4. It holds that
Iy ={ a0 WEWGE), M ITES+o() a5 t>oo,
where J(s) satisfies 0< c, < J(s)<C, for some constants c,, and C,.
Proof. From (4.14)
Iy = [ 0P @) )W

= Swl;“ (uf=)* AO(N (x))yul?= dW—+ SW B [(uf=)* AN (x))g5

(AN ()= (gE) * AN (x)) g d W
=:it/z.
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Here (4.15) implies |48"~|<C|x|~®"D and |¢f"| <C |x| ™2, where constants
are independent of 7. Then

(4.23) | J,| <Const. SW || =972 | ~Weg 7 — Const. £2
t

Next we consider J;. From (4.15) and (4.16)
Si= gwﬁy [ac] =D (AP (3) )25 (m, N)*AYN ()W (n, M)WV .

Here a change of variables is introduced as
Whsx - seSH, x = tT(s).

The transformation is well-defined because 7' is a diffeomorphism from the
interior of S*’ to the interior of W*’. Then the fact N(x)=N(x/t)=s/|s| and

(4.16) imply

AYN ()82, N) = As/ |s BT (s)/ 1£T(5)], 1)
= A%s/|s| BV s), A)
— A%s/ Is ) LK($) |72 T() | () 8O0 Vrasgmn(s)
— N)P(s)~ [s] 7 LK($) |72 T(5) | 7 GO0 Wratama(s) -

Since
A%(s)P(s) = As)Py(s) = Mi(s)Pi(s) = P(s)
for s& S%, it follows that
(4.24) A (N @)W, M) = |s] " BY(N(s), 1) .
Let J®(s) be the Jacobian of 7~': W#—>S®. Then
AW = *7 JP(s)dSP  (J*(s)>0).
Thus (4.24) implies
(4.25) Ji= S oo [ET )17 DPRIN(s), My*9RI(IV(s), 1)
-a(nsyer 7 JPY(s)'dS,

where J#(s)'=|s| ' J#"(s)>0,

= S sy @O IURN(S), M FI T(s) |~ P(s)'dS .

Hence (4.23) and (4.25) imply the conclusion of the lemma with J(s)=
| T(s) 1= JP(s)" QE.D.
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Now it follows from the results of Lemmas 4.1, 4.3 and 4.4, (4.19) and
(4.20) that

#26) L= 2 { a0l IVINE), NIT@dS+o(l) a5 t—>oo.

4.4. The remainder estimates.
In this subsection we prove the following lemma.
Lemma 4.5. lim (I,+1;)=0.
>
Proof. Put

Ig w3 = Stsn_l(ui")*N(n)uE;dS .

u$ is regarded as the case of (B, ¥)=0. If one of (B, ¥) and (B, ¥)=0, then
[ I w9 | Sct™2.  If B3, it follows that

supp #8%=(x, X) N supp w2~ (x, A) = ¢,

and this implies

|y amdiasi=c| | 1xl-enhas
) —are,
This shows
(4.27) Ion,@.9 = o(1)
for such cases. In the case of 8=}, it follows from (4.15) and (4.16) that

AT 1T BT Th | | - -
tsr-1

- )P r, M), NS +-o(1)
= [ o e DG g, )P A ()
-9, NS -+ol1),
where ¢z, A)= | K(5)| ™1 T(5)| M riaar(A) 8700,

LIig 8,9 = S

_ Soﬁemc--->{...}ds+o(1) .

Here put @(n)=x(| T(s*"(1))| "*— | T(s?(n))| 7). Since @(») is an analytic func-
tion in 0P, the set of points where grad ®(7)=0 is either a closed null set of
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QF or Qf itself. (Note that the consideration of the situation of the neighbor-
hood of 8Q°* is not needed because a(As?*())=0 near 8QF).

Case 1) grad ®(»)=0 if and only if pEN, a closed null set of QF.

Let pe(n) be a function of C7(Qf) which satisfies

{ 1 on N 4 | |<&
== an
P 0  near 9Q°f SUPP Pe

for any £>0. Since the measure of N is zero, such a function surely exists.
If we write

Tomom=| el tpds+| enomip(1—p)is
=:K+K,,

then

I 14t pdS <Cor gt
supp Pg

For K,, since supp {(1—pe)ax(ns®(n))} is compact and gr;ld ®(7)==0 on this set,
we have by the stationary phase method
|K| =Cy(&)t™"  for any integer /.
Thus
Hon.6.9 | = CiE)t ™'+ Cp,3,%,0€ -
This implies

}El g, 9] =Cpy 3,46 -
Since € is any positive number, it follows
lim | Lig,n,c6,% | = 0.
Case 2) grfd ®()=0 for any = Q°.

For this case ®(p)=c; (a constant on QP), that is, |T*'{s(y))|'—
| T(s®(n)) | *=A""ct=:cp. Put CP={ry;r>0,7€Qf. Then similar to the case
of the slowness surface there exists two analytic functions u? and 7 with posi-
tively homogeneity of degree 1 defined on C® such that

Wk = {x&CP; p'(x) = 1}
W = {xeCP; u¥(x) = 1}.

Note that = |x|y& W*" is equivalent to u”(|x|7)=1, and this is equivalent to
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|x|=1/u"(y). Similar facts hold for the case of 7. Then, T(s®(n)) s W&
implies | T(s®())| '=p(). Similarly | T'(s*(%))| "*=p"(). Hence
B ) —u'(n) = co.
The homogeneity of x7 and p” gives
(4.28) pi(x) = p(x)+colx].
Note the fact that x& W*#" is equivalent to Vu'(x)S#". Then for n€0?
sP(n) = Vu'(r'(n)n) = Vu'(n),

where r%(n) denotes the length of a point vector x of W?" which is parallel to .
Here the fact that Vu is positively homogeneous of degree 0 is used. Similarly

) = V() .

From (4.28)
V(%) = Vi(x)-+ew] || .
Thus
#(n) = Vu'(n)+cm = () +con -
Hence
() —" (1) = eon .
Then

Lpnp. = |y @™o r, M*P(()
- A((F ) 5" 0)) o) P )) 2 (m, N)dS+o(1)
= [0, WA AH)
— A% () 125 (n))} $87(m, N)dS+o(1) .
Here it holds that
PP () [AY () — A% Tn)) | P(sP())
= B(s"(n)) 33 Ml ) Pl s (r)) PP r)
—B(s#(2) ST AT (s -
Suppose $#'(n)€ S, and s*¥(;)€S5. Then

Lo 6.5 = Pis® ) (n)) Pr (sP(m)
— By )i (5° (2)) P (5(m))
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= By"0) Pe(s()) — PulPm) Pr ()
M) = 1, M(s(n)) = 1)

=0.
Thus (4.19), (4.27) and the results of case 1) and case 2) imply the conclu-
sion of the lemma. Q.E.D.

From (4.19), (4.27) and Lemma 4.5 we have
gs” () Ay, dS — pé 7253 SS L AOS I NG), 1) 2T (6)dS+o(1)

This shows (4.9). (See (4.16)).

4.5. Proof of (4.17).
In this subsection we complete the proof of (4.17). From (4.18) we have

[ A mu.as

l

a(D,)w, *A(n)o(D,)w.dS

f”l

|
S, a(D,,)w+*A°(7;)a(D,)w+dS—Sts”_‘w+*A°(n)w+dS
|

a((D,)ws— w3 )*A(n)ew,dS

tS" 1
S, (@(D)ws —w0,)*A()ex(D.)ew. dS
=:I{4+15.

First we treat 1. The expansion formulas of (a(D,)—1)w, and a(D,)w.
corresponding to (4.5) give

(D) — 1), * A ) DY
- NTEET )1 =1=) T(BY ) ~Dix)
(CRINCED

(@) — D, M* Ayl T (m, Ma(AsP () ] =D
+ 321 e'iMT(sB'Y("I))I"1lxl(a(7\cs57(,7))— DB, NV*A ()2 (x, N) | x| ~ D22

33 TR g (o, AYEAY) ahsF )T, 2]~

¢ (% MFA )35 (%, 2)

where ¢ and g% are the remainder terms of (a(D,)—1)w, and a(D,)w.,
respectively, and they have the estimates
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|2 (%, M| =Cap(n) 2]~ D7  (9,>0)
for any p with 1=p<2 if n>3, some p>1 if =3 and C, ,(y)=L?(S*""), and
175 (x, M) | =Cal x| ™

for some constant C, independent of . Then

1= Co 32 (@0(0)— D) | ()47 [ 2] 0~

gn—1

+Co | @O ) —1) @) Cal x| 0728

R IR L O R OIS
+Cx | CaCaslr) |-
Thus,
fim | 14|
(4.29) SCp Ss“_l(a(xsﬂ*/(n))_ l)a()\‘sii?(,))) | (‘p&y)*‘lf‘é;l as

= Cu 2131, @O )~ D) 973

B=1y=1
since |x|=¢.
Next I1 is treated. By the same calculus of (4.18) we have
1i={ _(@D)—Vw,*A(r),as
£ n-1
= t{((@(Ds) =Dy, (A—N)w4)p,— (A=) (@(D2)— Vs, w4)5}
= i{((a(D)—N)ws, &)s—(a(D:)—1)g, w4)s.} -

Here note that g C7, w, satisfies Ri) and a(D,)=a(D,)* since « is real valued.
Then

lim I = i {((a(D2)— 1w, &)r—((@(Dx)—1)g, w+)rrt
(4.30) = i{(ws, (@(D2)—1)g)r—((a(D:)—1)g, w1 )rr}
= 2Im((a(D,)—1)g, wi)gn .
Now by changing U and V of (4.10) and Cs of (4.11), we can take a se-

quence of functions {a™(&)} with the properties (4.10) and (4.11) which also
satisfies

(4.31) a™ A1 on R\Zs
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and
(4.32) |[Va™(&)| =Const. m .

If we take the superior limits of the both side of (4.9) as t—oco, then it follows
from (4.29) and (4.30) that

é y: S @O IEN(), ) 12T (5)aS
(*+33) <3132 Co [ (@@ 0~ Dt (raP) |71

+2Im ((@™(D,)—1)g, wi)p» -

Then from (4.31) and the Lebesgue convergence theorem we have
(4.34) Coo|_ (@@ O(2) — D™ (1)) | 9872 > 0
as m—oo for any G and .

On the other hand the radiation condition implies

<> w,. e L¥(R") for some s<1.
Thus
(@™ (Do) —1)g, w.)rr| S[KxD* (@™ (D) —Dgll 2lKad*wol 2 .
Hence it is sufficient to prove
IKx>* (@™ (D) —1)gllz2 = ll(@™(-)—1) £(+)lls = 0

as m—oo. It follows from the interval inequality that

(@™ (-)—1) &)l
=8ll(@™(+)=1) ()43~ (@™(+)—1) £(+)llo

for any & with 0<<8<1. Since g, it holds that
| 451 +331D,4(8)] CKE
for any integer /. If we take U, V and Cs suitably for each m, we have
(@™ (-)—=1) &(+)llo
<c(Ci+|_, lam(@—11do | <&>'Igl"a1ED)

=Cym*+m™ )= Cyn™*

and
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CALQER V@I
sCm(Ci+| ., do-{ @7 IEIa1E)
=Cm(m™*+m)=C,.
Hence, if we put §=m"" (0<a<<(1—s)/s), we have

@+ 1) 4(- 1S Com==-+ Com™0=m~ > 0
as m —> oo,

Then
(4.35) (™ (D,)—1)g, wy)gn— 0 as m—> oo,

It follows from (4.34) and (4.35) that the limit of (4.33) as m—>co gives

53, WA, V1S 0.

L=
Since J(5)>0, we have
[VRY(N(s), M)|2=0  for any s&S¥.
Since N is bijective from S to QF, we have
Y@, N) =0  for n€0F,
which shows (4.17).

4.6. Proof of v, & L¥Q).

The final step is the proof of v, €L*Q).
The Fourier transformation of (4.4) gives

(AE)—MI)b4(§) = £(8) -

If £ s for s€S, A%E)—I is non-singular. So if we multiply the both sides
by (A%&)—AI)! from the left, we have

h(8) = (A(E)—M)4(E)  for Ens.
Hence #,(&) have a decomposition:
W (8) = Wy(E)+w(£)
where b,(£)=(A%£)—\I )" $(E) and dy(&) is a distribution which satisfies
(4.36) supp w,CAS .
Lemma 4.6. If ib,(£) S IX(R"), then t(&)=0.
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Proof. From (4.17) it follows that the principal part of a(D,)w., also
vanishes. The estimates of the remainder term of a(D,)w., gives a(D,)w,E
L*(R"). By the Fourier transformation we have

a(E)d.(§) = a(E)by(&)+a(E)dy(E) e LA(R") .

Thus, if @,(£) belongs to L(RE), o(E)dy(£) also belongs to Li(R"). But it
follows from (4.36) that the measure of supp @(£)w,(£§)=0. Then a(&)w,(£)=0.
Since a is an arbitrally given function satisfying supp a C R"\Zs,

(4.37) supp @,C Zs .

From (4.36) and (4.37) supp #,CASN Zs=AZs. On the other hand from (4.17)
the principal part of w, vanishes. Thus

[w. ()| S Cp(n) ||~ D% (»,>0)

for any p with 1< p<<2 if n>3, and for some p<<1 if n=3 and C,(y)=L*(S"™).
From this it is easily proved that #,eH~* for s<<1. Then the conclusion
follows from Lemma 3.8. Q.E.D.

Lemma 4.7. (&) L*(R}).

Proof. Note that

If §€Zs, £ has a respresentation: £=r7s (r>0, s&S,) for k=1, 2, -+, p. So
from (4.17)

By(®) £(8) = Bin) 205)+0ulrs)—2aus) [ s T Bg) - —2)s0-+15)d8
= 2,20+ [ - 9B (005t r)0
— (r—) S:s-%(P,, B)(r—A)0s+19)d0
for k>0. The assumption Sv) implies

|V(B,8)E)| =C dist (¢, ZP)™,

where ZQ={rs; r€R, s€ZP}. Hence, for >0,

(4.38) GG )‘gc dist (8, Z®)™

M(E)—
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for {€R"\Z;. When k<0, the representation E=—rs(r>0, s&€S_,) is used.
When k=0, Ay(§)=0 and —7\.“’150(5) £(&)is bounded in the neighborhood of AS.
So (4.38) holds for any k. On the other hand g=S(R") and SC{C5'=|¢|
=Cjs} imply

Slslgé [@(E) |IPdE<oo

for sufficiently large R. Then it is left only to prove that ), is square integrable
in a neighborhood of ASNZY=AZ. Let Q(A, &) be a minimal polynomial of
det WI[—A%E)). Then

@)= 8,

where L is an mXm matrix whose elements are polynomials of A and & (see

J.R. Schulenberger and C.H. Wilcox [10]). O(x, &) is given as

O\, &) = (v—2p(8)) +* A= M(EYATOA—A(E)) -+ (A —2-p(£)) -
(r denotes the deficit.)

Then for E€Z{ with E=rs, (r>0, s5,€ZP)
(4.39) [(AYE) M) ()| =Clr—N)",

where [ is the multiplicity of S at s, Then another coordinate system is in-
troduced in a neighborhood of As,&EAZY, which satisfies

ZP ={x,=+=06,=0, x5, =1} (dim ZY =n—1-d),
E = 7S = (07 °tty O, ¥y Xg425 **° xn)
d

and
dist (8, Z9)~ x|+ + |l
Then (4.38) and (4.39) imply
[(A&) 1) EE)N = C (11| + -+ [xa] + |o0gsn—2]) 7"
From Si) d=(n+3)/2=3. Thus from some fundamental calculus we have
(o] 4+ 2| + |2g—A ) TEL?.
Hence
wy(£) = (M) M) ()L (RY) . QE.D.

Then Lemma 4.6 implies #0,(£)=0, and then @.(§)=u,(&)+w,(§)E LA(R").
So w,=B(x)v. €L*(R"). Since v, E Ly (Q), v+ €L Q) follows.
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Thus the proof of Theorem 1.1 is complete.

5. The limiting absorption principle

Our proof of the limiting absorption principle is carried out under the
same line of that of J.R. Schulenberger and C.H. Wilcox [9]. However there
are some differences because our system is not uniformly propagative and Q
has boundary. Especially the existence of singularities and non-convexity of
the slowness surface gives the large difference in the proof. We shall state

such differences mainly.
The assumption Ai), Aii), Aiv) and Avi) imply the self-adjointness of A
in a Hilbert space H{=L?*Q) with the inner product

(u, v) g = Snu*E(x)vdx

(P.D. Lax and R.S. Phillips [5]). So all of the spectra of A are real, and then
there exists for { €C\R the resolvent R(¢)=(A—&I)™
Let H,o. denotes a functional space

H1oe = {u; measurable and ||u]|x = qu*E(x)udx<°°
for any bounded subset K of Q}.
A sequence {f,} of . is said to converge to f when
tim [l fy— Il = 0

for any bounded subset K.
The limiting absorption principle is the following theorem.

Theorem 5.1. 1) LetaeR\(o,(A)U {0})and let f €L2,.. Then the limit
(5.1) ‘lrlgx o(+, Mtio) = vi(+, A)
exists in o, where v(-, §)=R(E)f. Moreover vi(+, N) is the solution of the
steadystate wave propagation problem for the frequency \:
A—Nve=f  for x€Q
(5.2) vi(x, N)EN(x) for x=0Q
\ v satisfies -+ radiation condition .

2) Let A=[a, )]CR\(o,(A)U{0}). Then the convergence of (5.1) is
uniform for A\EA in Yy, .

In order to prove Theorem 5.1 we need some preparations. First we
recall the following results.
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Theorem 5.2. Suppose that \ is in R'\{0}. Let v be a function in L*(R")
which satisfies

Ao =0  for |x|>p.
Then v itself is zero for |x|>p.

For the proof we refer to N. Iwasaki [3].
We denote {|x| <R} NQ by Qp.

Theorem 5.3. 1) Let AEo,(A)\{0} and let ve Y be a corresponding
eigenfunction. Then

supp v CQy (R is of Aiir)).

2) y(A) is discrete, that is, there are only a finite number of eigenfunction
of A in any finite interval of R'. Moreover each nonzero eigenvalue of A has
finite multiplicity.

The proof can be carried out in the same line of that of Theorem 2.1 of
[9] by using our assumption Avii) instead of the result of their Theorem 1.1.
For the proof of Theorem 5.1 we make use of the Hilbert space K defined

by
K, = {uEH10e; 1+ |x|) " ucs I} (s>0)

and
(o) = |_u*BE@o(1+1x1)ds, lul,= @0} .

We state some lemmas which will be used in the proof later.
Lemmas 5.4. If u,—u weakly in K, then u,—u weakly in H,,..

Here a sequence of functions u,E K, is said to converge weakly in (.
to a function uE 4, when for each f and each bounded set K CQ

(5.3) fim (u,, f ) = (1, f)x -

The proof can be carried out in the same line of that of Lemma 3.5 of [9]
if we take By={|x| <N} N Q, and replace K; with the above X,.
Let B(x)E€ C=(R") be a function of (4.1). Let f € satisfy

supp f Csupp (E—1)C By, .
Then (-, &, f):=R(E)f satisfies the identity
(A—E)(Bo) = (A'B)(%)o( £) -
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Then it holds that
(54 B(x)v(x, §) = G(-, E)(A°B)(+)v(+, ) .

(Note that A=A° on supp B).

The proof of the next lemma is essentially different from the correspond-
ing lemma of [9]. The difference comes from the existence of the singularity
and the non-convexity of the slowness surface. So in the essential part of the
proof we use the result of our previous paper [4].

Lemma 5.5. Let A& R"\(c,(A)U {0}). Puz
Z4(7): ={€C; [§—1| <7, Im{ =0}
Choose 7y so that 06&Z.(). Then for each €0 there exists a constant Ry=R,(E,
Ry, n, N, ) such that
(5-5) Slz|21¢v(x’ §, [Y*E(x)o(x, &, )1+ |x])"*dx<&|v(:, &, f)I5

for all R=R,, all (€3 () and all s> (n+1)/2.
Proof. From (5.4)
ol & f) = G(e, LAY Yol &, )
= FA()—E) ()]
if |x|=Ry+1, where h(x)=(A'B)(x)v(x, &, f). Since A°—{¢ is hypoelliptic
(J.R. Schulenberger and C.H. Wilcox [10]), v(x, &, f) is smooth on {|x| =R}.

This implies A& C7(R"). If we see the proof of Theorem 7.1 of [4] carefully,
we can obtain

lo(®) | SC(n) x|~ 2| hl, 1 g=

for some C(n)eL'(S*™!) and
Iw(x)lgC,.IxI”llel,_cBm for any »>0,
where

|l g==sup, 33 1)l (IENU{O}).

<!

Thus if s—(n+1)/2>v (that is (n—1)/24s—v—n>0),

(5.6) [0 7 & I E@RG, €, £+ |31)d

SClhlyys,gm | Co)IxI™02 151+ |xl)d

1z
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<C'lhlyin,9-| . Clndn [ 1x1 =001t [x1) |21 d |

S’l
éc”lhln—l—l, g RT(@DHs=V=m)

Now ||#]|;~=]||u||,* for any w. This fact implies
1] g, = SHAH] - [BSD2R( )| 2
[(A°B)(x) | (14 | 2| 2)**D/2 | () | dw

Sxos 12| SRo+1

< 2 1/2
—CR°( SR0§|3|§R0+1 |o(%)[*dx)

=Cxrolov(+, &, f)ls.
Then (5.5) follows from (5.6) provided R, is sufficiently large. Q.E.D.

Lemma 5.6. Let A& R"\{0}. Let{i,=N\,Fic,(\,, o,ER) be a sequence
such that 0,>0 and §.,—\ when n—>oco. Let g,E9 be a sequence such that
supp g,C B, for all n and some c>0, and g,— g in H as n—oo. Put

Wiy = R(Cin)gn
and assume that there exists a constant K such that
|| =K forall n.

Then {w.,} converges weakly in K to a limit w.E K,. Moreover w.. is the solu-
tion of the steady-state wave propagation problem (5.1).

Proof. The same method of (3.22) of [9] implies
A-Nw=g in .

Next step is to prove that w. satisfies the 4 radiation condition. Since
(A—N)wi=g and A=A for |x| >R,

(Ao—-?\.)wi = 0

for |x|>max(R, ¢)=: R, (¢ of B,). Thus the hypoellipticity of A°—x (J.R.
Schulenberger and C.H. Wilcox [10]) implies w.&C>(|x|>R;). Then w,
satisfies Ri). It follows from (5.4) and (3.19) of [9] that

(5'7) ﬁ(x)win’ = G('s gta)*(AOB)‘win’ .
Now supp (A’B)W.w C {Ry=|x| =Ry+1} and hence
(A°B)ws — (A'B)w in &.

Moreover G(*, {+y)—>Gx(+, A) in &. It follows from the continuity of the
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convolution operator on S§'#£" that making #—> oo in (5.7) gives
B®)ms = G(+, M¥(A'B)ws
that is,
Bx)wy = 131{101 G(-, MLi&)xh (b= (A'B)w.)
= lim &F LAY )—(ALi€) ()] -

As is shown in the proof of Lemma 5.5, A& C5(R"). Then the same argument
as in the proof of Lemma 3.1 show that w, satisfies 4-radiation condition.

Finally we shall prove that w, satisfies the boundary condition. Note that
w.w ED(A). Especially w,, satisfies the boundary condition. Decompose
Wiy AS

1 2
Wiy = Win'+Win

where wi,ED(A)STI(A) and wi, €TU(A). The assumption Avii) implies that
for any ' and any » with R<r'<r

okl latia,n = C {llwkarl ggay + 1Awkwl g, b
=C {llwiwll grq,) 1AW wll grq 3
=C, {”wlin'||3((g,)+||w§;n'”,g[(g,)+ | Awosw |
SCH|waw |t | Awsw |}

=C£{Iwin’ |x+ Ié‘:tn‘w:tn'—l_gn’ls}
SCY<Hoo.

Hence {wl.} is a bounded subset of H'(€,). Then there exists a subsequence
{w},~} which converges weakly to an element w} of H'(Q,). Moreover from
the Rellich compact theorem it follows that w},»—w} strongly in 4(Q,). Next
it is proved that {w,,~} converges strongly in H(Q,). It is sufficient to prove
that w%,, converges strongly in 4(Q,) to an ellement wi of K,. Note that
winm€JI(A). Then

0= A'wzztn” = PoAt0syr = gin”wztn”'{"Pogn”
(P, is the projection to JI(A) and APy=P,A) .

Thus wi»=—Pogy|{ +a, and this converges strongly in H(Q,). Then wy,»=
wh i, converges strongly in H(Q,), and Lemma 5.5 implies the strong con-
vergence of w.,~ in K, On the other hand w,, converges weakly to w, in
Hyoee So wi,r—w, strongly in K,. The self-adjointness of A implies the
closedness of A. Then for any function = C7(82)

Py, —> @w,  strongly in H



STEADY-STATE WAVE PROPAGATION PROBLEM 647

and
A pwyiy) = (Ap)wi+pAwi+g) strongly in ¥ .

Hence pw, € D(A) and A(pw.)=(Ap)w.+@pAw.—+g). This shows w, satisfies
the boundary condition. Q.E.D.

Lemma 5.7. Let A& R'\(0,(A)U {0}) and fEL’,,. Let {{iy=N,tic,}
be a sequence such that o,>>0 and {.,—\ when n—> oo and let {f,} be a sequence
of functions of 9l and supp f,C K, a compact set, and f,—f. Then v(+, §ip, fo)=
R(8.,)fa converges weakly in K, for s>(n+1)/2 to a limit v.(+, N, f)E K,
Moreover v.(+, N, f) is the solution of the steady-state wave propagation problem
(5.1).

The proof can be carried out in the same line of that of Theorem 3.4 of
[9] by replacing their Lemma 3.6 and Lemma 3.7 with our Lemma 5.5 and
Lemma 5.6, respectively. For our case the convergence of w.,~ follows from
the same argument of the last step of Lemma 5.6.

Then the proof of 1) of Theorem 5.1 can be carried out in the same line
of that of Lemma 3.11 and Theorem 3.1 of [9] by replaicng their Lemma 3.4
with our Lemma 5.7. The proof of 2) of Theorem 5.1 can be carried out in
the same line of that of Theorem 3.3 of [9] by replacing their Theorem 2.1
with our Theorem 5.2.

6. The eigenfunction expansion

In this section we shall construct distorted plane waves, and state the the-
orem of eigenfunction expansions. The proof is almost same as that of J.R.
Schulenberger and C.H. Wilcox [11]. So we shall omit it. Here we assume
that E(x) is continuously differentiable.

To begin with disrtoted plane waves {®f(x, £); x€Q, EER", |j| =
1,2, -, p} are constructed. Let B(x) be a smooth function of (4.1). Consider
the following equation in 4{:

(6.2) (A=0)¥; = —(A—2(E)BEDI+(N;(E)—8)(1—B(x))E(x) V*Df ,
where
(6.3) DY, &) = e=tP(F).

Since A equals A° for |x|>R,+1 and (A°—n;(§))®D}=0, it follows that the right
hand side of this equation has its support in the ball {|x| <Ry+1}. Thus, for
each {=A+47io(c=0), there exists a unique solution ¥;=V¥; (-, &; {)EL*(Q).
Theorem 5.1 implies the existence of the limit

Wi(x, &; A+:0) = 1‘1&1 Wi(x, &; Ad-ia)
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if Ao, (A)U {0}, and it satisfies 4- radiation condition and the boundary con-
dition on 8Q.
Put

@(x, &; £) = B)Dj(x, E)+¥i(x, £ 8).

Then, since B®? satisfies the boundary condition, it follows easily from the
equation (6.2) that ®,(-, £; {) satisfies

(A—=0)®; = (A(E)—5)E /@]
Here note that E(x)=I for |[x|>R, Finally the distorted plane waves
{DF(», &)} are defined by
i (x, £) = lim @(x, &; A(§)£io)
for any ¢ R"\Z;. Then
(A—N(E))DF(E) = \(E)—MET@]  for x€Q

dF satisfies 4 radiation condition

dFeN(x) for x<dQ.

In order to give the expansion theorem we have to introduce more notations.
For f €C(Q) the transform f#(£) is defined by
F1@) = | @5, ©* B ()
(the integral in the sense of the limit in mean)
for all FEER"\Z;. Let 5 denote
(F51)E) = F3(®)
and F*= mé:l F¥. 9, denotes a subspace of K of all eigenfunctions of A, and

P? denotes the projection onto it. 4, denotes the continuous spectral subspaces
and P° the projection onto it.

Theorem 6.1. The distorted plane waves {®¥(x, £); £ € R"\Zs} form a
complete set of generalized eigenfunctions of A restricted to .

1) = is an isometry of H, onto (H,)., the continuous spectral subspace of Y.
The adjoint operator (F*)* is an isometry of (o). onto K., and is given by

(@)% = 33 (@D*,
(@311 = | @3 0@ dt

(the integral in the sense of 9, the limit in mean) .
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2) For any function f of H, it follows that

(PF)) = (FF*f(s) = 3 (FFFE )

3) FFACK()FTF (171=1,2, -, p).
4) PE=GF*(F*)* (P§ denotes the projection onto (),).
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