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Introduction. This is a continuation of our previous paper [10]. We
shall establish some extensions of Wong's characterization [19] of the open
unit ball <BU in Cn. Also we generalize a theorem of Behrens [2] derived from
our result [9], and finally improve our main theorem in [10].

As a generalization of the notion of strictly pseudoconvex domains with
C2-smooth boundaries, we introduced in [10] the notion of domains with piece-
wise C2-smooth boundaries of special type (see section 1). Now Wong [19]
has given characterizations of the open unit ball J2Γ in Cn among bounded
strictly pseudoconvex domains with C°°-smooth boundaries. Our first purpose
of this paper is to show that analogous characterizations are still valid for our
domains with piecewise C2-smooth boundaries of special type. In fact, by a
direct application of our result [10], we shall establish the following extension
of the Wong's result [19]:

Theorem I. Let D be a bounded domain in Cn(n>l) with piecewise C2-
smooth boundary of special type and let Aut(D) be the Lie group of all biholomorphic
automorphisms ofD. Then the following statements are mutually equivalent:

(i) D is bίholomorphically equivalent to J8\
(ii) D is homogeneous,

(iii) Aut(D) is non-compact.
(iv) There exists a compact subset K of D such that Aut(D) K=D.

Corollary 1. Let D be a bounded domain in Cn(n>l) with piecewise C2-
smooth boundary of special type. We assume that the boundary dD of D is not
C2-smooth globally, that is, dD has a corner. Then Aut{D) is compact.

Corollary 2. Let D be a bounded circular domain in Cn(n>ί) with piecewise
C2-smooth, but not smooth, boundary of special type and assume o^D, where o
denotes the origin of Cn. Then every element of Aut(D) keeps o fixed and hence
is linear.

Next we assume that a complex manifold M can be exhausted by biholo-
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morphic images of a complex manifold Z), that is, for any compact subset K
of M there exists a biholomorphic mapping fκ from D into M such that Kd
fκ(D). Then, how can we describe M using the data of Z>? In connection
with this question, we have obtained in [10; Theorem II] the following result:

Let M be a connected hyperbolic manifold of complex dimension n in the sense

of Kobayashi [7] and let D be a bounded domain in Cn with piecewise C2-smooth

boundary of special type. Assume that M can be exhausted by biholomorphic

images of D. Then M is biholomorphically equivalent either to D or to some Siegel

domain 3){R\, H) in CkxCn-\l^k^ή).

The second purpose of this paper is to study the case where M is not hy-
perbolic in the statement above. In such a case we show that the zero set of
the infinitesimal Kobayashi metric FM on M is an (n—l)-dimensional holomor-
phic vector bundle over M (see Proposition in section 3). Consequently, by the
proof of the Main Theorem of Fornaess and Sibony [3] we obtain the following

Theorem II. Let M be a connected σ-compact complex manifold of com-

plex dimension n and let D he a bounded domain in Cn with piecewise C2-smooth

boundary of special type. We assume that

1) M can be exhausted by biholomorphic images of D\

2) the zero set of the infinitesimal Kobayashi metric FM on M is a holomorphic

line bundle over M.

Then there exists a closed connected complex submanifold A of codimension one of

D or of some Siegel domain 3){Rk+> H) in C"xCn~k such that M is biholomorphical-

ly equivalent to the total space of a holomorphic line bundle over A.

This is a generalization of Behrens [2]. Indeed, combining the methods of
Fornaess and Sibony [3] with our previous result published in a preprint form
[9], Behrens has derived the above theorem in the case where D is a bounded
strictly pseudoconvex domain with C2-smooth boundary.

Before proceeding, one terminology is to be introduced. Let D be a
domain in Cn with the Kobayashi pseudodistance dD. For a point p of D, the
topological closure of D in Cn> we say that D is hyperbolically imbedded at p if,
for any neighborhood W of p in Cn, there exists a neighborhood V of p in Cn

such that

VaW and dD(Df](Cn\W)>DΠV)>0.

Note that, if D is relatively compact in Cn and hyperbolically imbedded at every
point of D, then D is said to be hyperbolically imbedded in Cn in the sense of
Kiernan [5], [6]. Obviously D is hyperbolic if and only if it is hyperbolically
imbedded at every point of D. Now, our final purpose is to prove the following
theorem, which is an unbounded version of [10; Theorem I] (see Theorem III '
in section 1):
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Theorem III. Let D be a hyperbolic, not necessarily bounded, domain in
Cn(n>l) with a boundary point p^dD satisfying the conditions (C.I) through
(C.5) described in section 1 for some open neighborhood U of p and C2-functions
p, : [/—>!?, i=l9 •••, k. Assume that the following two conditions are satisfied:

(*) There exist a compact set K in D, a sequence {kv} in K and a sequence
ifv} in Aut(D) such that lim fv(kj=p.

(#*) D is hyperbolίcally imbedded at p.
Then D is bίholomorphically equivalent to some Siegel domain SD(Rk+,H) in

Ck X Cn"k. Conversely, every Siegel domain <D(Rk

+, H) in Ck X Cn~k is a hyperbolic
domain and the conditions (C1)~(C5), (*) and (**) are all satisfied at the point

+, H), where o stands for the origin of Cn=CkxCn~k.

As a special case, let us consider a bounded domain D in Cn. Then D is
hyperbolically imbedded in Cn in the sense of Kiernan [5], [6; Theorem 1].
Hence the condition (**) of Theorem III is automatically satisfied for any
boundary point p of D. Therefore Theorem III is a generalization of [10;
Theorem I]. Moreover, considering the case where D is a bounded domain
and k=l in Theorem III, we obtain a well-known result of Rosay [15].

After some preliminaries in section 1, Theorem I and its corollaries will be
proven in section 2. Sections 3 and 4 are devoted to proving Theorems II and
III. In the final section 5, as concluding remarks we mention the analogues of
Theorems I, II and III in the case where D is a domain in a complex manifold
X, and discuss also the condition (**) of Theorem III.

The author would like to express his thanks to Professor S. Murakami for
his valuable advice. The author would also like to thank the referee for helpful
suggestions.

1. Preliminaries

In this section we recall first some definitions and a fundamental result in

[10]
A bounded domain D in Cn is said to have a piecewise C2-smooth boundary if

there exist a finite open covering {£/,•} f=i of an open neighborhood V of 3D and
C2-ίunctions pji Uj—>R, j = l , •••, N> such that

(1) DΠ V= {ZEΞV: for ;=1, , N, either z$ Uj or #<= Uh py(*)<0}
(2) for every set {j\, "*,ji} with 1 ^]\< ••• <jir^ΛΓ, the differential

form

dpίχ A Λ dpj.(z) Φ 0 for all z<=Π U^ .

We call {UJ; p/}7=i a defining system for D.
Let D be a bounded domain in Cn with piecewise C2-smooth boundary and
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let {Uj\ pj}J~i be its defining system. Then 3D is said to be of special type if
the following conditions are satisfied: For an arbitrary given point p&dD, one
can find a subset /o f {1, •••, N} consisting of k elements with l^k^n, say / =
{1, •••, k} for the sake of simplicity, and an open neighborhood U of p with Ua

fΐ Ui such that
ί=l

(C.I) Pi(ρ) = 0 for i = 1, —, k;

(C.2) DO U= {ZΪΞU: pi(z)<0 for i = 1, —, k}-,

(C.3) dPlΛ-ΛdPk(z)Φ0 for all z^U;

(C.4) ^ Q 2 p L ( j > ) ^ ^ ^ 0 , ? = ( L ) e Γ for ί = l , —,ft,

where

r= 0 for i = 1, •••, Λ} :

(C.5) for some constant ^4^0, the function p= Σ p , +^4 Σ(ρ, )2 is strictly pluri-
subharmonic on f/.

Such a system (C/; pl9 •••, pΛ) is called a defining system for D in the neighborhood

Uofp.
It is obvious that any bounded strictly pseudoconvex domain with C2-

smooth boundary is a typical example of domains with piecewise C2-smooth
boundary of special type. Here it should be remarked that not all functions
Pji Uj—>R in the definition above need to be strictly plurisubharmonic. In
fact, consider the following domain

D = {(*, W)EΞC2: Pl(z, «0<O, A ( * ,

in C2, where

for (sr, κι)eC2. Then, setting

5 = {(*, 0)eC 2 : | * | = 1} C {(*, ro)eC2: Pl{z, w) = A (», w) = 0} ,

we can see that the Levi-form L(p^ of px is degenerate at each point of S, and is
strictly positive definite at every point of dD\S. On the other hand, it is clear
that the Levi-form L(p1+p2) of pi+p 2 is strictly positive definite at every point
of C2 . Keeping these facts in mind, we can check that D is, in fact, a bounded
domain with piecewise C2-smooth boundary of special type.

Now, for the open convex cone
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for f = 1, •-, Λ>

in Rk, l^k^n, and an /2+-hermitian form H: Cn~*xCΛ~*->C*, we shall denote
by 3){R\, H) the Siegel domain in Ck X Cn"k associated to JB+ and H in the sense
of Pjateckii-Sapiro [14].

The following lemma guarantees us that bounded domains with piecewise
C2-smooth boundaries of special type as well as Siegel domains are taut in the
sense of Wu [20].

L e m m a 1. Let X be a connected complex manifold, D a bounded domain in
Cn with piecewise C2-smooth boundary of special type andS)(R\y H) a Siegel domain
in Ck X Cn~k=Cn. Let f: X->C" be a holomorphic mapping. Then zϋe have:

1) Iff(X)<zD, then either f(X)CD or there exists a point p^dD such that

2) Iff(X)c4)(Rl, H)y then either f(X)cS)(R\, H) or f(X)CLdW{R\, H).

Proof. First, assuming that f(x0) G 3D for some point ι 0 G ί , we show that
f(x)=f(xo) f° r au< x^X To this end, choose a defining system (U; pu •••,/>*)
for D in an open neighborhood U off(x0) and let us consider a strictly plurisub-

k k

harmonic function ρ= Σ Pi+Λ Σ (pi)2 on U as in (C.5). After shrinking U if
*=1 i=l

necessary, we can assume that D Π Ud {z^U: p(z)<0}. Now take a connected
open neighborhood Wof x0 so small that f(W)dU and consider the plurisub-
harmonic function pof; W-+R. Then

pof(χ0) = 0 and pof(χ)^0 for all

and hence by the maximum principle

po/(^) = 0 for all

This combined with the strict plurisubharmonicity of p yields that / ( # ) = /
on W, and accordingly on X by analytic continuation, as desired.

Next we consider the second case. With respect to the given coordinate
system

z = (*', s") = fo, —, zk9 zk+l9 —,zn)

in CkxCn~k=Cn, the i2i-hermitian form H is written as H=(HU ••-,#*) and
accordingly

3){R\, H) = iz(=Cn: Pi(z)<0 for i = 1, ..., k} ,

where

Pi(z) = Hi(z", z")—imZi for i = 1, —, k .
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Since every H{ is a positive semi-definite hermitian form on CΛ~*, every p{ is a
plurisubharmonic function on C*. Now, we assume that/(#0)e9i2)(i2+, H) for
some point xo^X. Then there exists an index iOy 1 ̂ io^k, such that pio°f(xo)=
0. So, considering the plurisubharmonic function

we can see in the same way as in the proof of 1) that

piQof(χ) = 0 for all

This combined with the assumption f(X)d^)(Rk

+y H) assures that/(X)c9.®
(Λi, H), as desired. Q.E.D.

We finish this section by recalling the following theorem, which is es-

sential to the proof of Theorem I.

Theorem III7 ([10; Theorem I]). Let D be a bounded domain in Cn(n>ί)

with a boundary point p^dD satisfying the conditions (C.I) through (C.5) for

some open neighborhood U of p and C2-functions p, : U-+R, i=ί, •••, k. Assume

that:

There exist a compact set K in D, a sequence {kv} in K and a sequence

{/v} in Aut(D) such that limfJkJ = p .

Then D is biholomorphically equivalent to a Sίegel domain S)(R%> H) in CkxCn~k.

Conversely, every Sίegel domain 2){Rk+> H) in CkxCn~k is biholomorphically

equivalent to a bounded domain D in Cn satisfying all the conditions (C. 1 ) ~ ( C 5 )

and (*).

2. Proofs of Theorem I and its corollaries

Proof of Theorem I. From the definition of domains with piecewise C2-
smooth boundaries of special type, we see that the set of all C2-smooth strictly
pseudoconvex boundary points of D is open and dense in 3D. Hence the
equivalence of three statements (i), (ii) and (iv) follows immediately from [15]
or [10; Corollary 2]. Since Aut{D) is non-compact if D is biholomorphically
equivalent to the open unit ball iZΓ, in order to complete the proof we have
only to show the converse. In the following, let us set, for r > 0 ,

Δ(r) - {η^C: \v\<r} and £ = {£eC: Im ξ>0} .

Now suppose that Aut(D) is non-compact. Then, for an arbitrarily fixed
point q of Z), one can choose a sequence {/v} in Aut(D) in such a way that the
sequence {/v(?)} converges to some boundary point p of D [11; Proposition 6,
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p. 82]. Consequently, taking a defining system (U; ply •••, pk) for D in an open
neighborhood U of py we obtain from Theorem III ' that D is biholomorphically
equivalent to some Siegel domain S)(R\> H) in CkxCn~k. We choose a
biholomorphic mapping <p: SD{R\, H)-*D. Once it is shown that k=l, our
proof will be finished, because any Siegel domain £D(R\,H) in CxCn~ι is
biholomorphically equivalent to the open unit ball 3?. Assuming that k^29 we
shall obtain a contradiction by using a similar method as in [11 Chap. 5].

With respect to the given coordinate system

z = (*', s") = fa , —, zky zk+l9 —, zM)

in Cn=CkxCn~k> the i?i-hermitian form if can be written in the form ί f =
(ΐ/j, •••, i/Λ). Since k^2, there exists a boundary point

such that

Im s ί- jHiί*^ *J0 = 0

Im ^-HiW, *{/)>0 for ί = 2, •••, λ .

Let us take an r>0 so small that

and

Then, for an arbitrary given point a^R=d^ and an arbitrary given sequence
Φv}Γ=i °f positive numbers bv tending to 0, we can define a family of holomorphic
mappings

Ff = (Fl-,Fl):A(r)-+Cn for i r = l , 2 , - .

by setting

F\η) = φ{z\+a+\ί=Λ ftv, *2°+?7, ̂ 3°, - , *ϊ) for

where <p: 3)(R\9 H)->D is the given biholomorphic mapping. Owing to the
boundedness of D, we can select subsequence {FVJ} of {F*} which converges
uniformly on every compact subset of Δ(r) to a holomorphic mapping JF: Δ(r)->
Cn. Clearly we have F(A(r))(ZD. Moreover, since

lim
V-> oo

and since φ is a biholomorphic mapping from 3){R\9 H) onto Z>, we see that
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lim F*i(0) = F(0)<=dD .

Hence we conclude by Lemma 1 that F(TJ)=F(0) for all ^GΔ(r). Thus, after
taking a subsequence and relabelling if necessary, we have that the sequence {Fv}
converges uniformly on compact subsets to a constant mapping. So it follows
from a well-known Weierstrass' theorem that

lim **L ( * ; + έ I + N / = ϊ iv, zl+Vy *$, .», *2) = lim ^p-(v) = 0

uniformly on every compact set in Δ(r) fory=l, •••, w, where <pj denotes the/-th
component function of <p: 3){R\, H)-*D. In particular, if we consider the
holomorphic functions hji lQ->C9j=l, •••,#, defined by

then

hj(ξ) - - ^ (*ϊ+f, rf, ..., 4) for

(#) lim Ay(α+\/Z4 6) = 0 for = 1, —, n;

On the other hand, since D is a bounded domain in Cn, the Cauchy estimates
tell us that every function hj is bounded on φ. Therefore, by composing hj and
the Cayley transformation C: Δ = {zϋ&C: \zo\ <!}—>£> defined by

C:w\-^ξ= y/'Z^(l+w)'(ί-wy1 for α>(=Δ,

we obtain the bounded holomorphic functions fj=hjθC on Δ for j=l> •••, w.
Here we can check easily by using (#) and [17; Theorem VIII. 10., p. 306] that,
for every j = l , •••, n and an arbitrary point ζ^dA with £=f= 1, we have limfj(zΰ)=

0 when w->ζ from the inside of any fixed Stolz domain with vertex at ζ. Hence,
JF. and M. Riesz' theorem [17; Theorem IV. 9., p. 137] guarantees us that

fj(w) = 0 for

or equivalently

& i*2) = 0 for

Thus the complex Jacobian determinant of the biholomorphic mapping φ\ 3)
(J2+, H)->D vanishes identically on the non-empty subset {(#i+£> ̂ 2, •••,#2)e
C": ξGξ)} of ̂ (Λj., i/), which is a contradiction. Q.E.D.

Proof of Corollary 1. Assume that Aut(D) is non-compact. Then, by
Theorem I D is biholomorphically equivalent to the open unit ball i8n. In
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particular, D is a homogeneous domain. On the other hand, by our assumption
there exists a non-smooth boundary point p of Dy so that in a certain open
neighborhood U of />, D has a defining system (17; ply •••, ρk) with k^2. Under
such conditions, we have already known from [13] or [10; Corollary 1] that D is
biholomorphically equivalent to the direct product of the open unit balls SB"* in
CΛ/ (l^i^k): D^JBniX~- xJB"k, where each n^l and nx-\ \-nk=n. How-
ever, this is a contradiction, because 3? is not biholomorphically equivalent to
any direct product domain. Thus Aut(D) must be compact.

Proof of Corollary 2. Assume that D is a bounded circular domain in
Cn with piecewise C2-smooth, but not smooth, boundary of special type and D
contains the origin o of Cn. Let G denote the identity connected component
of Aut(D) and let Do be the G-orbit passing through the origin o. Then Do=
{o}. In fact, by the proof of [8; Lemma 1.2] we know that Do is a complex
submanifold of D. On the other hand, Do is compact by Corollary 1. Thus
Do is a compact connected homogeneous hyperbolic manifold, so that it must
reduce to {o} [7; Theorem 2.1, p. 70], as desired. Next, by the compactness of
Aut{D) we can select finitely many elements^, •••,gk of Aut(D) such that

Aut(D) = U gi'G (disjoint union)

and accordingly

Aut(D)*o= igi o, ~-,gk*o} .

Since Aut(D) contains the rotational group

we now conclude that

g. o = o for i = 1, •••, k and hence Aut(D) o = {o} .

Therefore any element of Aut(D) is linear by a well-known theorem of H. Cartan
[11; Proposition 2, p. 67]. Q.E.D.

EXAMPLE. Let us consider the domain

2 < l , b\z\2+a\w\2<ί}

in C2, where a, b>0 and aΦb. Then D is a bounded circular domain with
piecewise C2-smooth, but not smooth, boundary of special type. Let T be the
group of the linear transformations

T(..o: (z, to) M. ( e ^ * *, «"=» w),

and let σ0: (#, α>) ι-» (zo, z). Then we have



508 A. KODAMA

Auΐ(D) = T U σ0 T (disjoint union).

In fact, we know by our Corollaries 1 and 2 that Aut(D) is a compact Lie

subgroup of GL(2; C). Hence go Aut(D) go1czU(2) for some element go^GL

(2; C). Replacing D by the circular domain £0(Z)) if necessary, we may assume

that Aut(D)C t/(2). Now assume that dim Aut(D)^3. Then Aut(D)ZDSU(2)

and accordingly dD must be smooth, a contradiction. Therefore dim Aut(D)^2

and, in fact, we can see that the identity connected component of Aut(D) coin-

cides with T. Then, for an arbitrary given σ^Aut(D) there exists (α, ] 8 ) G Λ 2 \

{(0,0)} such that

<r' T(s,o) = T(cύStβs) σ for all

It is now easy to deduce from this equality that

3. Proof of Theorem II

According to Fornaess and Sibony [3] and Behrens [2], the only thing

which is to be proved now is the following

Proposition. Let M be a connected σ-compact complex manifold of com-

plex dimension n and let D be a bounded domain in Cn with piecewise C2-smooth

boundary of special type. We assume that M can be exhausted by biholomorphίc

images of D. Then the zero set of the infinitesimal Kobayashi metric FM on M is

an {n—ΐ)-dimensional holomorphic vector bundle over M.

Proof. Using our constructions of [10], we will proceed along the same

line as in [2]. Throughout the proof we use the same notation as in [10], unless

otherwise stated.

First we fix a family {My}~βi of relatively compact subdomains of M such

that

M= U M p o M y + p M y D o M ! .

By our assumption there exists a sequence {<pv}Γ=i of biholomorphic mappings

from D into M such that

v φ v ( ) for i > = l , 2 , — .

We set

ψv = φ~ιι φv(D) ->D for i - l , 2, •- .

Then we can assume that {ψv} converges uniformly on every compact set in M

to a holomorphic mapping ψ: M->Cn with ψ(M)(ZD. By virtue of Lemma 1

we have now two cases:
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Case 1. ψ(M) (ZD and Case 2. ψ(M) = {p} C3D.
Let us study for a while the second case. We fix a point x0E Mι and an

M'=Mj arbitrarily, and consider the biholomorphic mappings

F* = Lvohvoψv for

as in the proof of [10; Theorem II]. Then

F\x0) = ( - 1 , - , - 1 , 0, •••, 0) for all

k times

Moreover we know [10] that there exist an unbounded domain *W in Cn and a
subsequence {F*J} of {Fv} satisfying the following conditions:

1) Hft is biholomorphically equivalent to a Siegel domain j3)(Rk+> H) in
CkxCn"k

y via the non-singular linear mapping L: Cn->Cn defined by

L(w\ w") = ( - V ^ ϊ v>\ vf') for (to', vi")GC*X C Λ "* = Cn

2) {Fvi} converges uniformly on compact subsets to a holomorphic map-

ping F: M-*ψc:Cn with

(3.1) F(x0) = ( - ! , - , - ! , 0, " . , 0 ) e ^ .

ft times

Note that F{M)d(W by Lemma 1. In the following, we shall make the identi-
fication:

<W = $(R\, H)

via the bilinear mapping L: Cn->Cn and, changing the notation, we assume that
{F*} itself converges uniformly on compact subsets to the holomorphic mapping
JF: M - * ^ . NOW, let us take the family {Wv}~=ι of domains in Cn defined in
(2.10) of [10] and set

G\w) = φ*oQ^-ιo(V)-χϊθ), we Wv

for v=l, 2, •••. Then we have by [10] that:
(3.2) For any compact set K in W, there is an integer v(K) such that Kd Wv

for all v^v(K); and
(3.3) Gv are biholomorphic mappings from Wv into M such that Gv°Fv=td

According to Fornaess and Sibony [3], we shall introduce the holomorphic
mappings

ί ψ°φv: D -> D in Case 1
a v = \ FoGv: Wy-+<W in Case 2.
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In the first case, by the boundedness of D we can assume that {αv} converges
uniformly on compact subsets of D to a holomorphic mapping a: D-*D and,
for any fixed point x^My

aoy]r(x) = lim ctvoψ v(χ) == Λ]T

Hence a(D)dD by Lemma 1. In the second case, we know that <W is a taut
domain and by (3.3)

lim α v ( - l , .-, - 1 , 0, -., 0) = ( - 1 , ..., - 1 , 0, -., 0)e<^ .

k times

Therefore, combining the fact (3.2) with the usual normal family argument, we
can also assume that {av} converges uniformly on compact subsets of HP to a
holomorphic mapping

a:(W-+<W in Case 2.

Moreover, we can check easily that

aoΛJr(x) = ψ(x), x&M in Case 1;

aoF(x) = F(x), x&M in Case 2.

From now on we want to consider simultaneously the both Cases 1 and 2.
For this purpose, we define the objects

Ω,Ω V ,Φ V ,Ψ V ,Ψ for 1^=1,2,—

by

Ω = D, Ωv = A Φ v = φVf Ψ v = -ψ y, Ψ = ψ in Case 1

Ω = W, Ωv = ίFv, Φ v = Gv, Ψ v = F\ Ψ = F in Case 2

respectively. So, summing up the above, we obtain the into-biholomorphic
mappings

Φ V : Ω V - > M for * = 1, 2,—

such that the sequence

converges uniformly on every compact subset to the holomorphic mapping

Ψ : M - * Ω .

Moreover, the sequence
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av = ψ o φ \ Ωv -> a v = 1, 2, •••

converges uniformly on every compact set in Ω to the holomorphic mapping

a: Ω -> Ω with α<>ψ = ψ O n M.

We set as in [3]

Z= iqt=Ω: a(q) = q}

and let / be the maximal rank of Ψ on M. Then we have by [3 Lemmas 4 . 2 ^
4.4] that
(3.4) Z is a connected closed /-dimensional complex submanifolds of Ω;
(3.5) a is a holomorphic retraction of Ω to Z;
(3.6) Ψ(M)=Z and Ψ has constant rank / on M.
Therefore, by virtue of the hyperbolicity of Ω, in order to complete the proof
of the proposition we have only to verify the equality

(3.7) FM(z0; Q = Fa(Ψ(z0); dΨ,o(ζo))

for an arbitrary given element (zQ; ζ0) of the holomorphic tangent bundle 3M of
Mf where dΨ2Q denotes the complex differential of Ψ at the point zo^M. To
obtain the equality (3.7), let us recall here the following three facts:
(3.8) Every geometrically convex hyperbolic domain in Cn is taut [1], [4];
(3.9) for any taut complex manifold X, Fx is continuous on 3X [16]; and
(3.10) <D(Rk+,H) is a geometrically convex domain [18].

Now we shall consider the first case: Ω=D. Since M v c Φ v ( D ) c M for all
v and {Mv} increases to M monotonously, it follows that

This combined with (3.9) yields the desired equality (3.7):

i ^ o ! Q = I™ FD(ψ\z0)

since

Inn (Ψ\zβ); dΨ)0(Q) = ( % ) ; dΨt0(ξ0)) in 3D

by a well-known theorem of Weierstrass.
Next, let us consider the second case: Ω = W . We first fix a family {Sj}~ml

of relatively compact subdomains of the taut domain <W=tD(Rk

+, H) such that

Here we can assume by (3.10) and (3.8) that every Sj is geometrically convex
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and taut. Let us fix an arbitrary integer j . By (3.2) there is a large integer
z ( ) such that

Ψ\z^SjC.Wy for all v^v(j).

Thus the length decreasing property of infinitesimal Kobayashi metrics implies
that

for all v*tv{j). (Note that Φv(5/) are subdomains of M.) Hence, letting v tend
to infinity, we have

because Sj is taut and so FSj is continuous on 3Sj by (3.9). On the other hand,
since {Sj} increases monotonously to W, we see that

Inn FSj(q; ξ) = Fw(q; ξ) for every ( j ;

Consequently

; dΨ,0(ςo))^FM(z0; ζ0).

Thus, by the length decreasing property we also obtain the equality (3.7) in
Case 2. Our proof is completed. Q.E.D.

4. Proof of Theorem III

Throughout this section we denote by D9 ρ^8D> {kv}<zK, {/v} (ZAut(D)
and U the same object as in the statement of Theorem III. Without loss of
generality, we may assume that U is a small open Euclidean ball, so that it is
taut in the sense of Wu [20]. By the compactness of K> we may further assume
that

Km kv = kQ for some point kQ&K.

Given a point αGfl and a positive numbre ry we define the open subset B(a; r)
of Dby

B(a\ r) = {z(=D: dD(a, z)<r} .

Under these assumptions, we show the following lemma, which is the first step
of the proof of Theorem III :

Lemma 2. The sequence {/v} contains a subsequence which converges uniform-
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ly on every compact subset of D to the constant mapping Cp: D->Cn defined by
Cp(z)=pforallzt=D.

Proof. We will proceed in several steps.
1) There exist an integer vQ and a positive number r0 such that f*(B(k0; r0)) C

U for all v^v0: By our assumption (**) we can choose an open neighborhood
V oίp in such a way that Fa U and dD(D Π (C*\t/), D Π V)>0. We set

and choose an integer v0 so large that

kv^B(k0; r0), / V (* V )GF for

Then

B(ko;ro)aB(kv;2ro), B(fv(kv);2r0)aU for

because every point outside U is at least 3r0 away from D Π V. Since every
automorphism/v is an isometry of D with respect to dD [7], this implies that

fv(B(kQ; rQ))dMB(k,; 2r0)) = 5(Λ(ΛV); 2r o)C U

for all v^vOf as desired.
2) Putting Fv=fv\B(kQ;ro) for v^v0, the sequence {Fy}v^Vo contains a subse-

quence which converges uniformly on compact subsets of B(k0; r0) to the constant
mapping Cp\B(ko;ro): By 1) we may regard {Fv} as a sequence in Hol(B(kQ; r0), U),
the set of all holomorphic mappings from B(k0; r0) into U. Hence it forms a
normal family, because U is taut. Moreover, since lim kv=k0&B(k0; r0) and

lim Fv(kv)=p^U, {Fy} is not compactly divergent. Thus some subsequence

{FVj} of {Fv} converges uniformly on compact subsets of B(ko\ r0) to a holomo-

rphic mapping F: B(k0; ro)-*U. Clearly F(B(k0; r o ))cDΠ U. Let p= Σ pi+
k m m

 i = 1

A Σ (ρ, )2 be a strictly plurisubharmonic function defined on U as in (C.5).
i = l

Replacing U by a smaller ball if necessary, we may assume without loss of gen-
erality that D Π Uc. {#e U: p(#)<0}. Then, considering the plurisubharmonic
function poF: B(k0; ro)-»JK, we can show with exactly the same arguments as in
Lemma 1 that F= Cp]B(ftQ. ΓQ).

3) There exists a subsequence {fVj} of {/v} such that lim fvj(z)=p for each

fixedyoint z&D: By passing to a subsequence if necessary, we may assume by
2) that

= p for any point z^B(k0; r0).
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Therefore

S = {^Gΰ: lim/v(#) = p}

is a non-empty subset of D. To show our assertion 3), it is enough to prove
that S is open and closed in D. First we verify the openness of S. For each
point zo^S> we claim that there exists an open ball B(z0; 8) contained in S. To
this end, we fix an open neighborhood W of p arbitrarily, and choose an open
neighborhood V of p so small that VcW and 8=dD(Df)(Cn\W), DΓlV)>0.
Take a point z^B(z0; δ) arbitrarily. Then, for all sufficiently large v we have

= dD(z, zo)<8 ,

which means that fJz)^W. Since W is arbitrary, this implies that limfJz)=p

and accordingly B(z0; 8)dS, as desired. Next, taking an arbitrary point
we claim that zo^S. Otherwise, that is, if lim/v(#0)4=/>, then we can choose an

V->oo

open neighborhood W oϊ p and a sequence {vft CN in such a way that
Wίoτ ally. For such a W, let us fix a small neighborhood V of p so that 8=dD

(D Π (Cn\W), D Π Π>°> a n d t a k e a P o i n t aΌGβ(^: δ/2) Π S arbitrarily. Then

δ < ^ ( / v .(*„), D n F) |

for a large integer j , since lim f^ (zΰo)=p9 which is a contradiction. Thus SdS

and S is a closed subset of D.
4) *S0ffίe subsequence of {/v} converges uniformly on compact subsets of D to

the constant mapying Cp: By 3) we may assume that lim f<»(z)—p for each fixed

point z^D. We claim that this convergence is uniform on every compact subset
of D. To prove our claim, assume the contrary. Then, there exist a compact
subset L of D and an open neighborhood W oϊ p such that/v(L)(t W for infinite-
ly many v. So we can extract two sequences {v}} C.N and {aj} c L in such a
way that fVj(aj)$iW for all j . We can assume that lim a}—a for some point

y ^βo

# e L . Then, choosing a neighborhood V of p so small that VdW and
dD(D{](Cn\W), DΠ V)>0, we have a contradiction:

), D n n^4(/v, K ),/vy( )̂) = ^ ( ^ , a) - o

oo, since
y->o*

We have thus completed the proof of Lemma 2. Q.E.D.

Proof of Theorem III. The following proof will be presented in outline,
since the details of the steps can be filled in by consulting the corresponding
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passages in the proof of [10; Theorem ΓJ. We shall use the same notation as
in [10], unless otherwise stated.

First we assume that D is a hyperbolic domain and the conditions ( C . l ) ~
(C.5), (*) and (*#) are fulfilled. Then, after taking a subsequence and relabelling
if necessary, we have by Lemma 2 that the sequence {/v} converges uniformly
on every compact subset of D to the constant mapping Cp(z)=p> z&D. Thus,
repeating the same arguments developed in the steps 2)~7) of the proof of [10;
Theorem I], we can construct an unbounded domain ^ in Cn biholomorphically
equivalent to some Siegel domain SD(Rk+>H) in CkxCn~k and a holomorphic
mapping F: D-^W. Since any Siegel domain in CkxCn~k is biholomorphically
equivalent to a bounded domain in Cn, once it is shown that JF: Ώ-^^W is in-
jective, we can regard D as a bounded domain in Cn. Thus the final step 8) of
the proof of [10; Theorem I] goes through without any change. Now, assume
that F(z')=F(z")=w for *', #"eZλ Let D\ W be relatively compact sub-
domains of D, <W respectively such that z\ z"(=D' and F(D')dW'. Then
the same reasoning as in the step 7) of the proof of [10; Theorem I] yields that
F is injective on Ώ' and so # ' = # " , as desired. Thus we have shown that D is
biholomorphically equivalent to a Siegel domain 3){R\, H) in CkxCn~k.

In order to prove the converse assertion, let us take an arbitrary Siegel do-
main W(R\, H) in CkxCn~k and consider the functions p, , i = 1 , •••, k, defined by

for

z = (*', *") = (*lf - , zk9 / ) G C " \ U \zZΞCn: * r t V = l = 0} ,

where H{ is the /-th component function of the jB+-hermitian form H. Now
we set U=BV2(o), the open Euclidean 1/2-ball with center at the origin o.
Then we can check by routine calculations that every function p, is real ana-
lytic on U and the conditions (C.1)~(C5) are satisfied for the system (0; U;
Piy '•*> Pk) [10] Furthermore, considering the one-parameter subgroup

φt: (z\ ^ 0 ^ (e* z'y

of Aut{β(R\, H)), we obtain that

lim φt(z0) = o for any fixed point #0e.2)(Λ+, H).

Clearly this guarantees us that the condition (*) is satisfied.
It remains to show tthat <D(Rk+,H) is hyperbolically imbedded at 0. To

this end, putting ^)=£)(Rk+y H) for simplicity, we recall that there exists a biho-
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lomorphic mapping C: S)^>3} from 3) onto a certain bounded domain B in Cn,
which can be extended to a biholomorphic mapping U=B1/2(o) onto an open
neighborhood V of the point C(o)^d*B [10; Lemma in section 1], We denote
this extended biholomorphic mapping by the same letter C. Now, for the
verification of the condition (**) at o it is sufficient to show the following:
(4.1) For any neighborhood W oϊ o with WdU, there exists a smaller neigh-
borhood V of o such that V'dW and dgiβΠ(C*\W), 3)Π V')>0.

Let us now fix such a neighborhood W arbitrarily and set W'=C(W).
Then W is a neighborhood of C(o)e3iS contained in V9 so that one can find
a neighborhood V" of C(o) such that F ' c P F ' and ^ ( ^ n ( C V ' ) , - ® Γ l F " ) >
0, because the bounded domain SB is hyperbolically imbedded at C(o)^d*B [6].
Thus, recalling the fact C: S)-*-ίB is an isometry [7], we can see that the set
V'=C-χ{y") has the property of (4.1), as desired. Q.E.D.

5. Concluding remarks

5.1. Let D be a domain in a complex manifold X of complex dimension n
and let p be a point of Zλ Then we can define the hyperbolically imbedded-
ness of D at p in the same way as in the Euclidean case. Furthermore, the
notion of domains in X with piecewise C2-smooth boundaries of special type
can be natually introduced.

REMARK 1. The analogue of Theorem III is true in the case where D is a

hyperbolic domain in a complex manifold X.

In fact, since the open neighborhood U of p can be chosen as small as we
wish, we may assume that U is a local coordinate neighborhood of p in X and
there exists a biholomorphic mapping γ : U-+Cn such that <γ(ρ)=o and y(U)=
ST. Thus, by transfering back and forth between U and <Bn via this coordinate
mapping γ in the proof of Theorem III, we can prove the general case as above.

REMARK 2. By virtue of Remark 1, one can see that the analogue of Theorem
II is true in the case where D is a hyperbolically imbedded subdomain of a complex

manifold X in the sense of Kίernan [6] and 3D is a piecewise C2-smooth boundary

of special type.

REMARK 3. The analogue of Theorem I is also true in the case where D is a

hyperbolically imbedded subdomain of a Stein manifold X in the sense of Kiernan

[6] and dD is a piecewise C2-smooth boundary of special type.

In fact, it is obvious by Remark 1 that the assertions (i), (ii) and (iv) are
mutually equivalent and (i) implies (iii) in Theorem I for the general case above.
Therefore the only thing which has to be proven is the implication (iii)=φ(i).

We first notice by [6; Theorem 1] and Lemma 1 that our domain D is a taut
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subdomain of X. Therefore, assuming that Aut(D) is non-compact, we can
select a sequence {/v} in Aut(D) such that {/,(?)} converges to some boundary
point p of Dy where q is an arbitrary given point of D. Then we can conclude
by Remark 1 that D is biholomorphically equivalent to some Siegel domain
S)(R\9 H) in CkX Cn~k. We have to show that k=l. Retaining the notation in
the proof of Theorem I, we now define a family of holomorphic mappings

0

3,...,z°n) for

Then, since Hol(Δ(r), D) is relatively compact in Hol(Δ(r), X) by [6; Theorem
1], we can assume by the proof of Theorem I that {Fv} converges uniformly on
compact subsets of A(r) to the constant mapping F(η)=F(0)&dD. Since X is
a Stein manifold, there are global functions cl9 •••, cnonX such that c=(cl9 •••, cn):
X-*Cn gives a holomorphic imbedding of an open neighborhood V of JF(0) G9Z)
into Cn. We now consider the bounded holomorphic functions <Pj=Cj°<p,j=l9

•••, n9 on S)(R\9 H). Then, replacing ψj by φj in the proof of Theorem I, we
can prove that

^ = 0 for

Therefore, by setting D=SD(R*+9H)n<p-1(DnV) and φ=(coφ)&9 we see that
the complex Jacobian determinant of the biholomorphic mapping φ: β->c(D Π V)
dCn vanishes identically on a non-empty set Z3fΊ {(#i+fι ^2, •••, z°n)^Cn\ ξeφ},
a contradiction. Consequently &= 1 and D must be biholomorphically equivalent
to.®\

5.2. Finally we give a remark on the second condition (**) in Theorem
III. As previously mentioned in the introduction, this is automatically satisfied
for any boundary point of Z), provided that D is a bounded domain in Cn. How-
ever, in contrast with this, for an unbounded domain D it does not seem easy to
see whether the condition (**) is fulfilled or not at a given point p^dD. In
fact, this may be illustrated by the following example: Consider the domains D9

B in C2 and a holomorphic mapping/: C2->C2 defined by

B= {(w

(ΐΰl9 to2) = / f a , z2) = fo z29 z2) for (zl9 z2) e C 2

(see [12; p. 85]). Then B is a unit ball with center at (0, —1) and/ gives rise
to a biholomorphic mapping from D onto B. In particular, D is a homogeneous
hyperbolic domain. Now let us consider the set
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Then it is obvious that dD is real analytic and SddD. Here we assert that D is

not hyperbolically imbedded at (0, 0 ) G S C 3 D . To verify this, consider the

holomorphic mappings/v: A={t^C: \t\ <1}->C2, v=2> 3, •••, defined by

Mή (V2iί,-llv) for

and set

*v=/v(0), £ v = / v ( l / v / 2 ^ ϊ ) for * = 2,3,. . .

Then it is easy to see that

{/v}C#o/(Δ,Z>) and lim(αv, by) = ((0, 0), (1, 0))GΞ9DX8Z) .

On the other hand, the distance decreasing property tells us that

dD(aVy K) = ^(Λ(0),/v(l/V2i^ϊ))^^(0, 1IV2^=Λ) -* 0

as i/->oo. Obviously this implies that D is not hyperbolically imbedded at (0, 0),

as asserted. Similarly we can, in fact, prove that this last conclusion is also true

for any other point pGS. On the other hand, by the fact that / is biholomorphic

on C2\S we can deduce that the condition (**) is satisfied for any boundary

The example above shows also that (**) does not follow from (*). Of

course, (**) does not imply (*). Therefore, two conditions (*) and (**) have

no relevancy to each other in general.
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