ON PRIME RIGHT IDEALS OF INTERMEDIATE RINGS OF A FINITE NORMALIZING EXTENSION

Таісні NAKAMOTO

(Received April 23, 1986)

Introduction

Throughout this paper, S will represent a ring extension of a ring R with common identity 1. Let I be a right ideal of R, and $b_R(I) = \{r \in R | Rr \subset I\}$. I is called a prime right ideal, provided that if X, Y are right ideals of R with $XY \subset I$, then either $X \subset I$ or $Y \subset I$. It is clear that every maximal right ideal is a prime right ideal. If I is a prime right ideal, then $b_R(I)$ is a prime ideal. Next, let R' be a ring. An R-R'-bimodule M is called a *torsionfree* R-R'bimodule if $r_M(X) = l_M(Y) = 0$ for every essential ideal X of R and every essential ideal Y of R', where $r_M(X)$ (resp. $l_M(Y)$) is the right (resp. left) annihilator of X (resp. Y) in M, and M is called a *finite normalizing* R-R'-bimodule if there exist elements a_1, a_2, \dots, a_n of M such that $M = \sum_{i=1}^{n} Ra_i$ and $Ra_i = a_i R'$ for i = $1, 2, \dots, n$. Such a system $\{a_i\}_i$ is called a normalizing generating system of M. Finally S is a *finite normalizing extension* of R if S is a finite normalizing R-Rbimodule.

In [1], [2], [3], [4] and [6], "cutting down" theorems for a prime ideals were studied. In the previous paper [7], we have obtained a "cutting down" theorem for a prime right ideal of a finite normalizing extension under the hypothesis that the finite normalizing extension considered is torsionfree. The present objective is to reprove the same without the hypothesis "torsionfree"; we shall prove the following theorem.

Theorem. Let S be an arbitrary finite normalizing extension of R, T a ring with $R \subset T \subset S$. If J is a prime right ideal of T, then there exist prime right ideals K_1, K_2, \dots, K_s of R such that $\bigcap_{i=1}^s K_i = J \cap R$. In this case, $b_R(J \cap R) = \bigcap_{i=1}^s b_R(K_i)$.

1. Preliminaries

Throughout this paper, S will represent a finite normalizing extension of R, and T a ring with $R \subset T \subset S$.

Let P be a prime ideal of T. In studying P and T/P, one can usually reduce problems to the case in which (1) S is a prime ring, and (2) $A \cap T \subset P$ for

each non-zero ideal A of S; this case being described as a standard setting for P. Actually, in view of [3, Proposition 2.2], there exists a prime ideal Q of S with $Q \cap T \subset P$ such that, with identifications of subrings, $R/(Q \cap R) \subset T/(Q \cap T) \subset S/Q$ gives a standard setting for $P/(Q \cap T)$.

To our end, we quote the following results from [1], [2], and [3].

Proposition 1.1 ([1, Theorem 2.11] and [3, Theorem 2.13 and Proposition 2.14]). Let P be a prime ideal of T for which the case is a standard setting. Then

(1) R is a semiprime ring,

(2) there exists a set $\{P_1, P_2, \dots, P_m\}$ of at most n (= the number of normalizing generators of S over R) prime ideals of R such that $\bigcap_{i=1}^{m} P_i = 0$ and the prime rings R/P_i are all isomorphic, and

(3) there exists a subset $\{P_{i_k}\}$ of $\{P_1, P_2, \dots, P_m\}$ such that $P \cap R = \bigcap_k P_{i_k}$.

Proposition 1.2 ([1, Propositions 3.3 and 5.3, and Lemma 5.2]). Let S be a prime ring. Then

(1) S embeds in the right Martindale quotient ring Q(S) of S,

(2) there exist orthogonal idempotents f_1, f_2, \dots, f_m in $V_{Q(S)}(R)$ such that $f_1 + f_2 + \dots + f_m = 1$ and $r_R(f_i) = P_i$ for all $i = 1, 2, \dots, m$, and,

(3) $f_iQ(S)f_j$ is a torsionfree f_iR-f_jR -bimodule and f_iSf_j is a torsionfree finite normalizing f_iR-f_jR -bimodule.

Proposition 1.3 ([2, Corollary 2.25 and Theorme 4.6]). Let S be a prime ring, and Q(S) the right Martindale quotient ring of S. Let f_i be as in Proposition 1.2 and put

$$S_{ij} = S \cap f_i Q(S) f_j = S \cap f_i S f_j,$$

$$T_{ij} = T \cap f_i Q(S) f_j = T \cap f_i T f_j,$$

$$S_i = S_{ij} + f_i R,$$

$$T_i = T_{ii} + f_i R, and$$

$$T^{\ddagger} = \sum_{i,j=1}^m T_{ij} \quad (i, j = 1, 2, \dots, m)$$

Then

(1) T_i and S_i are rings,

(2) $f_i R \subset T_i \subset S_i \subset f_i S f_i \subset f_i Q(S) f_i$,

- (3) $T_{ii} \subset S_{ii} \subset f_i Sf_i$,
- (4) $T_{ii}T^{\dagger}T \subset f_iT^{\dagger}T \subset T, RT^{\dagger} \subset T^{\dagger}, f_iRT^{\dagger}T \subset f_iT^{\dagger}T \text{ and } T_iT^{\dagger}T \subset f_iT^{\dagger}T,$
- (5) T^* is an essential R-R-subbimodule of T, and

(6) there exists a non-zero ideal U of S such that $0 \neq U \cap T \subset T^{\sharp}$.

2. Proof of Theorem

Let J be a prime right ideal of T. Then $b_T(J)$ is a prime ideal of T. As

476

was claimed at the opening of §1, in order to prove our cutting down theorem, we may assume that S is prime and the setting is standard for $b_T(J)$. Thus throughout this section, we keep the notations employed in §1. Furthermore, we set $h_i(J) = \{t_i \in T_i | t_i f_i T^* T \subset J\}$, which is a right ideal of T_i .

Lemma 2.1. $h_i(J) = T_i$ if and only if $f_i T^* T \subset J$.

Proof. If $h_i(J) = T_i$, then we have $f_i T^{\ddagger} T \subset T_i f_i T^{\ddagger} T \subset J$. Conversely, if $f_i T^{\ddagger} T \subset J$, then $T_i T^{\ddagger} T \subset f_i T^{\ddagger} T \subset J$ (by Proposition 1.3). Hence $T_i \subset h_i(J)$, and so $h_i(J) = T_i$.

Lemma 2.2. The set $\{i \mid h_i(J) \neq T_i\}$ is not empty.

Proof. If $h_i(J) = T_i$ for all i=1, 2, ..., m, then we have $T^{\dagger} \subset f_1 T^{\dagger} T + f_2 T^{\dagger} T$ +...+ $f_m T^{\dagger} T \subset J$ (Lemma 2.1). But, by Proposition 1.3, there exists a non-zero ideal U of S such that $U \cap T \subset T^{\dagger} \subset J$, which contradicts the setting being standard for $b_T(J)$.

We now reorder, if necessary, so that $f_1T^{\dagger}T \oplus J$ for $i = 1, 2, \dots, s$, and $f_iT^{\dagger}T \oplus J$ for $i=s+1, \dots, m$.

Lemma 2.3. $b_T(J) \cap R \subset \bigcap_{i=1}^s P_i$.

Proof. By Proposition 1.3, there exists a non-zero ideal U of S such that $0 \neq U \cap T \subset T^{\ddagger}$. Therefore, since the setting is standard for $b_T(J)$, for $i=1, 2, \dots, s$, we have $(U \cap T) \cdot f_i T^{\ddagger} T \oplus b_T(J)$, and so $TT^{\ddagger} f_i f_i T^{\ddagger} T \oplus b_T(J)$. Let us set $Q'_{(i)} = \{t_i \in T_i \mid TT^{\ddagger} f_i t_i f_i T^{\ddagger} T \subset b_T(J)\}$ for each $i=1, 2, \dots, s$. Then, as is well known, by the correspondence of prime ideals in a Morita context

$$C_i = \begin{pmatrix} T & TT^*f_i \\ f_i T^*T & T_i \end{pmatrix},$$

 $Q'_{(i)}$ is a prime ideal of T_i corresponding to the prime ideal $b_T(J)$ of T. By [3, Proposition 2.11], we have $Q'_{(i)} \cap f_i R = 0$. Since $TT^{\ddagger}f_i \cdot (b_T(J) \cap R) \cdot f_i T^{\ddagger}T \subset Tb_T(J)T \subset b_T(J)$, we obtain $f_i(b_T(J) \cap R) \cdot f_i \subset f_i R \cap Q'_{(i)} = 0$, and hence $b_T(J) \cap R \subset r_R(f_i) = P_i$. Hence $b_T(J) \cap R \subset \cap_{i=1}^{s} P_i$.

Lemma 2.4. If $i \leq s$, then $h_i(J)$ is a prime right ideal of T_i and $A \cap T_i \subset h_i(J)$ for each non-zero ideal A of S_i .

Proof. Let a, b be elements of T_i with $aT_ib \subset h_i(J)$ and $b \notin h_i(J)$. By Proposition 1.3, there exists a non-zero ideal U of S such that $0 \neq U \cap T \subset T^*$. Then, since $a \cdot f_i T^*T(U \cap T) f_i \cdot bf_i T^*T \subset af_i T^*TT^*f_i bf_i T^*T \subset aT_i bf_i T^*T \subset J$, we have either $af_i T^*T \subset J$ or $(U \cap T) bf_i T^*T \subset J$. But, noting that $U \cap T \subset J$ and $bf_i T^*T \subset J$, we get $(U \cap T) f_i bf_i T^*T \subset J$. Hence $af_i T^*T \subset J$, and so $a \in h_i(J)$. We have thus seen that $h_i(J)$ is a prime right ideal of T_i . Next we claim that $b_{T_i}(h_i(J)) \cap f_i R = 0$. Let $f_i r \in b_{T_i}(h_i(J)) \cap f_i R (r \in R)$. Then $f_i T^{\ddagger} T T^{\ddagger} f_i r f_i T^{\ddagger} T \subset J$, and so, $f_i T^{\ddagger} T \subset J$ implies $TT^{\ddagger} f_i r f_i T^{\ddagger} T \subset J$, and therefore $TT^{\ddagger} f_i r f_i T^{\ddagger} T \subset b_T(J)$. Hence $f_i r \in Q'_{(i)} \cap f_i R = 0$, by the proof of Lemma 2.3 ([3, Prop. 2.11]). We have thus seen that $b_{T_i}(h_i(J)) \cap f_i R = 0$. Finally, if A is a non-zero ideal of S_i such that $A \cap T_i \subset h_i(J)$, then $0 \neq A \cap f_i R = (A \cap T_i) \cap f_i R = 0$. This proves that $A \cap T_i \subset h_i(J)$ for each non-zero ideal A of S_i .

Lemma 2.5. If I is a non-zero ideal of $f_i R$, then there exists a non-zero ideal A of S such that $A \cap f_i A f_i \cap T_i \subset I T_i$.

Proof. If M is an R-R-subbimodule of T_i with $IT_i \cap M=0$, then $IM \subset IT_i \cap M=0$. Since $f_i R$ is a prime ring and T_i is $f_i R$ - $f_i R$ -torsionfree (Proposition 1.1 and 1.2), we have M=0, and therefore IT_i is an essential R-R-subbimodule of T_i . Now, choose a relative complement T_i^* of T_i in the R-R-bimodule Q(S). Noting that IT_i is R-R-essential in T_i , we see that $IT_i \oplus T_i^*$ is R-R-essential in Q(S), so that $(IT_i \oplus T_i^*) \cap S$ is R-R-essential in S. Then, by [3, Corollary 2.25], there exists a non-zero ideal A of S such that $A \subset (IT_i \oplus T_i^*) \cap S \subset IT_i \oplus T_i^*)$. Now, it is easy to see that $A \cap f_i Af_i \cap T_i \subset IT_i$.

Corollary 2.6. If $i \leq s$, then $h_i(J) \cap f_i R$ is a prime right ideal of $f_i R$ and $b_{f_i R}(h_i(J) \cap f_i R) = 0$.

Proof. Let X, Y be right ideals of $f_i R$ such that $XY \subset h_i(J) \cap f_i R$ and $Y \subset h_i(J) \cap f_i R$. Then $f_i RY$ is a non-zero ideal of $f_i R$, and so there exists a non-zero ideal A of S such that $A \cap f_i Af_i \cap T_i \subset f_i RYT_i$ (Lemma 2.5). Since $A \cap f_i Af_i$ is a non-zero ideal of S_i ([2, Proposition 2.22]), $A \cap f_i Af_i \cap T_i \subset h_i(J)$ by Lemma 2.4. Therefore, since $XT_i(A \cap T_{ii}) \subset X(f_i RYT_i \cap T_{ii}) \subset Xf_i RYT_i \subset h_i(J)$, we see that $XT_i \subset h_i(J)$, and therefore $X \subset h_i(J) \cap f_i R$. This proves that $h_i(J) \cap f_i R$ is a prime right ideal of $f_i R$. Next, suppose, to the contrary, that $b_{fiR}(h_i(J) \cap f_i R) \neq 0$. Then, again by Lemma 2.5 and [2, Proposition 2.22], there exists a non-zero ideal B of S such that $B \cap f_i Bf_i \cap T_i \subset b_{fi}(h_i(J) \cap f_i R) T_i \subset h_i(J)$ and $B \cap f_i Bf_i$ is a non-zero ideal of S_i . But this contradicts Lemma 2.4.

Now, we shall prove the final Lemma which implies our Theorem.

Lemma 2.7. There exist prime right ideals K_1, K_2, \dots, K_s of R such that $\bigcap_{i=1}^{s} K_i = J \cap R$ and $b_R(K_i) = P_i$. In this case, $b_R(J \cap R) = \bigcap_{i=1}^{s} P_i$.

Proof. We now set $K_i = \{r \in R \mid f_i r \in h_i(J) \cap f_i R\}$ $(i=1, 2, \dots, s)$. Then, by Corollary 2.6, we can easy seen that K_i is a prime right ideal of R and $b_R(K_i) = r_R(f_i) = P_i$. If $r \in J \cap R$, then $f_i r f_i T^{\ddagger} T \subset r T^{\ddagger} T \subset J$, and so $f_i r \in h_i(J) \cap f_i R$. This implies that $J \cap R \subset \bigcap_{i=1}^s K_i$. Conversely, let r be arbitrary element of $\bigcap_{i=1}^s K_i$. Then, for each $i \leq s$, $f_i r \in h_i(J) \cap f_i R$, and so $f_i r f_i T^{\ddagger} T \subset J$. On the other hand, noting that $f_i T^{\ddagger} T \subset J$ for $i \geq s+1$, it follows that $rT^{\ddagger} T \subset$

PRIME RIGHT IDEALS

 $\sum_{i=1}^{s} f_i r f_i T^* T + \sum_{i=s+1}^{m} f_i r f_i T^* T \subset J + \sum_{i=s+1}^{m} f_i T^* T \subset J.$ In view of Proposition 1.3, there exists a non-zero ideal U of S such that $U \cap T \subset T^*$. Then $r \cdot (U \cap T) \subset rT^* T \subset J$ and $U \cap T \subset J$. (Note that the setting is standard for $b_T(J)$.) Hence $r \in J \cap R$. We have thus seen that $J \cap R = \bigcap_{i=1}^{s} K_i$. Furthermore $b_R(J \cap R) \subset \bigcap_{i=1}^{s} b_R(K_i) \subset \bigcap_{i=1}^{s} K_i = J \cap R$. This implies that $b_R(J \cap R) = \bigcap_{i=1}^{s} h_R(K_i) = \bigcap_{i=1}^{s} h_R(K_i$

3. Examples

In §2, we have proved a "cutting down" theorem for a prime right ideal of a finite normalizing extension. On the other hand, from Heinicke and Robson [3, Theorem 2.12], we obtain another "cutting down" theorem for a prime right ideal. That is, if J is a prime right ideal of T, then there exist right ideals H_1, H_2, \dots, H_k of R such that $\bigcap_{i=1}^{k} H_i = J \cap R$ and each $H_i/(J \cap R)$ is a prime right R-module, where a right R-module N is called prime, provided that if uI=0 for $0 \neq u \in N$ and an ideal I of R then NI=0. In this section, we give some examples which show that these two expressions are essentially different.

In advance of giving examples, we claim the following: Let k be a field, $U=k[x_1, x_2, \cdots]$ a polynomial ring over k in countable many indeterminate x_i , and $B=(x_1, x_2, \cdots)$ the maximal two-sided ideal of U generated by x_1, x_2, \cdots . Let us set $V=U/B^2$, $W=B/B^2$, $D=\begin{pmatrix} V & V \\ V & V \end{pmatrix}$ and $A=\begin{pmatrix} W & W \\ W & W \end{pmatrix}$. Then the unique maximal non-zero two-sided ideal A of D is neither left nor right D-finitely generated.

EXAMPLE 3.1. Let D be a ring containing a non-zero unique maximal twosided ideal A of D which is neither left nor right D-finitely generated. Let M be a maximal right ideal of D with $b_D(M)=A$. Let

$$S = \begin{pmatrix} D & D & D \\ D & D & D \\ D & D & D \end{pmatrix}, R = \begin{pmatrix} D & 0 & 0 \\ 0 & D & 0 \\ 0 & 0 & D \end{pmatrix}, T = \begin{pmatrix} D & D & A \\ D & D & A \\ D & D & D \end{pmatrix} \text{ and } J = \begin{pmatrix} M & M & A \\ M & M & A \\ D & D & D \end{pmatrix}.$$

Then S is a finite normalizing extension of R, T is not a finite normalizing extension of R, and J is a prime right ideal of T. Let us set

 $K_1 = \begin{pmatrix} M & 0 & 0 \\ 0 & D & 0 \\ 0 & 0 & D \end{pmatrix} \text{ and } K_2 = \begin{pmatrix} D & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & D \end{pmatrix}. \text{ Then } K_1 \text{ and } K_2 \text{ are prime right ideal of } R$

with $J \cap R = K_1 \cap K_2$, and $K_i/(J \cap R)$ are prime right R-modules.

Т. Nакамото

Then S is a finite normalizing extension of R, T is not a finite normalizing extension of R, and J is a prime right ideal of T. Let us put

$$K_{1} = \begin{pmatrix} M & 0 & 0 & 0 \\ 0 & D & 0 & 0 \\ 0 & 0 & D & 0 \\ 0 & 0 & 0 & D \end{pmatrix}, \quad K_{2} = \begin{pmatrix} D & 0 & 0 & 0 \\ 0 & M & 0 & 0 \\ 0 & 0 & D & 0 \\ 0 & 0 & 0 & D \end{pmatrix} \text{ and } K_{3} = \begin{pmatrix} D & 0 & 0 & 0 \\ 0 & D & 0 & 0 \\ 0 & 0 & M & 0 \\ 0 & 0 & 0 & D \end{pmatrix}.$$

Then K_1 , K_2 and K_3 are the prime right ideals of R such that $J \cap R = K_1 \cap K_2 \cap K_3$. But the $K_i/(J \cap R)$ are not prime right R-modules. Next, we consider the following ideals:

$$H_{1} = \begin{pmatrix} D & 0 & 0 & 0 \\ 0 & M & 0 & 0 \\ 0 & 0 & M & 0 \\ 0 & 0 & 0 & D \end{pmatrix}, \quad H_{2} = \begin{pmatrix} M & 0 & 0 & 0 \\ 0 & D & 0 & 0 \\ 0 & 0 & M & 0 \\ 0 & 0 & 0 & D \end{pmatrix} \text{ and } H_{3} = \begin{pmatrix} M & 0 & 0 & 0 \\ 0 & M & 0 & 0 \\ 0 & 0 & D & 0 \\ 0 & 0 & 0 & D \end{pmatrix}.$$

Then $H_1 \cap H_2 \cap H_3 = J \cap R$ and $H_i/(J \cap R)$ are prime right *R*-modules. But it is easy to see that none of H_i is a prime right ideal.

Acknowledgment. The author is grateful to Professor H. Tominaga for his useful advice.

References

- A.G. Heinicke and J.C. Robson: Normalizing extensions: Prime ideals and incomparability, J. Algebra 73 (1981), 237-268.
- [2] A.G. Heinicke and J.C. Robson: Normalizing extensions: Prime ideals and incomparability, II, J. Algebra 91 (1984), 142-165.
- [3] A.G. Heinicke and J.C. Robson: Intermediate normalizing extension, Trans. Amer. Math. Soc. 283 (1984), 645-667.
- [4] S. Jabbour: Intermediate normalizing extensions, Comm. Algebra 11 (1983), 1159– 1602.
- [5] K. Koh: On one side ideals of a prime type, Proc. Amer. Math. Soc. 38 (1971), 321-329.
- [6] M. Lorenz: Finite normalizing extensions of rings, Math. Z. 170 (1981), 447-484.
- [7] T. Nakamoto: Prime one-sided ideals of a finite normalizing extension, Osaka J. Math. 23 (1986), 823–833.

Department of Applied Mathematics Okayama University of Science Ridaicho, Okayama-Shi Okayama 700, Japan

480