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Potential Theory and its Applications, I.

By Zenjiro KURAMOCHI

Preface

The Riemann surface deviced as an instrument to study multiform
functions of a complex variable in the z-plane, since it was defined
strictly, has been one of the main subject in the study of function
theory. The structure of the abstract Riemann surface has been
approached chiefly from two standpoints, i.e. the topological and the
metrical. But the Jatter is more complicated and it follows from this
that the Riemann surface can be classified as zero or positive-boundary
Riemann surface and so on.

From the theory of automorphic function, it is well known that
there exists a one-valued meromorphic function on any given Riemann
surface. It is quite natural to generalize the theorems obtained in the
case when the domain of the function is the z-plane on an abstract
Riemann surface.

In Chapter I, we discuss the topology of an abstract Riemann surface
as done by Stoilow?* and the conformal mapping of the Riemann
surface onto the unit-circle. In Chapter II, we study the behaviour of
a harmonic function or meromorphic function in the neighbourhood of
ideal boundary points of harmonic measure zero. Chapter III is
concerned with Green function, especially, with Green function with its
pole at an ideal boundary point. In Chapter VI the potential theory on
the Riemann surface’ is discussed. The theorem of G.C. Evans in
the potential theory is the most useful in the theory of the function of
the z-plane. We generalize this theorem for an abstract Riemann surface
under certain hypothesis, which means that the ideal boundary point is
simple in a sense. The remainder of this paper is concerned with
applications of G.C. Evans’ theorem to the theory of function.

Chapter I.

Abstract Riemann surface.

1. Riemann surfacee. When a two-dimensional and orientable
Hausdorff space satisfies the following conditions, it will be called a

1) The number indicates the reference at the end of this paper.
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Riemann surface F.

1° F is covered by at most. enumerable number of discs Ky, which
is mapped conformally and in a one-to-one manner on a circle of the
z-plane by means of a local parameter.

2° When two discs Ku, and Ky have the common part which is cut
from Ku, and Ky by analytic curves ay, «y, ending in two intersection
points of peripheries of Kx and Ky, these two part can be mapped
conformally and directly each other.

3° For any point of K there is another disc K» containing the point
and between them correlating relation of 2° is defined.

4° Any disc has common points with only finite number of neigh-
bourhood discs.

5° Any two discs of F' can be connected through a chain of a finite
number of discs with the correlating of 2°.

Whenever any set of an infinite sequence of points in ¥ has at least
a limit point, then F' is called a compact surface or closed surface, in
other words if and only if F' is covered by a finite number of discs.

2. Exhausion. F, is a part of Riemann surface composed of a finite
number of discs such that

FoCFyCFy... . lim Fj=F.

The sequence of F', is an exhaustion. The boundary of F, will be denoted
by T'y,, and F, has a boundary composed of a finite number of closed
analytic curves denoted by >1I'y=I".

J

We indicate the bounded harmonic function with the boundary
values 1 on I'¥ and 0 on 1", defined in F;—F,, by w2, F';—F,);x € F,—F,.
This o, is monotonously decreasing with 4.

If lim o,(2, Fi—F,)=0, then F is called a zero-boundary Riemann
surface, lotherwise F is called a positive-boundary, this classification does
not depend on the choice of the exhdustion of F.

More generally, let F" be a part of Riemann surface with a relative
boundary I' and F,;(i=1. 2 ... )be an exhaustion of F’. Let us denote
by wi(x, F';, I') the bounded harmonic function in F; with the boundary
values 1 on I', and 0 on I'. If lim w,(x, Fi, I') =0, we call that F’ has
a relative zero-boundary. !

3. Boundary of Riemman surface. The boundary of I, is made up of
a finite number of analytic curves ['n;, ns, ..n : %, <n¢ : 1=1. 2. .., , which
are closed and have no common point each other. When a curve 1'x;, n,,...n¢
cuts F' completely into two parts, then 1", n,,...n, Will be named a proper
cut. We assume that all of Uy, n,,...n; are proper cuts,
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Ideal boundary. One of the two parts cut by I'u,,n,,..n;, not
containing F, is denoted by Vi, ns,..n;s if Vay,ng,..ong DO Vay,na. ...nomysq, if
N\ Vny,ns,...n; has no common point in F', then we say that the sequence
é)—mem,ng,...ni determines an ideal boundary point «, and the sequence is
called a determining sequence of «, and Vu,,xn,,...n, are called a system
of neighbourhood of «.

o= gVn,-, V”l,nz) ...} - gnl) Ny, ---i

Two determining sequences Vi, Vayns ..., and V;l, V;/zl,nz.... are equi-
valent if and only if there exists for any Vax,..»,, a certain V;;I,...nj
such as an,...niCV;zl,A..nj, and vice versa.

We say that two equivalent sequences determine the same ideal
boundary point. In the sequel we use for simplicity Viy,m,, ... n; defined
by the exhaustion as the neighbourhood system Va,, ..#,....

Let a,.a,.... a;€F and « = (n,, n,,...) be a sequence of points of
F and an ideal boundary point. If for any given ¢ there is a number
7, such that

aj € Vay, onis 5 (T=70),

then we say that the sequence of a; converges to «. It is clear that
any subsequence of @; converges also to «. _ ‘

- We say that all boundary points constitute a boundary point set R.
From the definition, if infinitely many points «; of F' have no limit point in
F, then a; converges to B, and there exists at least a point « = (n,, 7., ...)
and the subsequence such as lim an, = «.

(3
Limit of the ideal boundary points: Let
f b4
a —(H;l, V,‘;lnz,,..)

......... p=1,23...

be ideal boundary points, if for any given i, there exist p,(i) such as
for p_>p,(i) there holds Vzl....MSCV”l’"-”“ where ¢ depends on p;
s =s(p), then we say that lim a®” = «.
»

3. Theorem 1. In this topology the boundary set R is compact and
closed.

Proof. Let 1=V Vi pycerreeees )

= (Vi Vi g eeee veer)

ny, 12,

aiZ(szl,Vi -..-oo.oo)

ny, n2,
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be an infinite number of ideal boundary points. Since there is only a
finite number of Vi, : 0 < n, < n?, then there exists at least one vx
1

such as V;;I contains an infinite subsequence {a}} of {a}}. and there exists

at least one V3 , suchas Vi

, contains an infinite subsequence {«}}
of {a}}. Thus we have '

n

al, al cescasnes e V;;l
2 2
as, af ceseerons c V;;l,"2
¥ — (% *
Put «a (an ’ Vﬂ11t2, .. ..-) .

It is clear that lim ! = a* and a*€R.

4. LetFbea relaltive zero-boundary Riemann surface with a relative
boundary I', and ['ny,n,, ... n, be the proper cuts definedin 3. G,=Van, », ..n,
— Vni, ...n;4, is a tube with oan boundary curve I's,..n, €', and % boun-
dary curves I's,,...n;.,; 1< k< co contained in I';,, and has genus g, .

In G; we make the conjugate loopcuts v,, 74’5 ... ¥i ¥y’ corresponding
to g, and v,. Let us cut G, along v,, ¥, ... v/ and 7., then G, becomes
a /c+24multip1y connected domain G,”, and take a point » on v, and
gf\: 7=1.2...kon I’ .0y and connect ¢/ and p with an analytic curve
qsp for every j. After ' cutting G/ along them, G,/ becomes a simply
connected domain G,”. In all G,, if we construct a system of cuts, then

F becomes a simply connected domain denoted by F and V. ... », becomes

a simply connected domain I7n1, ...n; and further every boundary curve
I'x..n, has only one intersecting point with the system of cuts.

We map F on to the unit-circle, making use of the universal covering
surface 7 of F. In this mapping the boundary I' of F' corresponds on
the system of arcs with linear measure 2z~ on the periphery |z|=1, and
the ideal boundary point set will be transformed to the linear measure
zero set on |z|=1, and F is mapped on to a system of equivalent funda-
mental domains. Let us take one of them which is the fundamental
domain containing z =z,, enclosed by the images of loopcuts and the
images of cuts and denote it by D,. In this mapping I'n,,...n; is trans-
formed to the curve connecting two equivalent points. In the sequel we
use the same notation with under-line for the image in |2|< 1 mapped
conformally of the figure (point, curve, domain) in F'.

In the fundamental domain, ideal boundary point o« corresponds in
one-to-one manner on the set R on |z|= 1.

1) The image of curve l passing @&,, @y...; lima, =, @, € Vny,...n,
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—Vny ...nis F does not oscillate, otherwise, the image of | converges on
an arc A of |2/ =1, then there is an arc I'* of the image of I in A,
then there must be another fundamental domain D* with I'*, this contra-
dicts that a, are contained in the former fundamental domain D,. Thus I
converges to a certain point on |z =1. I's,..n, cuts the fundamental
domain into two parts, one of them containing z =2, and the other
corresponds to Vi, .. n, of «.

2) If a;=Fa,, then a,=a,. Since «,=Fa,, there is a pair of
neighbourhoods such as Vi(al)[\V'f(az):O on F, then there is a Jordan
curve @ connecting «; and «, on the boundary of D,, accordingly
there is at least an analytic curve to which a substitution s corresponds,
which must put I of D, on an image which is one of equivalent system
of I" on |2 =1 between «, and «,, this follows that «;=F,.« Therefore
the set of ideal boundary points of Riemann surface corresponds in one-
to-one manner on the set B on the periphery of ]zl =1 of a certain
fundamental domain.

We denote by C the periphery |¢| =1, and by D,, the closure of D,
then.

Theorem 2. R = D,N\C—1.

Proof. RCD,NC—T is clear, if D, \C—1I'>p, then there exists a
sequence of a, such as hm a—p @, € D, in the z-plane topology. In
thinking the image a, of a 1n F, which has no limit point in F, then

they have a subsequence ax, such as lim an, = q€ R. Let 2(¢) = @, then
[

Q<R,lim an, = Q € R but lim an,, = p=1im q,, therefore, we have
2 2 2

P=Q, QER
hence, D,N\C—I'=R

Thus R is closed in the z-plane topology and every point of R is acces-
sible in F, then all boundary of D, are accessible in F, then all boundary
of D, are accessible and the set of ideal point R is represented homeo-
morphically on D, \C—1' and the system of neighbourhood of « can be
defined on D, as their image.

R lies on the periphery |¢|=1, and moreover the number of all
fundamental domains is enumerable, then we have

Corollary. Let I be a relative zero-boundary Riemann surface and
if we map F conformally onto |z|< 1, then the set of image of the ideal
boundary point set is Fs on |z|=1.
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5. Smoothing process.

Theorem 3. (L. Sario.® )If zero-boundary Riemann surface is divided
into F, and other domains F., F,, ... F,, where F,N\F;=0, i 4=7, and
F, and F, have common boundary v, and in each F, a harmmonic
function u, is defined and if

> S U ds=0
T Jon
i
is satisfied, then there exists a uniform harmonic function f except at the
singularity of v; in F: such that

Dp(f—u;)<oo.
The proof of this theorem is shown in C. R. Paris (1949), p 229.

Chapter II.

6. The Behaviour of the harmonic function and analytic function
in the neighourhood of the harmonic measure zero-boundary.

Theorem 4. (R. Nevanlinna®).

Let F be a Riemann surface having the relative boundary I' and an
ideal boundary set R of harmonic measure zero. Lel us denote by
dw = du+1idv an uniform differential on F with finite Dirichlet Integral
over F. Then there exists o sequence of curves v,= >, ;i=1.2. ..
enclosing B on which !

i) lim S [dw] =1lim & =0.

i
ii) if u(®) is uniform and if we denote by Fy, the non compact domain
bounded by v,, then

<lim u(2)<max ().

X €Y xe Fyq xe Fyg XEYYL

iif) if lim |u(a)|< oo, then Du(a)< oo.
x¢e Fyy V‘FYi
7. Theorem. 5. If lim |u(x)|< oo and uniform, then for the first
x€eF

kind of Stoilow’s ideal boundary point p of R

lim u(x)
x—p

exists, but if p is of the second Ikind, then lim u(x) does not necessarily
exist.

Proof. If p is of the first kind,” then there exists a neighbourhood
V(p) of p which is planer, therefore every v, which is the part of v, of
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theorem 4 contained in V(p) is made of only a proper cut ; i,=>i (V(p)).
If we denote by V!(p) the neighbourhoad of p cut by v, and contained
in V(p), then
min () < lim «(2) <lim «(2) > max u ()
xe ¥ xeVIP)  xeVi(p) xet
but |max u(x)—min () < S |[du| = &; : lim & =0
XETq XEYE v

hence, lim u(x) exists.
x—P

8. Example 1.

(1= 1=5-2 ) ;
v :,El<1_“2"/(1“2n+1n) ;n=1

I, is defined afterward: I, = real.

The Riemann surface F* of y spread on the x-plane, composed of
two sheets and have first order branch points @, —=2", b, =2"+1, on
the real axis, and « = oo is the only singular point of the second kind
ideal boundary point. We connect cross-wise the upper and lower sheets
at the intervals S, =[b, @a,].

We denote by F the Riemann surface obtained after cutting two
discs |2| < 1, from F*, then F' has two boundaries, C,, C, on |x| =1, and
zero boundary, Denoting by U(x) the bounded harmonic function with
the boundary values 1 on C: and O on C,. F has Green function (next

chapter) denoted by g(xz, ), g(x, #;), where &/, i=1, 0 means upper
and lower sheets, and 2 means the projection of &, then by Green’s formula

u(a*) = j ‘g‘gﬁ (2, a*)ds,
1

if x€S,, then

,1__1‘8 o e _—1S?_ @, 3 = '): 9
Ulady= 5| = g(w, abyds = g(=, w3)ds = Up) = Ux).

27z ) on
Cc1 c1
fim O@d)= lim Uel).
xESy xeSy
X 00 X—> 0

U(x') is harmonic bounded in the x-plane out of C, and >} S, with the

boundary value 1 on C,, U(z) on 31S,, U(?v) is bounded harmonic in the
x-plane out of C, and with the boundary value 0 on C;, U(z)on >S, .

U(x) = U()—U(®) is bounded harmonic in the x-plane except C and
>.S, with the boundary value 1 on C, 0 on >}S,.
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By z = 5}:, we inverse, then U(x)= U(z), U(z) is harmonich bounded

in 2] < 1.
Uz)=1: 2| =1
U(z)=0: z¢€8,,

where o= - =a, bl =0b,;S;,=[an bn]; where b, is defined by

the next equation, where C is a constant such as 0<_ C<-]é-

(1+a, b)) = (1—a7)A-0b7)
a,+b;

=c(_1_” V1—a? —1V1-0%
b 1—a+a)/1-07%,

Let V(z)=1—U(z), then 0<V(z)<1.
V(iz)=0: |g]=1 V(z)=1:2€XSn.
We shall show that lim V(0)<1.

x—0
We denote by w,(z) the harmomc function, 0 < wn (2)< 1 in |2|<1
— 318, such that w(2)=0; zeC

w(2)=1; z€8S,,
then V(z) < Ywa.(z), V(0) < D wa(0). We map [2/< 1 on to |w|< 1 by

where p, = 1+0ib —(1— a“’)(l % l)
Ca,+b;
then 4 5 . _jopg,=V1ZW—Vi-al

T a1-a) +a) 10y
0<a, = V1-ai “’L—L/,,l,,,b 1
- by 1—ai—an 1— bn<
== —lma b (e A=)
ah+by
Sn=[bnan] — T,=[B, a,] on real axis. Denoting by , (w) the function
which is harmonic and bounded in |w|<1. 0<ow, <1; o, (wW)=1:wE€
on the circle of which diameter is |a,|=|8./, and o,(w)=0; |w|=1,

then (O,;(w = :lgg_]wl L My = lanl = ,IBNI .

log |m,|

a/’t__> Qn

(W) >w,(w), then C(%,,) = w,(0)= 0,001,
2 “)H(O’)>an(0)>V(0) ’
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but w,(p)=C(3)" : C< 5, therefore V(0)<(2C<(1, finally 1—V(0)

= U(c0)>>0, then lim lU(aé)—U(;)[>0. Accordingly U(z) has no limit

X 00
when « converges to oo on F'—>)S». In reality # = oo is irregular for
Dirichlet problem,® and

of 1Y
I,,.—_—:Z_jéggl;-% , Wwhere K,,:(%)”C.

9. Theorem 6. Generalizaion of the identity theorem. Let F be a
Riemann surface with relative boundary T' and an ideal boundary R of
o relative harmonic measure zero. If f(x) is in F & regular bounded,
and non constant function, then for every ideal boundary point p € R

1. lim f(x) exists.
x—p

2. f(x) is continuous in F+R.

3. For every constant C, the number of roots of the equation f(_a:)
=C in F+R is uniformly bounded.

Proof. Let us denote by front A, int A and A, the boundary,
interior point and the closure of set A.

Lemma 1. If F is the Riemann surface satisfying the conditions of
Theorem 6, then front (f(F))—f(I') is a set of the logarithmic capacity
zero.

Since f(F): x € F is continuous and bounded, then

front f(F)+int f(F)= f(F)f(F)=f(F -R—T)+f(R N\F)+f(").
Since f(x) is regular, if p€ F, then f(p)€int f(F'), therefore,

front f(FYCf(RN\F)+ (DY f(F).

Let E = front f(F)—f(I") then, ENf(F)=0, ENf(1')=0, and f(I").
is closed. '

We suppose that Cap E >0, we denote by E,, the set of E having

distance larger than ;1r; from f(1), then
E=3 E,,
m=1
therefore there is a certain m, such as Cap (&,) >0, then there is at
Jeast one point w, of Em,, such as for any small disc K of which is
centre is w,, Cap (Em,/ \K) >0, therefore there exists a closed subset

Em, of E» havingno common point with the periphery of K and
1

Hence E € f(F)—f('), we take a connected piece on K which is
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denoted by F , and hence Cap(Em, NK)>>0, there exists a bounded

w my, .
harmonic function such as 0< U(w)< 1.

lim Uw)=1 w E(Eﬁno/'\K): U(w)=0: w < boundary of K
To Ewm,, a part of Riemann surface F, coerresponds which have
positive distance from T.
U(z) =U(f"*(w)) ; U(x) is" harmonic in F'm,.
We denote by w,(x) the harmonic function such as 0<w,(2)<1:
w(8)=0: 2€T, ow(@)=1: €™ boundary of F, of exhaustion, then
0 (#)=U(x). But R is harmonic measure zero set therefore

0=lim w,(2)=U(x)=0, this is absurd.

10. Corollary. Let us denote by v(R) the non compact domain con-
taining R in its interior and bounded by the relative boundary v; v
= D>'vi; in the w-plane denote by Dy the maximal compact domain
bounded by f(v), Then

front f(v)—f(v)=E,Dy.

We suppose that E, has at least one point in the exterior of Dy,

it will be denoted by p, as f(v) is closed,
dist. (p. f(v))=6, >0.

On the other hand there is at least an inner point ¢ of + f(V) such
as dist |p. q§<—§f .

We can take a circular neighbourhood v*(q) of which the radius
— %
~ 4
and simply connected domain G containing the point at infinity and v*(q)
and denote its boundary by B satisfying dist. (3B. f(v))‘é“g" )

and composed of only inner point of f(v), let us take a non compact

Hence f(v) is compact, co is exterior point of f(v), dimension of

(GNf(v))=2, but (GN\front (f(v))) = front (GN\f(v)).
dim front (GNf(v))—B)=1, FE,>(front (G N\ f(v))—B)

but Cap £,=0.

This is a contradiction.

Proof of 1. Dr is a connected set, because v is connected by a curve
in »(R). Take a point p € R, then there exists a sequence of curves v,
of theorem 4 on which

lim j ldw| = (.
Yn

We denote by V,(p) the neighbourhood of p determined by v, and
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denote its boundary by v, v, .
If x€V,,,(p)—R, then f(x) is regular, and Dy, is a connected set

We have f(V,,+1(p)—R)+EVn+1<15V”.

diameter Dy, < zj]dwl _—2— 11m & =0.
f( [\ V() [\ Dv,, is only one pomt Finally lim f(x) exists. It is clear
X—p

that f(a) is continuous in F +R.

11. Proof of 2. Take » points x,, @, ... «, in the neighbourhood of
I’ and denote by K, the disc of which the centre is x. and K, contains
Z,_1, &,,; in its interior

We connect «, and z,,, by a curve so that the image of the curve
in the w-plane may be a straight line ¢l,,,, all straight lines ,[,, ,i;...
.1, make up a polygon denoted by =». Because, let K, be a disc with
centre p in F denote by K the maximal disc contained in f(K), of which
the centre is f(p). Then we can connect p and the other point of f-1(K;)
with a curve of which the image in the w-plane is a straight line.

Let us denote by II its outer polygon made of the outer side of =,
and the neighbourhood of R determined by f (=) is denoted by V:n:F
Or Frnp; = fYx).

12. Lemma 2. IINfRN\Frp)=0.

Suppose ITN\f(R /\Fx;)>p, we take a closed curves 7, in the neigh-

bourhood of #,. As Fx r—Vay, is compact, therefore f~'(p) is finite
number of points @, -+ &g in Fr,—Vx , and take v(,) of nelghbourhood
in FF—Vr, , so that If(.’L) p|=8, >0, if « € inte (Frp—Var)— sz(%)
In F we construct a non compact domain containing R bounded by
relative boundary y* contained in FnF—Fn;—qui(wl) and denote by II*
the maximal domain bounded by f(v*) in the w-plane, then dist (» f(v*))
=>38,; IIDII*, then p € exterior of IT*, but p € Vy,, this is a contradiction
from corollary of Lemma 1.

We denote by n(w) the number of times when w is convered by f(2):
2 € Fr, and by D, the set E[ n(w)==], this is clearly open relative to =.

Lemma 3. If E, =boundary of (D,—(=)) is not zero : n< oo,

then Cap F,=0..
Proof. Suppose that Cap E, = 0, then the boundary E, is the set

of point which is covered by f(F=x,) at most n—1 times.
We denote by S, the set which is covered ¢ times by f(F=x,) exactly

and denote by S,,, the set of S, which has a distance larger than ;lnwfrom 7.
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n—1 n—1

E,=38=3 315,

i=1 m=1

therefore there exists at leasts one point p,, and a number m, and i,
such as Cap(Sigm,/\K) >0 for any small disc K of which the center is

p,, and the closed subset Sz,'cmo of Sigm, such as (S;omof\Boundary of
K)=0,and Cap (Siyn, \K)>O0.

Then there exist discs K,, K,, ... Km, on p, and there is another disc
K, which does not cover a positive capacity set Sz{omo[\K = far from =.
Therefore there exists a non constant bounded harmonic function
1>=U(w)=0, such as

m U(w)=1 : w€Sm NK
Uw)=0 : wecboundary of K.

This is a contradiction (see Lemma 1).
Since from Lemma, f(R/\Fx)\II =0, and f(R) is closed ; accordingly
dist (f(R), II) >&, >0. Take a point ¢ on II, and denote by Vo (q) a

circular neighbourhood of ¢ of which radius is Z"
If (inte TIN\Ve (q)—R)>w, then n(w)<co.
2

Proof. Suppose n(w,)= oo, then there exists a sequenc of «,, @, ...,
such as limz,€R ; f(x)=w,, consequently we have, f(R)>w,=
3

limf («;) € Vai(q). This is absurd.
12 2

13. Since D, is compact, therefore the outer boundary II, of D, is
a continuum contained in ». Assuming that II,>q, we take a point p
in the neighbourhood of ¢ such as V(q)3pé€ f(R), then n(p)= Ny <_ 0,
accordingly Dn,,, does not exist in the neighbourhood of ¢, because if
it were not s0, ¢ € Dny,;- As g€ f(R), if we deform =, into =, in adding
a small disc of which the centre is f-%(g), so that ge€int II'. Thus
w(q) = 1(p) = n,.

The complement of = in the w-plane is composed of a non compact
domain and a finite number of compact domains which have no common
point and their boundaries are made of =, we denote by D(p) the compact
domain of the complement of = devided by = and containing p, the
boundary of D(p) is a subset of z. Then D(p)/\Dny., =0. Take another
compact domain next to ®(p), and denote by S the common boundary
of D(p) and =, and take a point ¢ on S. Then for any point ¢ in the
neighbourhood v(q) such as te€v(g)\D(p), we deform F. a little into
Fr, so that ¢ and ¢ may be contained in ®'(p) ; where D' is D(p)
corresponding to =/, then #»'(p) = »/(q), where %' means the times when
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p, and q are covered by f(F=/), consequently the difference of n(q) and
w(p) by f(=z.) is at most m which is the number of times when ¢ is
covered by .

then . @/\DnOJkZO . k;mo

But the number of domains is finite, therefore n(w)<_M ; for every w € F.

In reality n(w) is equal to the order of w with respect to =.

Let f(R)>p, then » may be the image of only M different ideal
boundary points. :

Proof. Suppose that p=f(Q.)=f(Q,) ... f(Qy.1).... : QER.

Take neighbourhoods #(Q,) of @,, each of them has no common
point and their boundaries may be denoted by v,, and by D, the maximal
campact domain bounded by f(v,), then the set of Dy, which is not
covered by f(v(Q,)) is capacity zero set.

L\lf (@))=D,

D is covered at least M +1 times
except at most capacity zero set of D. This is a contradiction.

Consequently the number of roots of the equation f(x)=C is < 2M
in For.

14. Corollary.

i [f(@)|< +oo,2 € F+R,if the number of root of f(x)=C is infinitely
many, then fla)=C.

ii. Let f(x) be non constant analylic function in F and the number
of roots is infinite for ot least a value, then f(&) is mot bounded and
further f(x): x € F covers almost all point of the w-plane except at most
a non dense set for ano small neighbourhood V(p) of p€ R:

15. Definition. Generalized local parameter of which the center is
an ideal point p. If |[f(x)|<co:x € F'+ R, then we can take a small neigh-
bourhood »(p) of p so that f!f(p) may have only p in v(p), then f(v(p))
covers at most finitely many times and f(v(p)) is compact then we call
v(p) a generalized disc of p and f(«) a generalized local parameter.

Chapter III.

16. Green function on the relative zero-boundary Riemann surface
F and its generalization.

Let p be an inner point of F' which has harmonic measure zero set
ideal boundary R and has relative boundary T.

Definition. If G(w, p) is harmonic positive in F except only p where
G(x, p) has logarithmic singularity and zero on I’ and its Dirichlet
integral on F—V(p) is finite, then G(z,p) is called the Green function
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of F with pole at p.
Theorem 7. If we denote by x = m(z) the mapping function of
F onto |z| <1, then,
Gz, p) = 219(z, s(p)) : & = m(),
where the summation is taken over all the substitutions of Fuchsoid
group, and g(z, s(p)) is the Green function of |z|<_1 with pole at s(p).
Proof. From mes >)s(I') = 2=,

i) Zn]g(z, s(p)) is hérmonic in |2| <1 except at Zn]si(p) hence
%

S ™ Z 9(z, s(p))ds = Z j — g(z, s(p))ds =

2 . o /j K o
S ang(z,s(p))dS—Zn &< 57 9(z, p)ds =

12 =
Su(r) o

Ve

m(L)="T
ii) Let us denote by z, a certain point in the circle |z|< 1, except
>1s(p), then there exists at least a fundamental domain D, which has
2, at its inner point D, or an its boundary.

Case 1. z, is in the interior of a fundamental domain denoted by
D,, which has the pole p and denote by « and 3 the two ends of I,

corresponding to D,, and connect with curve C, z and ¢ and with C,, 2
and s(e), where a¢ and s(e¢) are equivalent and situated on the two arcs
of D, which are nearest to I'y, so that the simply connected subdomain

of D,, bounded by, aa, C,, C, and s(a,)B does not contain p. Then
9(z, p)+(g(z, s(p)) is 1nvar1ant with respect to the substitution s. In

denoting by G, the sum Z‘g(z, 8(p))+g(z, ss(p)), this is also 1nvarlant
with respect to s and is harmomc in the circle except the poles Z (s(p)
+ssi(p)). All terms of this series are p051t1ve and zero on 2 8;() +ss L),

m(C1+Cy) in F enclose with I' a compact domain Fp,, and indicate by
o(#) the harmonic function on Fp having the boundary values 1 at
m(C)+m(C,) and 0 on I, o(®)=w(m(z))=w(z) is automorphic in
|z| <1, therefore by Harnack’s theorem, there exists a constant ¢
depending continuously on C,+C, such as

= G20, D) G (2, D) <G (20, D) : 2,2€J,1+C,

G )= Guls2) D) o Geds = O Gals(2))ds(s)
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2 alz)is = 2 w(s(2)ds(s)
By Green’s formula we have
S G,.(2) gz ds = J o(z) % G.(=)ds,

where integration is taken on I'y+C,+ Cz+s(c;)79+(;&
but

aa) _ " aGn —
j G(x) 22 ds =0, s 0D gs=0,
o — ~ T~
aa+S(a)-p aa+(Sa)-B
on the other hand

then we have

<Gz =q 2P

q S 9@ gs S a—-d
on
C1+-C2 C1+Cs

the last inequality holds for every =, therefore ﬁg(z, s;(@)) is absolutely
bounded except > s(p)+p.
i=1

Case 2. z,€ boundary of a certain fundamental domain D,, let us
denote by 8, the side containing z,, then there exists at least a funda-
mental domain D, which has §, in common with D,, then we do in the
same way in Dy+D, as in D,, in taking D,+ D, in the place of D,.

Therefore 3Zg(z, s(p)) is convergent in [z|< 1 except at > s(p).

iii) G(z, p) = > g(z, s(p)) is evidently automorphic
Glz )= S1g(z @) =0, if zeXs(D).

If ze3s(I), then there exists at least a s°(I') 3z, and D° > s°(1") therefore
G,(z,p) is regular in D, except only s(p), and clearly

G.(z,p)=0 if zes'(l), so 0=Ilim G, (2, p)=G(z,p).

Finally we have that G(, p) = G(m(z), p) is harmonic positive in ¥’ and
0 on 1', and has logarithmic pole at p.

17. Lemma 1. Lel u(x) be harmonic and positive on the non
compact part F of zero-boundary Riemann surface with o relative
boundary L.
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ja—uds=0 then D (u)< + oo

If on ’ IS )
T

Proof. If D,(u)= oo, by Nevanlinna’s theorem u is not bound in
F, therefore there exists a sequence of points p,, », ..., lim p, = ideal
boundary point such as u(p,)=M,; lim M, = co.

Take M, >max u(z): ¥ €I, and trace a niveau curve Cpy, on which
u(®) = M,, Cpy, devides F into two parts Cps, and Cpy, in which u(x)
s = M, respectively.

Proof. Case 1. "Every Cpy, encloses the compact part with I' and
does not intersect with I', hence

__[ou ou ou
O—Jdﬂds—— j*zs 0=2%on Oy,

01 ~on
A’Ui
then 9% _0 on Cm,,
on
. ou ou . __ g ou ;. -
hgn Dg”z (u)—jua—n ds — g ancls buan ds<oo.

u

Case 2. I' and Cjy, enclose non éornpact part.

Let be v,, 75, ... a sequence of curves enclosing the ideal boundary
point and denote by &ﬁ- the part of v, lying in Cpy,, then it is evident
that I'-+7%+Cpy, enclose the compact part Chy, of Cuy, .

Denoting o} the harmonic function in va_li having the boundary
values 0 and I'+Cpy, and 1 on 7%, and denote by ; being harmonic
and in F —V(v;), having the boundary values O on I' and 1 on v;, we see
directly 0<c.>,\a>, for every i, g

Since F' has zero-boundary,

O—IImmJthwJ“O
J=0c0

Denote by ) the harmonic function in C7 M, such as
wi=u on I'+Cyy,,
ub=M, on g'j,
0<ui—u<oM,, for every i,

therefore u; converges uniformly in Cpy,; hrnu = u, but from

E

9)
'\.§&

li

J=00

= 9 limut=
on =

Qv
Q)}Q)
SR

n
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U 4o — 1 0 Oy oy N — T
Su ands—}11£1§uj S ds-—}ljg Dg;lt (u!) = lim DQM, (u),

r
this inequality holds for every M,, then

D (u)= (ug%ds< +oo.
I

18. Lemma 2. Let C be a proper cut dividing F into two paris;

if the part of F bounded by R+ C has no pole, then S%ds=0.

C
Proof. Let C’ be the image in the fundamental domain in |2|<1
and is ending in two points ¢ and b and s(¢) =0b; whene s is a substitu-
tion.
Case 1. s is parabolic.
C7 = 31s""(C")+s™"(C")+C" ends in the fixed point of s on |¢|=1
n=1

making a closed curve C' not enclosing p by hypothesis, then we have
S(C) = 2s(C7),

where the summation on the left is over all substitution and the right
is all over except s. The right side is the sum of closed curves not
containing (p) in their interior, finally

oG, _ ([ @ Ig —
Sé;’l: dS—-Es f éﬁg(z’ p)(lS——O .

7 8CC/)

Case 2. s is hyperbolic.
S1s(C+s"(CH+C =T,
n=1

is a Jordan curve ending in the two fixed points ¢ and b. C’ is trans-
formed by other substitution into s(C"), every s(C’) has on its outerside
the image of I', but mes > s(I") = 2=, therefore 28(0’)=2’s(5’) are
sum of closed Jordan curvess not containing p in thseir interiorss, then we
have as in the case 1:
oG ds=0.
82 siC’) on

From Lemma 1 and 2 Dp_vy (%, p)<+oco.

19.1. Green function with its pole on an ideal boundary point.
Definition. Generalized module. Let vy, be a proper cut, we define
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a harmonic function ,», in the surface bounded by v,, v, and I' and has
the boundary value 0 on I', and 1 on v,+7,, when v, converges to ideal
boundary set R, ,», is decreasing monotonously, therefore ;», converges
to ;» being non constant harmonic function

aiws — ‘ Ei 3 ~
o (ls—banth: s ds >0,

1im§

S=00 .

Then oo>gg§ ds >0 is called generalized module of the surface F

bounded by I' and v,,

. 1@ _ (% _ (9w
Dr- v (o) = S © 5 = S on W= jan ds.
Yé Yi r
and if F, > F,, then v, >w,, in putting N= -TgL-« , we have N, < Ny.
0}
5 ~—ds
on

r

Definition. Regular ideal boundary point. From Harnack’s theorem,
for positive harmonic function u(a), there exists a constant ¢ depending
on the curve C in the defining domain such that

% u(w,) < ulx) < qu(zx,) : if », x,€C.

Let us denote ¢ by ¢(C).

If for an ideal boundary point «, there exists a sequence v, of
proper cuts enclosing «, on which every positive and finite except «
harmonic function must satisfy q(v,) < ¢, then « is named a regular
ideal boundary point.

19.2. Theorem 7. If « is an ideal boundary point, then we can
define & Green function Gz, @), and further if « is a regular point,
then G(z, &) is uniquely determined.

Proof. Take a sequence of point p, in F, such as; p, € V(a)—V,; ., («):
lim p, = « and sequence of Green function corresponding to p,

{=00
C@, p1), G&, Py) cevrerevnnnn -
So long as p, is contained in F
Gz, p) =3 g(z, s(p)) -
Therefore

Sg—g ds=2n

and from Lemma 2, for every proper cut v of which the domain bounded
does not contain p,
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J%—gds—o

Y

If peV(y) and pE3V(y,), then G(z,p) is regular harmonic in the
domain bounded by 1'+v and 3)v,, accordingly

oG ,
Py -+ 12
Finally

] ‘a—ﬁdg 27[.
Y

g oG
As G(z, p) =0, there exists ¢ for such that
% G(wy, p) < G, p) < qG (%, D)5 @, T, €7,

and if we denote by F, the non compact domain not containing p
bounded by v, then

oG

g Bn ds=0,

Y
accordingly

Dp v () (G, p)) <co.
Then R
max G(x, p) = lim G(z, p) ; x € F,,
veyY

after all

Gz, 0) < Miy i@ €F=V(v;), V(#)3D: i = i,

We can extract a sequence of G(x,p,) which converges uniformly
in every compact domain contained in F,

lim G(z, p,) = Gla, @) .
{=00

Then the limit function G(#, «) is clearly non constant and SQGV%?Z_OI)CZ 8
Yi
g aGéa;z @) gs = 2, because lim aG(a:Z D) — — hm G(z, ).

v
We call G(z, @) a Green function also.
20. The behaviour of Gz, «) in the neighbourhood S of ideal
boundary points.
Case 1. When « converges in the other boundary point «a’, there
exists a number j, a proper cut v;; j=7, such that the non compact
part F,, of F cut by v; do not contain p,:i=i, hence by Lemma 1,
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[ oG ds =0, then
) on
max G(, @) = lim G(z, ) .
XEYS xe Fy 5
Case 2. We see directly that G(z, «) is not bounded in V(«), if «a is

a regular ideal point there exist a sequence of p, such as
G(p,a)=M,;, peV(a): M;=oco.

We make the curve Cjpy, on which G(x, )= M,, these curves are
composed of a finite number of closed curves or open curves tending to
«a and each of them divides F into two parts in which G(#, @)=M,
respectively. But in this case Cpr, does not tend to the ideal point «,
if it were so then there exists a certain v such as v intersects the
curve Cpy, where

Mi<%N727z . lim Ny = oo.

This is a contradiction.

Remark. When p€ F, G(z, p) is expressed in a uniformly convergent
series of Green functions g(z, s(p)) : |#]< 1. But when p converges to the
ideal boundary set, this loses its meaning, because |s(p)] —1 as p >R
and all g(z,s(p)) -0, but G(z, p)==0, that is, an ideal boundary is
singular point with respect to this series.

21. For the regular boundary point «, there exists a sequence of
v, on which

Max G(z, @)
o X€Ys g2 - )
Min G(a:,a)=q PEEY
X €vq
If there were two G,(x, @) and G,(x, @), then g—l is non constant: Let
2

us denote by k,

3 QL(m’ a)___ P
Min Gz(x,af)_ki' xEY,

then, k, is a constant and G,—k,G,=>0 in the domain bounded by I
and v, because other boundary is harmonic measure zero set, then
Dp v (2 (G1—FkG3) <+ co.
From the maximum principle %, is taken on v, and

S S T S S

q2

k = 0 follows from that
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%NzéGL(m’a)gqu’! %NiéGz(x’a)équ:

where N, means the generalized module of the domain bounded by ¢,
and I'. Let &,=1Fk,—Fk, then limé&, =0, and there exist x;, on v, such
as G () —EkGy(x;) = &,Gy(2;)

0< G (&) — kGy(x) < q&,Gy(x): weE,.

is true for every i. That is on v,

G\(#) — EGy(w) = (Gy(®)) : as n— 0. €))
But G(z,) — k,G,(x¥) for a certain ¥ on v, for every i,
G\(&%) — k,Gy(x") = &,G5(27). (2)

(1) and (2) contradict each other for &, < é,

g: Eg = const. but 5 %%1 ds = j 88(1}: ds =2x,
finally G,(z, @) = Gy(x, a).

For closed Riemann surface « is a regular ideal boundary point.

G(x, «) generally depends on the sequence of p;: hm p;, =« and is
not always uniquely determined.

22. Example 2. Let us consider the Riemann surface of Example 1.
Let us denote by G(z, 1.5) the Green function with pole at 1.5 on the
upper sheet, then G(x, 1.5) has no limit. When x converges to on the
upper and lower sheets, it has no limit.

Take two sequences p,, ¢, on the upper or the lower sheet such as:
lirin P, = oo, lirin q; = oo and

]iim G(p, 1.5)=A 4B = ]im G(q; 1.5)
G(1.5, p,) = G(p, 1.5); G(1.5, q,)= G(q,, 1.5).
Then we have two Green functions
lzm G,(1.5, p,) = G,(1.5, o0) == G(1.5, c0)= liim G(1.5, q).

Property of Green function 1.

23.1. Let F be a Riemann surface with relative boundary I' and a
harmonic measure zero ideal boundary point set R. We denote by
G(x, p,) the Green function of F with pole p,: where p,€ F +R—T', then
G(z, p,) are not always uniquely determined, and denote by G, C, Cy
the niveau curve of G(x, p,) on which G(x, p,)= M, domain in which
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G(z, p)= M, and domain in which g(x, p)<_ M, then
g (Gz, p, )aG(x P2) g S G(x,pz)a—Gé——ff‘)

2

Ch* Cu*

Proof. C, may converge to the ideal point set, we denote them
q...q€ C i then we take a system of neighbourhood of ¢, ...; Vi(a,) > q,

such as /’\(Z Vi(a2,))=R N\ C, and the boundary of V,(q,) w1ll be denoted
by 7(q), then Cy—>V{(q:) is a compact domain with the boundary
I', the part SWi(q) or X v.(q), and the part ,C of C,.

Denoting by ,», the harmonic measure of ny;, with respect to (C,
—>1V(g;), then we have

Q)M——;l . 9062;57’
k(oMZO . xEl‘—{-C;,.

Let . be the harmonic measure of > v, with respect to (F—3>"V,), clearly
$@ar <@ -
Hence harmonic measure of R is zero:
lim 0, =0,
P

but by Green’s formula, we have

2CE@n) gy — |
§ W g, 8= o
EkY;, WL+,
lim j‘ ?,G,(a,:’ p{) (18 - 0 .
. on
3 k‘{;,
From aG(x pz) > 0 &€ e C
“on < "

GRS _
j é—nG(w, p)ds = 2=,
S +iChy
then
lim g ia(x p)ds = f 2 Gz, p) =27
b= co on T ) on T

S G Can
As G(z, p,) is bounded in the neighbourhood of p;, j=-i, we have

: . oG(x,p,) ;. j : oG(x,p")
’lclgz ( G(2,p)) T ds = | G(z,p)) o ds.

Cat Cut
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and by Green’s fonrmula we have the conclusion.
Since G(, p,) is finite except for p,,

lim Cyi=p,,
M=o

lim G (x.p,)=G(p;Dp),
x—L )
lim S G(2,p) Q@wdx?:.?ﬂG(%, D) -
M=o on

Cyt

Especially if p,€ F—R—T,

G(pr, o) = G(Dy, P1) .
23.2 The properties of Green function. If G(z, ) is a Green func-
tion with pole a:limp, = a € R, and Vy(a) CVi(a) are two neighbour-
hoods and their bm;nda-y curves are denoted by C,, and C,, then

m, = min G(z, @) < min G(&, @) = m, .
xECl X € Cg

Proof. If m, >m,, let us take & such as m,—m, >3 >0, then for

any small number &< {i- there exists a number i, = i,(§) such as
|min G(x, p)—m,|< &, |min G(z, p,)—m,|< & for every p,:i =14,
xeC) x€ Cq

hence p, € F, lim G(x, p,) = oo, taking a small neighbourhood »(p,) of p,,
x—pPq

then D(G(z, p,)) < +oo
F-v(Py)

min G(x, p,) < lim G(z, p,) < lim G(z, p,) = min G(z, p,)
xeCy x€Vy—v xXEV1—0v x€Cy
m, —E my + &, < my — my < 26.
This is absurd.
23.3 If G*x, «) is the function satisfying the following conditions
a° G¥w,a)=0:xel, G¥o,a)=0: z€l
b° min G¥x, @) < min G¥x, a):  if Vy(a) T Via)

xeC ‘ xeCy

o 8G’*‘ —_— Y . « e

c Sb,a?ds——%z, G¥w, )< +o0: x€F—R.
I

Then for any point &, € F', we can choose o sequence of p,, lim p, = « such
i
that
lim G(z,, p;) = G*(2,, @) .
=00
Proof. Let us denote by C, the niveau curve on which G*(x, «)= M
and Cy such as G*(z, a)=M, then M, < M, it follows that Cpr, > Ciy,
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from ¢°, X oG* ds =27 oG* >0 on C,.
on on
M
Since imCy,=a:limM=co,
M=c0

o} 'is a niveau curve of G(w, xo), o is a niveau curve of G*(x, «), then

GH¥(xy, o) = — ( G*(w, a) = G(w xy)ds = ?L j G(z, ao) - G*(x, a)ds

therefore there exists a point p, on o}, such as G*(,, a) = G(p,, %,), but
lim G(p,, z,) = lim G(z,, p,) = G*(x,, a), = lim G(z,, »,) and it is clear that
t=00 t=00 i=00

S %G(w,a)ds=2n =0.
CM
24. It is clear that G(z, «) is not bounded in the neighbourhood of
«, but not always
lim G(z, @) = o,

neverthless we see directly that if lim G(x, a)<+oco, then from 23,

there is a sequence of C, which converges into «.
Definition. If lim G(z, @) = oo, we call it a regular Green function.

It is easily seen that there is only regular function on the regular ideal
point or inner point.

When an ideal point a« has at least one regular Green function, we
call @ a regular ideal point for Evans’ problem. This notion is a clearly
local property.

Theorem 8. It is necessary and sufficient for a to be regular for
Evans’ Problem, that there is a certain neighourhood V() end o harmonic
function U(x) satisfying the following conditions :

1. U(x) is lower bounded in V(a) (V is V’s closure),

2. Ux)< +c0 zeV(a)—a,

3. U®) is harmonic in V(a) —

4. limU(x)= +oco.

TrE

The necessity is clear, if U(x) exists we can make a regular Green

function. Let W(x)=0; »€ F—V(«), by the smoothmg process we gain
a harmonic function H(z) such as

0<(l—j—~d J d?

~<

where v is the boundary of V(«),
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|H-U|<M: zeV(ie), H=0:x€l,

accardingly ledi__(x) is the Green function which we reguire.

25. Theorem 9. If there is a certain neighbourhood V(a) of a in
which a one-valued bounded analytic function f(&):x € F—V ewists, then
all points of V(a) N\ R is regular for Evans’ problem.

Proof. By Theorem 7 there is a certain neighbourhood V/(«) C V(a)
in which f(x)= f(«) has no root except only «a. — log|f(x)—f(a)| is
the function of theorem 9, accordingly « is regular for Evans’ Problem.

Corollary. If f(z):x€V(a) N\ F remains a second Category set in
the w-plane in which n(w)<_ +oo then « is regular for Evans’ Problem.

If there is no generalized local parameter for any small V(«) then
by theorem 7, f(«) covers in V («) the w-plane except at most non-
dense set, therefore

D Ve NVi=a, f@)eVia) \F

covers the w-plane infinitely many times except at most first category
set. This is a contradiction.

Corollary. When the Riemann surface F is given as the covering
surface of an other abstract Riemann surface F*, if F covers finitely
many limes and all points of F* have generalized local parameter, then
all points of F have generalized local parameter.

We denote by a* the projection of ¥ :2€F on F*. We define
f(x)= f(a*), this is clearly the generalized local parameter. Especially
if we take the w-plane as ground surface, if V(a) has finitely many
times covers the w-plane, then all points of V(a)€R is regular for
Evans’ problem.

Especially, let F* be the covering surface, being finitely many
sheeted on F, if F' has finite numbers of genus then F is representable
conformally as a sub-Riemann surface of closed Riemann surface F',, since
all point of F', are regular for Evans’s problem it follows that all point
of F'* are regular, however infinitely many times sheeted covering surface
on the w-plane F* may be represented.

The problem whether all ideal harmonic measure zero points are
regular for Evans’ Problem is quite difficult but it seems very true and
admissible.

Extension of Cauchy’s integral formula.

26. When a curve C on F converges to the ideal point set R, we
call C non compact. If F is bounded by a compact or non compact
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curve I, and ideal point set, we take a system of neighbourhood V,
such as

SV, OFNE: im3V,=FNE,

then F,=F—3V, is compact domain with the boundary I'; which is
a part of I' and v, which is a part of the boundary 3>V,, we denote
by w{2) a positive bounded harmonic function in F with the boundary
value 1 on 7., 0 on L%, if }cng », =0, then we say that F has zero ideal

boundary point.
On the other hand we denote a neighbourhood systems

Vip):p€ R N\T, such as 3 Vi(p) DR NT, /k\zvgz—_R/\r,
[,=0-3V,, Fi=F—3V;; v, = boundary of (Vi "\ F)

then F'; satisfies the conditions of theorem 7 then F; has Green function

Gz, 2,).
Theorem 10. If f(x) is a one-valued bounded analytic function in
in F, and %]:z < +oc0 on V'—R, then
f(m,) == lim S fa) QGdBTo) g+ o e
k=00 81’&

T}
Proof. Hence F is compact then G;=0; € I'v+v;. In denoting
by C, the niveau curve of Gy(x, x,) then
oG, , g oG,
| Gaas= | %o
Car Uity

limC, =w,, by theorem 7 lim f(x)= f(x,)
M =c0 X0

and in using Green’s formula, we have

ds= 2= (see Lemma 1 of Nr. 17)

cle . of
g (@) on ds = § Gy ands
I{+v;4+Cux I +1;+Cn
Let w,(x) be the bounded harmonic function in F% such as then we have

by 1 S oG} 1.
@)= o T om 48
U747
0<o®)<1, =0 : 2€ly, o,=1: €%,

then m;é Wy L lima);EO.

Gyl e PR
g-é‘z;-ds:—- S, Gi 5% ds ¢ |Gyl < M5 wEV(w,)
Y/,c Tk
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lim S QGlfds—O but aG’“zO on I,
k=00 8
7
then
. oGy, oGL,
fim S on BT S on %8
e r
finally
1. aG,c
77;11rn [ =% ds ex1sts and equal is to f(x,) .
k

I

Remark. G(#,2,) is not always uniquely determined.

Chapter 1V.
Potential theory on the abstract zero-boundary Riemann surface.

27. If we would like to establish the potential theory on the zero-
boundary Riemann surface, we must construct the function X(p, 0, q)
which has the same role as ¢><%> in u(p)= 5 gb(/rl

paq
potential theory, and study its fundamental properties which are very
useful.

Distance function X. Let H be the disc, that is simply connected,
and compact domain of zero-boundary Riemann surface F' which is mapped
conformally on to the circle |[2|<1 of the z-plane, and its centre is
denoted by 0. In the preceding we recognized that Green function
Gz, p) of F—H; exists where p is an inner point of F—H or the
boundary point R.

" And we make the Green function of H with its pole at 0, which is
— log|z—0|: z€ H

9

>d(q) in the general

G(#)ds=2=, and G,=log|x]|.

121=1 :

By smoothing process, we can construct the function X(z, 0, p) such as
D, y(—G+X)< oo
D p(—Gy(®, 0)+X) < o0

in this process we used an assistant curve 1I' which is on the outer side

of the boundary of H. Then, in the neighbourhood of 2 =0

X(2,0,p)= — log|a—0| +U(x),

where U(z) is harmonic in the neighbourhood of 0, and determine an
adequate constant so that
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X(x, 0, p) =|x| +&(x): lincr,le(a:)z—- 0.

Theorem 11. After the normalization in the above process, X(x, 0, p)
is uniquely determined depending only on Gy(x, p) and G,(x,0), but not
on the assistant curve I.

Proof. If there exist two functions X, and X, which have the same
singularty, then

D, (X, —Gy(x,0))+D,_,(2,— G2, p)) < +oc0
D,(Xy—Gy(#, 0))+ Dy _p(Xy— Gy(, p)) < +00
D,06 )= D0 =X+ D45 = 31 D,(0 = G)~(s—G)
= Z:ﬁ DX, —G)+D(X,—G)—D(X, —G,;, X,—G,) ,
on the other hand D(X,—G,X,—G,) <} D(X,—G,) D(X,—G,)
finally D,(X,—X,)< +oc0,

but X,—X, is uniform, then X;—X, = const, but this constant is zero by
the normalization at O.
Remark. we can prove easily that

X(x,0,p)=X(p,0,2) : @, peF

X(z, 0, p)=jX(p,O, :v)%x(x, 0,p)ds : pPER ,
v
where the integration is on the curve vy which is the niueav curve of
X(p, 0, ).

28.1. Property A. Let us denote by V(&) and V(0) the neighbourhood
of @ and 0 respectively. Then X|(x, 0,p)| < M(x) wherever the parameter
point p may be situated, including ideal boundary points, so lony as
pEV(x)+V(0), where M depends on only x bul not on p.

Case 1. from X(z,0,p)=X(p,0,2):pcF, xc€F

[ X(2,0,0)| < M(z) if peV(x)+V(0): peF,

because X(z, 0, p) is harmonic in F—V(p)—V(0), | X(x, 0, p)| <max|X(z, 0, p)|
on the boundaries of V(«) and V(0), (see Nevanlinna’s theorem) Case 2.
when p converges in the set of ideal boundary point «, let us fix a at
present.

If pe V(a): a € R, then there exist two neighbourhoods V(z) and V(0)
such as if p € V(0)+V(«) then, D (%, 0, p)<_ + oo, it follows that

F-V(0)-V ()

lim |X(2, 0, p)| < max|X(x, 0, p)| on the boundary of V(0) and V(z).

PEF-V(0)-V(m)

Property A’. If @€ V(p)+V(0), then
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|X(2,0,p)| < M(p)< +oco.

This can be proved in the same way.

28.2. Property B. In the neighbourhood of a positive pole p,

X(A—p, 0, p) = log lk—iiﬂ +U,(\),

where the distance is in the loca!l parameter, and U,(\) is a harmonic
function depending on p, and U,(\) is continuous with respect to p, that
is to say for every positive number &, there exists a circle ,C, with a
diameter d and the centre at p and & such as if |p—p'|<8, then
[U, AU, (\)|<&:n€,C i\, Ca:d is larger than 6.

Proof. It can be considered that X(x, 0,p) is made by smoothing
process from two Green functions G, and G,

Gl(x, 0, p) - ]0g lm%};] + U,,(x) Lxre pCd .

First we prove that (7,,(@') is a continuous function with respect to
p. G(z,p) seems that which is made by smoothing process from
' 1
|z —p|
I’ traced in ,C,.

w, is @ harmonic function in the domain bounded by I', and 1', and
0, =0 on Iy, o, ="U, on I'; where I', is the boundary of H.

D,c,(U;—U,)< +00, Uy=w, on ,C,’s periphery.

Let S, =U,—U,: S, being harmonic in ,C,

U,=log in ,C4, and w,=0 in F—H—,C, with assistant curve

S,=U,-U,_;; w,= U, on C’s periphery; »,=0 on I,
T, = w,—w,_; .
If |[p—p'| is so small that [[U,—Us|< ¢, on I, then |w,—o]|< &
|8, =811 < Loy — o |
loy— 2| < K|S, =8| < KL|w; — o}

18384  Llwg—or] < LK |wy—af| 151
in general
|8, —Snl < L’K" Yy —wp |, |0p—owp] < L* K"y — o,
after all Gla,p)=U,+31S,=U": x€,C,,

G, ) =Ug+Sn=U": x¢,C,,
therefore U=8S8,, U=3S,.
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S, =SS < SV Su—Sh| < Mé 1 M =M(K, L)< +00 in ,C4 N\ ,Ca
|U—U'|<Me in ,Co\»Ca,

in the same way we have |,U(x)—, Ux)|< Mé&.

29. The function X(w,0,p) is harmonic when x € F except at 0,
where it is negatively infinite and p, where it is positively infinite
(p € F") or a regular ideal point, but if p is not a regular boundary point

the function has no limit but in all cases Lj%ds= 1. This {fact

27
means that a positive mass one is distributed on p in the sense of the
potential theory, then we can define ideal mass on the ideal boundary
point.

Definition. Mass distribution p. Mass distribution is so defined as
in the general potential theory, x is defined for the set in the Riemann
surface and its regular boundary (or all ideal boundary point set). The
family of which g is defined must be additive class and x is completely
additive. The corn of mass distribution is defined in the same manner
(of course p is invariant with respect to conformal mapping).

Then the potential will be defined as the Lebesgue-Stieltjes-Radon
integral

wlw) = | X(z, 0, p)aslp)
The value of the function X(x, 0, p) is not determined only by the distance
|x—p| as gb(%;), but it depends on the location of #, and further dis-

tance is not defined in the Riemanian surface in general except locally,
so the potential defined with X is not homogenous.

We must verify to what extent the properties of general potential
will hold. We see directly

1° at e=0 u(@)=| X, 0, p)lulp)= log

2| dutp),

and from the properties A and A’, u(p) is harmonic, continuous and
finite wherever no mass is scattered, for instance at inner point of F
or at the boundary, if only x is not situated in the corn of mass
distribution.

2° Hence u(p)=1lim jXN(p,O,Q)d/ﬁ(Q), u(p) is lower semi-continuous,
N = 00,

where X”{ =X, if XN
=N,;if X >N.

3° From the definition of integral which expresses the potential,

it is necessary and sufficient for the potential to be bounded and con-
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tinuous on the closed set 7 not containing =0, that there exists a
circles of radius 8, so as the potential engendered by the mass con-
tainded in this circle Cy is <7 &, for any positive number é&.

30. Theorem 12. (G. C. Evans. F. Vasilesco) Let u is zero out side
of the closed set T ot containing x =10. If the potential is continuous
as the function defined on T where the mass is distributed, then it is

also continuous in F.

This theorem will be proved by means of the property B.

Proof. In the sequel the distance is assumed that it is defined by
the local parameter.

From B X(z,0,p)=10o 1 ot Uyx) : x€,C,, where ,C, is the

g &=
center at p of radius d and moreover U,(x) is continuous with respect
to p in this circle. We denote by us(p) the potential engendered by the
mass in the circle with its center at p and radius 8. As u(p) is con-
tinous as the function on the corn of mass distridution, we can choose
28 and d for any positive number & so that the following condition may
be satisfied, at any point @ of the corn.

U@ —Uye)| < 6 < émgz if 2€CQ):d>25; |p—Q| <29,

i | ULQ+m)—U Q<6 : 0<h<25,

i, ]ogi 21~5f > 2U,@) : i |UyR)|>5,
> 10 : if |U@)]<5,
|Uai @) < g1 i |ULQ)I>5,
> log 2
1+ 2 =

U, (@) —; log 2

U @< 5 : it [U(@)]=5.

3
1+2 log 2

Take a point p of F, and denote by wu; the potential engendered
by the mass in the circle with the centre at p of radius 8.

If the distance between p and the set of corn K of the mass
distribution js larger than 8, then u,=0, and if this distance is smaller
than &, then Cy(p) is contained completely in a circle C,,(Q):Q € K.

Let @ be a certain point of K which is nearest to p, then



154 Zenjiro KURAMOCHT!

)< | X000 | X, 0,00)|au30)

KN .C» K M2 C(p)
_ ( 1x(p, 0, M)||X(Q, 0, M)]|
S [X(Q, 0, M)] M)
1
1 U, 1 v,(m—-U, (M
x(p,OM)_oglMl+ ()* og11$+ AM)—Ug(M)
X(Q, 0, ==
X(Q,0,1) logIQMj+UQ(M) _ log,QMl+UQ(M)
%logz
m=1+m DAf Ul@)>5,
U, (Q)—»— log 2
m
%10;;2 .
m———1+~—4~—a if U(@)<5,

therefore |u, (p)|< m| S [X(Q,0, M)||du(M)|< & consequently «(p) is
is continuous.

Remark. }%5'(2, because their proportion is greatest when M is

situated at the point where C; and the extension of QP intersect each
other.

From the property of X(z,0, p), u(p) is sub-harmonic except at 0,
and satisfies all conditions of logarithmic potential, accordingly energy
integral, problem of equilibrium, sweeping out process, capacity and the
transfinite diameter will be defined in the same manner and all theorems
of general potential theory will hold so long as we consider only the
set (point, curve, domain) of inner point of F' being different from 0.

But it is neccessary and interesting to consider the problem regard-
ing the ideal boundary point set R, where X(w,0,p) is not always
determined uniquely.

It is well known that the equilibrium problem becomes easy in the
case of logarithmic potential by making use of Green function, so called
Robin’s problem.

31. Robin’s problem. Let D be a domain compact or wnot (i.e.
bounded by ideal boundaery point set) composed of o finite number of
domains D, satisfying the following conditions : 1°. The boundary of D,
are analytic curves I, or more generally regular curves for Dirichlet
problem, 2°. Every D, does not contain the point 0. 3°. Every curve 1,
does never converge to any ideal boundary point.

Theorem 13. The Equilibrium Problem is soluble with respect to D.



Potential Theory and its Applications 155

Let us denote by ¢,_,(&,0): ¢ € F the Green function of ¥ —D with
pole at 0 and call v, Robin’s constant of D. Defined by the next formula
1
lz—0]
where g,_,(&,0)= Green function of F'—D with pole at 0. Hence

u(¢, 0, 2) = —X(£, 0, 2)+ 97, @) —gr_»(§, 0)

is regular harmonic in F —D and finite in the neighbourhood of ideal
boundary point contained in F—D, and u =X on >, =1\
By Green’s formula

v, =1lim g, _,(x, 0)—log
r>0

s, 0, x)——\gxm 0,6%) 2 gn slt%, ) ds
od 1
and hence lim (gp_n@» a:)+X(§, 0: x)):rYD'
¢->0
Case 1. If w€ F—D—y,+g,5((,0)= 5 sx(: 0, g*) 9 gF (E%, 0)ds.
Case 2. if z€T, then g, (&, 2)=0

_1 5 o
Ly § X(£,0, £%) - gr-of£*, 0) ds .

Case 3. If z€D, g,_,(¢ ) is cancelled.

Tr= 21;; 15 X(,0, &%) aan gr-o(£*,0)ds .

Here the potential u(«) engendered by the positive mass distribution
a—aﬁgr-p(é‘*, 0) is continuous (=v,) on I', where the mass is distributed,
on account of the theorem 14, u(x) is continuous in F except 0.

The behaviour of «(x) in the neighbourhood of the ideal boundary.
We see directly that u(2) is bounded in absolute value depending on
D, on acconnt of property A, especially in side of C with respect to D,
by Nevanlinna’s theorem wu(x)=7,, becase w(x) is harmonic except 0
and I' and R where u(x) is finite, therefore u(a) is the potential being
the solution of Robin’s problem.

Or more precisely we take LY near ', surrounding £ which is the
part of R contained in D, since « € V(0), w(2)=M(D,) > —oco in D and

S 8U

I ds=0, then by Lemma 1 of Nr. 7, Dp(u)<_+oo, so we have

?‘l
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u(@)=179,:x€D.
From Case 1, we have

min —X(2, 0, &) < g,_,(0,)—7, < max —X(,0,{): €T

this follows that the theorems about the z-plane set in R. Nevanlinna’s®

(pp. 111-129) will be proved in the zero-boundary Riemanian surface.
Green’s function of F,

HCF,CF,..JimF,=F is the exhaustion of F, and denote by g, the

Green function of F', with pole at 0, then

91<g2<g vereee o

If I is a zero boundary Riemanian surface, then limg,=co. This
equivalency with limw,=0, is proved by P. J. Myrberg®. Let us

denote by v, the Robin’s constant of F —F,, then capacity of F'—F, is
defined by C = e—-v»: where F—F, is non compact.
Clearly F'; C F; follows g,< g, and Cap (F—F,) > Cap (F—F,).
Finally Iim Cap (F—F,)=0 is equivalent with lim w,=0 and

limg,=oc0.

32. Let F be the Riemann surface with relative boundary 1), and
relative harmonic measure zero ideal boundary point set E.

Denote by G(x,p) the Green function of F' with pole at p, then we
can discuss the potential defined with G(«, p) as in the case of X(, 0, p)

w@) = - | G, p)iu),

u(x) has property A, A/, B and its lower semi-continuity and theorem
of Evans-Vasilesco is valid.
If the mass distribution x is zero on Iy and on R, then we call

)= | 6o, Oduw)na),

T
the energy integral'® with respect to u.

33.1. Let D be a compact domain of ¥ not containing I', on D, F,
and the boundary of D is regular for Dirichlet Problem, then there
exists a positive mass distribution x% on D, of which total is 1 and the
energy integral is minimum, so called the equilibrium distribution, in
this case p is zero out of the boundary of D and the potential engendered
by this distribution is constant on D which is equal to I,(x*).

This is proved by using the following properties in the same way
as in general potential theory® :
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1. If pp=1imp,p, then I,(u) < lim I,(s,).

2. U(#x) is harmonic in F' except the corn of mass distribution p.

3. U(xz) is lower semi-continuous in F—R.

If D is not compact, denote by D /\ R the subset of B which is
contained in D. Let be G,,G,, ... a sequence of closed domains enclo-
sing D N\ R, such as

NG =DNR,
g
and every boundary of G, never converges to R, then we define
L(u*) = im I, g, (")
for I,(p*) decreasing function of set.

33.2. Lemma 1.

In(,u.*) = lltrn ID—Gi('U'*) = ID_GI(M*) = ID_Gz(/"*) vee

If we denote by T', the outer boundary of D, then

Uia)= S Gl - ) pp ) =1Ip_a(m*),

D-G;
U/(#) is harmonic in F —D, but S ou, ds=1.
Tp
Since
DF—I)(Ul(x) - U,(:L’)) = (ID—GI(/”*)_ID_ GL(/L*)) S éa;n(Ul(x) - Uz(a:)) ds=20 s
I'p
U(x)=U(x) : c€ F—D :

therefore

ID_GI(/’J*) = li:n Ip_g(»*).

33.3. Transfinite diameter®.
We denote by ,D,, the transfinite diameter of order = of non-
compact set D.
1

1 1
=5 ]:]mn'@ (mlgs ED G(zos D)) -

For D_Gan is monotonously decreasing with respect to j.

Lemma 2.



158 Zenjiro KURAMOCHI

If we denote by C and C, the boundary of D and G, respectively
then all p,(i=1,2,3,...) lie on C.
If it were not so, there is at least one point p, on C; such as

=5 g, (2G4 TG, ) i minimum.
I3 °=f=0
Hence lim G(p-p,), and U(po)—ZG(po Pe)<_ oo, Py € F =31 0(p,):

P*Ps
where v(p,) is a neighbourhood of p,, ‘and R is harmonic measure zero

therefore U(p,) takes its minimum on C, this is a contradiction, accord-
ingly we have the conclusion.

»D, is monotonously decreasing with #.

Then lim ,D, = ,D is called the transfinite diameter of D.

Lemma 3. From general potential theory®
=17 D—Gi(/“*): for each 1,

p-cD
then

1
——=1TI,(g").
];D D(”" )
Lemma 4. We denote by w,(x) the bounded harmonic function of

F—D; such that 0< p0(@) <1, o0,@)=0: 2€l'), oy (2)=1: 2€C,
and let

N "-’D(a’) _ 1
wy(x) = Wy,=
Qw,(®) , . [ Owp(x) ;.
j on )ds \ on )d

o To
. o Qwp(x) ;.
Then wy(2) is constant for x€C and a*nols =1.

Ty
We easily see that

23
Let V.(M)= -1.2;—%_77_«» tMeC

Since C is closed V, (M) is lower semi-continuous, V(M) attains its
minium M, on C which is denoted by V(p, P, ...D0,). We take
D1 Po» ... P, 0N C so that V(p,, ...p,) may be its upper bound ,V, and
p;s1=1,2,...,n and M converge

pi""p‘f; i=1)2,...,n.
M — M,
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=yl (6aL ),

then
VE(M) > ,V, .
Mec
Lemma 5 v, =1 ;
a 5. >+
phn DDn+1
1 1 1 .
= == _ =~ _ min G(p; -
Do 50, M (E, G p)
pseC
n+ln+l G
4”n+102 21 i; (p: - ps),
then ,V, > . min (2 G(p - Pz))
27r vec
p in the right hand term is p,, otherweise 1 cannot be minimum,
DHp+1
because G(p;-p,) = G(p,-D,). 1

We have lim V* (M) > mm VM) = ,V, = =5

T Mep pp+1
Let A be closed set contamed in F+R—1',, and denoted by D,

domains such as
ND;=A.
[3

We define ,D,, I (%), and W, in the following manner :
4D, = liim pDn»
4= litm Ip,,
wW,= litm WD¢ .
If A is harmonic measure zero, then W,=rco.
Theorem. If A is harmonic measure zero set, then
I,=co0, D,=0, W,=00 and vice versa.

34. Theorem 14. (G. C. Evans)® Let A be a closed and a set of
relative harmonic measure zero of F+ R with respect to F, and let every
point of A be regular for Evans Problem. Then there exists a positive
harmonic function satisfying the following conditions,

1. Uw)=0: w€F. 2. Uw)=0:zel,. 3% |Sds=

4°, limU(x)=oco0. 5°. lim U(x) <+o0.

z5>4 B>R—

Proof.
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1 1 4 51 . G(ps. )
— = _— lim lim lim min Ball£ A0 o 2
D, 27 5 " ps, pe€Ds—Gy E nCa
se=t
s<¢ 1
=1 ¥)=1im Wp;=o0. lim —=oco.
i 150 = lim Wo,= o lim
Therefore, for every number N, there exists j,(N) such as
1 .
= — S'G(p,. p,)=2N : =7o(N
5 =1lim min 022 (ps- ) 7275(N)
therefore there exists #,(D;) = n,(N) such as
n+1
-1 -min 2 G(ps- pz)ZN: ngno(N) .
'n+ICZ Ps-p: € boundary of Dy

But since D’>D”, it follows that 1 < 1 for every n+1.
D’Dn-l»l D”‘Du+1

We can choose adequately »+1 points p/, ..., p,/, on the boundary
D;:7=7,(N) so that

@)=L 2 G@.p)=N:2e D,
znn =1
because harmonic measure of D; \R is zero.

Since Dy, Dj.qs..ns lim D,= A, and since A is closed,

we can choose from the -sequence of systems ((p!, p), ..., p)), 1=
1, 2, 3 ... a subsequence of i _>i,

such as @Y. ... P)
lijm pz‘f:p,c 0, €AkE=1,2,...,n

Since from the hypothesis regular Green functions exist at p, (k=1,2,
.., ©), we denote them by G*(z. p,).

1 s
Let 77“(2/)— 2n 2 G (x' pk) ’
Since lim ,(x)=co, there exists a system of neighbourhoods v(p,)
x— Dy

whose boundary is v, curve in F, satisfying the following condition :
7(%) Z N ; if r e vp,).
k
We choose a subsequence {Egg(a:)} from {£7i(x)} such as

p:?év(pk) k=1 2,...,n
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Then E';J(x) has the properties,

;;-‘- ds—~ E,’,”(x)/o f”’(x)—o zel,.

2°. V()< m(z) if @€ N(p)+(R)N\A, for every ).

3°. lim 2;7,’(@) N.
x> (Pi)
From 2° ég/f(w) constitute a normal family in F, we can choose a
subsequence which converges uniformly in F to the limit function & ()

lim Eni(x) = £,().

The boundary of (D,-o—kz’:l 0(p)) =Cio+ 37

Since Djo—év(pk) has no mass for &'(x), then

"

lim | &7/ (%) — 5n(x)|<max | En'(a) —E,()],

x€DIy—Sw(py) € CIo+2ny

therefore &7 (x) uniformly converges to &,(x) in D,-o—ﬁ]v(p,,).

Then, lim g (x)=1im lim _ EJ(@2)=N .
x-—;AﬂDJ’o—EU(Pn) " x—’AﬂDcJ—ZU(I)n)

Let &, (%)= &)+, (), then {,(xr) has next properties,

1. harmonic positive when € F—>'p, .

2°. Saf ds=1 ¢(2)=0: wel,
To

3° Iim & (x)+o0
T>R—A

4°. lim {(x) = N.

We denote this function by &"(x).
Take N>3, N}, N?, ..., N": lim N”" = oo, and corresponding to N?,

%glv(x) e, 217 Niw), ..
U'(a) = 25 @) | Uw) =1lim U(a) .

U(z) has the properties mentioned in the theorem.
1° and 2’ are clear, because if F—R>p, U(x) is harmonic and
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U(p)<oe.
If pe R, pE A, there exists j, such as p€ D;; j=7j, therefore there
is a neighbourhood v(p), »(»)\Dj, =0, but »(p) has no mass, then

lim U(x) < max U()< +co.
zEviP) ' %€ boundary of ??)

lim U(a2) = U"(x), for every = . .
lim U(m)zllm hm U, (2)= llmth ;’Ni(a)>11m1§72
54

5 —1
2

If F is a zero boundary Riemann surface, let us denote by 0 an
inner point of F and take a dise of centre O then by the smoothing process
and normalization of constant we easily have the harmonic function U(x)
satisfying the mext conditions:

1°. U(x)=102 |x| in the nighbourhood of 0 and x is the local para-
meter.

2°. lim U(x)= oco.

>4

3°. |lim U(x)|< oo,

ZT>R— A4
We can discuss with X in the same manner as G.
35. Let F be a Riemann surface with the relative boundary 1" and

the ideal boundary point set R, If there exists a harmonic function U(x)
such that

P U ds=1: vy curve enclosing 0 or A.

U)=0, lim U(g)=co.
>R

Then R is of a set of relative harmonic measure zero.

Proof. Let us denote by C, the niveau curve on which U(x)= M
and by C, the domain in which U(x) = M respectively. If co™>M> max
U(x), then C, is compact curve and surrounds R, and lim C, = R.

M=o0

On the other hand we dedote by w,(2) the bounded positive harmonic
function such as
oy(@)=1 : xeCy,
w(2)=0 : zel,
then ga“;;’ <0 on C,, where normal derivative is inner direction with
respect to C,,
w %) : .
<L M < : r,; =>0.
O=an = 5. 0n xE if 6>0
By Green’s formula,

(200, a0 [ 00y

T+Cy I‘+CM
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then

oU,.__(oU,. __ Owy 1o Ow,

gands—j-a?ds—y n ds-—M& Sn ds ,

) Cy T Cy
but

H@ds— g M»aﬂ’—dsl
on n
Cy
is bounded for every M, on the other hand M —co and aa“’;: Sg 0 then
lim j 90ugs —0, this follows that lim j ugs—0,
M=co on M=c0 on
Cu r

then

lim w,, =0.

Thus R is a set of relative harmonic measure zero.

Corollary. Let F* be a Riemann surface of which every ideal
boundary point is regular for Evans’s problem of zero boundary, and let F
be o covering surface of F*. We denote by n(p) the number of times
when p is covered by F and by D, (F*) the set

D,=FE[np)=n].
If sup n(p)<N, then it is necessary and sufficient for F to be of zero
PEF¥

boundary, that Dy(F*) is a zero boundary Rienann surface.

Proof. The necessity is clear. We denote by F'’ the sub-Riemann
surface which has its projection on D,(F*), and denote by 0 an inner
point of D,(F*). We can construct a harmonic function U(a*): & € F*
such as negatively infinite at 0 and positively infinite at every point of
the boundary of D,(F*) and let

U(x) = U*(a*) ; x € F', x € Dy(F*).
Then from 32, F' has zero boundary, accordingly, F(F2F') is of zero
boundary Riemann surface.

Chapter IV.
Function theory on an abstract Riemman surface.

36. The function theory of the z-plane has made much progress
but in the Riemann surface, it is in infancy, this owing to the fact that
the z-plane has very adequate metric when z = oo is the only essential
singularity and even when the set of singularity is not one point but of
capacity zero set, the same metric in a sense can be constructed by the
benevolance of Evans’ theorem of the potential theory. On the contrary
in the Riemann surface, there is no adequate metric except conformal
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distance from the automorphic function theory, that is an invariant metric

with respect to Fuchsoid group named hyperbolic metric. )
It is clear that the metric defined by the Evans’ theorem is the

best to study the function theory of Riemann surface, as in the z-plane.

‘We must begin with the notion of regularity of the function at « :
x € F, we call that f(«) is regular at « = x,, when f(x) is regular with
respect to the local parameter defined in the neighbourhood of x,, then
the notion of regularity will be defined at every inner point of F, never-
thless it loses its meaning at an ideal boundary point «, and when we
can prolong the Riemann surface F' so that F may be contained as an
inner point in the prolonged surface, we can define regularity as the
preceding, for instance, if F has a finite number of genus then F' is
contained in a closed Riemann surface®, in this case the essential
difference about the notion of the regularity or the singularity of the
function between the z-plane and in the Riemann surface does not occur.

But the fatal distinction between the z-plane and the Riemann
surface is that there can exist the genuin ideal boundary point, which
cannot be inner point in the other surface by no means as the second
kind boundary point of Stoilow, at this point the notion of regularity or
the singularity loses its meaning completely. Therefore in the theory
of function on the Riemann surface, there is two cases when f(&) is not
regular, one of them is the case when f(2) is not regular with the local
parameter defined in the neighbourhood of = «,, and the other case
is when f(2) has no local parameter. When there is no local parameter
at v =uw,, we call that f(») has a genuine singular point at x = x,.
The behaviour of the function in the neighbourhood of a genuine singular
point is most complicated, it can take any value without condition
perfectly. But the theorem 6 shows the behaviour of the function to
some extent. Thus even at a genuine singular point, we can define the
regularity of f(x) in the following manner, Let us denote by V(p) a
neighbourhood of p, 1°. We say that f(x) is regular at p in extended
meaning, if f(«) is regular in V(p)\F' and finite in V(p), and f(x) is
meromorphic in V(p) extended meaning in the case when f(x) is a rational
function of regular function 2°. If f(«) is not meromorphic at p, then
we say that f(x) has an essential singular point in extended meaning.
We see directly that f(x) is meromorphic at » then the number of roots
of the equation f(«) C is finite and if f(2) is essential singular, then f(a)
covers almost all the w-plane excepe at most a non dense set infinitely
many times for any small neighbourhood of p.
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Hypothesesis

In the sequel we presupposé that all boundary ideal point are regular
for Evans’ problem.

The First fundamental theorem of Nevanlinna.

37. Let f(x) be one-valued and meromorphic function on the zero-
boundary Riemann surface and denote by £ the set of genuise or
essential singular point set, then we see directly that FCF+R and
closed. If F—F is zero-boundary Riemann surface, we say that £ is
capacity zero set, If & is capacity zero set, and all point of E is regular
for Evans’ probrem, take an inner point denoted by 0 of F'—FE and call
it the origin.

By Theorem 14 there exists a harmonic function U(x) which is
negatively infinite at 0 and positively infinite at £ and only there, take
a conjugate function Z(z) of U(x)

2= 6U(z)+th;z): ,,.eu . 0§7.<oo‘

This parameter corresponds to z, 0< [z|< oo, in the z-plane. Let
C, be the niveau curue r(x)= const 7, then C, consists of a finite number
of Jordan curves surrounding £, we remark that
g a0(z) =20 4s =2,

on
C, Cr

where ds is the arc length on C- and » is the inner normal of C-r, we
use the same notation in R. Nevanlinna’s book.

As w(#) is meromorphic, it is expressed in a power series with
respect to the local parameter ¢ in the neighbourhood of =, and
the function z is one valued in the neighbourhood.

w(x) = ¢ t"“+7§: f"’“”, v s CoFCtY H e tFIH L -
- —Kk+

@) =dy+d\ T+ dy T, L, e —-F

w(x) can have a finite number of negative power terms but z(x) is finite
in FF—FE accordingly has no negative power terms exact at 0.

The differential %’—zdt, ?—lidt have the next transformation in the

change of localparameter from ¢ to .

dw __ dw dt dz __dzdr

dr dt dr’ dr dtdt’
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dw
dt| __ ldw| . . . .
then r7i ]%— is one-valued and meromorphic function we denote it
dt
by |w/(x)|. In the neighbourhood of 0,
x=e"™Hr®  —log" je={*+¢,

where t* is the local parameter used in the normalization of constant
of U(x) or X(x, 0, p) in the neighbourhood of 0,

dz __ dw _dw L
then bl—t__-l gt de at »=0.

Theorem 1. Let the domain bounded by C, be denoted by A,,

n(r, ¢) = the number of zero point of w—a in A,.

m(r, @)= zi”c loélw—ia[ do(zx) .

<

n(r. @)

N(r, a)= dr .

© ey

Then
m(r, a)+N(r, @)= T(r,)+p(r),

where @(r)<log |a|+|log|c||+1log2 and c is the first nom-vanishing
coefficient of the Taylor’s expansion of w-a in the meighbourhood of 0
with respect to t*.

Proof. U(x) is is one-valued, C, does never intersect other C,,, and
C, is composed of a finite number of analytic, compact and closed curve.
They enclose a compact domain which is denoted by A, therefore A,
has only finite number of zero or poie of w(x), we denote by a , b, and
by k,, &, their multiplicity, we assume that C, has no @, b on it.

If g.(x, b) is the Green function of A, with pole at b, then log |w(a)|
- h,9.(2,b,)— 2 k,g,.(%, a,) is regular harmonic in A, and log |w(x)| on
C., accordingly by Green’s formula

log w(ay) = | log lao(@)|P9E2 #)as 1 51h,9,(2,, b,)
C,
_"2 k.gr(x() y @ )
We put =0,

log [0(0)] ~= | loglw()|d6+ 31,940, b,)~ 32,00, 0.
C,
If w(0)=0 or o0,

w(x) = ¢ t** +cy,, t¥**1 ., in the neighbourhood of 0. Since
log |w(x)|—Alog |z]=Alog|t*|+log ey —M\log|t*| + &, and |logz| is log» on C,
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log Jex] = 2_H log [w(2)|d0+ 3,900, b,)— k9,0, @)+ Tog 7 .

On the other hand ¢(0, ¢)=g(a, 0)= —U(a)+logr = —log r,+log 7,
where U(a)=log r, then we have the theorem.
We denote by K the Riemann of diameter 1 contacting the w-plane
at w =0, we put the cordal distance,
_ la—p| o 1 1
Lo, 01= D q5ia p1spp - ™ “)”‘2765 ogr 4]

.

ag .
If we denote by A(r) the area on K, which is covered by w(a)
when « varies in A, then

m*(r, a)+N(r, @) = ij -A(tt)dt+ log

[

[w(0), «] ~
For if we denote by |do| the line element on the 2w-sphere

| [= _ldw|
1+|wf?”

ldwl_ 2| — 1\ . 1\ _
Utaw) = log [ = log [L+ k| 210g[w[+£<a>. ]hﬂ‘s(i&)“o'

A(2) = A U(w(x))= A d in an invariant,

ov__ OJv ot
Sor— ot or™®

df, = area element with respect to z.
In the same manner as R. Nevanlinna,

r% [ V(2)a6 + 47 n(r, c0) = 4 [(I;Uf[x)llz af,
C.

ds is an invariant also,

where A(r)——j({ﬁ(lo“)llz)zdf, is the area on K when & varies in A,, we
integrate between 7, and 7(0<r,<r< o) and make 7, converge to 0.
Then we have

1

log — 5

[ ogy T sCremyia0-+ N(r, c0) = L{ At + 1oz, T 3ucoye
C. 0

1+aw

If we transform w into w,, by w, = . which this is the rotation

of the Riemann sphere, then
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1
[w(0),a]"

If w(0)=a the right hand term is infinite but we cannot now
replace other term as in the case of the z-plane because z is not uniform
generally and has infinite number of periods correspending to genus.
Accordingly we assume that w(0)==co, which is always possible. We

j g[w(w”) ]+N('r a)=">: --iA(t)dtﬁ-log

denote T(7r, co)= S |w|d@+ N(r, co). T*(r, oo)i-g _4%Q dr. It is clear that
Cr 0
T(r, co)—=T*(r, o) <log 2+1o
|T(r, 00)—T*(r, )| 2 e (0> ]
Theorem 2. T*(r) is a monotone and convex function of log .
Theorem 3. lim ITO) >0.
If lim T(r)=0, w(x) must reduce to a constant.
Proof. [ Aty = [ Aas > acr,) 1og! .
t t 7
0 7o

Theorem 3°. If f(x) has an essential singularity (classical or extended
meaning), then

Let p be an essential singularity and V, >V,...>V,,... >p be a
sequence of neighbourhoods coverging to p and e, be the set of values
ommitted by f(z) in V,, then e, is non dense, so that

e=>Y'e, is of first category.

Hence there exists a point w,, which does not belong to e, then w,
is convered by f(2) infinitely many times about p so that

38. Meromorphic functions defired in a compact domain in the zero-
boundary Riemann surface. Let D be a compact domain in the zero
boundary surface bouded by Jordan curve C, then by theorem 11 we
can construct the domain function U(z) which is negatively infinite at
an inner point 0 of D. Accordingly we can discuss the function theory
as in the case 0 <[z|<1 in the z-plane.



Potential Theory and its Applications 169

39. Meromorphic functions in a neighbourhood of a closed harmonic
measure zero.ideal bounbary point® .

Let D be adomain in the Riemann surface (positive or zero boundary)
boundes by Jordan curve C and closed set £ of F'+ R of relative harmonic
measur zero, with respect to domain D.

We easily have all theorems studies about the behaviour of function
in the z-plane. Since harmonic measure E =0, by theorem 15 we can
construct a harmonic function U(z) satisfying all conditions of U(x).

Then we write results without proof because it is the same in the
z-plane.

Theorem 1. First fundamental theorem of Nevanlinna.

T(r, a) = T(r)+0(log 7), where T(r)_~j Alf) g

Theorem 4'. Second fundamental theorem of Nevanilnna®.
Let e be a bounded closed set of positive capacity on K. Then we can
distribute o positive mass du(a) on e, such that

Slog(_w%6 du(a): jdu(a)sl,

is bounded on K, hence by Theorem 1/,

T(r)= S N(r, @)du(a)+0(log 7),

e

and the order is defined by the formule lim logl g(” P,
Theoerm 3'. lim T(?)\O
— log »

E is singular point set, but in the Riemann surface, ¥ can consist
of only genuine singular points where w(x) may have its behaviour as
if it were regular point therefore we cannot expect that () is not
bounded in the neighbourhood of E. But further if we suppose that ¥
has at least an essential singular (classical or extended meaning) point,
we can conclude that

as in the same way used in Theorem 3.

40. Some conceqguences of Fundamental theorems.

Theorem®: 5. Let D be a part domain which is bounded by Jordan
curves C and by a closed set of F+ R of relative harmonic measure zero
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lying inside of C, and let w(x) be one-valued and meromorphic in D and
lim T(7)
7= log 7
extended meaning) point. Then,

1°, w(x) takes any value infinitely many times, except a set of
N(r, a) __
T(r, a)

co (or E has at least an essential singular (classical or

capacity zero. More precisely, lim 1, except values of capacity

zero.
2°. If further w(x) is of finte order p >0 and x,= 2(a,) is the zero
point of w— a and r,(a)=1r(z,) then

& 1 < oo for &l a.

except values of capacity zero, where & is any positive number.

41. Theoorem 6. (W. Gross)”. Let w = w(«) be one valued and mero-
morphic in F—FE have at least one essential singular point of E, and let
o = az(w) be ils inverse function.

i. If a(w) is regular at w, then we can continuate 2(w) analytically
on half lines; w = w,+re (0 <r< co) indefinitely, except for values or
measure zero. :

ii. If w(w)is regular on a segment ; w = w,+7r"°( <r,< r< ), then
starting from w=w,+r, we can continuate 2(w) analytically along -
circles ; w=wyre ¥ —oco< 0< c0) indefinitely, except for r values of measre
zero.

42. Theorem 7. (Cartwright-Noshiro)'». From Theorem 6 under the
same condition as Theorem 5' without llmggz co. Lel x=ua(w) be
the inverse function of w=w(&) and F be its Riemann surface spread
over the w-plane and (w,) be its boundary point, whose projection on
the w-plane is w. Then (w,) is an accessible boundary point and w, is
asymptoic values of w(x), i.e., there exists a curve L in D ending at a
point on E, such that w(x)—w, when x—x, along L.

Theorem 8. Under the same condition as 5' and if E has furiher
at least one essential singularity, and if f(x) ==a in D, then there exists
a curve L itn D ending ot o point & on E such that w(x)—a, when x—x,
along L.

43. Direct transcendental singularity.

Let a(w) be defined on o Riemann surface F,, spread over the w-plane
and (w,) be a boundary point of F,, whose projection on the w-plane
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is w. F. Iverseu called (wy) a direct transcendental singularity of a(w)
if w, is lacurary for a connecten piece F, of F which has (w,) as its b
oundary and lies above a disc K; |w—w, <p about w,.

Theorem 9. Under the same condition as Theorem 5', the set of
projection of direct transcendental singularity of the iverse function a(w)
of w(x) on the w-plane is of capacity zero.!®

44. Behaviour of the inverse function x(w) of w(x) at its trans-
cendental singularity.

Let w = w(x) satisfy the same condition as theorem 5 and & = a(w)
be its inverse function and F be its Riemannian surface spread over
the w-ptane. Let (w,) be its boundary point, whose projection on the
w-plane is w, .

A 8-neighbourhood U of (w,) is defined by a connected piece of F
which lies above a disc (w—w,)< 8 and has (w,) as its boundary point,
let U correspond to a domain A on the Riemanian surface, then [w, w, ]
<8 in A and [w(x)—w, ] = & on the boundary /\ of A, except the point
on E. Since (w,) is an accessible boundary point of F, there exists a
curve on F ending at (w,), which corresponds to a curve L in A ending
at apoint x, on K. Let z=r(x)e'*™ be defined as theorem 14 and the
part of A, such that 7(2) <+ and 7(x)=1r be denoted by A, and 4,
respectively, let K be the Riemanian sphere of diameter 1, which touches
the w-plane at w =0 we put n(7, )= the number of zero point of
w(x)—a in A, where [a—w,]<3,

r
N(r, 0, A)= S wr, o Nar |

;'0

m(r, & A)= glog ds(x) ,

[ow(a ) a]
T(r, a; A)y=m(r, a; A)+N(r, a; A),
A(r ; A), S(r; A) are the same for A.
L(r) the sum of length of the curves on K, which
corresponds to Theorem 1’.
Theorem 1.
T(r, @ A) = T(r, A)+0( S L 1y + 0glog ) ,

70

T(r, A= SSO ’ A)d?' ,

7o

where
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L(r)=00/T(2r, A)logr) : for all r=r,.
L(r)=00/T(r:A)log T(r:A),

except certain intervals I, such that

f] d [log log r<+co,
n=1 .

the order being p=Ilim T(r:4)
=00 log r
Theorem 3. lim T(r:A) <0,
— log 7

and if A is bounded by E which conlaing at last one essential singular
(classical or extended meaning) point, then

im L A) _ .
== log 7

More generally, if
lim 705 A) — o
—e log
then
i. w(w) takes only values in [w, wy|< 8 infinitely many times in A,
except a set of values in [w, wy]< 8 of capacity zero.
ii. If further w(x) is of finite order p(">0) in A, then

1
DT <00 .
[7(a)] 2 for all a in [w, w,]< 8.

1 =0
S O

except values in [w—w,]< 8 of capacity zero, where & is uny small
positive number and r(a,)=1r(x,), x, being the zero point of w—a in A.
45. Applications to the theory of the cluster set.
Let F be an abstract Riemann surface with a relative boundary L',.
In the sense of Stoilow, we call an ideal point « defined by the

system of the neighbourhood of « such as N\V(«a)=a.
i

F—V,(a) has another set of boundary point R* defined by the system
of the neighbourhood W,(R%) such as [j\Wj(R")= R,

Let us denote by ws(2) the positive harmonic function in F—V,(«)
—W,(R") with the boundary values 1 on the boundary of V.(a) and 0
on I'y and the boundary of W, R").

If limlim o(2)==0, then we call a a point-wise
i J tJ
boundary point.

Let D be an arbitrary connected domain of Riemnna surface F' and
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C be its boundary point set of D included in F+ R, and E be closed
relative harmonic measure zero boundary point defined as the preceding,
being contained in C and further suppose that « is a point-wise and
not isolated from C.

f(@) is one valued meremorphic function in D. We denote by [ f()]

the closure of the set attained by f(z) in N.
Let us associate two cluster sets,

SP=nN[ fle) ], S= [\(\J Sy ),
¢ xe DOV (=) 1% I’/evi(w)—a "
then we easily have the followmg theorems as in the case of D being
planer,

Theorem'V. (F. Iversen, A. Beuring, K. Kunugi, M. Tsuji)

B(chp))<sw(o)’ that is Q:Sww)_smw)
is an open set, where B(S,®) is the bounday of S, .

Theorem'®. (8. Kametani, M. Tsujii).

Let F have o boundary point set R of at most relative harmonic
measure zero and let all points of E are regular for Evans’ problem.
If (Q)=S8,2—8,° is not empty, then f(x) tskes any value, except a
set of at most capacity zero, belonging to Q infinitely many times in any
neighbourhood of «.
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