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Let P and Q be rings, and pM, NQ and pVρ a. left P-module, a right β-module

and a P-<2-bimodule, respectively. Let φ : M x N —>• V be a P-Q-bilinear map. Then

we say that (pM, NQ) is a pair with respect to φ or simply a pair (see [12], [14],

[10] or [1, Section 24]). For elements x e M, y e N and for submodules pX < pM,

YQ < NQ, by xy we denote the element φ(x, y), and by XY we denote the P-Q-

subbimodule of p VQ generated by {xy\x £ X, y e Y}. A pair (pM, TVQ) is said to be

colocal if pMNg is colocal both as a left P-module and as a right Q-module. In [10]

and [7], we studied colocal pairs related to some results in [5] and [4].

We shall define a semicolocal pair (pM, NQ) as a generalization of a colocal pair.

A P-g-bimodule PUQ is said to be semicolocal if (i) the rings P and Q have com-

plete sets {e\, β2,..., em} and {/i, f 2 , . . . , /„} of orthogonal idempotents, respectively

such that each e t/ρ and each pUfj are colocal modules and (ii) the socle of PU co-

incides with the socle of UQ. Moreover a pair (pM, NQ) is said to be semicolocal if

PMNQ is semicolocal. Anh and Menini investigated semicolocal modules with some

conditions related to duality (see [2]). In this note, we shall give some generalizations

of results of [10] and [7] using the term "semicolocal pairs", and in particular give

characterizations of finitely cogenerated injective modules (Theorems 2.4 and 2.5).

Throughout this note, P, Q and R are rings with identity and all modules are

unitary. Let M be a module. Then L < M (L < M) signifies that L is a (proper) sub-

module of M. By S(M), T(Λf) and \M\, we denote the socle, the top and the com-

position length of Λf, respectively. Moreover by Pi(/?), we denote the set of primitive

idempotents of R. Every homomorphism is written on the side opposite to the scalars.

1. Semicolocal pairs

A module MR is said to be colocal if MR has an essential simple socle.

Lemma 1.1. Let f be an idempotent of R and MR a colocal module with

S(MR) = T(hRR) for some h e Pi(β), where Q = fRf. Then MfQ is a colocal

module with S(MfQ) = S(MR)f = S(MR)hQ.
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Proof. Let 0 φ x = xf e S(MR)f and 0 j y = yf e Mf. Then xR = S(MR) <

yR, so xQ < yQ. This shows that MfQ is a colocal module and S(MfQ) = S(MR)f.

Moreover S(MR)hQ = S(MR)f holds since 0 φ S(MR)hQ < S(MR)f. D

A P-β-bimodule PUQ is said to be colocal (resp. faithful) if both PU and UQ

are colocal (resp. faithful).

REMARK 1. For a P-β-bimodule PUQ, the following hold.

(1) Both S(pU) and S(UQ) are subbimodules of PUQ.

(2) If PUQ is a colocal bimodule, then S(PU) = S(UQ).

(3) For any idempotents e e P and / e Q, S(eUQ) = eS(UQ) and S(PUf) =

S( P ί/)/ .

A finite set {e\, e2,..., en) of orthogonal idempotents of R is said to be complete

if e\ +β2 + + en = 1 e R.

Let P and Q be rings. Then a P-<2-bimodule pt/ρ is said to be semicolocal if

the following conditions (i) and (ii) are satisfied.

(i) The rings P and Q have complete sets {e\, eι,..., em} and {/i, /2, . . . , /„} of

orthogonal idempotents, respectively such that each eiUQ and each PUfj are

colocal modules,

(ii) S(PU) = S(UQ).

Let PM and TVρ be modules and (PM, NQ) a pair and put U = PMNQ. Then the

pair (pM, NQ) is said to be semicolocal if PUQ is a semicolocal bimodule.

REMARK 2. If PUQ is a bimodule and e and e7 are idempotents of P with <?P =

e'P, then eUQ = efUQ. This is easily seen since there exist elements a = eae' and b

= e'be in P such that ab = e and ba - e'.

REMARK 3. Let P and Q be semiperfect rings. Then by Remark 2, a bimodule

PUQ is semicolocal if and only if for each g e Pi(P) and each h e Pi(β) with gU ^ 0

and ί//z 7^0, gUQ and />ί//ι are colocal modules and S(PU) = S(UQ).

Let R be a semiperfect ring and e and / idempotents of R. Then in [16], Xue

defined a Nakayama pair (eR, Rf) as a generalization of an /-pair in [4] (also see [5,

Theorem 3.1]). We define a Nakayama pair (eU, Uf) for a bimodule PUQ and idem-

potents e e P and / G β (see the condition 4 in [2, Theorem 3.3]). An idempotent e

of R is said to be local if eRe is a local ring.

Let P and Q be rings and PUQ a. P-β-bimodule. First, for local idempotents

g e P and h e Q, (gU, Uh) is called a Nakayama pair if gUQ and />£//* are colo-

cal modules and S(gUQ) = T(hQQ) and S(PUh) = Ύ(PPg). Generally for idempo-

tents e e P and f e Q with semiperfect rings ePe and fQf, (eU, Uf) is called a
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Nakayama pair if for each g e Pi(ePe) (resp. h e P i(/β/)) there exists h e P i ( / β / )

(resp. g e Pi(ePe)) such that (gU, UK) is a Nakayama pair (see Remark 2).

Let PMR be a P-/?-bimodule and / an idempotent of R and put Q = fRf. Then

we always assume that a pair (pM, RfQ) signifies the pair with respect to the P-Q-

bilinear map φ : M x Rf -> Mf defined by φ(x, af) = xaf\ x e M, af e Rf.

Let (pM, NQ) be a pair. Then for any subsets A c M and B c N, we define

submodules r(A) (= r^(A)) < N β and l(B) (= /M(#)) < pM9 as follows: r(Λ) =

{y e N\Ay = 0} and l(B) = {x e M\xB = 0}. We say that the pair (PM, NQ) is

left faithful (resp. right faithful) if l(N) = 0 (resp. r(M) = 0) holds, and (PM, NQ) is

faithful if it is left and right faithful.

Let MR and NR be semisimple modules. Then by MR ~ NR, we mean that any

simple submodule of MR is isomorphic to a submodule of NR and the converse is also

satisfied.

Lemma 1.2. Let MR be a module and f an idempotent of R such that

(PM, RfQ) is a left faithful pair, where P = EndMR, Q = fRf. If MfQ is colocal,

then MR is colocal with S(MR) = S(MfQ)R.

Therefore, if Q is a semiperfect ring and (pM, RfQ) is a faithful semicolocal pair,

then MR is a direct sum of a finite number of colocal right R-modules and S(MR) ~

T(//?/?) holds, and in particular MR is finitely cogenerated.

Proof. Let 0 ^ x = xf e S(MfQ) and 0 Φ y e MR. Since (PM, RfQ) is

left faithful, we have ya -φ 0 for some a - af e Rf. Hence xQ < yaQ, so

xR < yaR < yR. This shows that MR is a colocal module with S(MR) = S(MfQ)R.

Assume that Q is a semiperfect ring and (/>M, Rfo) is a faithful semicolocal pair.

Since pMfQ is a faithful bimodule, P and Q have complete sets G = {gι, g2> > gm)

and H = {h\, hi, . . . ,hn) of orthogonal primitive idempotents, respectively such that

each g[MfQ and each pMfhj are colocal modules and S(PMf) = S(MfQ). Hence for

any g e G (resp. h e H) there exists h e H (resp. g e G) such that S(gMfQ)h =

gS(MfQ)h = gS(PMf)h φθ, so S(gMR) = T(hRR) by using the first assertion. Thus

S(MR) - Ί(fRR) holds. D

For local idempotents g and h of R, (gR, Rh) is a Nakayama pair if and only if

(gRggR, RhhRh) is a faithful colocal pair (e.g. see [7, Lemma 3.2]). In the following

proposition, the equivalence (1) ^=^ (3) is a generalization of this fact.

Proposition 1.3. Let PUQ be a bimodule and g and h local idempotents of P

and Q, respectively. Then the following are equivalent.

(1) (gU, UK) is a Nakayama pair.

(2) Both gUQ and PUh are colocal and gS(UQ)h = gS(PU)h φθ holds.

(3) (gPggU, QhhQh) is a left faithful pair and (gpggP, UhhQh) is a right faithful
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pair and gpggUhhQh is a colocal bίmodule.

Proof. (1) = * (2). By assumption, gS(UQ)h = S(gUQ)h j 0. Since S{UQ)h is

a non-zero submodule of a colocal module PUh, S(PU)h = S(PUh) < S(UQ)II, SO

8 S(PU)h < g S(UQ)h. Hence g S(PU)h = g S(UQ)h ^ 0 by symmetry.

(2) = > (3). By Lemma 1.1.

(3) = > (1). By Lemma 1.2. D

In the following proposition we give characterizations of a semicolocal bimodule

PUQ for semiperfect rings P and β The proposition is essentially due to [2, The-

orems 3.3 and 3.4] (also see [16, Theorem 3.4], [8, Proposition 1.11] and [9, Theo-

rem 2.2]).

Proposition 1.4. Let P and Q be semiperfect rings and PUQ a bimodule such

that gU φ 0 and Uh φ 0 for any g e Pi(P) and any h e Pi(β). Then the following

are equivalent.

(1) PUQ is semicolocal.

(2) (U, U) ( = (lpU, U\Q)) is a Nakayama pair.

(3) Both pU and UQ have essential socles, and pUQ-duals of simple modules are

simple.

(4) For each g G Pi(P) and each h £ Pi(β)> gUς> and pUh are colocal, and

P S(pU) - P Ί(pP) and S(UQ)Q - T ( β β ) β .

Proof. (1) = » (2) = > (4). These are clear (see Remark 3).

(4) = * (1). By assumption, for any h e Pi(β) we have S(PU)h = S(PUh) <

pS{UQ)h since PS{Uo)h is a non-zero submodule of a colocal module PUh. This

shows S(pί/) < S(UQ) and by symmetry S(PU) = S(UQ).

(1) = » (3). Let g e Pi(P). Then we have HomP(T(PPg), t / ) β = gru(mά{P))Q

= gS(pU)Q. Hence UomP(Ί(pPg), U)Q = S(gUQ)Q is simple, and by symmetry

pHomβ(T(/*<2β), U) is simple for any h e Pi(β).

(3) = > (1). Let g e Pi(P). Since HomP(Ί(PPgl U)Q = g S ( F ί / ) ρ , gS(PU)Q is

a simple submodule of gUQ. Hence we have gS(PU)Q < S(gt/β)(2 = gS(ί/ρ)ρ. This

shows S(PU)Q < S(UQ)Q and by symmetry $(PU) = S(ί/β). Therefore S(gί/ β ) β =

gS(PU)Q is simple and similarly PS(PUh) is simple for any /z e Pi(β) Thus gί/ρ

and PUh are colocal. D

In Proposition 1.4, the condition (3) is equivalent to the following condition (3)'

since in the proof of (3) =Φ (1), for any g e Pi(P), gS(PU)Q is a simple submodule

of a colocal module gί/β and gS(PU)Q = gS(UQ)Q holds.

(3)' For each g e Pi(P) and each h e Pi(β), gUQ and PUh are colocal, and

of simple left P-modules are simple.
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Lemma 1.5. Let (pM, NQ) be a semicolocal pair and Y' < Y < NQ with Y' =

rl(Y'). If Y/yQ is simple, then Pl(Y')/l(Y) is also simple and Y = rl{Y).

Proof. Put U = PMNQ, X = l(Y) and X' = l(Yf). Since PUQ is semicolocal and

Y/Y' is simple, there exist an idempotent / e Q and an element y = yf e Y such that

pϋf is colocal and Y = yQ + Yr < NQ. From rl(Yf) = V < Y < rl(Y), we obtain X

= l(Y) < l(Yr) = X'. For any x e Xf, the left multiplication map x : Y/Y'Q -+ xYQ by

x is an epimorphism. This shows that XYQ < S(UQ), SO X'YQ < S(UQ). Therefore we

have 0 φ X'y < S(UQ)f = S(PU)f = S(PUf). Thus PX'y = S(PUf) is a simple left

P-module. On the other hand, the map η : pXf/X -> pX'y defined by (x + X)η = xy

is a monomorphism. Thus Pl{Y')/l(Y) (= PX'/X) is simple. By the same argument, it

follows that rl{Y)/rl(Y')Q is simple. Hence we have Y = rl(Y) from rl(Y') = Y' <

Y < rl(Y). D

We say that a pair (/>M, NQ) satisfies /-ann (resp. r-ann) if lr(X) = X (resp. rl(Y)

= Y) hold for any X < PM (resp. Y < NQ), and (PM, NQ) is dual if (PM, NQ)

satisfies /-ann and r-ann.

In the following theorem, the implications (1) <F=Ϊ (2) = ^ (3) are essentially due

to [12, Theorem 1.1] (and [14, Theorem 1.1]).

Theorem 1.6. Let P and Q be rings and (pM, NQ) a faithful semicolocal pair,

and consider the following conditions.

(l)

(2)

(3) (pM, NQ) is a dual pair.

Then the implications (1) <<==>> (2) =Φ> (3) hold, and in case either P or Q is a

perfect ring, the conditions are equivalent.

Proof. The implications (1) <=>> (2) = ^ (3) are easily seen from Lemma 1.5

(see the proof of [10, Theorem 1.4]).

Assume that (pM, NQ) is a dual pair and P is a perfect ring. Then any factor

module of pM has finite Goldie dimension (see [3, Corollary 1.6] or [11, Theorem

1.7]). Hence by the proof of [13, Propositions 2.9 and 2.12] (or [11, Lemma 1.9]) PM

has finite length. D

2. Finitely cogenerated injective modules

Throughout this section, we always assume that R is a semiperfect ring.

Let MR and LR be right /^-module modules. Following Harada [6], M is said to

be L-simple-injective if for any submodule K of LR, any homomorphism θ : KR ->•

MR can be extended to a homomorphism η : LR —> MR. Moreover M is said to be

simple-injective if M is N-simple-injective for any right /^-module N.
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Lemma 2.1 (see [7, Lemma 4.1]). Let MR be a finitely cogenerated module with

S(MR) ~ Ύ(fRR) and assume that MfQ has finite Loewy length, where f is an idem-

potent of R and Q = fRf. If MR is R-simple-injective, then MR is injective.

Proof. Since S(MR) is essential in MR and S(MR) ~ Ί(MR), lM(Rf) = 0 holds.

Hence Lf φ 0 for any non-zero submodule L < MR because Lf = LRf. Let / be

a non-zero right ideal of R and θ : / —> M a non-zero homomorphism and put / =

rad(/?). Then 0 φ θ(I(fJf)k) = θ(I)(fJf)k < S(MfQ) for some integer k > 0. Put K

= I(fJf)kR. Since S(MfQ)R = lMf(fJf)R < lM(J) = S(MR), Θ(K) < S(MR) holds.
By assumption we have S(MR) = S\ Θ Θ Sn for a finite number of simple modules

Si (1 < i < n). Hence the restriction map θ\κ '• K -> M of θ can be represented as

θ\κ = θ\ + - + θn for some homomoφhisms 0, : K -> M with Im0 t < 5/ (1 < i < «).

Therefore we have (θ — x)(K) = 0 with left multiplicaltion x : R ^ M by some

element x e M. If θ — x : / -> M is a non-zero homomorphism, then (0 — x)(I)f φ 0

(i.e. ifc > 1) and 0 φ (θ - x)(I(fJf)m) < S(MfQ) for some integer m with k > m > 0.

Iterating the above argument, we have (θ — y)(I) = 0 for some element y e M. Thus

MR is injective. D

The following lemma is related to [9, Theorem 1.6].

Lemma 2.2 (see [10, Corollary 2.6]). Let UQ be a module with P = EndUQ

and g and h local idempotents of P and Q, respectively. If gUζ) is a U-simple-

injective module and 0 φ x = gxh e S(gUζ)), then gUζ) and pUh are colocal mod-

ules with S(gUQ) = xQ = ΊQIQQ) and S(PUh) = Px = T(PPg). Therefore, for any

idempotents e e P and f e Q with semiperfect rings ePe and fQf, if eUQ is a U-

simple-injective module and S(eUζ)) is essential in eUQ with S(eUζ)) ~ T(/ QQ), then

(eU, Uf) is a Nakayama pair.

Proof. By [10, Lemma 2.2] (or [7, Lemma 3.6]), gUQ is a colocal module with

S(gUQ) - xQ. Let 0 φ y e Uh. Then we have rhQ(y) < hJ = rhQ(x), where / =

rad(β). Hence the map θ : yQ -> gU via θ(yc) = xc (c e Q) is well-defined. There-

fore by ί/-simple-injectivity of gUQ we have x = ay for some a e Homβ(ί/, gU) =

gP. Thus x e Py, which implies that PUh is a colocal module with S(PUh) = Px.

D

Lemma 2.3. Let M be a finitely cogenerated simple-injective right R -module

with S(MR) ~ Ί(fRR), where f is an idempotent of R, and assume that EndM is

a semiperfect ring. Then (pM, Rfo) is a faithful semicolocal pair, where P = EndM

and Q - fRf.
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Proof. By Lemma 2.2 for each g e Pi(P) (resp. h e Pi(g)), there exists h e

Pi(<2) (resp. g e Pi(P)) such that (gM, Mh) is a Nakayama pair. Therefore by Lemma

1.1 for a bimodule PM/Q, (gMf, Mfh) is a Nakayama pair. On the other hand by the

proof of [10, Lemma 2.1], (gPggM, RfhhQh) is faithful. This shows that (pM, RfQ) is

a faithful semicolocal pair by Proposition 1.4. D

Generalizing [10, Theorem 2.7] and [7, Theorem 4.2], we have the following the-

orem.

Theorem 2.4. Let M be a finitely cogenerated right R-module with S(MR) ~

T(/RR), where f is an idempotent of R, and put P = End MR and Q = fRf. Con-

sider the following conditions.

(1) MR is injective.

(2) MR is simple-injective and P is a semiperfect ring.

(3) (pM, Rfo) is a faithful semicolocal pair satisfying r-ann.

(4) MR is R-simple-injectίve.

Then the implications (1) =Φ> (2) => (3) =>- (4) hold. Moreover, in case Mfς>

has finite Loewy length, these conditions are equivalent.

Proof. Note that in case (pM, Rfo) is left faithful, IM(I) = IM(U) holds for any

right ideal of / of R.

(1) = ^ (2). This is clear.

(2) =>> (3). By Lemma 2.3 (pM, Rfo) is a faithful semicolocal pair. Let LQ

be a submodule of RfQ. Assume that L < rl(L). Then (rl(L)R/LR)f ± 0, so

(rl(L)R/LR)h φ 0 for some h e Pi(β) Hence there exist right ideals / and K of

R such that LR < K < I < rl(L)RR and I/KR = Ύ(hR). Therefore l(L) > l(Kf) >

1(1 f) > lrl(L) = l(L). Thus lM(K) = lM(Kf) = lM(If) = IMUY On the other hand

I/KR(= T(hR)) is isomorphic to a direct summand of S(Λf). Hence we have a map

θ : I -> M such that Im# simple and Ker# = K. Then by simple-injectivity of M,

there exists an element x of M such that xc = θ(c) for each e e l . This implies that

x e IM(K) — IM(I), a contradiction. Thus L = rl(L) and (pM, RfQ) satisfies r-ann.

(3) =Φ> (4). Let / be a right ideal of R and θ : I —> M a homomorphism with

Imθ simple, and put K = Ker#. Then I/K = Ί(hR) for some h e Pi(β). Hence

we have Kf < If because of Kh < Ih. Since (pM, RfQ) satisfies r-ann, IM(K) =

lM(Kf) > lM(If) = IM(I). Thus we have an element x e lM(K)-lM(I). Since I/K =

T(hR), I = aR + K for some a = ah e I. Put y = θ(a) and z = xa. Then y and z

are non-zero elements of pS(MR)h. By assumption p S(M/?)/ = / M ( ^ ) / 5 iλif(fJf)

= PS(MfQ) = pS(pMf) holds; where 7 = rad(Λ), and PS(PMf)h = PS(PMh) is

simple. Hence PS(MR)h = P(S(MR)f)h = PS(PMf)h is simple, so we have P j =

Pz (= p S(MR)h) and in particular y = φ(z) for some φ e P. Therefore we have θ(a)

= φ(z) = φ(x)a. Thus M is /?-simple-injective.
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(4) =ϊ (1). By Lemma 2.1. D

REMARK 4. In Theorem 2.4, the condition " P = EndM^" can be replaced by the

condition "PMR is a P-/?-bimodule" except for the implications (1) =Φ> (2) ==>• (3).

REMARK 5. For the implication (2) =>> (3) in Theorem 2.4, we can give another

proof by using Propositions 1.4 and 1.3, [11, Lemma 2.4] and [7, Lemma 3.4].

The following theorem is related to [16, Theorem 3.4].

Theorem 2.5. Let M be a right R -module and f an ίdempotent of R and put

P = EndMR, Q = fRf. If |Λ/ρ| < oo is satisfied, then the following are equivalent.

(1) MR is finitely cogenerated injective with S(MR) ~ T(fRR).

(2) (pM, Rfo) is a faithful semicolocal pair.

Proof. In case (2) is satisfied, by Theorem 1.6 and Lemma 1.2, (pM, Rfo) sat-

isfies r-ann and MR is a finitely cogenerated module with S(MR) ~ Ύ(fRR). Thus the

assertion follows from Theorem 2.4 since \QQ\ < \RfQ\ < oo. D

The following proposition is related to [5, Theorem 3.1], [4, Theorem 3], [16,

Theorem 3.4] and [2, Theorem 3.4]. The "only if" part of this proposition is well-

known (see e.g. [1, Theorem 30.4 or Exercise 24.8]). However, for the benefit of the

reader we provide a direct proof.

Proposition 2.6. Let MR be a finitely generated right R -module and f an idem-

potent of R and assume that (pM, RfQ) is a faithful pair with | /?/Q| < oo, where P

= End MR and Q = fRf. Then the bimodule pMfQ defines a Morίta duality if and

only if (PM, RfQ) is semicolocal.

Proof. "If" part. By Theorem 2.5, MR is injective. Hence P = EndM/g by [5,

Lemma 2.1] (this lemma is valid for a semiperfect ring R). By assumption, Q is a

right artinian ring and MfQ is finitely generated. Since (pMf, QQ) is a faithful semi-

colocal pair with \QQ\ < oo, M/ρ ^s mJ e ctive by Theorem 2.5. Thus the bimodule

pMfQ defines a Morita duality.

"Only if" part. Since Q is a right artinian ring, M/g is a finitely generated in-

jective cogenerator. Hence by Lemma 2.3, (pMf, QQ) or equivalently (/>M, Rfo) is a

semicolocal pair. D

REMARK 6. Let (pM, NQ) be a pair which satisfies (i) (pM, NQ) is a semicolo-

cal dual pair with a faithful bimodule PUQ, where PUQ = PMNQ, (ii) Q is a right

artinian ring and (iii) NQ has finite length. However, this situation does not necessar-
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ily imply that PUQ is a dual bimodule or equivalently (P, pUQ, Q) is a Baer duality

(see [8] and [2], respectively for the definitions a dual bimodule and a Baer duality).

Let R be a right artinian ring such that an injective hull ER of T(RR) is not finitely

generated, (see e.g. [15, Remark 2.9] for such a ring R). Then by Lemma 2.3 and

Theorem 1.6, (/>£, RR) is a semicolocal dual pair, where P = EnάER. But by Theo-

rem 1.6, (pP, ER) is not a dual pair, so PER is not a dual bimodule. Moreover, this

example shows that in Proposition 2.6, the assumption "MR is finitely generated" can

not be removed.
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