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1. Introduction

Let G be a (finite) group and χ be an irreducible character for G. We consider

the set of primitive characters that induce χ. In general, there is very little that can be

said about this set other than the degrees of these characters must divide χ( l) . When

χ(l) is a power of some prime, this set often has more structure. For example, if p

is an odd prime, G is p-solvable, and χ is monomial with χ( l ) a power of /?, then

every primitive character inducing χ must be linear (Theorem 10.1 of [7]). Given any

prime p, a /^-solvable group G of p-length 1, and a character χ e Irr(G) where χ( l)

is a power of p, it has been shown that every primitive character inducing χ has the

same degree (Theorem A of [8]). It is easy to find examples of /^-solvable groups that

do not have p-length 1, but do have characters of prime power degree that are induced

by primitive characters of different degrees. For example, GL2(3) has a character of

degree 4 that is induced by a linear character and a primitive character of degree 2.

In [8], we construct an example where p is odd. The purpose of this note is to prove

that such examples cannot occur for characters of p-power degree where this degree

is "small." With this in mind, we have the following theorem.

Theorem A. Let p be an odd prime, and let G be a p-solvable group. Let

χ € Irr(G) be a character of p-power degree less than or equal to pp. Then every
primitive character inducing χ has the same degree.

Note that the monomial character of degree 4 in GL2(3) that is also induced by

a primitive character of degree 2 shows that Theorem A is not necessarily true when

we do not assume that p is odd. In [8], we find a p-solvable group that has character

of degree pp+ι that is induced by primitive characters of different degrees where p is

an odd prime. (The example in [8] has p = 3, but it is not difficult to find similar

examples for many other primes.)

Using our methods, we also obtain an analogue to a result of Dade. The main the-

orem of [1] considers the following situation: G is a /^-solvable group for some odd

prime p, the character χ e Irr(G) is monomial and has p-power degree, and TV is a

subnormal subgroup. In this situation, he proved that if θ is an irreducible constituent

of XM, then θ is monomial. In other words, he proved that θ and χ are induced by
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primitive characters of the same degree. We now have a similar result without assum-

ing that χ is monomial.

Theorem B. Let p be an odd prime, and let G be a p-solvable group. Let

χ e Irr(G) be a character of p-power degree less than or equal to pp. Suppose N

is a subnormal subgroup of G and θ is an irreducible constituent of χ#. Then the de-

gree of a primitive character inducing θ divides the degree of a primitive character

inducing χ.

We would like to thank the referee for his careful reading of this paper and for

the considerably simpler proofs of Lemmas 2.1 and 2.2.

2. Anisotropic modules.

Our proof of Theorem A models Isaacs' proof of super-monomiality in [7]. That

proof relied on a very difficult result of Dade's regarding anisotropic modules (see

[1]). In our result, we also need to examine the structure of anisotropic modules. We

begin by outlining the theory of anisotropic modules that was developed by Dade in

[1] and Isaacs in [5]. Throughout this discussion, T will be a finite field of charac-

teristic p for some odd prime p, and G will be a /7-solvable group. Given an !F[G]-

module V, we often will associate a bilinear form ( , •) : V x V —> T. (That is, ( , •>

is an ^-linear transformation in each coordinate). We say that ( , •) is nondegenerate

if the only element v e V with (v, V) = 0 is v — 0. It is alternating if (u, v) = — (υ, u)

for all elements u, v e V. It is called G-invariant if (u-g, v g) = (u,υ) for all elements

u, v e V and g e G. A finite dimensional module V is a symplectic .F[G]-module if

it has a nondegenerate G-invariant alternating bilinear form. If U is a subspace of the

symplectic ^[GJ-module V, the perpendicular subspace of U with respect to ( , •> is

UL = {v e V I (£/, υ) = 0}. It is easy to see if U is an JF[G]-submodule then UL

is also a submodule. We call U isotropic when U c ί/-1-, and we define V to be

anisotropic if 0 is its only isotropic submodule.

Modules of this form arise in character theory in the following manner. Let TV and

M be normal subgroups of a group G such that N c M and M/N is an elementary

abelian /7-group for some prime p. We can view M/N as a module for G with co-

efficients in the prime field GF(/?). (Note that the binary operation here is multiplica-

tion, instead of addition which is the usual operation for modules. Since the multipli-

cation is commutative, this will not cause a problem.) If there is a G-invariant charac-

ter φ e Irr(Λ0, then this module has an alternating G-invariant bilinear form ((•, ))φ.

This bilinear form has been constructed in a number of different places, but we will be

using the definition found in [3]. It is proved that ((•, ))φ is nondegenerate on M/N

if and only if φ is fully ramified with respect to M/N, and M/N is isotropic with

respect to ((•, -))φ if and only if φ extends to M. In particular, the section M/N is

anisotropic with respect to ((•, ))φ as a module for G if and only if there is no nor-
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mal subgroup K of G with N < K < M where φ extends to K. When N is central in

G and φ is the constituent of a character χ whose restriction to M is faithful, M/N

will be anisotropic as a module for G if and only if there is no abelian subgroup of

M that is normal in G and contains TV as a proper subgroup. Similarly, if N = Z(M)

and every abelian subgroup of M that is normal in G is central in G, then M/N is

anisotropic as a module for G.

In order to extend Isaacs' results about super-monomiality, we need an analogue

of Dade's powerful result about hyperbolic modules (Theorem 3.2 of [1]). In particu-

lar, we want a result that says: given an odd prime p, a p-solvable group G, a finite

field T whose characteristic is p, a subgroup H c G with index that is a power of /?,

and an anisotropic .F[G]-module V, then the restriction of V to an J^[//]-module is

anisotropic. However, this is not true in general, but we will prove that it is true un-

der the condition that p does not divide the degree of any irreducible Brauer character

that is a constituent of the Brauer character afforded by V.

We consider an anisotropic ^[GJ-module V. Now, we know that T has an al-

gebraic closure E and that V determines an £[G]-module V <g> E (see Chapter 9 of

[4]). Also, we know that V <S> E affords a Brauer character φ of G (see Chapter 15

of [4]), and we say that φ is the Brauer character afforded by V. We prove if p does

not divide the degree of any irreducible constituent of φ, then the restriction of V to

H (written VH) is an anisotropic module for H. We begin by looking at the restric-

tion to subgroups with /7-power index of modules that afford Brauer characters whose

irreducible constituents have degrees not divisible by p.

Lemma 2.1. Let p be an odd prime, G be a p-solvable group, and J7 be a fi-

nite field whose characteristic is p. Suppose that V is an irreducible T\G\-module

with the property that p does not divide the degree of any irreducible Brauer charac-

ter that is a constituent of the Brauer character afforded by V. If the subgroup H c G

has p-power index, then V# is an irreducible T\H\-module. Furthermore, if U is an-

other irreducible T\G\-module with UH isomorphic to VH as T\H\-modules, then U

is isomorphic to V as T\G\-modules.

Proof. Because G is /^-solvable, it has a unique conjugacy class of /?-comple-

ments. Write Q for a /^-complement of G that is contained in H. Let E i> T be a

splitting field for G. Since the Schur index of V is 1, we have V <g> £ = 0W,-, where

the Wi are distinct irreducible E[G]-modules. Let φ{ be the irreducible Brauer charac-

ter afforded by Wi. From the hypotheses, we know that p does not divide <p/(l). The-

orem 8.1 of [6] states that ψι lifts to an irreducible character χ, of G whose restriction

to Q is irreducible. This implies that (<p;)# is irreducible, and (W/)# is an irreducible

£[//]-module since (W/)# affords (φ^H- Moreover, the modules (W/)// are distinct.

Because the Galois group of E over T acts transitively on {Wz}, it acts transitively on

the set {(Wi)H}. Therefore, the module VH = θ(Wi)H is an irreducible JF[//]-module.
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The uniqueness in the second statement comes from the uniqueness in Theorem 8.1

of [6]. In particular, that result tells us that ψι is the unique Brauer character whose

restriction is (<#•)#, and so, φt is the unique Brauer character whose restriction is af-

forded by (WΪ)H The uniqueness of V follows from the uniqueness of these charac-

ters. Π

We continue in the scenario outlined in the beginning of this section, and we now

work to prove that the restriction is still anisotropic.

Lemma 2.2. Let p be an odd prime, G be a p-solvable group and T a finite

field of characteristic p. Suppose that V is an anisotropic ^[G^-module where p does

not divide the degree of any irreducible Brauer character that is a constituent of the

Brauer character afforded by V. If H c G is a subgroup with p-power index, then

VH is an anisotropic T\H\-module.

Proof. Suppose that VH has an isotropic .F[/ί]-submodule W. We know that V#

is semi-simple (see Proposition 2.1 of [1]). Thus, we may use Lemma 2.1 to find an

JF[G]-submodule JJ of V so that UH = W. Note that the restriction of the bilinear

form to U is the same as the restriction of the bilinear form to W. This implies that U

is an isotropic ^[GJ-submodule of V which implies that U = 0 since V is anisotropic,

and thus W = 0 which yields the desired result. D

This next lemma is our main application of the theory of anisotropic modules to

character theory.

Lemma 2.3. Let p be an odd prime and G be a p-solvable group. Assume that

the character χ e Irr(G) has p-power degree less than or equal to pp. Suppose that

E is a p-subgroup of G and R a p'-subgroup of G so that E and ER are normal

subgroups of G, [E, R] = E, χ# is faithful, and every abelian subgroup of E that is

normal in G is central in G. Consider a subgroup J c G and a character λ e Irr(7)

where λG = χ and λ is primitive. Then E c J.

Proof. Since χ has /?-power degree, J has p-power index in G. Thus, J con-

tains some p-complement of G. By replacing R with an appropriate conjugate if nec-

essary, we may assume that R c J. When E is abelian, the hypotheses imply that E

is central in G, and the result follows (see Problem 5.12 of [4]). Thus, we need only

consider the possibility that E is not abelian. Applying Satz III. 13.6 of [2], it follows

that E is special (in particular, Z(E) is elementary abelian). As Z(E) is central in G,

there exists a character φ € lπ(Z(E)) so that χZ(£) = x(X)<P- Because χE is faithful, φ

must be faithful and Z(E) must be cyclic. This can happen only if Z(E) has order p.

Therefore, E is extra special. By Fitting's theorem, the fact that E = [E, R] implies



INDUCING CHARACTERS 739

that CE/z(E)(R) = 1. Let H/Z(E) = NG/Z(E)(RZ(E)/Z(E)). It is not difficult to prove

that G = HE and H Π E = Z(£), for example see Lemma 4.3 of [10]. Observe that

φ is fully ramified with respect to E/Z(E). In particular, we have the bilinear form

((•, -))φ on E/Zt(E), and using this form, we define (J Π E)1- to be the preimage of

((/ Π E)/Z(E))±.
We would like to apply Lemma 7.3 of [9] to this situation. Thus, we must see

that the hypotheses of that lemma are satisfied. It is not difficult to see that in the ter-

minology of [9] (G, £, Z(£), 6, φ) is a controlled abelian fully-ramified configuration

with stabilizing complement H where e is the unique irreducible constituent of φE.

Also, \E : Z(E)\ is a power of the odd prime p; so \E : Z(E)\ is odd. We know

that the restriction of λ to J Π E is homogeneous. The remaining hypothesis that we

need to satisfy is that J E Π H is admissible. The term admissible is defined in [9]

just prior to Lemma 7.3. Looking at the definition of admissible, we see that it suf-

fices to show R c J. Since this is the case, we may apply Lemma 7.3 of [9] to see

that (JnE)^- c JΠE. It follows that (JC\E)L/Z{E) is a totally isotropic 7-submodule

of E/Z(E).

As we noted earlier, the fact that every abelian subgroup of E that is normal in G

is central in G implies that E/Z(E) is an anisotropic module for G over the field of

p elements with respect to the bilinear form ((•, ))φ. Let € be the unique irreducible
constituent of φE. Since φ is fully ramified and linear, we know that \E : Z(E)\ =

6(1)2. Let V be an irreducible submodule of E/Z(E) for G. By Proposition 2.1 of [1],

we know that V is anisotropic. Thus, the dimension of V over the field of p elements

is the even integer 2c which satisfies p2c < e(l) 2 < χ ( l ) 2 < p2p. Thus, c < p and if

c = p, then V = E/Z(E). Recall that the degree of any irreducible constituent of the

Brauer character afforded by V must divide the dimension of V. If c < p, then p does

not divide the degree of any irreducible constituent of the Brauer character afforded by

V. For now, we assume that E/Z(E) is not an irreducible module of dimension 2/7. It

follows that p does not divide the degree of any irreducible constituent of the Brauer

character afforded by E/Z(E) viewed as a module. In light of Lemma 2.2, E/Z(E)

is anisotropic as a module for J over the field of p elements. Since (J Π E)L/Z(E)

is totally isotropic as a module for 7, we conclude that (/ Π E)L = Z(E), and hence,

J Π E = E. We now have E c 7, in this case.

We now assume that E/Z(E) is an irreducible module of dimension 2p. It follows

that p2p = \E : Z(£) | = β(l)2, and pp = 6(1) = χ(l) . In particular, we have that χE = e.

We claim that this forces χ to be primitive, and we obtain J = G which yields the

desired result. Let T be any subgroup so that there is a character r e Irr(Γ) so that

τ

G = χ. We know that G = ET and 6 = (τEnτ)
τ (see Problems 5.2 and 5.7 of [4]).

As Z(E) is central in G, we have Z(£) c T by Problem 5.12 of [4]. Finally, since

E/Z(E) is abelian and since E is normal, it follows that G = ET normalizes EOT.

On the other hand, from the fact that E/Z(E) irreducible as a module for G, we have

EΠT = E or EΠT = Z(E). Since \G : T\ divides χ( l ) = pp and | £ : Z(£) | = p2p,
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we conclude that T = G. This forces χ to be primitive. D

3. Primitive characters inducing characters of p-power degree.

In this section, we present the argument that underlie Theorems A and B. To

prove these, we combine various ideas found in [1] and [7]. The key result in this

section (Theorem 3.2) mirrors Theorem 7.1 of [1]. We begin with an easy lemma that

addresses a situation that arises in Theorem 3.2.

Lemma 3.1. Let p be a prime and G be a group with a normal subgroup N

and a character χ e Irr(G) with the property that χ( l) is a p-power and χ^ is faith-

ful. Let P = OP(N) and Q = OP>(N). If all the abelian subgroups of N that are nor-

mal in G are central in G, then OP>,P(N) = P x Q and Q is central in G.

Proof. We begin by noting that the degrees of all the irreducible constituents of

XQ must divide both χ( l) and \Q\. Since these two values are relatively prime, the

constituents of χQ are linear. It follows that [Q, Q] c ker(χρ) c ker(χyv) = 1 (X/v is

faithful); so Q is abelian and normal in G. By applying the hypotheses, we determine

that Q is central in G. Let Y = OP^P(N), and observe that Q and P are subgroups of

Y. Use R to denote a Sylow /^-subgroup of Y so that P c R and Y = QR. Because

Q is central, R must be normal in F, and thus, R is normal in N (this uses the fact

that Y is normal in TV and R is characteristic in Y). Therefore, we must have R = P.

This proves Y = Q x P. D

Let G be a group and χ e Irr(G) be a character. Define a(χ) to be the small-

est degree of any character inducing χ. Observe that there exists a subgroup J c G

and a character λ e Irr(/) so that λG = χ and λ(l) = a(χ). Furthermore, we see

that λ must be primitive. The next result shows in the situation of Theorems A and

B that this value is preserved by the induction coming from Clifford's theorem (Theo-

rem 6.11 of [4]). Recall that GL2(3) has an monomial irreducible character of degree

4 that is induced from a primitive character of degree 2 of a normal subgroup. Thus,

the hypothesis that p be odd is necessary.

Theorem 3.2. Let p be an odd prime and G be a p-solvable group. Suppose

that there is a character χ e Irr(G) with χ ( l ) a power of p less than or equal to pp.

Consider a normal subgroup N of G and a character θ e lrr(N) that is a constituent

of XN Take T to be the stabilizer of θ in G, and write γ e lrr(T\θ) for the Clifford

correspondent of x with respect to θ (thus, γG = x). Then a(γ) = α(χ).

Proof. Assume that the theorem is false, and choose G to be a group that con-

tradicts the theorem with χ( l ) and then \G\ as small as possible.
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STEP 1. χ is faithful.

Proof 1. Let K be the kernel of χ and ~ be the natural homomorphism G —>

G/K. Observe that χ e Irr(G). Because γ induces x, we use Lemma 5.11 of [4] to

see that K c T and γ is a character in Irr(Γ). We also know that K c ker(#); so

we may view θ e ln(N). Observe that T is the stabilizer in G of θ. Thus, G is a

group that satisfies the hypotheses of the theorem. If K > 1, then \G\ < |G|, and the

choice of counterexample yields a(γ) = a(χ). This is to a contradiction of the choice

of counterexample; so we must have K = 1 and χ is faithful. D

Choose a subgroup J c G and a character λ e Irr(7) so that λG = χ and λ(l) =

α(χ). This implies that λ is primitive.

STEP 2. Every abelian subgroup of N that is normal in G is central in G.

Proof 2. Let A be a subgroup of TV that is abelian and normal in G. By Lemma

4.1 of [1], we may replace (/, λ) by a pair with the same properties and A c J.

Since λ is primitive, λA has a unique irreducible constituent a. There is an element

g e G so that a8 is a constituent of 0A. Replacing (J, λ) by (J8,λ8), we may as-

sume that a is a constituent of ΘA. Let 5 be the stabilizer of α in G, and note that

/ c S and λ 5 e Irr(S|α). Write θ e Irr(5 Π N|α) f o r t h e Clifford correspondent

of θ with respect to a. Observe that S Π N is a normal subgroup of S and any el-

ement of S that stabilizes θ must stabilize 0. On the other hand, all the elements in

S ΠT stabilize both a and θ, and because these two characters uniquely determine θ,

they must stabilize it as well. Therefore, S Π T is the stabilizer in S of 0. We use

j> G IπtS Π Γ|#) to denote the Clifford correspondent for λs with respect to θ. Also,

we have γG = (γs)G = (λs)G = χ; so it follows that j / Γ e Irr(Γ|6>). From the fact

that γ is uniquely determined by lying in \π(T\θ) and inducing χ, we conclude that

γτ - γ. If S < G, then 5 is an example that satisfies the hypotheses of the theorem

with λs(l) < χ( l) . (Since λs induces χ, λs(l) is a /?-power less than or equal to pp.)

By the choice of counterexample, we conclude that a(γ) - a(λs) = λ(l). We now ob-

tain a(χ) = λ(l) = a(γ) > a(γ) > a(χ). Equality must hold, and this contradicts the

choice of counterexample. Therefore, S = G and A c Z(χ) = Z(G). D

By Lemma 3.1, OP>(N) is central in G and Op>iP(N) = OP>(N) x Op(iV). Note

that any abelian subgroup of OP(N) that is normal in G must be central in G. This is

sufficient to see that OP(N) is nilpotent of class at most 2. In fact, we may use Satz

III. 13.6 of [2] to see that OP(N) is either cyclic or extra-special.
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STEP 3. N > Op,,p(N).

Proof 3. Suppose that TV = Op>iP(N)', so N = OP>(N) x OP(N). Since OP>(N)

is abelian and OP(N) has nilpotence class at most 2, we see that N is nilpotent with

class at most 2. Let μ be the unique irreducible constituent of #Z(ΛO Because χ is

faithful and Z(N) is cyclic and central in G, we know that μ is a faithful character of

Z(N) that is invariant in G. If O (̂Λ )̂ is abelian, then TV = Z(N). If OP(N) is extra-

special, then μ is fully ramified with respect to N/Z(N). In either case, the fact that

μ is G-invariant implies that θ is G-invariant. It follows that T = G, and we have

already mentioned that this contradicts the choice of counterexample. Therefore, we

conclude that N > Op>iP(N). D

Since J has index in G that is a power of /?, we know that J contains a p-

complement R of OP'tPtP>(N). Define £ = [OP(N), R] c OP(N). By Lemma 5.2 of

[9], £ and £/? are normal subgroups of G. If E is abelian, then E is central in G

and 1 = [E, R] = [OP(N), R, R] = [OP(N), R] = E. This implies that R is a normal

subgroup of G. It follows that Op>tP,p>(N) = R x OP(N) = OP>,P(N) which contra-

dicts Step 3. Therefore, £ is not abelian. We apply Lemma 2.3 to see that E c J.

Let <p be the unique irreducible constituent of χz(£) Because χ is faithful, <p is faith-

ful and is G-invariant. On the other hand, E is not abelian, but every subgroup of E

that is abelian and normal in G is central in G. From these two facts it is not diffi-

cult to show that E has nilpotence class 2, and hence φ is fully ramified with respect

to E/Z(E) (combine Corollary 2.30 and Theorem 2.31 with Problem 6.3, all of [4]).

Write 6 for the unique irreducible constituent of φE. It is easy to show λ e Irr(7|6).

By Theorem 11.28 of [4], we know that there is a character triple isomorphism

0 0 : (G,E,€) -+ (G*,E*,€) where £* is central in G*. We know that χ ( l ) =

χ(l)/€(l) = χ(l)/e(l) < χ(l) . Thus, χ( l) is a /7-power less than or equal to pp.

Furthermore, it is easy to see that Γ* is the stabilizer of θ in G* and γ is the Clif-

ford correspondent for χ. By the inductive hypothesis, we have that a(γ) = a(χ). On

the other hand, if X c G* and ξ e Irr(X) so that ξG* = χ, then E* central implies that

E* c X (this is Problem 5.12 of [4], once again) and € is a constituent of ξE*- It fol-

lows that there is a subgroup / with E c. I and a character v e Irr(/|e) so that /* = X

and v = ξ. Furthermore, since ξG* = χ, we use the character triple isomorphism to see

that vG = χ. We have ξ(l) = v(l)/e(l) > a(χ)/e(\) = λ(l)/e(l) = λ(l). It follows that

a(χ) = λ(l), and a(γ) = a(χ)/e(l). It is easy to see that a(γ) < a(γ)e(l); so we have
a(y) < (β(x)A(l))^(l) = «(x) Since y induces x, the other inequality is immediate,

and we conclude that a(χ) = a(y) in contradiction to the choice of counterexample.

This proves the theorem. D

Our proof of Theorem A is based on the ideas found in the proof of Theorem

10.1 of [7]. Let G be a group and let T be a subgroup of G. We say that τ e Irr(Γ)
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with ψ = τG G Irr(G) is a Clifford induction if there is a normal subgroup N of G and

a character # e Irr(W) so that T is the stabilizer of θ in G and τ is a constituent of

ΘT. In particular, τ is the Clifford correspondent for ^ with respect to θ. In particular,

the graph used in this proof was originally defined in Section 8 of [7].

Proof of Theorem A. Let C(χ) be the graph whose vertices are pairs (A, a)

where A c G, a e Irr(A), and aG = χ, and there is an edge between (A, a) and

(B, β) if either A c 5 and α β = 0 is a Clifford induction or 5 c A and βA = a

is a Clifford induction. In Theorem 8.8 of [7], Isaacs proved that C(χ) is a connected

graph. For a pair (A, a) in C(χ), we know that α induces / and α(l) must be a /?-

power less than or equal to pp. If (A, a) and (B, β) are adjacent vertices in C(χ), then

we apply Theorem 3.2 to see that a(a) = a(β). For a primitive character λ e Irr(/) that

induces χ, there is a path in C(χ) from (/, λ) to (G, χ). We have proved that a is pre-

served along this path; so λ(l) = a(λ) = a(χ). Therefore, all the primitive characters

that induce χ have degree equal to a(χ). D

Proof of Theorem B. We work by induction on |G|. Observe that 0(1) must di-

vide χ(l); so both θ and χ have /7-power degree less than or equal to pp. By The-

orem A, we know that the primitive characters inducing χ all have degree a(χ) and

those inducing θ have degree a(θ). To prove the theorem, we must prove that a(θ) di-

vides a(χ). Since χ( l ) and #(1) are powers of p that a(χ) and a(θ) divide, it follows

that a(χ) and a(θ) are powers of p. If TV = G, then θ = χ and the result is imme-

diate. Thus, we may assume that N < G, and there is a subgroup M so that Λf is

subnormal in M and M is a maximal normal subgroup of G. Take ψ to be an irre-

ducible constituent of χM with θ a constituent of ψN. We know that either χM = ψ

or ψG = χ (Corollary 6.19 of [4]). In the first case, it is easy to see that a{ψ) divides

a(χ) (Lemma 8.1 of [9]). In the second case, we are in the situation of Theorem 3.2

where the stabilizer of ψ is M. Using that result, we deduce that a(ψ) = a(χ). In

either case, ψ{\) is a power of p that is less than or equal to pp. By the inductive

hypothesis, we determine that a(θ) divides a(ψ), and we conclude that a(θ) divides

a(χ). •
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