ON KERNELS OF HOMOGENEOUS LOCALLY NILPOTENT DERIVATIONS OF $\boldsymbol{k}[\boldsymbol{X}, \boldsymbol{Y}, Z]$

Daniel DAIGLE

(Received July 23, 1998)

Consider the case " $n=2$ " of our main result, Theorem 2.2:

Corollary. Let $B=\mathbf{k}\left[X_{0}, X_{1}, X_{2}\right]$ be the polynomial ring in three variables over a field \mathbf{k} of characteristic zero, let $\omega_{0}, \omega_{1}, \omega_{2}$ be pairwise relatively prime positive integers and let $B=\oplus_{i \in \mathbb{N}} B_{i}$ be the grading determined by $B_{0}=\mathbf{k}$ and $X_{i} \in B_{\omega_{i}}$. For elements f, g of B which are homogeneous, geometrically irreducible and not associates, the following are equivalent:

1. $\quad B_{(f g)}$ is a polynomial ring in one variable over a subring.
2. $\mathbf{k}[f, g]$ is the kernel of a homogeneous locally nilpotent derivation $D: B \rightarrow B$.

Moreover, if these equivalent conditions are satisfied then $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$.
Here, $B_{(f g)}$ is the homogeneous localization of B with respect to $\left\{1, f g,(f g)^{2}, \ldots\right\}$. By "geometrically irreducible", we mean irreducible in $\overline{\mathbf{k}}\left[X_{0}, X_{1}, X_{2}\right]$, where $\overline{\mathbf{k}}$ is an algebraic closure of \mathbf{k}.

The reader should compare the above Corollary with 1.8. One notable difference is that the condition $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$, which is part of the assumption of 1.8 , is in the conclusion of the present result; we are also replacing the assumption $\operatorname{gcd}\left(\omega_{0}, \omega_{1}, \omega_{2}\right)=1$ of 1.8 by the stronger " $\omega_{0}, \omega_{1}, \omega_{2}$ are pairwise relatively prime". The proof that $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$ is one of the crucial steps of this paper; it is achieved by Theorem 2.1, in the form $\operatorname{gcd}\left\{i \mid A_{i} \neq 0\right\}=1$.

The fact that condition (1) of the Corollary implies $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$ is needed in [4], which investigates the affine rulings of the weighted projective planes (see also the remark following 1.11). A proof of that implication is included in [4], but it relies on a considerable amount of machinery developed in [3, 4]; so we feel that it is appropriate to give a relatively self-contained proof, based on a different method.

Theorem 2.2 is also useful for establishing a precise correspondence between affine rulings and locally nilpotent derivations. That correspondence is used, in recent work, to relate the viewpoint of $[3,4]$ to that of [5].

1. Preliminaries

All rings are commutative and have a unity. If A is a ring, then A^{*} denotes its group of units. By "domain", we mean an integral domain. For an A-algebra B, the notation $B=A^{[n]}$ (where n is a positive integer) means that B is A-isomorphic to the polynomial ring in n variables over A.

Given a nonzero graded ring $A=\oplus_{i \in \mathbb{Z}} A_{i}$, a homogeneous multiplicatively closed subset of A is a set $S \subseteq \cup_{i \in \mathbb{Z}}\left(A_{i} \backslash\{0\}\right)$ closed under multiplication and such that $1 \in S$. Then $A_{(S)}$ denotes the homogeneous localization of A with respect to S, i.e., the component of degree zero of the graded ring $S^{-1} A$. If $a \in A_{i} \backslash\{0\}$ and $S=\left\{1, a, a^{2}, \ldots\right\}$, we write $A_{(a)}=A_{(S)}$. By a homogeneous subring of A we mean a subring A^{\prime} of A satisfying $A^{\prime}=\sum\left(A^{\prime} \cap A_{i}\right)$.

Let R be a domain. A derivation $\Delta: R \rightarrow R$ is locally nilpotent if for each $r \in R$ we have $\Delta^{n}(r)=0$ for n sufficiently large; Δ is irreducible if the only principal ideal of R containing $\Delta(R)$ is R itself.

Facts $1.1-1.5$ are needed in the proof of Theorem 2.1. The first one is due to W.V. Vasconcelos:
1.1. (Theorem 2.2 of [8]) Let $B \supseteq R$ be an integral extension of domains containing \mathbb{Q}. Suppose that $\Delta: R \rightarrow R$ is a locally nilpotent derivation and that $D: B \rightarrow B$ is a derivation extending Δ. Then D is locally nilpotent.

The next statement is a well-known consequence of a result of David Wright (Proposition 2.1 of [9]):
1.2. Let $D: B \rightarrow B$ be a locally nilpotent derivation, where B is a domain containing \mathbb{Q}, and let $A=\operatorname{ker} D$. If $b \in B$ satisfies $D b \in A \backslash\{0\}$, then $B_{a}=A_{a}[b]=A_{a}{ }^{[1]}$ where $a=D b$.

Statements 1.3 and 1.4 are well-known:
1.3. Let $D: B \rightarrow B$ be a nonzero derivation, where B is an integral domain satisfying the ascending chain condition on principal ideals. Then $D=b D^{\prime}$, for some $b \in B$ and some irreducible derivation $D^{\prime}: B \rightarrow B$.
1.4. Let B be an integral domain of characteristic zero, $D: B \rightarrow B$ a nonzero derivation and $b \in B \backslash\{0\}$. The derivation $b D: B \rightarrow B$ is locally nilpotent if and only if D is locally nilpotent and $b \in \operatorname{ker} D$.

Lemma 1.5. Let R be a \mathbb{Z}-graded integral domain containing \mathbb{Q} and $\Delta: R \rightarrow$ R an irreducible, homogeneous locally nilpotent derivation. Suppose that $A=\operatorname{ker} \Delta$ is a UFD and that each homogeneous prime element of A is a prime element of R. Then every derivation $\Delta^{\prime}: R \rightarrow R$ satisfying $\operatorname{ker} \Delta^{\prime} \supseteq A$ has the form $\Delta^{\prime}=\rho \Delta$ for some $\rho \in R$.

Proof. If $A=R$ then $\Delta^{\prime}=0$ and the assertion is trivial. Assume that $A \neq R$.
Choose a homogeneous $t \in R$ such that $\Delta(t) \in A \backslash\{0\}$ and consider the multiplicatively closed set $S=\left\{1, \alpha, \alpha^{2}, \ldots\right\} \subseteq A$ where $\alpha=\Delta(t)$. Then 1.2 gives $S^{-1} R=\left(S^{-1} A\right)[t]=\left(S^{-1} A\right)^{[1]}$ and $S^{-1} \Delta$ and $S^{-1} \Delta^{\prime}$ are $\left(S^{-1} A\right)$-derivations going from $\left(S^{-1} A\right)[t]$ to itself. Thus $S^{-1} \Delta=\alpha \cdot(d / d t)$ and $S^{-1} \Delta^{\prime}=\Delta^{\prime}(t) \cdot(d / d t)$, so

$$
\begin{equation*}
\alpha \Delta^{\prime}=\Delta^{\prime}(t) \Delta . \tag{1}
\end{equation*}
$$

Consider a factorization $\alpha=\lambda \prod_{i} p_{i}^{e_{i}}$ where $\lambda \in A^{*}, e_{i} \in \mathbb{N}$ and each p_{i} is a prime element of A. If some p_{i} divides $\Delta^{\prime}(t)$ then we may cancel it both sides of equation (1); this yields

$$
\alpha^{\prime} \Delta^{\prime}=\rho \Delta
$$

where $\alpha^{\prime} \mid \alpha$ in $A, \rho \in R$ and no prime factor p_{i} of α^{\prime} divides ρ. In particular,

$$
\alpha^{\prime} \mid \rho \Delta r \quad \text { in } R, \text { for every } r \in R .
$$

If $\alpha^{\prime} \notin A^{*}$ then $p_{i} \mid \alpha^{\prime}$ for some i. Since p_{i} is a homogeneous prime element of A, our assumption implies that p_{i} is a prime element of R. By irreducibility of Δ, we may choose $r \in R$ such that $p_{i} \not \backslash \Delta r$; then $p_{i} \mid \rho$, a contradiction. Thus $\alpha^{\prime} \in A^{*}$ and the lemma is proved.

We now list the facts needed for the proof of Theorem 2.2. We begin with an "exercise" left to the reader:
1.6. Let \mathbf{k} be a field, $A=\mathbf{k}^{[r]}(r \geq 1)$ and let $A=\oplus_{i \in \mathbb{N}} A_{i}$ be a grading such that $A_{0}=\mathbf{k}$. If f_{1}, \ldots, f_{n} are homogeneous elements of A satisfying $\mathbf{k}\left[f_{1}, \ldots, f_{n}\right]=A$, then there is a subset $\left\{g_{1}, \ldots, g_{r}\right\}$ of $\left\{f_{1}, \ldots, f_{n}\right\}$ satisfying $A=\mathbf{k}\left[g_{1}, \ldots, g_{r}\right]$.

Part 1 of 1.7 is due to Miyanishi [7] when \mathbf{k} is algebraically closed; then one uses [6] to deduce the general case. For part 2 of 1.7 (in particular for irreducibility of $\left.\Delta_{(f, g)}\right)$, see Corollary 2.6 of [2].
1.7. Let \mathbf{k} be a field of characteristic zero and $B=\mathbf{k}\left[X_{0}, X_{1}, X_{2}\right]=\mathbf{k}^{[3]}$.

1. If $0 \neq D: B \rightarrow B$ is a locally nilpotent derivation, then $\operatorname{ker} D=\mathbf{k}^{[2]}$.
2. If $f, g \in B$ are such that $\mathbf{k}[f, g]$ is the kernel of some locally nilpotent derivation of B, then the derivation $\Delta_{(f, g)}: B \rightarrow B$ defined by the jacobian determinant

$$
\Delta_{(f, g)}(b)=\left|\frac{\partial(f, g, b)}{\partial\left(X_{0}, X_{1}, X_{2}\right)}\right| \quad(b \in B)
$$

is locally nilpotent, irreducible and has kernel $\mathbf{k}[f, g]$.

For the next two facts, let \mathbf{k} be a field of characteristic zero, $B=\mathbf{k}\left[X_{0}, X_{1}, X_{2}\right]=$ $\mathbf{k}^{[3]}$, let $\omega_{0}, \omega_{1}, \omega_{2}$ be positive integers satisfying $\operatorname{gcd}\left(\omega_{0}, \omega_{1}, \omega_{2}\right)=1$, and let $B=$ $\oplus_{i \in \mathbb{N}} B_{i}$ be the grading determined by $B_{0}=\mathbf{k}$ and $X_{i} \in B_{\omega_{i}}$.
1.8. ([[1], Theorem 3.5]) Let $f, g \in B$ be homogeneous and geometrically irreducible. If $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$, then the following are equivalent:

1. $\quad B_{(f g)}$ is a polynomial ring in one variable over $\mathbf{k}[f, g]_{(f g)}$.
2. $\mathbf{k}[f, g]$ is the kernel of a homogeneous locally nilpotent derivation of B.
1.9. Assume that $\omega_{0}, \omega_{1}, \omega_{2}$ are pairwise relatively prime. If $\mathbf{k}[f, g]$ is the kernel of some locally nilpotent derivation $D: B \rightarrow B$, where $f, g \in B$ are homogeneous, then $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$.

Proof. Suppose that $\mathbf{k}[f, g]=\operatorname{ker} D$. Theorem 3.7 of [1] implies, in particular, that if $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)>1$ then there exists a homogeneous coordinate sys$\operatorname{tem}^{1}(X, Y, Z)$ of B satisfying $\operatorname{gcd}(\operatorname{deg} X, \operatorname{deg} Y)>1$. However, it is easy to see that if some homogeneous coordinate system of B has pairwise relatively prime degrees (which is the case here), then all homogeneous coordinate systems have that property. So we must have $\operatorname{gcd}(\operatorname{deg} f, \operatorname{deg} g)=1$.

In 1.10, we gather some facts which can be found in [3]; ${ }^{2}$ then we deduce 1.11 from 1.10. The proof of Theorem 2.2 requires 1.11.
1.10. Let \mathbf{k} be an algebraically closed field of characteristic zero and X a projective algebraic surface over \mathbf{k}; assume that X is normal, rational and affine-ruled, and that $\operatorname{Pic}\left(X_{s}\right)$ is a group of rank one, where X_{s} is the smooth locus of X; moreover, assume that all singularities of X are cyclic quotient (in [3], surfaces satisfying these conditions are said to "satisfy the condition (\ddagger)"). Suppose that $U \neq \emptyset$ is an open subset of X isomorphic to $\mathbb{A}^{1} \times \Gamma$, for some curve Γ. Since X is normal and rational, Γ must be an open subset of \mathbb{P}^{1}, so the projection $U \rightarrow \Gamma$ determines a rational map $X \rightarrow \mathbb{P}^{1}$; let us consider the linear system ${ }^{3} \Lambda$ on X, without fixed components, determined by that rational map. The following facts are proved in [3]:
(i) Every member F of Λ has irreducible support, i.e., $F=\nu C$ where $\nu \geq 1$ is an integer and C is an irreducible curve on X. If $v=1$ (resp. $v>1$) we call F a "reduced" (resp. "multiple") member of Λ.
(ii) At most two members of Λ are multiple.
(iii) $U=X \backslash \operatorname{supp}\left(F_{1}+\cdots+F_{n}\right)$ for some distinct members F_{1}, \ldots, F_{n} of Λ (then define positive integers ν_{1}, \ldots, ν_{n} by $F_{i}=v_{i} C_{i}$, where C_{i} is an irreducible curve).
(iv) All multiple members of Λ belong to $\left\{F_{1}, \ldots, F_{n}\right\}$.

[^0](v) For a subset $\left\{F_{i}, F_{j}\right\}$ of $\left\{F_{1}, \ldots, F_{n}\right\}$ (with $i \neq j$), the following are equivalent:

- $\quad\left\{F_{i}, F_{j}\right\}$ contains all multiple members of Λ;
- the isomorphism $U \cong \mathbb{A}^{1} \times \Gamma$ extends to an isomorphism $X \backslash \operatorname{supp}\left(F_{i}+F_{j}\right) \cong$ $\mathbb{A}^{1} \times\left(\mathbb{P}^{1}-\right.$ two points $)$.
Moreover, if these conditions hold then $\operatorname{Pic}\left(X_{s}\right)=\mathbb{Z} \oplus \mathbb{Z} / d \mathbb{Z}$, with $d=$ $\operatorname{gcd}\left(v_{i}, v_{j}\right)$.
In 1.11, given a homogeneous polynomial $h \in B$ with prime factorization $h=$ $p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, let $\operatorname{div}_{0}(h)$ denote the effective divisor $\sum_{i} e_{i} V\left(p_{i}\right)$ of X, where $V\left(p_{i}\right) \subset X$ is the zero set of p_{i}.

Corollary 1.11. Let $B=\mathbf{k}\left[X_{0}, X_{1}, X_{2}\right]$ be the graded polynomial ring defined in the statement of Theorem 2.2, assume that \mathbf{k} is algebraically closed and consider the weighted projective plane $X=\operatorname{Proj} B$. Suppose that $U \neq \emptyset$ is an open subset of X isomorphic to $\mathbb{A}^{1} \times \Gamma$, for some curve Γ, and consider the linear system Λ on X determined by the projection $U \rightarrow \Gamma$, as in 1.10. Then:

1. $U=X \backslash\left(V\left(f_{1}\right) \cup \cdots \cup V\left(f_{n}\right)\right)$, for some homogeneous irreducible elements f_{1}, \ldots, f_{n} of B (no two of which are associates).
2. For each $i=1, \ldots, n$, there exists an integer $v_{i} \geq 1$ such that $\operatorname{div}_{0}\left(f_{i}^{v_{i}}\right) \in \Lambda$.
3. If $n \geq 2$ then there exist distinct elements $i, j \in\{1, \ldots, n\}$ satisfying:
(a) $\quad X \backslash\left(V\left(f_{i}\right) \cup V\left(f_{j}\right)\right) \cong \mathbb{A}^{1} \times\left(\mathbb{P}^{1}\right.$ minus two points $)$
(b) $\Lambda=\left\{\operatorname{div}_{0}\left(\lambda f_{i}^{\nu_{i}}+\mu f_{j}^{\nu_{j}}\right) \mid(\lambda: \mu) \in \mathbb{P}^{1}\right\}$
(c) For every $(\lambda: \mu) \in \mathbb{P}^{1} \backslash\{(0: 1),(1: 0)\}, \lambda f_{i}^{\nu_{i}}+\mu f_{j}^{\nu_{j}}$ is irreducible in B.
(d) For every $k \in\{1, \ldots, n\} \backslash\{i, j\}, v_{k}=1$ and $f_{k}=\lambda f_{i}^{\nu_{i}}+\mu f_{j}^{v_{j}}$ for some $(\lambda: \mu) \in \mathbb{P}^{1} \backslash\{(0: 1),(1: 0)\}$.
(e) $\operatorname{gcd}\left(v_{i}, v_{j}\right)=1$.

Proof. The weighted projective plane X is normal and rational, the Picard group of its smooth locus is \mathbb{Z}, and all its singularities are cyclic quotient, so we may apply 1.10. Assertions (1) and (2) follow immediately from parts (i) and (iii) of 1.10 . Assume that $n \geq 2$. By (ii) and (iv), there exists a subset $\{i, j\}$ of $\{1, \ldots, n\}$ (with $i \neq j$) satisfying

$$
\begin{equation*}
\left\{\operatorname{div}_{0}\left(f_{i}^{\nu_{i}}\right), \operatorname{div}_{0}\left(f_{j}^{\nu_{j}}\right)\right\} \text { contains all multiple members of } \Lambda . \tag{2}
\end{equation*}
$$

Then (v) gives (3a) and (3e); for (3b), simply note that Λ has (projective) dimension 1 and that $\operatorname{div}_{0}\left(f_{i}^{\nu_{i}}\right)$ and $\operatorname{div}_{0}\left(f_{j}^{\nu_{j}}\right)$ are distinct members of Λ. If $(\lambda: \mu) \notin\{(0: 1),(1:$ $0)\}$ then, since $\{i, j\}$ satisfies (2), $\operatorname{div}_{0}\left(\lambda f_{i}^{\nu_{i}}+\mu f_{j}^{\nu_{j}}\right)$ is a reduced member of Λ; this gives (3c). For (3d), note that $\operatorname{div}_{0}\left(f_{k}^{\nu_{k}}\right) \in \Lambda$ implies $f_{k}^{\nu_{k}}=\lambda f_{i}^{\nu_{i}}+\mu f_{j}^{\nu_{j}}$, and $k \notin\{i, j\}$ implies that $\operatorname{div}_{0}\left(f_{k}^{v_{k}}\right)$ is reduced, so $v_{k}=1$.

Remark. One consequence of this paper is that $\left(v_{i}, v_{j}\right)=\left(\operatorname{deg} f_{j}, \operatorname{deg} f_{i}\right)$, in part (3) of 1.11. Indeed, we have $\left(v_{i}, v_{j}\right)=(1 / d)\left(\operatorname{deg} f_{j}, \operatorname{deg} f_{i}\right)$, where $d=\operatorname{gcd}\left(\operatorname{deg} f_{i}, \operatorname{deg} f_{j}\right)$,
and the Corollary stated in the introduction implies that $d=1$, because $B_{\left(f_{i} f_{j}\right)}$ is a polynomial ring in one variable over a subring.

2. The results

Theorem 2.1. Let B be an affine UFD over a field \mathbf{k} of characteristic zero and let $x_{1}, \ldots, x_{n}(n \geq 2)$ be prime elements of B no two of which are associates. Suppose that $B=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ and that $B=\oplus_{i \in \mathbb{Z}} B_{i}$ is a \mathbb{Z}-grading such that $\mathbf{k} \subseteq B_{0}$, each x_{i} is homogeneous and
(i) $\operatorname{gcd}\left(\operatorname{deg}\left(x_{1}\right), \ldots, \operatorname{deg}\left(x_{i-1}\right), \operatorname{deg}\left(x_{i+1}\right), \ldots, \operatorname{deg}\left(x_{n}\right)\right)=1$, for all $i=1, \ldots, n$.

Suppose that A is a homogeneous subalgebra of B satisfying $A \nsubseteq B_{0}$ and the following conditions:
(ii) $A^{*}=B^{*}, A$ is a UFD and every homogeneous prime element of A is a prime element of B.
(iii) $A=\mathbf{k}[S]$ and $B_{(S)}=A_{(S)}{ }^{[1]}$, for some homogeneous multiplicatively closed subset S of A.
Then $\operatorname{gcd}\left\{i \mid A_{i} \neq 0\right\}=1$ and A is the kernel of a homogeneous locally nilpotent derivation $D: B \rightarrow B$.

Proof. Let $d=\operatorname{gcd}\left\{i \mid A_{i} \neq 0\right\}$ and let $R=\oplus_{i \in \mathbb{Z}} R_{i}$ be the homogeneous subring of B defined by $R_{i}=B_{i}$ for all $i \in d \mathbb{Z}$ and $R_{i}=0$ otherwise. Note that $A \subseteq R$ and that R is finitely generated as a \mathbf{k}-algebra. Since $A \nsubseteq B_{0}$, we have $d \geq 1$; in particular, B is integral over R. Also, observe that

$$
\begin{align*}
& \text { If } r \in R \backslash\{0\} \text { is homogeneous, then } \operatorname{deg} r=\operatorname{deg} s_{1}-\operatorname{deg} s_{2} \text { for some } \tag{3}\\
& s_{1}, s_{2} \in S \text {. }
\end{align*}
$$

To see this, note that the assumptions $\mathbf{k} \subseteq B_{0}$ and $A=\mathbf{k}[S]$ imply that the set $E=$ $\{\operatorname{deg} s \mid s \in S\}$ is equal to $\left\{i \mid A_{i} \neq 0\right\}$, so $\operatorname{deg} r$ belongs to the ideal (of \mathbb{Z}) generated by E; since E is closed under addition, $\operatorname{deg} r=e_{1}-e_{2}$ for some $e_{1}, e_{2} \in E$.

We have $B_{(S)}=A_{(S)}[h / \sigma]$, for some $h / \sigma \in B_{(S)}$, where h is a homogeneous element of $B, \sigma \in S$ and $\operatorname{deg} h=\operatorname{deg} \sigma$ (so $h \in R$). We claim that

$$
\begin{equation*}
S^{-1} R=\left(S^{-1} A\right)[h]=\left(S^{-1} A\right)^{[1]}, \tag{4}
\end{equation*}
$$

where $S^{-1} R \supseteq\left(S^{-1} A\right)[h]$ is obvious. If r is any nonzero homogeneous element of R then, by (3), $r s_{2} / s_{1} \in B_{(S)}$ for some $s_{1}, s_{2} \in S$. Thus $r s_{2} / s_{1} \in A_{(S)}[h / \sigma]$ and it follows that $r \in\left(S^{-1} A\right)[h]$. This shows that $R \subseteq\left(S^{-1} A\right)[h]$, so the equality $S^{-1} R=\left(S^{-1} A\right)[h]$ holds. It remains to show that h is transcendental over $S^{-1} A$. If not, then h / σ is algebraic over $S^{-1} A$, hence algebraic over A, so there is a nonzero $f(T)=\sum a_{i} T^{i} \in A[T]$ satisfying $f(h / \sigma)=0$. We may arrange that all nonzero a_{i} are homogeneous and of the same degree; then, by (3), we can find $s_{1}, s_{2} \in S$ such that $\left(s_{2} / s_{1}\right) f(T) \in A_{(S)}[T]$, which is absurd because h / σ is transcendental over $A_{(S)}$. So, (4) holds.

Next, we show:
If at least one of $b, b^{\prime} \in B$ is homogeneous and $b b^{\prime} \in A \backslash\{0\}$, then $b, b^{\prime} \in A$.

For this, it's enough to prove the case where both b and b^{\prime} are homogeneous. Consider a factorization $b b^{\prime}=\mu \prod_{i \in I} p_{i}$ where $\mu \in A^{*}$ and each p_{i} is a prime (and homogeneous) element of A. By assumption (ii), each p_{i} is then a prime element of B so $b=\lambda \prod_{j \in J} p_{j}$ where $\lambda \in B^{*} \subset A$ and $J \subseteq I$. So $b \in A$ and, similarly, $b^{\prime} \in A$.

From (5), we easily deduce that

$$
\begin{equation*}
R \cap S^{-1} A=A \tag{6}
\end{equation*}
$$

In fact, if $r \in R \cap S^{-1} A$ then $r=a / s(a \in A, s \in S)$, so $r s \in A$; since $s \neq 0$ is homogeneous, (5) implies that $r \in A$.

By (4), (6) and the fact that R is \mathbf{k}-affine, we obtain
$A=\operatorname{ker} \Delta$, for some irreducible, homogeneous locally nipotent derivation $\Delta: R \rightarrow R$.

In fact, the " h-derivative" $d / d h:\left(S^{-1} A\right)[h] \rightarrow\left(S^{-1} A\right)[h]$ is a homogeneous locally nilpotent derivation with kernel $S^{-1} A$. Since R is finitely generated as an A-algebra, there exists $s \in S$ such that the derivation $s(d / d h)$ maps R into itself; the restriction $\Delta^{\prime}: R \rightarrow R$ of $s(d / d h)$ is a homogeneous derivation with kernel $R \cap S^{-1} A=A$, and is locally nilpotent because $s \in \operatorname{ker}(d / d h)$ (see 1.4). By 1.3 , we have $\Delta^{\prime}=\rho^{\prime} \Delta$, where $\rho^{\prime} \in R$ and $\Delta: R \rightarrow R$ is an irreducible derivation; since Δ is homogeneous and locally nilpotent (1.4) and has the same kernel as Δ^{\prime}, we proved (7).

Extend Δ to a derivation $D^{\prime}: \operatorname{Frac} B \rightarrow \operatorname{Frac} B$ and let $m=\left(\prod_{i=1}^{n} x_{i}\right)^{d-1}$; then $m D^{\prime}$ maps B into itself. Indeed, for each i we have $d x_{i}^{d-1} D^{\prime}\left(x_{i}\right)=D^{\prime}\left(x_{i}^{d}\right)=\Delta\left(x_{i}^{d}\right) \in$ R, so $m D^{\prime} x_{i} \in B$. Hence, the restriction $D^{\prime \prime}: B \rightarrow B$ of $m D^{\prime}$ is a derivation and satisfies

$$
D^{\prime \prime}(r)=m \Delta(r), \quad \text { for all } r \in R
$$

Note that $D^{\prime \prime}$ must be homogeneous, because its restriction to R is.
Using 1.3, write $D^{\prime \prime}=\beta D$ where β is a homogeneous element of B and $D: B \rightarrow$ B is an irreducible, homogeneous derivation. Then

$$
D(r)=\frac{m}{\beta} \Delta(r), \quad \text { for all } r \in R
$$

We claim that β divides m in B. To see this, consider the set \mathcal{M} of all monomials $M=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\left(i_{1}, \ldots, i_{n} \in \mathbb{N}\right)$ satisfying $\operatorname{deg}(M)+\operatorname{deg}(D) \in d \mathbb{Z}$. Given any $M \in \mathcal{M}$,
the derivation $M D: B \rightarrow B$ maps R into itself, so we may consider the restriction $\Delta_{M}: R \rightarrow R$ of $M D$.

Observe that $\Delta: R \rightarrow R$ satisfies the hypothesis of Lemma 1.5 (if p is a homogeneous prime element of A then, by assumption (ii), p is a prime element of B, and it follows immediately that p is a prime element of R). Since $\operatorname{ker} \Delta_{M}=\operatorname{ker} \Delta$, Lemma 1.5 implies that $\Delta_{M}=\rho_{M} \Delta$ for some $\rho_{M} \in R$. Note that $\Delta \neq 0$, choose $r \in R$ such that $\Delta r \neq 0$ and write

$$
\rho_{M} \Delta r=M D r=\frac{M m}{\beta} \Delta r,
$$

which implies that $M m / \beta=\rho_{M} \in R$. In particular, $\beta \mid M m$ in B, and this holds for all $M \in \mathcal{M}$. By assumption (i) we have $\operatorname{gcd}(\mathcal{M})=1$ in B, so $\beta \mid m$ in B. Thus,

$$
D r=\gamma \Delta r, \quad \text { for all } r \in R,
$$

where $\gamma=m / \beta=\lambda \prod_{i=1}^{n} x_{i}^{e_{i}}, \lambda \in B^{*}, e_{i} \in \mathbb{N}$.
Suppose that $e_{1}>0$. By assumption (i), we may choose $q_{2}, \ldots, q_{n} \in \mathbb{N}$ such that $\operatorname{deg}\left(x_{1}\right)+q_{2} \operatorname{deg}\left(x_{2}\right)+\cdots+q_{n} \operatorname{deg}\left(x_{n}\right) \in d \mathbb{Z}$. Let $N=x_{2}^{q_{2}} \cdots x_{n}^{q_{n}}$, then $\operatorname{deg}\left(x_{1} N\right) \in d \mathbb{Z}$, so $x_{1} N \in R$ and consequently

$$
\gamma \Delta\left(x_{1} N\right)=D\left(x_{1} N\right)=\left(D x_{1}\right) N+x_{1} D N \Longrightarrow x_{1} \mid D x_{1} .
$$

Moreover, for each $j \neq 1$ we have $x_{j}^{d} \in R$, so

$$
\gamma \Delta\left(x_{j}^{d}\right)=D\left(x_{j}^{d}\right)=d x_{j}^{d-1} D x_{j} \Longrightarrow x_{1} \mid D x_{j},
$$

which is absurd because D is irreducible. Hence, $e_{1}=0$ and, by symmetry, $e_{j}=0$ for all j. So $\gamma \in B^{*}$ and we proved:
(8) Δ extends to a homogeneous derivation $D: B \rightarrow B$.

Since B is integral over $R, 1.1$ gives
$D: B \rightarrow B$ is locally nilpotent.
Note that if α is a homogeneous element of $\operatorname{ker} D$ then $\alpha^{d} \in R \cap \operatorname{ker} D=\operatorname{ker} \Delta=$ A, so $\alpha \in A$ by (5). This implies that $\operatorname{ker} D \subseteq A$, because $\operatorname{ker} D$ is a homogeneous subring of B. So

$$
\operatorname{ker} D=A \text {. }
$$

Let $a=\Delta h=D h$, where $h \in R$ is as in (4). Then $a \in A \backslash\{0\}$; since $D: B \rightarrow B$ (resp. $\Delta: R \rightarrow R$) is locally nilpotent and has kernel $A, 1.2$ implies that

$$
B_{a}=A_{a}[h] \quad\left(\text { resp. } R_{a}=A_{a}[h]\right)
$$

so $B_{a}=R_{a}$. It follows that $R=B$, so $d=1$.
Theorem 2.2. Let $B=\mathbf{k}\left[X_{0}, X_{1}, X_{2}\right]=\mathbf{k}^{[3]}$, where \mathbf{k} is a field of characteristic zero, let $\omega_{0}, \omega_{1}, \omega_{2}$ be pairwise relatively prime positive integers and let $B=\oplus_{i \in \mathbb{N}} B_{i}$ be the grading determined by $B_{0}=\mathbf{k}$ and $X_{i} \in B_{\omega_{i}}$. Consider elements f_{1}, \ldots, f_{n} of $B(n \geq 2)$ which are homogeneous, geometrically irreducible and no two of which are associates. Then the following are equivalent:

1. $\quad B_{\left(f_{1} \cdots f_{n}\right)}$ is a polynomial ring in one variable over a subring.
2. $\mathbf{k}\left[f_{1}, \ldots, f_{n}\right]$ is the kernel of a nonzero homogeneous locally nilpotent derivation $D: B \rightarrow B$.
Moreover, if these equivalent conditions are satisfied then
3. $\mathbf{k}\left[f_{1}, \ldots, f_{n}\right]=\mathbf{k}\left[f_{i}, f_{j}\right]$, for some distinct $i, j \in\{1, \ldots, n\}$, and any such i, j satisfy $\operatorname{gcd}\left(\operatorname{deg} f_{i}, \operatorname{deg} f_{j}\right)=1$.
4. $\quad B_{\left(f_{1} \cdots f_{n}\right)}=\left(\mathbf{k}\left[f_{1}, \ldots, f_{n}\right]_{\left(f_{1} \cdots f_{n}\right)}\right)^{[1]}$.

Proof. Step 1. We show that, under the assumption that \mathbf{k} is algebraically closed, (1) implies (2) and (3).

Assume that (1) holds and let $A=\mathbf{k}\left[f_{1}, \ldots, f_{n}\right]$. Consider the weighted projective plane $X=\operatorname{Proj} B$; by (1), the open set $U=X \backslash\left(V\left(f_{1}\right) \cup \cdots \cup V\left(f_{n}\right)\right)$ is isomorphic to the product of \mathbb{A}^{1} with a curve. Consider distinct $i, j \in\{1, \ldots, n\}$ satisfying (3a-e) of 1.11. Then part (3d) gives that $A=\mathbf{k}\left[f_{i}, f_{j}\right]$, so $A=\mathbf{k}^{[2]}$ is a UFD; and it follows from part (3c) that every homogeneous prime element of A is prime in B. Now we claim:

$$
\begin{equation*}
B_{\left(f_{i} f_{j}\right)}=A_{\left(f_{i} f_{j}\right)}{ }^{[1]} \tag{10}
\end{equation*}
$$

If this is the case then (2) and (3) follow immediately from Theorem 2.1, using $S=$ $\left\{f_{i}^{k} f_{j}^{\ell} \mid k, \ell \in \mathbb{N}\right\}$.

By part (3a) of 1.11 , we have $B_{\left(f_{i} f_{j}\right)}=R^{[1]}$ for a subring R of $B_{\left(f_{i} f_{j}\right)}$ satisfying $R=\mathbf{k}\left[\zeta, \zeta^{-1}\right]$ with ζ transcendental over \mathbf{k}. Thus

$$
\left(B_{\left(f_{i} f_{j}\right)}\right)^{*}=R^{*}=\bigcup_{n \in \mathbb{Z}} \mathbf{k}^{*} \zeta^{n} .
$$

On the other hand, if we define $p^{\prime}=\operatorname{deg}\left(f_{i}\right), q^{\prime}=\operatorname{deg}\left(f_{j}\right),(p, q)=\left(1 / \operatorname{gcd}\left(p^{\prime}, q^{\prime}\right)\right)\left(p^{\prime}, q^{\prime}\right)$ and $\xi=f_{i}^{q} / f_{j}^{p}$ then it is easy to see that

$$
\left(B_{\left(f_{i} f_{j}\right)}\right)^{*}=\bigcup_{n \in \mathbb{Z}} \mathbf{k}^{*} \xi^{n}
$$

from which we obtain $\zeta=\lambda \xi^{ \pm 1}\left(\lambda \in \mathbf{k}^{*}\right)$. So $R=\mathbf{k}\left[\xi, \xi^{-1}\right]=A_{\left(f_{i} f_{j}\right)}$, (10) holds and Step 1 is complete.

Step 2. We show that (1) implies (2) and (3) (without assuming that \mathbf{k} is algebraically closed).

Let $\overline{\mathbf{k}}$ be an algebraic closure of \mathbf{k} and $\bar{B}=\overline{\mathbf{k}}\left[X_{0}, X_{1}, X_{2}\right]=\overline{\mathbf{k}}^{[3]}$. If (1) holds, it follows that $\bar{B}_{\left(f_{1} \cdots f_{n}\right)}$ is a polynomial ring in one variable over a subring. Since the f_{i} are irreducible in \bar{B} by assumption, Step 1 implies that $\overline{\mathbf{k}}\left[f_{1}, \ldots, f_{n}\right]=\operatorname{ker} \bar{D}$ for some homogeneous locally nilpotent derivation $0 \neq \bar{D}: \bar{B} \rightarrow \bar{B}$, and that, for some $i, j, \overline{\mathbf{k}}\left[f_{i}, f_{j}\right]=\overline{\mathbf{k}}\left[f_{1}, \ldots, f_{n}\right]$ and $\operatorname{gcd}\left(\operatorname{deg} f_{i}, \operatorname{deg} f_{j}\right)=1$. By 1.7, the derivation $\bar{D}=$ $\Delta_{\left(f_{i}, f_{j}\right)}: \bar{B} \rightarrow \bar{B}$ satisfies the requirements. Since this \bar{D} maps the X_{i} to elements of B, it restricts to a derivation $D: B \rightarrow B$ (locally nilpotent and homogeneous). Since $\operatorname{ker} D=\overline{\mathbf{k}}\left[f_{i}, f_{j}\right] \cap B=\mathbf{k}\left[f_{i}, f_{j}\right]$ and $\mathbf{k}\left[f_{1}, \ldots, f_{n}\right] \subseteq \overline{\mathbf{k}}\left[f_{i}, f_{j}\right] \cap B=\mathbf{k}\left[f_{i}, f_{j}\right]$, (2) and (3) hold and Step 2 is complete.

Step 3. We show that (2) implies (4).
Assume that (2) holds. Then 1.7 implies that $\mathbf{k}\left[f_{1}, \ldots, f_{n}\right]=\mathbf{k}^{[2]}$, so, by 1.6 , $\mathbf{k}\left[f_{1}, \ldots, f_{n}\right]=\mathbf{k}\left[f_{i}, f_{j}\right]$ for some i, j. Since (by 1.9) $\operatorname{gcd}\left(\operatorname{deg} f_{i}, \operatorname{deg} f_{j}\right)=1$, we may apply 1.8 and conclude that

$$
\begin{equation*}
B_{\left(f_{i} f_{j}\right)}=\left(A_{\left(f_{i} f_{j}\right)}\right){ }^{[1]} \tag{11}
\end{equation*}
$$

where $A=\mathbf{k}\left[f_{i}, f_{j}\right]=\mathbf{k}\left[f_{1}, \ldots, f_{n}\right]$. Now (11) implies that $B_{\left(f_{1} \cdots f_{n}\right)}=\left(A_{\left(f_{1} \cdots f_{n}\right)}\right)^{[1]}$, so (4) holds and the proof is complete.

Remark. The Corollary stated in the introduction (hence, also Theorem 2.2) is no longer true if we replace the assumption "geometrically irreducible" by the weaker "irreducible". Indeed, consider $B=\mathbb{Q}\left[X_{0}, X_{1}, X_{2}\right]$ with the standard total degree grading $\left(\operatorname{deg}\left(X_{i}\right)=1\right)$, and let $f=X_{0}$ and $g=X_{0}^{2}+X_{1}^{2}$. Then $B_{(f g)}=$ $\left(\mathbf{k}\left[X_{0}, X_{1}\right]_{(f g)}\right)\left[X_{2} / X_{0}\right]=\left(\mathbf{k}\left[X_{0}, X_{1}\right]_{(f g)}\right)^{[1]}$ but $\mathbf{k}[f, g]=\mathbf{k}\left[X_{0}, X_{1}^{2}\right]$ is not the kernel of a derivation of B.

References

[1] D. Daigle: Homogeneous locally nilpotent derivations of $k[x, y, z]$, J. Pure Appl. Algebra, 128 (1998), 109-132.
[2] D. Daigle: On some properties of locally nilpotent derivations, J. Pure Appl. Algebra, 114 (1997), 221-230.
[3] D. Daigle and P. Russell: Affine rulings of normal rational surfaces, Osaka J. Math. to appear.
[4] D. Daigle and P. Russell: On weighted projective planes and their affine rulings, Osaka J. Math. to appear.
[5] G. Freudenburg: Local slice constructions in $k[X, Y, Z]$, Osaka J. Math. 34 (1997), 757-767.
[6] T. Kambayashi: On the absence of nontrivial separable forms of the affine plane, J. Algebra, 35 (1975), 449-456.
[7] M. Miyanishi: Normal affine subalgebras of a polynomial ring, Algebraic and Topological Theories-to the memory of Dr. Takehiko MIYATA, Kinokuniya, (1985), 37-51.
[8] W.V. Vasconcelos: Derivations of Commutative Noetherian Rings, Math Z. 112 (1969), 229233.
[9] D. Wright: On the jacobian conjecture, Illinois J. of Math. 25 (1981), 423-440.

Department of Mathematics
University of Ottawa
Ottawa, Canada K1N 6N5
Canada
E-mail: daniel@mathstat.uottawa.ca

[^0]: ${ }^{1}$ We mean: X, Y, Z are homogeneous elements of B such that $B=\mathbf{k}[X, Y, Z]$.
 ${ }^{2}$ At the time of writing, the numbering of the results, in [3], is not available.
 ${ }^{3}$ We view Λ as a set of effective divisors; so a "member" of Λ is a divisor of X.

