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1. Introduction

In recent studies on invariant measures of diffusions on infinite-dimensional
spaces, several approaches have been considered. In [6], existence, uniqueness and reg-
ularity of invariant measures and asymptotic properties of solutions of stochastic evo-
lution equations were investigated. In purely analytic approaches, a study of invariant
measures for Markovian semigroups on L? associated with quadratic forms was made
in [5] as a generalization of [19, 20, 21, 10], while the regularity of the measures u
solving some elliptic equations L*u =0 was proved in (4, 3], where L is an operator
of type Lu =tr(Au”") + B - Vu.

In this paper, for given Markovian (or more generally, positivity preserving) semi-
groups {P,}, we discuss conditions for the existence of invariant measures, and for the
exponential decay of {P;} to a projection operator. We treat this problem in an ana-
lytic way, so we always impose the condition that {P,} is also a strongly continuous
semigroup on L? for some p € (1, co).

As for the existence of invariant measures, the situation becomes quite simple if
{P;} is eventually compact. But we do not assume this since such compactness seems
hard to be expected in the case that the underlying space is infinite dimensional. In
Gross’ paper [9] concerning physical ground states for Hermitian operators, similar sit-
uations were dealt with and the so-called hyperboundedness of semigroups was used
as a replacement of compactness. We apply his idea to our problem; under the con-
dition (I) regarding integrability (see Definition 2.1) for semigroups or resolvents, we
prove the existence of invariant measures by approximating the underlying space by
a sequence of finite number of sets. The result improves the corresponding ones in
[, 10].

In order to discuss the exponential decay of {P,} in the L” sense, we introduce a
kind of ergodicity condition, (E) (see Definition 3.1). We may say that it is a substitu-
tion for strict positivity of transition densities; we do not expect the existence of such
densities in our concerning infinite-dimensional cases. This type of condition appeared
in Kusuoka’s article [13] and was further researched by Aida [1] to discuss the spec-
tral gap of the generators of symmetric Markovian semigroups. It turns out that this
is useful also in our framework. Indeed, we prove that P, decays exponentially to a
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projection operator in the L” sense if and only if the conditions (I) and (E) hold for
the semigroup. This can be regarded as a generalization of some results by Aida [1]
and Mathieu [17] to the L? category.

Typical examples that we can conclude exponential decay from our results are
conservative Markovian semigroups on L2, associated with bilinear forms obtained by
adding drift terms to strongly local symmetric Dirichlet forms which satisfy logarith-
mic Sobolev inequalities. They seem to lie outside the range of examples to which
usual perturbation methods apply.

The organization of this paper is as follows: In the section 2, we introduce and
study the condition (I) and prove the existence of invariant measures. In the section 3,
we define the condition (E) and give the characterization of the exponential decay for
semigroups. In the section 4, some criteria for (E) are given. In the section 5, we give
a few examples.

2. Existence of invariant measures

Let (X, F,m) be a measure space with total measure 1. We assume that L? =
LP(X, F,m) is separable for some (hence for all) p € (1, 00). We consider only real-
valued functions. Let || - ||, denote the L?-norm with respect to m. Let LY (resp. L’;O)
be the set of all nonnegative (resp. strictly positive) functions in L. For a measurable
function f, we set fi = fVv0 and f_ =(—f)VO0. For a bounded linear operator S, || S|
denotes the operator norm and S* the dual operator. A bounded operator S on L7 is
called positivity preserving if Sf € L for all f € LY. We fix p € (1, 00) and denote
by g the conjugate exponent of p; 1/p +1/q = 1. The L9 space is considered as the
dual space of L”.

Throughout this paper, S is assumed to be a positivity preserving bounded opera-
tor on L?, and {P,;} a positivity preserving, strongly continuous semigroup on L”. Let
{Ry,} and A denote the associated resolvent operators and the generator, respectively.

We discuss the existence of a non-zero function p € L9 such that

fP,f—pdm:/ fpdm for every t > 0 and f € L?,
X X

in other words, p € ()., Ker(1 — P;*). By noting that the relation (),., Ker(1 — P*) =
Ker A* = Ker(1 — aR}) for any «, it suffices to study Ker(l — $*) for a positivity
preserving operator S. For this purpose, we introduce the following condition.

DerINITION 2.1, Set

YUs(K)= sup  [[(Sf = K)sll,, K >0.
feLl | flp=1

We say that S satisfies the condition (I) if {¥g(K) < 1 for some K > 0.
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We also write Vg 1r(m)(K) and (I)ps(, instead if there is a possibility of confu-
sion. It is easy to see that

Ys(K)= sup  [I(ISf] = K)+llp
feLr | fl,<1

and

2.1) sup  [|(Sf = K)ullp = c¥s(K/c), ¢>0.
feLl N fllpze

The following facts are often useful to verify (I) in applications.

Lemma 2.2. (i) If {|Sfx|’}ken is uniformly integrable for any bounded se-
quence {filken in LP, then S satisfies (I). In particular, if S is bounded from L? to
LP with p' > p or to LPlogL, then S satisfies (I).

(i)  Suppose that there are some o > 0 and n € N such that {|R}, fx|’} is uniformly
integrable for any bounded sequence {filxen in LP. If {P;} is differentiable at t = to,
then P, satisfies (I).

Proof. (i): Since the assumption is equivalent to saying that

lim sup / [Sf1Pdm =0,
K—=o00y £y, <1 J{ISfI>K)

and the left-hand side exceeds limg_, . ¥s(K)P, the assertion holds.
(ii): From the assumption, limg .o ¥:(K) = 0 and the operator (o —A)P;, is bounded.
Let M be its operator norm. Then for f € LY with || f]| p =<1,

K
1CPary £ = K)illp = [RG{( — AP} f — KLullp < M"Yy (W) )

by (2.1). When K is taken to be sufficiently large, the right-hand side is less than 1.
This finishes the proof. o

Before studying several properties on (I), we give one more definition.

DerINITION 2.3. For ¢ € L”,, a probability measure m, on X and a positivity
preserving operator S, on LP(m,) are defined by dm, = ¢”dm/||l¢|l;, and S,f =
o~ 'S(pf) for f € LP(my,).

Proposition 2.4. Let S satisfy (I). Then the following assertions hold.
() S satisfies (I)1a(m)-
(i) For any ¢ € LY, S, satisfies ()1rn,).
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Proof. (i) We may assume that S # 0. For g € L{ with lell; <1 and K > 0,
Ki>0(@G=1,2,3),

I = Koull = [ S (5% = K Nam= [ g 5157 — K08 hdm
X X

IA

f (g — K1) - SUS*g — K)T™}dm + K, / S{(S*g — K)I")dm
X X
= L +KI,.

From the relation [|(S*g — K){™'ll, = (5* — K). 1" < 18*)|9/7 = ||S||#/7 and (2.1),
we have

I

IA

K> f (¢ — Ky)edm + / gIS((S"g — K1) — Kaludm
X X

K2K{"lIglld + gl IIS{(S™g — K)I™'} = Kalill,

IA

IA

_ . _ K
KK\ ™7+ (8¢ — K47 I ,pwss <||(s ;)4_1” )
*¢—K) ',

IA

_ . K;
KoKy~ +11(S7g = K)ullg/" s ("S”q/p) :

and

I / §*1-(S*g — K)! " 'dm
X

IA

K3/(S*g — K) 'dm +f(s*1 — K3).(5*g)" 'dm
X X

KsK718%gll? + 1(S™1 = K3)allg 1(5*8)7 " 11
K3 KIS + 1S 1 = K34l IS11/7.

IA

A

Therefore, taking l_ir—nKz_,oo m,moo mKﬁmeﬂ, SUPgerd gl <10 WE obtain that
im s agny(K) < 1im se oy (K)Y? lim ¢5(K).
K—o00 K—o0 K;—o00
Since the left-hand side is finite, we conclude that
im Y5 Lom(K) < Tim ¥s(K2) < 1.
K—>o00 Ky—o00

(ii) We may assume that [|¢||, = 1. Define f =¢f for f € LY(m,). Then f € L} and
£, = I fllLeem,)- Taking limg, - oo limg 00 SUP feL2(my), 11 Lo gnp) <1 in the relation

1(Spf = K)illLrem,) = ISF = K@)illp < WSF = K)illp + 1K1 — K@)allp,
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we obtain that mk_,oo WSga,LP(mW)(K) < mkl_,oo Ys(Ky) < 1. O

Proposition 2.5. Let S be also sub-Markovian. Moreover, suppose that S satis-
fies (I), namely, ¥s(K) < y for some K > 0 and y € (0, 1). Then for some K' > K,
it holds that

(2.2) Ys(K)<y", neNl
In particular, {S"},en are uniformly bounded.
Proof. Let K'= K /(1 —y). For f € L} with | f]l, <1, we have for n € N,

1S"f — K)ull, = IS" (S — K)s +(Sf A K)} — {(K' — K) + K} 14l
< NSNS — K)u} — (K" = KLl + IS N(SF A K) — Kl p-

Since $"~! is sub-Markovian, the second term in the right-hand side vanishes. By ap-
plying (2.1) with using [[(Sf —K).|l, < v, the first term is dominated by y ¥g1((K'—
K)/y)=y¥sa-1(K'). Hence ¥en(K') < y¥rsn-1(K’), which implies (2.2). The last claim
follows from the domination ||S"|| < ¥s«(K') + K. O

The following proposition characterizes (I) for semigroups in terms of the resolvent
operators.

Proposition 2.6. Suppose that {P,} is also sub-Markovian. Then:
(1)  If P, satisfies (I) for some ty > O, then there exist some y € (0,1), K > 0, and
T > 0 such that yp(K) <y’ forall t > T.
(ii)  The following conditions are equivalent.
(@) P, satisfies (1) for some ty > 0.
(b) There exist some K >0, M >0, T > 0, and § > 0 such that Yr,y(K) <
M@T)"/n! + {a/(a + 8)}" for every n € N and o > 0.
In particular, if P, satisfies (I) for some ty > 0, then for each a > 0, there exists some
n € N such that (a¢R,)" satisfies (I).

Proof. (i) is easily deduced from Proposition 2.5.

(ii): Assume (a). From (i), M := sup,.( || || < oo. Take y, K and T appearing
in (i). Let , = {(t;,...,%,) € [0,00)" | t; +---+1, < T} and 2, = [0, 00)"\2;. For
feLl with |If], <1,

{@R)" f = K}l

” [/ ot"e_a(”+‘“+t")(Pr1+~~+t,,f — K)dt, - - -dt,,}
[0,00)"

+ip

IA

f ot"e_a("*“ﬂ") ||(Pt1+~-+t,.f - K)+ "p dtl . .dtn
[0,00)"
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<M andtl . -dt,, +/ ane—a(h*"“ﬂn)yfl+"‘+tnd,[ .. .dtn
Q] QZ

M(aT)" o "
< + .
- n! o —logy
Therefore, (b) holds.

Next assume (b). For f € L} with I fllp
lim, o0 €™ Y oo (1/m!)(n*tR,)" f,

< 1, by using the expression P, f =

o0

1 — 1 m m
ICPf = K)ellp = Tim ™ 3" ™ [{nRo)"f = K},
m=0
[o¢]
— 1 MnT)" no\m
nt - m
Snllg}oe mZ:zom!(nt) [ m! +(n+8> }
T i { Mn?tT)" .\ (n2t/(n + &))" }
n—o0 et (m')2 m!
Since
> M(n2tT)" — (nV/1T)™"
—nt ey —nt BN ety —nt+2n/tT
e Z (m!)2 = Me Z (2m)!/22m = Me
m=0 m=0
and

% 9
e XN /(O 2 sy —nts)ned) 15
e E T =M =e

— e
m!

as n — 00,

m=0

we conclude that ¥p(K) < 1 when t > 4T. O
Now, in order to prove the existence of invariant measures, we prepare a lemma.

Lemma 2.7. Suppose that there exists ¢ € Ker(1 — S) such that ¢ > 0 m-a.e.
Then Ker(1 — S*) is a vector lattice.

Proof. This is almost the same as in [5, Corollary 2.13], but we give a proof for
completeness. It suffices to prove that p € Ker(1 — S*) implies p, € Ker(1 — §*). Take
p € Ker(l — §*). Since S*p, > S*p = p and S*p, > 0, we have S*p, > p,. On the

other hand, it holds that fX(S"‘/o+ —p+)pdm =0. Since ¢ > 0 m-a.e., we conclude that
S*py = ps. O

Theorem 2.8. Suppose that S" satisfies (1) for some n € N and that there exists
¢ € Ker(l — S) such that ¢ > 0 m-a.e. Then there exists p € Ker(l1 — S*) such that
p#0and p >0 m-a.e.
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Proof. First we consider the case that ¢ = 1. Since L? is assumed to be
separable, there exists a sub o-field F7° of F such that F° is countably generated
and LP(X,F,m) = LP(X, F° m). Take a sequence of finitely generated sub o-fields
{Fi}2, of FO satisfying F; C F» C ---, and \/f’:l F; = F°. For each [, (,; denotes a
natural injection operator from L"(F;) := L"(X, F;, m) to L" and 7, ; its adjoint oper-
ator from L to L"(F) for 1 < r < oo, 1/r + 1/ = 1. Then 7p1Stp, is bounded
on LP(F;). Since mp,; is expressed as a conditional expectation under m given F,
tpiTp, converges strongly to the identity map as / — oo from the martingale con-
vergence theorem. We also note that 7, ,;St,;1 = 1. Since LP(F;) is finite dimensional,
7p1Stp s a compact operator and (, Sty )" = ;8% has the same eigenvalues
as 7, Stp,. Therefore, there exists an element p; in L9(F;) such that |pll, = 1 and
7q18%g, 01 = pi. From Lemma 2.7, we may assume that p; > 0 m-a.e. Since {i4,0}75,
is weakly relatively compact in L9, we can take a divergent sequence {/;} such that
Lg,1, P, converges weakly to some p > 0 in L9. For every f € LP”, it holds that

/SLP,lk”p,lkf'Lq,lkplkdm=/ f'qulkplkdm‘
X X

Letting k — oo, we obtain that [, Sf-pdm = [, fpdm. Hence p € Ker(1 — §*). The
rest to be proved is that o is not identically zero. Assume that p = 0. Then ¢, 0;, —
0in L' since o, is nonnegative. In the following, we write p; instead of ¢, 0, for
simplicity. Take K > 0 so that ¥¢:(K) < 1. Since ||,0,‘(’_l ll, =1, it holds that

-
I

| ot ocdm = [ (576 o
X X

Klloell + 168" 08~ = K4l pllox g
Kol + Y5 (K).

IA

IA

Taking lim;_,», on both sides induces a contradiction.

Next we prove the claim in general cases. From Proposition 2.4 (ii), S} satisfies
(Drr(m,)- Moreover, S,1 = 1. So we can use the first part of this proof to obtain that
there exists some p, € Ker(1 — S7) such that p, > 0, p, # 0 m-a.e. Then it is easy to
see that p”~!p, € Ker(1 — S*). This completes the proof. O

Theorem 2.9. Suppose that there exists some ¢ € Ker A such that ¢ > 0 m-a.e.
If some P, or (aRy)" satisfies (1), then there exists p € Ker A* such that p # 0 and
p >0 m-a.e. In particular, the measure pdm is an invariant measure for {P,}.

Proof. From Proposition 2.4 (ii) and Proposition 2.6 (ii), we may assume that
(¢R,)" satisfies (I) for some o > 0, n € N. By noting that Ker A = Ker(1 — «R,) and
Ker A* = Ker(1 — «R?), Theorem 2.8 completes the proof. ]
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Remark 2.10. (i)  Unlike former works [19, 10, 5], the underlying space need
not have a vector space structure.
(ii)) We can also prove the claim without using Proposition 2.6 (ii) when the con-
dition (I) for P,, is assumed. Indeed, from Theorem 2.8, Ker(1 — P,:) has a nonzero
and nonnegative function, say p’. Then fot" Pp'dt belongs to [),., Ker(1 — P*) and
is nonzero and nonnegative (cf. [18, Theorem C-III,1.1]).

3. Exponential decay

In this section, we investigate the conditions for exponential decay of {P,} in the
L? sense. The following definition is a slight modification of Aida’s in [1].

DeriniTION 3.1.  We set
xs(€) := inf!/ Slp, - 13, dm'm(Bl) > g, m(By) > s} , &>0.
X

Here we consider that inf@ = co. We say that § satisfies the condition (E) if for each
& > 0, there exists some n € N such that xg.(¢) > 0. We say that the semigroup {P;}
satisfies (E) if for each ¢ > 0, there exists some ¢ > 0 such that xp (¢) > 0.

We remark that we can also define this notion for positivity preserving bounded
operators on L*. As stated in [1, Lemma 2.6], xs(¢) > O for every ¢ > 0 if S has a
strictly positive integral kernel.

We prove several properties on xs and (E).

Lemma 3.2. For g, h, € L” and g, hy € LY, define

XS,g.,hl,gz,hz(E)

=inf{/Sf1~f2dm 0< fi <g m-ae., /fihidst, i=l,2}, e > 0.
X X

Then for each € > 0, there exists some constant § > O independent of S such that

3XS.g1.hg2,h:(0) < xs(&) and  Sxs5(8) < Xs,g1.h1,82,h2 (€)-

In particular, S satisfies (E) if and only if for each ¢ > 0, there exists some n € N
such that Xsn g . g ho(€) > 0.

Proof. It is enough to prove the following for g € L” j and h € LY ) (or g € LY,
and h € L?)):
(1)  For each ¢ > 0, there exist some ¢’ > 0 and a > 0 such that for any measurable
set B of X with m(B) > ¢, there exists a subset B’ of B with alp < g m-a.e.
and [y lghdm > ¢
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(i) For each ¢ > 0, there exist some & > 0 and a > 0 such that m({f > a}) > ¢’
for all f satisfying 0 < f < g m-a.e. and fx fhdm > e.

First we prove (i). Since g and A are strictly positive, there exists a > 0 such that
the measure of Y := {g < a} U {h < a} is less than ¢/2. Define B’ = B\Y. Then
0<alp < g m-ae. and [, lghdm > am(B') > ac/2.

Next we prove (ii). Define b = fx ghdm > 0, ayp = ¢/(3b), and By = {f = apg}.
Then

8§/fhdm§f ghdm+a0/ ghdms/ ghdm + apb.
X By X\Bo By

Therefore, f Bo ghdm > ¢ —apb = 2¢/3. Take a; > 0 small and M > 1 large so that
fX\BI ghdm < ¢/3 with B; :={g > a;}N{gh < M}. Then f > apa; on ByN B; and
m(By N By) > ¢/(3M). O

Proposition 3.3. Let S satisfy (E). Then the following assertions hold.
(i)  S* satisfies (E).
(i) For any ¢ € L, S, satisfies (E) with respect to the measure m.
(iii) If there exists ¢ € Ker(1 — S) that is nonzero and nonnegative, then ¢ is strictly
positive and dim Ker(1 — $*) < 1.

Proof. (i) is obvious. (ii): Apply Lemma 3.2 twice using

XS, 1015 ol ol gl () = XS,.07tp1-r g1 41 (€),

where the quantity in the right-hand side is with respect to m,,. (iii): For some a > 0,
m({<p > a}) > 0. For every n € N, fX S"l[«,za} . 1(¢,=0} dm < (l/a) fX S"(p- 1{¢,=0] dm = 0.
So m({e = 0}) has to be 0. If p;, p» € Ker(1 —S*) are linearly independent, then ap; +
Bp: has both positive part and negative part for some «, 8 € R. But then, (axp;+B802)+
belongs to Ker(1 — $*) from Lemma 2.7 and is nonzero but not strictly positive. This
is contradictory to the first part of (iii) since S* also satisfies (E). O

Proposition 3.4. (i) Suppose that S satisfies (E) and both Ker(l — S) and
Ker(1—S*) have nonzero and nonnegative elements. Then lim,_,  xs-(¢) > 0 for every
e > 0.

(i)  Suppose that {P,} satisfies (E) and both Ker A and Ker A* have nonzero and
nonnegative elements. Then lim,_,  xp,(¢) > 0 and xg,(e) > O for every ¢ > 0 and «a.

Proof. (i): According to Proposition 3.3, both Ker(l — S) and Ker(1 — S*) have
strictly positive elements, say, ¢ and p, respectively. If 0 < f < ¢ m-a.e. and
fo,odm > ¢, then forn e N, 0 < §"f < §"¢p = ¢ m-ae. and fXS"f-pdm =
fx fpdm > e. Therefore for fixed & > 0, xs4,p,1,1(€) is nondecreasing with respect
to n. So the assertion follows from Lemma 3.2.
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(ii): The first part is similarly proved to (i). The second assertion follows from the
first part and the expression of R, by the Laplace transform of P;. O

Proposition 3.5. Suppose that Ker(1—S) and Ker(1—S*) have nonzero and non-
negative elements, ¢ and p, respectively. Then ¢ >0, p > 0 m-a.e. and

_fxfpa'm

f y -0 asn— oo,
x pYpam

p

(3.1) sup
|fl=¢ m-a.c.

S f

if and only if S satisfies (E).

Proof. First, we prove the if part. From Proposition 3.3, the strict positivity of ¢
and p holds. By considering S, instead of S and normalization, we may assume that
¢ =1 and fx pdm =1 to prove (3.1). Before proving (3.1), we shall prove that

3.2) sup /
Iflle<1JX

Take ¢ € (0, 1/2). Since p > 0 m-a.e., § := inf{prdm | BC X, m(B)>1-—2¢}>0.
Since S satisfies (E), for some ng € N, ¢ := xgn(e) > 0. Let &' =2¢"?||p|l,. For f €
L™ with || fllee <1, let g = f — [, fpdm. It holds that [|g]lc <2 and [, gpdm =0.
Define s = [, |glpdm. Then s <2, [, gopdm = [, g_pdm =s/2 and

S"f—ffpdm}pdm—>0 as n — 00.
X

(3.3) /W%WMSfSWﬂmpM=wamwmsm5s
X X X

for every n € N. In particular, if s < 2¢’, then fx |S™glpdm < 2¢’. Assume that
s > 2¢'. We set By = {g, > 5/2 —¢'}. Then 5/2 = [, g.pdm < 2f80pdm +(s/2 —
&’) fX\BO pdm < 2m(By)"/P||pll,+s/2—¢, therefore m(By) > . Let B; = {S™1p, < c}.
Since fx S§"01p, - 1p, dm < ¢, m(By) is less than ¢ from the definition of xsw. Hence

m({S™g, > (s/2— &)c}) = m({S"1p, = c}) = 1 —&.

In the same way, m({S™g_ > (s/2 — ¢')c}) > 1 — ¢. Therefore, m(B) > 1 — 2¢ for
B ={S"g, AS"g_>(s/2 — &)}, and

flS”"ngdm < /[

X X

fx{s"O;gl—z(%—s’)clg}pdm
S

.

Thus, in either case, fx |S™glpdm < {(1 —c8)(s —2¢&")+2e'} v 2¢'. Since [|§"g|leo < 2

Shg, — (% - e’) CIB' +

Shg_ — (% —8’) clB“pdm

IA

2 (E - a’) 8 = (1 — c8)(s — 26') +2¢.
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and |, x S"g - pdm =0, we can repeat the argument above to obtain that
/ |Skoglpdm < {(1 — c8)F(s —2¢')+26'} v2e', keN.
X

Together with (3.3), we conclude that

lim sup / S"f—/fpdm’pdmg%’.
"0 fllos1 I X X

Since &’ can be taken to be arbitrarily small, we obtain (3.2).
Then for f € L™ with || f|le <1,

p /
p X

Pm(p < e)) + /
X

P
(1{p<e} + llpzei) dm

S"f—/xfpdm S"f—/xfpdm

IA

2P Ve pdm, &> 0.

S"f—/xfpdm

Taking lim,_,o lim,_, « Sup, ry.<1 on both sides completes the proof of the if part.
Next, we prove the only if part. Again, we may assume that ¢ =1 and |, xpdm=

1. Fix ¢ > 0. For some a > 0, m(Y) < ¢/2 with Y := {p < a}. Let B be a subset of

X with m(B) > €. Then, fX lgpdm > am(B\Y) > ae/2. Set Z, p = {S"1p < ae/4}.

Then
e, - () men

Since (3.1) holds, SUP,y gy M(Zn,B) < &/2 when n is taken to be sufficiently large.
Hence we conclude that xs:(¢) > ae/4-¢/2 > 0. O

/ Idem - SnIB
X

Now we give a characterization for the exponential decay.

Theorem 3.6. (i) Suppose that there exists some ¢ € Ker(1 — S) with ¢ # 0,
¢ > 0 m-a.e. Then the following are equivalent.
(@) 8" satisfies (I) for some n € N and S satisfies (E).
(b) ¢ > 0 m-a.e. and there exist some M >0, § >0 and p € LZO such that

s f - (fx fpdm><p

(ii)  Suppose that there exists some ¢ € Ker A with ¢ % 0, ¢ > 0 m-a.e. Then the
following are equivalent.

(@) Py, satisfies (I) for some ty > 0 and {P;} satisfies (E).

(b) ¢ >0 m-a.e. and there exist some M >0, § >0 and p € LZO such that

(3.4) <Me|fll,, felL’ neN.

p
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Pf- (/X fpdm><0

In either case, p is uniquely determined and p € Ker(l — S*) (resp. p € Ker A*).

<Me™|fll,, felLP, t>0.
p

Proof. It suffices to prove (i). Let us assume (a). From Proposition 3.3, ¢ > 0
m-a.e. From Theorem 2.8 and Proposition 3.3 again, we can take p € Ker(l — §*)
with p > 0 m-a.e. In order to prove (3.4), we may assume that ¢ = 1, fx pdm =1,
and S itself satisfies (I), and it suffices to prove that

=0.
p

s f —/Xfpdm

lim sup
"= fl <1
Let M = sup, ||S"]l, which is finite from Proposition 2.5. Take K’ as in the same
proposition. Let f € L? with || f||, < 1. For n; € N, let g; = (§" fiAK")—(S" f_AK')
and g, = (S"' fy — K')y — (8" f_ — K’);. Then S™ f =g, + g> and
/&Pdm‘
X

+(M +ipllglg2llp-
p

IA

+[1S™ g2l +

S™g —/glpdm
X P

H g — / gipdm
X

Keeping that ||gi1llcc < K’ in mind, we have

S"°+"'f—/);f,0dm

p

IA

=0
p

lim  sup
0, MO0 £, <1

S"°+"‘f—/xfpdm

from Proposition 3.5 and Proposition 2.5.
Next let us assume (b). The condition (E) for S is proved in the same way as in

PrOpOSithIl 3.5. F()r f € L+ Wlth “f”P < l,

(8™ f — K+l S"f—(/ fpdm><0
X
Therefore ¥s:(K) < 1 when n and K are large enough; namely S” satisfies (I). O

IA

+
P p

IA

Me™*" + 1|l pllge = K)sll -

We close this section by remarking the symmetric case. Suppose that {P;} is a
symmetric Markovian semigroup on L2 which has an associated Dirichlet form £ with
1 € Dom(€) and £(1, 1) = 0. Then from Proposition 3.5, [16, Proposition 2], and [13,
Lemma 6.13], the following statements are mutually equivalent. (See also [1].)

i) If {f,)2, C Dom(€) satisfies that [, f,dm =0, || full2 <1 and E(fp, f) = O,
then f, — 0 in probability.
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(i)  supysp,<i | Prf = [y fdm|, — 0as t - co.

(iii) {P;} satisfies (E).

In [1, 17], they prove a spectral gap of the generator (that is, exponential decay of
{P,} in the L? sense) under (i) above and the hypothesis in Lemma 2.2 (ii) with p =2
in our language. From Proposition 3.4, Theorem 3.6 and the spectral decomposition
theorem, the latter can be weakened to the condition that some (a¢R,)" satisfies (I),
which is also a necessary condition.

4. Criteria for (E)

In this section, we investigate sufficient conditions for (E). First, we consider the
case that we are given a bilinear form £ on L? with a kind of square field operators.
To say more precisely, we assume the following.

(F1) €& is a bilinear form with domain Dom(£) satisfying a sector condition in the
wide sense: there exist some A > 0 and K > 1 such that &,(f, f) > 0 and
IEC/, ) < K&Eal(f, £)V2E(g, 8)V?* for f,g € Dom(E). Here E4(f, 8) =
E(f, 2 +an fgdm. Also, Dom(€) is dense in L? and closed under the norm
En G, )2

(F2) The associated semigroup is positivity preserving. One necessary and sufficient
condition in terms of £ is the following: for every f € Dom(€), f, also belongs
to Dom(€) and &,(fy, f) = 0.

(F3) There exists a (not necessarily symmetric) bilinear map I' : Dom(f) x
Dom(€) — L' such that £(f, g) = [, T(f, g)dm, f, g € Dom(¢).

(F4) T has a derivation property with respect to the first component: for any f; €
Dom(€)(i = 1,...,n) and any ¢ € Ci°(R"), ¢(fi,..., fx) belongs to Dom(E)
and

n

d
@.1) L@fis oo ). 8)= 3 5o (fiseeos ST (fir ©)

i=1

for every g € Dom(€).
Let {P,}, {R,} and A denote the semigroup, the resolvent, and the generator on L?
associated with &, respectively. From (F4), 1 € Dom(£) and I'(1, g) = 0 for every g €
Dom(€). Therefore, A1 = 0 and {P,} is conservative and Markovian. Let U := {p >
1 | {P} is extended (or restricted) to a strongly continuous semigroup on LP?}. By
the Riesz-Thorin interpolation theorem, U is an interval including [2, 0o). In particular,
U =(1, 00) if £ is symmetric.

Now, to state a criterion for (E), we further suppose the following: there exist an-
other bilinear map I'y : Dom(£) x Dom(§) — L', functions n € Dom(€), x € L2,
o >0, £>0 m-a.e., and constants r > 0, « > 0 such that
(F5) Ty has a derivation property just like (F4) with n = 1 with respect to both com-

ponents,
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(F6) |nll2=1, n € Usepy L™, and n’¢ € L',
(F7) (Poincaré-type inequality) for every f € Dom(£) N L,

]X CoCf, Pofdm > { /X ’f— fx fnzdmrodm}z/,

(F8) for every f € Dom(E), we have To(f, f)+&f2 >0 m-ae.,

T(n, f) < x(To(f, H+EFH? m-ae.,

and

T(f, f) > kTo(f, ) —Ef* m-ae.

Typical examples satisfying from (F1) to (F8) are given in the section 5. We just
note here that if £ satisfies (F1)-(F4) and T" in (F3) is symmetric, and & satisfies the
Poincaré inequality: E(f, f) > ¢l f — fx fdmll% for some ¢ > 0, then (F5)—(F8) are
clearly satisfied by setting 'y =T, n=1, x =0,0=c¢, £ =0,r =2, and x = 1.

Lemma 4.1. Let ¢ € (0,1] and T > 0. Then there exists some constant
C(e, T) > 0 such that

/ (log P} f)_n*dm < C(e, T)
X
for any f € L* with0< f <1 m-ae. and || f| > .

Proof. The proof is a modification of that of Lemma 3.3.2 in [7]. Take ¢ > 1
such that g/(g—1) € U and n € L?/4=D, {P*} is a positivity preserving, strongly con-
tinuous semigroup on L9, as well as on L?. So, for some «g, we can define aR}f =
fy and f, € L4 OLE for o > ap. We consider only « larger than «g. For ¢t € (0, T'], let
u; o = P’ f,. Henceforth we suppress o for notational convenience. Take § € (0, 1). In
the sequel, C; denotes a constant independent of f, «, ¢, and §. It holds that u, > 0
m-ae., |lu/l; = || fll1 = ¢ and |lus|]2 < C;exp(Cyt) for some C; > 1 and C, > 0. De-
fine h, = log(u; +8)+Cst — C4 and G(¢) = fx hin?dm, 0 <t < T, where C3 and C, are
chosen so that C3 > (1+1)[1En* |1 +(2/6)l x |13, {C1 exp(C2T)+1}? exp(C3T —Cy) < £/2,
and sup{fx(log(lgl + 1))n?dm + C3T — Cy4 | |lgll2 < Crexp(C,T)} < 0. Then, G(T) < 0
holds. We first prove that G'(t) = [ {A*u,/(u; + 8)}n*dm + C3. Fix t and let ®(a) =
log(a + 8), a > 0. It is enough to prove that

*

1 A
(D) = O(u) — .

U

in LY as s — 0.

By the mean value theorem, there exists a measurable function vg(x) such that

D(upis) — P(uy) = D'(V)(Us4s — ;) m-ace.,
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and v,(x) lies in the interval between u,(x) and u,,;(x) for m-a.e.x. Recall that u, be-
longs to the domain of A* on L4. Then

(Uyes —uy)/s - A*u, in L7 as s — 0.

Also, since u;,s — u; in L9, every sequence {sy} converging to O has a subse-
quence {s)} such that v, (x) — u,(x) m-ae. as i — oo. So we conclude that
(P(Urss) — PWy))/s = O'(u;)A*u, = A*u,/(u, +8) in L7 as s — 0 from the domi-
nated convergence theorem. Note that @' is a bounded function.

To finish the proof of the lemma, define ¥, € C;°(R), n € N such that ¥, (a) = a?
on [—n,n], V,(a) /' a* as n — oo, and /5¥, > W > 0 everywhere. Then by (F3)
and (F4),

4.2) / AUy ydm = —€ (w"("), u,) = _/ r (q’"("), u,) dm
Jxur+6 U+ 96 X U, +8

W (n) W, (1)
_/;( { PR C'(n, u,) — G +0) I'(u;, u,)} dm

From the assumption (F8) and the inequality xy < (x* + y?)/2, we have

Bl p oy < 2n) X (To(ur, u) + Eul)'/?
u;, +98 U, +46
2 2 K :,(77)2 2
=< ;X + S(Mt +5)2(F0(uh ut)+'§u[)
2 2 SK\Pn(n) 2
< < m(ro(unut)"'fu,)
and
\l’n(n) ‘I’n(ﬂ) 2
(ut +6)2 F(utv ut) Z (ut + 8)2(Kro(utv u!) - gut)
> KD (b )+ £12) — (14 V().
TR AR !

Therefore, (4.2) exceeds

3k, )
/ [854: +(«;7))2( "(”“”'”fu?)—(l+K)swn<n>—;xz}dm

By letting n — oo, we obtain that

G'(r)

3kn? ’
/x Ig(utl(.:]g)z(f‘o(ut, up) +Eu?) — (1 +6)en* — ;Xz}dm +Cs

3k n? 2
> 3 fx s ol ) + .
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For n € N, let ¢, be a nonnegative function in C§°(R) such that ¢,(a) < 1/(a + J)
on [0, 00) and the equality holds on [0, n]. Define ®,(a) = logé + foa on(t)dt. Then
P, € C°(R) and

G'(t) > %K/Xnzwn(ut)z(l“o(ut,uz)+$u,2)dm

3k
T | To(®atuo), @, (u,))n*dm
X

)

by the assumptions (F5) and (F7). Letting n — oo, we have

!

3y 2/r
— {/ by — G| (o A l)dm} .
8 Ux

v

v

r 2/r
(o A l)dm} s

D, (u;) — / ®,(u)n* dm
X

G'(1)

v

r 2/r
(o A 1)dm}

log(u; +8) — / log(u; + 8)n’dm
X

Now, if x € X satisfies that r + G(¢) < h;(x) < 0, then

G0 B GO N 1 . (h,(x>)
Gt) = h(x)—r 1—hx)/r"~ ’

hence h,(x) — G(t) > —exp(h,(x)/r)G(t). Take a constant y € (0, 1] and a measurable
subset ¥ of X such that m(X\Y) < ee %/4 and 0 > y on Y. Then

3k

2/r
{ f e"'|G(t>|'ydm}
8 Jir+6()<h, <0y

ey 2T 2/r
4 {/ eh’dm] G(t)z.
8 {r+G(t)<h; <0})NY

We evaluate the integral above, which is denoted by I(z). We have

\

(4.3) G'(t) >

I(1) > / eldm — m(X\Y)
{r+G(1)<h, <0}
—Cs

ce
> feh’dm —/ edm —f eMdm — s
X {h, >0} {h, <r+G(1)} 4

/ edm = / (uy +8)eS"Cdm > g1,
X X

/ e'dm = / (u; +8)e™“dm
{h, >0} {(u;+8)e€3'=Ca > 1)

it + 81362520 < (€€ 4+ 126205472

IA
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8€C3t_c4
_<— b
2
and
/ edm < 00,
{h,<r+G(t)}
Therefore
C3t—Cy —Cy —Cy
(1) = geC1=Cs — &¢ _erten _ 8¢ " 8¢ T G,
- 2 4 — 4

If ¢ > ge=C4/8, then G(T) > log(e/8) — C4 — r. Otherwise, I(t) > se~¢*/8 for
every t € (0, T] since G(t) is nondecreasing by (4.3). Then

ge=Co\ "
( 2 ) G@t)Y = CsG(t)?, 0<t<T.

3Ky2/r

G = 2

This yields that (d/dt){—G(t)™'} > Cs for 0 < ¢t < T. Combining with the fact that
G(1) < 0, we obtain that —G(T)~! > —G(T)"'1+G(T/2)"! = fTT/z(d/dt){—G(t)_'}dt >
CsT /2, so G(T) > —2/(CsT). Hence, in either case, G(T) > —Cg¢ for some Cg > 0.
Since [ (log(ur +8))+n*dm < [, (log(ur +1))n*dm < C; for some C7 > 0, we get that

f (log(ur o + 8))_n*dm < Cg + C3T — C4+ C7.
X
By letting o 1 oo, then 8 | 0, the proof is completed. O

ReEMARK 4.2. As is seen from the proof, we use (F4) only for n =2. When n =
1, we need (F4) with only n = 1.

Proposition 4.3. Suppose moreover that £ is symmetric or n > 0 m-a.e. Then
xp(€) >0 for all ¢ > 0 and t > 0. In particular, {P,} satisfies (E).

Proof. Fix e >0andt >0.Let f,ge L® with0< f<1,0<g<1 m-ae.

and [|fll = ¢, liglh = ¢. Define H=n A 1.
Suppose that £ is symmetric. Let K = [}, #?dm. Then

/ P f-gdm =/ Pipf - Pt/zgdm = K/ Pt/Zf‘ Pr/zg‘K_lﬁzdm-
X X X
Since K~!'#?dm is a probability measure, Jensen’s inequality yields that

log/ P f -gdm > logK+[ 1og(P,/2f)K-‘f;2dm+f log(P,28)K ' 7* dm
X X X
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2 2
K
Hence
2 t/2
X K

Next, suppose that n > O m-a.e. There exists @ > 0 such that the measure of Z :=
{f < a} is less than £/2. Let K; = [, fA*dm. Then K; > Joz fa*dm > a*e/2 = ¢'.
Since [y P f -gdm > Ky [, P’g - K.;lfﬁzdm, we have

v

log/ P.f-gdm 1og1<f+f1og(P,*g)K;‘fﬁ2dm
X X

> loge’ — f (log(Pg))-&"~"n* dm
X
Ce,
> loge’ — (8/ 2
&
Hence
C ’
/P,f-gdmzdexp(— (Zt)>. g
X

REMARK 4.4. We also conclude that for every ¢ > 0, P, has the uniform positivity
improving property, defined in [1].

Next, we state another criterion of (E) for semigroups obtained by the Girsanov
transform, which has been already noted essentially in [1, 13].

Proposition 4.5. Suppose that {P,} is a sub-Markovian semigroup on L* and
has an expression

P f(x) = /Q FX)dP,,

where (2, X;, Py;x € X) be a Markov process on X. Let another Markovian semi-
group {Q;} be obtained by the Girsanov transform: for some Girsanov density Z,,
{Q,} is expressed as Q,f(x) = fQ f(X)Z,dPy,. If xp(e) > 0 and Z, > 0 P,-ae,
then xg,(¢) > 0. Here P,(-) = [y P.(-)dm.

Proof. There exists a > 0 such that P,(Z; < a) < xp(e)/2. Let B; and B, be
measurable subsets of X with m(B;) > ¢ and m(B,) > ¢. Then

/erBl'lszdm = / 15,(X:)15,(X0)Z; d Py,
X Q
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a (/ 1BI(X’)152(XO)de _ XP,(8)>
“ 2

axp/(e)
> -

%

5. Examples

Let X be a separable Banach space and H a separable Hilbert space which is
densely and continuously embedded in X. We take the Borel o-field F and assume
that the probability measure m on X has a full support for simplicity. Let FC;° be
the space of smooth cylindrical functions on X;

FCr={f=Fx(,e)x....x(.e)x) | F € CFR"), ey, ..., e, € X*}

The H-valued gradient operator V on FCy° is defined by

n

oF
Vi) =Y —(xCexs o xCrenxdxhy ey, he H = X.

i=1 ¢

We assume that (V, FC°) is closable as an operator from L*(X) to L*(X — H), and
denote the closure by the same symbol. Let a be a measurable function on X taking
values in the space of symmetric bounded operators on H such that for some & > 0,
a(x) > eld m-a.e.x, and |allop € L'. Then the bilinear form (£°, FC§°) defined by

£%f.g) = f @V, Ve)udm, f.geFCE
X

is proved to be closable. Let the closure be denoted by (£°, Dom(E®)). We also assume
the following logarithmic Sobolev inequality: for some « > 0,

2
f 12 log( ) )dm <a€%f f), f e Dom(EY).
X

HE
Recall that this implies the Poincaré inequality:
2 2
~ ”f —/ fdm| <&%f. )., f €Dom(&)
o X 2

and the associated semigroup decays exponentially in the L? sense.
Let b be an H-valued measurable function. This is considered as a drift coeffi-
cient.

ExaMpLE 5.1 (cf. [5]). Suppose that |[a~'/?b|y € L? and there exist some ¢ €
[0, 1) and k;, k> > O such that
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fx b,V f)ugdm <k (E%CF, £H+1£13) "> (% ) +1ig12)>.  f. g € Dom(£Y),
and
fx b,V )ufdm < cE(f, f)+kllfI3  f € Dom(£°).

For example, this is satisfied when exp(fla='/?b|3,) € L' for some 6 > a (cf. [10,
Proposition 3.4]).
Then a bilinear form (£, Dom(£)) defined by

E(fig)= /X (@Vf,Vg)u — b,V f)ugldm, f.g € Dom(E) = Dom(£®)

satisfies (F1)—(F8) in the section 4 with I'(f, g) = (aV f, V@) g — (b, Viug, Lo(f, &) =
@VhiVm. n=1x=00=2/a &=a""?b%/2, r =2, and k = 1/2. From
Proposition 4.3, the associated semigroup {P,} satisfies (E). Moreover, since the in-
equality

2
/leog( / 2) dm < -2 (&(f, H+kallfI2), f e Dom(€)
; Tk —¢

holds, the resolvent operators are bounded ones from L? to L?log L. Since the semi-
group is analytic (see [14, Corollary 1.2.21]), we can apply Lemma 2.2 to conclude
that P, satisfies (I) for every ¢+ > 0. Hence, from Theorem 3.6, the following inequal-
ity holds: for some M >0, § > 0, and p € L?,

<Me™|fll, felL? t>0,
2

£r = [ soam
X
and pdm is an invariant probability measure for {P,}.

ExampLE 5.2.  Suppose that (€%, Dom(€%)) is quasi-regular and exp(6la='/?b|%) €
L' for some @ > a/4. Fix p > 1 such that 0 > a/4-p?/(p—1)%. In the same way as in
[10, sections 2, 3], we can construct a conservative Markovian semigroup {P;} associ-
ated with a formal generator —V*aV + (b, V-)y by using the Girsanov transformation.
{P;} turns out to be strongly continuous on L” and satisfies (I) for every ¢+ > 0 from
a similar argument to that in [10, Proposition 3.1] and Lemma 2.2. Also, {P,} satisfies
(E) from Theorem 3.6 and Proposition 4.5. So, from Theorem 3.6, there exist some
M >0,8>0and p e LP/P~D such that

<Me*|fll,, felL’ t>0,
14

.Ptf—fxfpdm
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and pdm is an invariant probability measure for {P,}.
Lastly, we remark some symmetric cases.

ExampLE 5.3. Let M be a compact, simply connected Riemannian manifold. Fix
x € M. The path space and the based loop space over M are defined by P.(M) ={y €
C(0,1] > M) | y(0) = x} and L (M) ={y € C([0,1] = M) | y(0) = y(1) = x}. We
can define the Brownian motion measure p, on P,(M), the pinned Brownian motion
measure v, on L,(M), the gradient operators V) and V() on each space, and the
natural Dirichlet forms £%) and &% by

e

VP £,V Plgydus,  ED(f, g) = / VO £, ¥ Dg) dv,.
P.(M)

Ly (M)

See e.g. [1] for the detail. Let the associated semigroups and the resolvents be denoted
by P, R, etc. It is known that £ satisfies the Poincaré inequality (and more-
over, the logarithmic Sobolev inequality; see [8, 2, 11, 12]). So x P{(m(e) > 0 holds for
all t > 0 and ¢ > 0 from Proposition 3.4. Note that a slightly weaker assertion is men-
tioned in [1]. From Theorem 5.2 in [1], £X) satisfies (i) in the remark in the end of
the section 3. Hence its generator has a spectral gap at O if and only if some P,(L) (or
(@RLDYy") satisfies (I). But whether this property holds or not is yet to be investigated.
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