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1. Introduction

In recent studies on invariant measures of diffusions on infinite-dimensional

spaces, several approaches have been considered. In [6], existence, uniqueness and reg-

ularity of invariant measures and asymptotic properties of solutions of stochastic evo-

lution equations were investigated. In purely analytic approaches, a study of invariant

measures for Markovian semigroups on L2 associated with quadratic forms was made

in [5] as a generalization of [19, 20, 21, 10], while the regularity of the measures μ

solving some elliptic equations L*μ = 0 was proved in [4, 3], where L is an operator

of type Lu = tr(Aw") + B Vu.

In this paper, for given Markovian (or more generally, positivity preserving) semi-

groups {Pt}, we discuss conditions for the existence of invariant measures, and for the

exponential decay of {Pt} to a projection operator. We treat this problem in an ana-

lytic way, so we always impose the condition that {Pt} is also a strongly continuous

semigroup on Lp for some p e (1, oo).

As for the existence of invariant measures, the situation becomes quite simple if

{Pt} is eventually compact. But we do not assume this since such compactness seems

hard to be expected in the case that the underlying space is infinite dimensional. In

Gross' paper [9] concerning physical ground states for Hermitian operators, similar sit-

uations were dealt with and the so-called hyperboundedness of semigroups was used

as a replacement of compactness. We apply his idea to our problem; under the con-

dition (I) regarding integrability (see Definition 2.1) for semigroups or resolvents, we

prove the existence of invariant measures by approximating the underlying space by

a sequence of finite number of sets. The result improves the corresponding ones in

[5, 10].

In order to discuss the exponential decay of {Pt} in the Lp sense, we introduce a

kind of ergodicity condition, (E) (see Definition 3.1). We may say that it is a substitu-

tion for strict positivity of transition densities; we do not expect the existence of such

densities in our concerning infinite-dimensional cases. This type of condition appeared

in Kusuoka's article [13] and was further researched by Aida [1] to discuss the spec-

tral gap of the generators of symmetric Markovian semigroups. It turns out that this

is useful also in our framework. Indeed, we prove that Pt decays exponentially to a
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projection operator in the Lp sense if and only if the conditions (I) and (E) hold for

the semigroup. This can be regarded as a generalization of some results by Aida [1]

and Mathieu [17] to the Lp category.

Typical examples that we can conclude exponential decay from our results are

conservative Markovian semigroups on Z,2, associated with bilinear forms obtained by

adding drift terms to strongly local symmetric Dirichlet forms which satisfy logarith-

mic Sobolev inequalities. They seem to lie outside the range of examples to which

usual perturbation methods apply.

The organization of this paper is as follows: In the section 2, we introduce and

study the condition (I) and prove the existence of invariant measures. In the section 3,

we define the condition (E) and give the characterization of the exponential decay for

semigroups. In the section 4, some criteria for (E) are given. In the section 5, we give

a few examples.

2. Existence of invariant measures

Let (X,T,nί) be a measure space with total measure 1. We assume that Lp =

LP(X, T, m) is separable for some (hence for all) p e (I, oo). We consider only real-

valued functions. Let \\ \\p denote the L^-norm with respect to m. Let L+ (resp. L>0)

be the set of all nonnegative (resp. strictly positive) functions in Lp. For a measurable

function / , we set /+ = / v θ and /_ = (—/)vθ. For a bounded linear operator S, \\S\\

denotes the operator norm and S* the dual operator. A bounded operator S on Lp is

called positivity preserving if 5/ e L+ for all f e L+. We fix p e (1, oo) and denote

by q the conjugate exponent of p\ \/p + \/q = 1. The Lq space is considered as the

dual space of Lp.

Throughout this paper, S is assumed to be a positivity preserving bounded opera-

tor on Lp, and {Pt} a positivity preserving, strongly continuous semigroup on Lp. Let

{Ra} and A denote the associated resolvent operators and the generator, respectively.

We discuss the existence of a non-zero function p e Lq such that

/ Ptf pdm = I fpdm for every t > 0 and / € Lp,
Jx Jx

in other words, p e f]t>0 Ker(l - />*). By noting that the relation Πr>o K e r ( ! ~ PΠ ~

KerΛ* = Ker(l — aR*) for any a, it suffices to study Ker(l — S*) for a positivity

preserving operator S. For this purpose, we introduce the following condition.

DEFINITION 2.1. Set

ψs(K)= sup \\(Sf - K)+\\p, K>0.
feLp

+,\\f\\p<\

We say that S satisfies the condition (I) if ψs(K) < 1 for some K > 0.
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We also write ψs,LP(m)(K) and (I)Lp(m) instead if there is a possibility of confu-

sion. It is easy to see that

ψs(K)= sup \\(\Sf\-K)+\\p

feLP,\\f\\p<\

and

(2.1) sup ||(5/ - K)+\\p = cψs(K/c), c> 0.
/€Lί, ||/nP<c

The following facts are often useful to verify (I) in applications.

Lemma 2.2. (i) If {\Sfk\p}keN is uniformly integrable for any bounded se-

quence {fk}k<EN in Lp, then S satisfies (I). In particular, if S is bounded from Lp to

Lp' with p' > p or to Lp\ogL, then S satisfies (I).

(ii) Suppose that there are some a > 0 and n e N such that {\R^fk\p} is uniformly

integrable for any bounded sequence {fk}keN in Lp. If {Pt} is differentiable at t = to,

then Pnto satisfies (I).

Proof, (i): Since the assumption is equivalent to saying that

lim sup I \Sf\pdm=0,

and the left-hand side exceeds limκ^ooΨs(K)p, the assertion holds.

(ii): From the assumption, lim^^oo \//Rn(K) = 0 and the operator (a — A)PtQ is bounded.

Let M be its operator norm. Then for f e Lp with | | / | | p < 1,

\\{PntJ ~ K)+\\p = \\[RnJ(a - A)Pt0}
nf - K]+\\p < Mnψκ

by (2.1). When K is taken to be sufficiently large, the right-hand side is less than 1.

This finishes the proof. D

Before studying several properties on (I), we give one more definition.

DEFINITION 2.3. For φ e L^o, a probability measure mφ on X and a positivity

preserving operator Sφ on Lp(mφ) are defined by dmφ = φp dm/\\φ\\p and Sφf -

φ~λS{φf) for / e Lp{mφ).

Proposition 2.4. Let S satisfy (I). Then the following assertions hold.

(i) S* satisfies (I) L 9 ( m ) .

(ii) For any φ e Lζ0, Sφ satisfies (l)LP(mφy
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Proof, (i) We may assume that S φ 0. For g e L\ with | |g| | g < 1 and K > 0,

Ki > 0 (i = l,2,3),

\\(S*g - AΓ)+||« < ί S*g • (S*g - Kψ-'dm = ί g • S{(S*g - Kf^dm
Jx Jx

< ί(g - Kt)+ • S{(S*g - Kf-χ}dm + Kx [ S{(S*g - Kf+-'}dm

Jx Jx
=: h+KxI2.

From the relation \\(S*g - K)l~ι\\p = \\(S*g - K)+fq

/p < \\S*p/p = \\sp/P and (2.1),

we have

h < K2 f(g- Kι)+dm + [ g[S{(S*g - K)l~1} - K2]+dm
Jx Jx

< κ2κl-q\\g\\< + \\g\\q\\[S{(s*g - K)Γ1} - KikWp

< κ2κ\-q + \\(s*g - κ%-%ψ I K l )
\\(s*g-κ)Γι\\p

and

r

h = I S*l (S*g — K)l~ιdm= [ s i is g-Kyi-

< K3 f(S*g - K)\-χdm + f(S*l - K3)+(S*g)"-ιdm

Jx Jx

w* +11(5*1 -K3)+\\q\\(s*gγ-ι\\p

+ \\(s*i - κ3)+\\q\\sp/p.

Therefore, taking lim/f^oolimjf^oolim^^oolimAr^ooSup^^, ugu,<i» w e obtain that

Πm" Ψs*,mm)(K)q < ΠS ψs*,mm)(KflP ϊΐrn" ψs(K2).
K^oo K-+oo K2->oo

Since the left-hand side is finite, we conclude that

lim ψs*,mm)(K) < lim ψs(K2) < 1.
K-+00 ΛΓ2->oo

(ii) We may assume that \\φ\\p = 1. Define / = φf for / e L+(mφ). Then f e L+ and

P = \\f\\LP(mφ). Taking lim i P l^o oUmA:_ ί.o osup / e L ; ( l l I ί > ) > | | / | |L /, (^ )<1 in the relation

^/ - K)+\\LP(mψ) = | | (S/ - Kφ)+\\p < | | (5/ - Kx)+\\p + ||(^i - Kφ)+\\p,
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we obtain that l im^oo ψsφ,LP(mφ)(K) < lim^^oo ψs(K\) < 1. •

Proposition 2.5. Let S be also sub-Markovian. Moreover, suppose that S satis-

fies (I), namely, ψs(K) < γ for some K > 0 and γ e (0, 1). Then for some K' > K,

it holds that

(2.2) Ψs*(K')<γn, neN.

In particular, {Sn}ne^ are uniformly bounded.

Proof. Let K' = K/{\ - γ). For f e Lp with \\f\\p < 1, we have for n eN,

\\(Snf - K\\\p = \\[Sn-ι{(Sf - K)+ + (Sf A K)} - {{K' -K) + K]\ΛP

< \\[Sn-ι{(Sf - K)+} - (Kf - K)]+\\p + \\{Sn-ι(Sf AK)- K}+\\p.

Since Sn~ι is sub-Markovian, the second term in the right-hand side vanishes. By ap-

plying (2.1) with using \\(Sf — K)+\\p < γ, the first term is dominated by γxj/sn-\((Kf —

K)/γ) = γψSn-ι(Kf). Hence ψs»(K') < γψs^{Kr), which implies (2.2). The last claim

follows from the domination US*1!! < ψs»(K') + K'- •

The following proposition characterizes (I) for semigroups in terms of the resolvent

operators.

Proposition 2.6. Suppose that [Pt] is also sub-Markovian. Then:

(i) If Pto satisfies (I) for some to > 0, then there exist some γ e (0, 1), K > 0, and

T > 0 such that ψPt(K) < γι for all t > T.

(ii) The following conditions are equivalent.

(a) Pto satisfies (I) for some to > 0.

(b) There exist some K > 0, M > 0, T > 0, and δ > 0 such that ψ{aRa)n{K) <

M(aT)n/n\ + {a/{a + δ)}n for every n e N and a > 0.

In particular, if PtQ satisfies (I) for some to > 0, then for each a > 0, there exists some

n e N such that (aRa)
n satisfies (I).

Proof, (i) is easily deduced from Proposition 2.5.

(ii): Assume (a). From (i), M := sup f > 0 \\Pt\\ < oo. Take y, K and T appearing

in (i). Let Ωi = {(tu ...,**) e [0, oo)n | t\ + + tn < T] and Ω2 = [0, oo)n\Ωi. For

/ e Lp

+ w i t h \\f\\p < 1,

ane~a(t]+-+tn)(Ptl+...+tnf - K ) d t x > -dtn

[0,oo)n

\\{(aRa)
nf-K}+\\p =
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< M ί andtλ . dtn+ ί ane-a{ti+" +t")γt*+ "+t»dtl'"dtn

< M(aT)n / a

n\ \a-logy

Therefore, (b) holds.

Next assume (b). For f e L+ with \\f\\p < 1, by using the expression Ptf =

\ \ ( P , f - K ) + \ \ p < Kme-Σ
n-»oo ^—' γγι\

m=0< lim e nt > —(ntf
m=0

_ ^_ _n ~ f M (n

\M{nT)m i n y»l
\ j — + ( -A

m = o * ^ ! > 2

Since

and

m!
m=0

we conclude that ψpt{K) < 1 when ί > 47\ D

Now, in order to prove the existence of invariant measures, we prepare a lemma.

Lemma 2.7. Suppose that there exists φ e Ker(l — S) such that φ > 0 ra-a.e.

Then Ker(l — 5*) w β vector lattice.

Proof. This is almost the same as in [5, Corollary 2.13], but we give a proof for

completeness. It suffices to prove that p e Ker(l — S*) implies ρ+ e Ker(l — 5*). Take

p e Ker(l - 5*). Since S*p+ > S*p = p and S*p+ > 0, we have S*p+ > p+. On the

other hand, it holds that fχ(S*p+ — p+)φdm = 0. Since φ > 0 ra-a.e., we conclude that

S*p+ = p+. Π

Theorem 2.8. Suppose that Sn satisfies (I) for some n e N tfrcd r/zαί

^ € Ker(l — S) such that φ > 0 m-a.e. Then there exists p e Ker(l — 5*)

p 0 0 tfm/ p > 0 m-a.e.
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Proof. First we consider the case that ψ = 1. Since Lp is assumed to be

separable, there exists a sub σ -field JΓ° of T such that T^ is countably generated

and Lp(X,T,m) - Lp(X,J7°,m). Take a sequence of finitely generated sub σ-fields

[Tι\£λ of T° satisfying T\ C T2 C , and V/ΐi ?ι = F° For each /, ιrJ denotes a

natural injection operator from U(Ti) := Z/(X, Tι, m) to Z/ and πr>tι its adjoint oper-

ator from U to Lr\Tι) for 1 < r < oo, 1/r + 1/r' = 1. Then πpjSιpj is bounded

on LP(T\). Since π^/ is expressed as a conditional expectation under ra given JΓ/,

ipjKpj converges strongly to the identity map as / —> oo from the martingale con-

vergence theorem. We also note that πpjSιpjl = 1. Since LP{T\) is finite dimensional,

XpjSipj is a compact operator and (πPiιSιpj)* = πqjS*tqj has the same eigenvalues

as πpjSιpj. Therefore, there exists an element p\ in Lq{T\) such that \\pι\\q = 1 and

πq,ιS*ιqtιpι = P/. From Lemma 2.7, we may assume that p\ > 0 ra-a.e. Since {^/P/}^

is weakly relatively compact in Lq, we can take a divergent sequence {4} such that

iqJkPk converges weakly to some p > 0 in Lq. For every / e Lp, it holds that

/ SιPtιkπpjkf ΊqJkpιkdm= / / LqJkpkdm.
Jx Jx

Letting k -> oo, we obtain that fχ Sf pdm = fχ fpdm. Hence p e Ker(l — 51*). The

rest to be proved is that p is not identically zero. Assume that p = 0. Then tqjkpιk —>

0 in L1 since p/A is nonnegative. In the following, we write p^ instead of Lq,ιkPιk for

simplicity. Take K > 0 so that ψs»(K) < 1. Since Hp^Hp = 1, it holds that

= f f>Γλpkdm= f(S"pf-l)pkdm
Jx Jx

< AΓIIPtlli + IKS'pΓ'-^+llpllΛllί

Taking lim^oo on both sides induces a contradiction.

Next we prove the claim in general cases. From Proposition 2.4 (ii), S^ satisfies

(X)LP(mφ) Moreover, 5^1 = 1. So we can use the first part of this proof to obtain that

there exists some pφ e Ker(l — 5*) such that pφ > 0, pφ ψ 0 ra-a.e. Then it is easy to

see that φp~ιpφ e Ker(l - 5*). This completes the proof. D

Theorem 2.9. Suppose that there exists some φ e KerΛ such that φ > 0 ra-a.e.

If some Pto or (aRa)
n satisfies (I), then there exists p e KerΛ* such that p ψ 0 and

p > 0 ra-a.e. In particular, the measure pdm is an invariant measure for {Pt}.

Proof. From Proposition 2.4 (ii) and Proposition 2.6 (ii), we may assume that

(aRa)
n satisfies (I) for some a > 0, n e N. By noting that Ker A = Ker(l — aRa) and

Ker A* = Ker(l - aR*\ Theorem 2.8 completes the proof. D
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REMARK 2.10. (i) Unlike former works [19, 10, 5], the underlying space need

not have a vector space structure.

(ii) We can also prove the claim without using Proposition 2.6 (ii) when the con-

dition (I) for Pto is assumed. Indeed, from Theorem 2.8, Ker(l — P*) has a nonzero

and nonnegative function, say p'. Then J^ Pt*pfdt belongs to P | ί > 0 Ker(l — P*) and

is nonzero and nonnegative (cf. [18, Theorem C-IΠ,1.1]).

3. Exponential decay

In this section, we investigate the conditions for exponential decay of {Pt} in the

Lp sense. The following definition is a slight modification of Aida's in [1].

DEFINITION 3.1. We set

ί ί
χs(ε) :=inf{ / S\B] lBldm

m(Bχ) > ε, m(B2) > ε \ , ε > 0.

Here we consider that inf 0 = oo. We say that S satisfies the condition (E) if for each

ε > 0, there exists some n eN such that χsn(ε) > 0. We say that the semigroup {Pt}

satisfies (E) if for each £ > 0, there exists some t > 0 such that χpt(ε) > 0.

We remark that we can also define this notion for positivity preserving bounded

operators on L°°. As stated in [1, Lemma 2.6], χs(ε) > 0 for every ε > 0 if S has a

strictly positive integral kernel.

We prove several properties on xs and (E).

Lemma 3.2. For g\,h2 e LP

>Q and g2, h\ e Lq

>0, define

= inf I / Sfi f2dm 0 < /• < gt m-a.e., / fihxdm > ε, i = 1, 2 ί , ε > 0.
[Jx Jx J

Then for each ε > 0, there exists some constant δ > 0 independent of S such that

In particular, S satisfies (E) if and only if for each ε > 0, there exists some n e N

such that Xs«,g],hl,g2,h2(
£) > °

Proof. It is enough to prove the following for g e L^o and h e Lq

>0 (or g e Lq

>0

and h e Lp

>0):

(i) For each ε > 0, there exist some ε' > 0 and a > 0 such that for any measurable

set B of X with m(B) > £, there exists a subset B' of B with a\β' < g m-a.e.

and fχ λβ'hdm > ε'.
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(ii) For each ε > 0, there exist some ε' > 0 and a > 0 such that m({/ > a}) > e'

for all / satisfying 0 < / < g ra-a.e. and fχ fh dm > ε.

First we prove (i). Since g and h are strictly positive, there exists a > 0 such that

the measure of Y := {g < a} U {h < a] is less than ε/2. Define £ ' = B\Y. Then

0 < # l β ' < g ra-a.e. and / χ \B>hdm > am(B') > aε/2.

Next we prove (ii). Define b = fχghdm > 0, ao = ε/(3b), and #o = {/ > aog}.

Then

ε < I fh dm < I gh dm + ao I gh dm < I gh dm + aφ.
Jx JBo JX\B0 JB0

Therefore, fB ghdm > ε — aφ = 2εβ. Take a\ > 0 small and M > 1 large so that

/ < ε/3 with ^ i := {g > a\} Π {gΛ < M}. Then / > aoaχ on β 0 Π ̂ i and

>ε/(3M). D

Proposition 3.3. Let S satisfy (E). Then the following assertions hold.

(i) 5* 5βίw>5 (E).

(ii) For any φ e L^o, Sφ satisfies (E) w/ί/z respect to the measure mφ.

(iii) If there exists φ e Ker(l — S) that is nonzero and nonnegative, then φ is strictly

positive and dimKer(l — 5*) < 1.

Proof, (i) is obvious, (ii): Apply Lemma 3.2 twice using

where the quantity in the right-hand side is with respect to mφ. (iii): For some a > 0,

m({φ > a}) > 0. For every n e N, fχ Snl{φ>a}Ί{φ=0}dm < (l/a)fχ Snφ-l{φ=0}dm = 0.

So m({φ = 0}) has to be 0. If p\, p^ G Ker(l — 5*) are linearly independent, then ap\ +

βp2 has both positive part and negative part for some a, β e R. But then, (ap\ +βp2)+

belongs to Ker(l — 5*) from Lemma 2.7 and is nonzero but not strictly positive. This

is contradictory to the first part of (iii) since S* also satisfies (E). D

Proposition 3.4. (i) Suppose that S satisfies (E) and both Ker(l — S) and

Ker(l — S*) have nonzero and nonnegative elements. Then Hmn_^oo χsn(ε) > 0 for every

ε > 0.

(ii) Suppose that {Pt} satisfies (E) and both KerΛ and KerΛ* have nonzero and

nonnegative elements. Then Π m ^ ^ χpt(ε) > 0 and XRa(ε) > 0 for every ε > 0 and a.

Proof, (i): According to Proposition 3.3, both Ker(l - S) and Ker(l - S*) have

strictly positive elements, say, φ and p, respectively. If 0 < / < φ m-a.e. and

fχ fpdm > ε, then for n e N, 0 < Sn f < Snφ = φ m-a.e. and fχ Sn f p dm =

fχfpdm > ε. Therefore for fixed ε > 0, χs\φ,p,\,\(ε) is nondecreasing with respect

to n. So the assertion follows from Lemma 3.2.
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(ii): The first part is similarly proved to (i). The second assertion follows from the

first part and the expression of Ra by the Laplace transform of Pt. D

Proposition 3.5. Suppose that Ker(l — S) and Ker(l — 5*) have nonzero and non-

negative elements, φ and p, respectively. Then φ > 0, p > 0 ra-a.e. and

(3.1) sup
\f\<φ m-a.e.

fχ fp dm

fχ φp dm
0 as n —• oo,

if and only if S satisfies (E).

Proof. First, we prove the if part. From Proposition 3.3, the strict positivity of φ

and p holds. By considering Sφ instead of S and normalization, we may assume that

φ = 1 and fχ pdm = 1 to prove (3.1). Before proving (3.1), we shall prove that

(3.2) sup /
/lloo<i Jx

- / fpdm
Jx

pdm —> 0 as n —> oo.

Take ε e (0, 1/2). Since p > 0 m-a.e., 8 := inf{fBpdm \ B c X, m(B) > 1 - 2ε} > 0.

Since S satisfies (E), for some n0 e N, c := χ^o(ε) > 0. Let ε' = 2ει/p\\p\\q. For / e

L°° with ll/lloo < 1, let g = f - fχ fpdm. It holds that \\g\\n < 2 and fχ gpdm = 0.

Define s = fχ \g\p dm. Then s < 2, fχ g+p dm = fχ g_p dm = s/2 and

(3.3) ί \Sng\pdm< ί S\Sn-ιg\.pdm= f \Sn~ι g\pdm < • < s
Jx Jx Jx

for every n e N. In particular, if s < 2εf, then fχ\Sn°g\pdm < 2ε'. Assume that

s > 2ε'. We set Bo = {g+ > s/2 - ε'}. Then 5/2 = fχ g+ρdm < 2fBopdm + (s/2 -

εf)fχχBopdm < 2m(B0Ϋ
/p\\p\\q+s/2-εr, therefore m(B0) > ε. Let Bλ = {Sn°lBo < c}.

Since fχ Sn°lBo ΛBχdm <. c, m(B\) is less than ε from the definition of χs*o. Hence

m({Sn°g+ > (s/2 - εf)c}) > m({Sn°lBo > c}) > 1 - ε.

In the same way, m({Sn°g- > (s/2 - ε')c}) > 1 - ε. Therefore, m(B) > 1 - 2ε for

B = {Snog+ A Snog- > (s/2 - εf)c], and

\Sn°g\pdm < pdm

= J [s^\g\-2(^-εf)clB]pdm

< s - 2 (- - / ) c8 = (1 - cδ)(s - 2ε') + 2ε'.

Thus, in either case, fχ \Sn°g\ρdm < {(1 - C 5 ) ( J -2ε') + 2ε'\ v2ε'. Since ||5no^||oo < 2
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and fχ Sn°g pdm = 0, we can repeat the argument above to obtain that

\Skn°g\pdm <{{\-cδ)k{s-2ε') + 2ε'} v 2εr, keN.

613

f
Jx

Together with (3.3), we conclude that

lim sup i
n~>0O\\f\\oo<lJX

nf- \ fpdm pdm < 2ε'.

Since ε' can be taken to be arbitrarily small, we obtain (3.2).

Then for f e L°° with ||yMoo < 1,

Snf- [ fpdmϊ = ί Snf- ί fpdm
Jx \\p Jx Jx

< 2pm({p Tt-f
Jx

fpdm

dm

2p-ιε~ιpdm, ε > 0.

Taking lim ε^0 liirin^oo suP||/||0O<i o n both sides completes the proof of the if part.

Next, we prove the only if part. Again, we may assume that φ = 1 and fχ p dm =

1. Fix ε > 0. For some a > 0, m{Y) < ε/2 with Y := {p < a}. Let ΰ be a subset of

X with m(B) > ε. Then, fχ \Bpdm > am(B\Y) > aε/2. Set Zn,B = {Sn\B < aε/4}.

Then

(aε aε\\\ /aε\ / ,,„

( τ - τ ) L = (τ) I B ( z-β )\Bpdm-Sn\B

Since (3.1) holds, supm ( β ) > ε m(ZnB) < ε/2 when n is taken to be sufficiently large.

Hence we conclude that χs«(ε) > «ε/4 ε/2 > 0. D

Now we give a characterization for the exponential decay.

Theorem 3.6. (i) Suppose that there exists some φ e Ker(l — S) with φ ψ 0,

φ > 0 m-a.e. T/zeft ί/ẑ  following are equivalent.

(a) 5" satisfies (I) /or sorae n e N and S satisfies (E).

(b) φ > 0 m-a.e. ίmd ί/zere e.mί sorae M > 0, δ > 0 αmi p G L^o .swc/z that

(3.4) φ\\ <
\\p

(ii) Suppose that there exists some φ e KerΛ with φ ψ 0, φ > 0 m-a.e. TTẑ /i

following are equivalent.

(a) Pίo satisfies (I) /or sorae ίo > 0 and {Pt} satisfies (E).

(b) <p > 0 m-a.e. am/ ί/zer̂  x̂wί ^om^ M > 0, <5 > 0 ^«J p G L^o ŵc/z
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<Me-bt\\f\\p,

In either case, p is uniquely determined and p e Ker(l — S*) (resp. p G Ker A*).

Proof. It suffices to prove (i). Let us assume (a). From Proposition 3.3, φ > 0

m-a.e. From Theorem 2.8 and Proposition 3.3 again, we can take p e Ker(l — S*)

with p > 0 m-a.e. In order to prove (3.4), we may assume that φ = 1, fχ pdm = 1,

and S itself satisfies (I), and it suffices to prove that

lim sup
n * o o

Snf_ ί
Jx

fpdm\\ = 0.

Let M = supπ \\Sn\\, which is finite from Proposition 2.5. Take Kr as in the same

proposition. Let f e LP with H/H, < 1. For nλ e N, let gλ = (5n f+ΛK')-(Sn] f-AKf)

and g2 = (Sn> U ~ K% - (5Π /_ - ΛΓO+ Then Sn> f = gλ + g2 and

^«o+«l f — I

Jx
fpdm >n°gx - ί

Jxs

'"°gi - f
Jx

gipdm

gιpdm\

Keeping that ||gi||oo < K' in mind, we have

n Πm^ sup p n o + n i / - ί fpdn
°' ' I I / H D < I II Jx

= 0

from Proposition 3.5 and Proposition 2.5.

Next let us assume (b). The condition (E) for S is proved in the same way as in

Proposition 3.5. For / e Lp

+ with \\f\\p < 1,

fpdm )φ-κ\ I
/ J + l

\\{S"f-K)+\\p <\s"f-( f fpdm)φ\

II \Jχ I \P

< M e-
δ" + | | ( | | p | | ^ - / : ) + | | p .

Therefore ψs"(K) < 1 when n and K are large enough; namely Sn satisfies (I). D

We close this section by remarking the symmetric case. Suppose that {Pt} is a

symmetric Markovian semigroup on L2 which has an associated Dirichlet form 8 with

1 € Dom(£) and 5(1, 1) = 0. Then from Proposition 3.5, [16, Proposition 2], and [13,
Lemma 6.13], the following statements are mutually equivalent. (See also [1].)
(i) If {fn)Zι C Dom(£) satisfies that fχ fndm = 0, | | / J | 2 < 1 and £(/„, /„) -• 0,

then fn —> 0 in probability.
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(ii) supiiyn^j \Ptf - fχf dm\ι -» 0 as t -> oo.

(iii) [Pt\ satisfies (E).

In [1, 17], they prove a spectral gap of the generator (that is, exponential decay of

{Pt} in the L2 sense) under (i) above and the hypothesis in Lemma 2.2 (ii) with p = 2

in our language. From Proposition 3.4, Theorem 3.6 and the spectral decomposition

theorem, the latter can be weakened to the condition that some (aRa)
n satisfies (I),

which is also a necessary condition.

4. Criteria for (E)

In this section, we investigate sufficient conditions for (E). First, we consider the

case that we are given a bilinear form 8 on L2 with a kind of square field operators.

To say more precisely, we assume the following.

(Fl) ε is a bilinear form with domain Dom(£) satisfying a sector condition in the

wide sense: there exist some λ > 0 and K > 1 such that Sχ(f, / ) > 0 and

\S(f,g)\ < κελ+ι(f,f)ι/2ελ+ι(g,g)ι/2 for f,g e Dom(£). Here Sa(f,g) =
£(fig) + afxfgdm. Also, Dom(£) is dense in L2 and closed under the norm

&+i( , ) 1 / 2

(F2) The associated semigroup is positivity preserving. One necessary and sufficient

condition in terms of £ is the following: for every / e Dom(£), /+ also belongs

to Dom(£) and £ λ (/ + , / ) > 0.

(F3) There exists a (not necessarily symmetric) bilinear map Γ : Dom(£) x

Dom(£) -> L1 such that £(/, g) = fχ Γ(/, g)dm, f,ge Dom(£).

(F4) Γ has a derivation property with respect to the first component: for any // e

Dom(£) (i = 1, . . . , π) and any φ e C%°(Rn), φ(fu . . . , fn) belongs to Dom(f)

and

(4.1) T(φ(fu ...,fn),g) =
1=1 O X i

for every g e Dom(5).

Let {P?}, {/?α} and A denote the semigroup, the resolvent, and the generator on L2

associated with £, respectively. From (F4), 1 e Dom(£) and Γ(l, g) = 0 for every g e

Dom(f). Therefore, Al = 0 and {Pt} is conservative and Markovian. Let U := {p >

1 I {P,} is extended (or restricted) to a strongly continuous semigroup on Lp}. By

the Riesz-Thorin interpolation theorem, U is an interval including [2, oo). In particular,

U = (1, oo) if £ is symmetric.

Now, to state a criterion for (E), we further suppose the following: there exist an-

other bilinear map Γo : Dom(£) x Dom(£) —> L1, functions η e Dom(£), χ e L2,

σ > 0, ξ > 0 /n-a.e., and constants r > 0, K > 0 such that

(F5) Γo has a derivation property just like (F4) with n = 1 with respect to both com-

ponents,
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(F6) \\η\\2 = 1, η € \Jseu
 L2S> a n d ^ e L^

(F7) (Poincare-type inequality) for every / e Dom(£) Π L°°,

\2lr

σdm
f Γ o ( / , f)η2dm > { ί f - f fη2dm
Jx yjx Jx

(F8) for every / e Dom(£), we have Γo(/, / ) + ξf2 > 0 m-a.e.,

Γ(η, f) < χ(Γ 0(/, / ) + ξf2Ϋ/2 m-a.e.,

and

m-a.e.

Typical examples satisfying from (Fl) to (F8) are given in the section 5. We just

note here that if E satisfies (F1)-(F4) and Γ in (F3) is symmetric, and E satisfies the

Poincare inequality: £(/, /) > c\\f — fχ f dm\\\ for some c > 0, then (F5)-(F8) are

clearly satisfied by setting Γo = Γ, η = 1, χ = 0, σ = c, ξ = 0, r = 2, and K = 1.

Lemma 4.1. Let ε e (0, 1] and T > 0. 77z£?z ί/zere ^cwί5 56>m̂  constant

C(ε, T) > 0

f e L°° with 0 < / < 1 m-a.e. αnJ | | / | | i > ε.

Proof. The proof is a modification of that of Lemma 3.3.2 in [7]. Take q > 1

such that q/(q — l) e U and η e L2q/(q~ι\ {P*} is a positivity preserving, strongly con-

tinuous semigroup on Lq, as well as on L2. So, for some o?o, we can define α/?*/ =:

/α and fa e LqCλL2

+ for a > of0. We consider only α larger than of0. For t e (0, Γ], let

utOi - Pt*fa. Henceforth we suppress a for notational convenience. Take δ e (0, 1). In

the sequel, C, denotes a constant independent of / , α, ί, and 5. It holds that w, > 0

m-a.e., ||κ,||i = | | / | | i > ε and ||u,||2 < C\ exp(C20 for some Ci > 1 and C2 > 0. De-

fine ht = \og(ut+δ) + C3t — C4 and G{t) = fχ htη
2dm, 0 < t < T, where C3 and C4 are

chosen so that C3 > (l+/c)| |^ 2 | | i+(2//c)| |χ | |2, { d exp(C 2Γ)+l} 2exp(C 3Γ-C 4) < ε/2,

and sup{/χ(log(|g| + \))η2dm + C3T - C4 | \\g\\2 < Cx exp(C2Γ)} < 0. Then, G(T) < 0

holds. We first prove that G\t) = fx{A*ut/(ut + δ)}η2dm + C3. Fix t and let Φ(α) =

log(« + δ), a > 0. It is enough to prove that

-(Φ(ut+S) - Φ(κ,)) -> ^ - ~ - in L^ as s -• 0.

By the mean value theorem, there exists a measurable function vs(x) such that

Φ(ut+S) - Φ(ut) = Φ\vs)(ut+S - ut) m-a.e.,
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and vs{x) lies in the interval between ut(x) and ut+s(x) for m-a.e.x. Recall that ut be-

longs to the domain of Λ* on Lq. Then

(ut+s — ut)/s —> A*ut in Lq as s —>> 0.

Also, since ut+s —> ut in L 9 , every sequence {s^} converging to 0 has a subse-

quence {sk(i)} such that υSk(i)(x) —• ut(x) ra-a.e. as i -> oo. So we conclude that

(Φ(ut+S) - Φ(ut))/s -> Φ'(ut)A*ut = A*ut/(ut + δ) in Lq as s -> 0 from the domi-

nated convergence theorem. Note that Φ' is a bounded function.

To finish the proof of the lemma, define Ψn e C£°(R), « e N such that Ψn(β) = α 2

on [-«, n], ^n(a) / a2 as n -> oo, and V^^n > ^ > 0 everywhere. Then by (F3)

and (F4),

( 4.2 ) / ^ . . ( , , 4 . . ε ( .
JχUt+8 \ut+δ

= - / -Γ(η,ut)-- —Γ(ut,ut)\dm.
Jx[ut+δ (ut + δ)2 J

From the assumption (F8) and the inequality xy < (x2 + y2)/2, we have

and

Therefore, (4.2) exceeds

2 2

 2 1
-(Γo(wr, ut) + ξut) — (1 + κ)ξΨn(η) χ | dm.

By letting n —>- oo, we obtain that

Jx [ 8(M, + <5)2
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For n e N, let φn be a nonnegative function in C£°(R) such that φn(a) < I/(a + 8)

on [0, σo) and the equality holds on [0, ή\. Define Φn(a) = log8 + f£ φn(τ)dτ. Then

Φn e C£°(R) and

G\t) > ^ [ η2φniut)
2(Γo(ut,ut) + ξu2

o Jx

> ^ ί Γo(Φn(κ,), Φ«(«r) )^ 2 ^

n(ut)- / Φn(ut)η2dm (σ Λ \)dm

2/r

by the assumptions (F5) and (F7). Letting n -> oo, we have

r(0 > ̂  ( ί log(«f + 5) - ί log(M (σ Λ \)dm

2/r

= γ \ ί \ht-G(t)\r(σΛl)dm

Now, i f i G X satisfies that r + G(t) < ht(x) < 0, then

ht{x)
1 -

G(t)

ht(x) = 1 /Wi)\

A,(jc)-r 1-AίW/r " ^ V r )'

hence ht(x) — G(t) > — exp(ht(x)/r)G(t). Take a constant γ e (0, 1] and a measurable

subset Y of X such that m(X\Y) < εe~C4/4 and σ > γ on y. Then

(4.3)
m'-τ\L,,,^r

eht\G(t)\rydm
2/r

{r+G(t)<ht<O}ΠY

We evaluate the integral above, which is denoted by I(t). We have

I(t) > I ehtdm -miX\Y)

J{r+G(t)<ht<0}

> / ehtdm - I ehtdm - f ehι dm -
Jx J{ht>0} J{ht<r+G(t)}

I ehtdm = I iut+8)eC3t~C4dm > εeC3t~c\
Jx Jx

ί C
/ ehtdm = / iut + 8)eC3t~C4 dm

J{ht>0} J{(ut+δ)ec3t~c4>l}

{dm =

< \\ut



εe
< —
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,c3t-c4

and

eh'dm < er+G{'\
J{ht<r+G(t)}

Therefore

er+G(t) - — > - er+G(t).
4 4

If er+G(T) > εe-
c*β, then G(T) > log(ε/8) - C4 - r. Otherwise, /(ί) > εe~cη% for

every ί e (0, Γ] since G(0 is nondecreasing by (4.3). Then

G(t)2 =: C5G(O2, 0 < t < T.

This yields that (d/dt){-G(t)~1} > C5 for 0 < t < T. Combining with the fact that

G(t) < 0, we obtain that - G ( Γ ) " 1 > -G(Γ)- 1 +G(Γ/2)" 1 = f^/2(d/dt){-G(t)-]}dt >

C5Γ/2, so G(Γ) > -2/(C5T). Hence, in either case, G(T) > -C6 for some C6 > 0.

Since fχ(\og(uτ+δ))+η2dm < fχ(\og(uτ + l))η2dm < Cη for some Cη > 0, we get that

Γ,« + δ)).η2dm < C6 +C3T - C4 +CΊ.

By letting a f 00, then (5 φ 0, the proof is completed. D

REMARK 4.2. As is seen from the proof, we use (F4) only for n = 2. When η =

1, we need (F4) with only n = 1.

Proposition 4.3. Suppose moreover that £ is symmetric or η > 0 m-a.e. Then

Xpt(
£) > 0 for all ε > 0 αra/ t > 0. In particular, {Pt} satisfies (E).

Proof . F i x ε > 0 a n d t > 0. L e t f,geL°° w i t h 0 < / < 1, 0 < g < l m - a . e .

a n d H / l l ! > ε , | | g | h > ε. D e f i n e ή = / ] Λ l .

S u p p o s e t h a t E i s s y m m e t r i c . L e t K = fχ ή2dm. T h e n

f Ptf.gdm= [ Pt/2f P,/2S^ > # f Pt/if Λ/2g K-χή2dm.
Jx Jx Jx

Since K~ιή2dm is a probability measure, Jensen's inequality yields that

log ί Ptf gdm > log£+ f log(Pt/2f)K-ιή2dm+ f \og(Pt/2g)K-χή2dm
Jx Jx Jx
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> log K .

Hence

jf

Next, suppose that 77 > 0 ra-a.e. There exists α > 0 such that the measure of Z :=

{ή < a] is less than ε/2. Let Kf = fχ fή2dm. Then Kf > / χ χ z fa
2 dm > β2ε/2 =: ε'.

jfή2dm we haveχ

Since fχPtf >gdm> Kf fχ Pt*g Kjιfή2dm, we have

log / Ptf'gdm > \ogKf+ f \og(P;g)KJιfή2dm
Jx Jx

> logs'- ί\\og(P;g))_εf-ιη2dm
Jx

, ί)

Hence

REMARK 4.4. We also conclude that for every t > 0, Pt has the uniform positivity

improving property, defined in [1].

Next, we state another criterion of (E) for semigroups obtained by the Girsanov

transform, which has been already noted essentially in [1, 13].

Proposition 4.5. Suppose that {Pt} is a sub-Markovian semigroup on L°° and

has an expression

Ptf(x)= ί f(Xt)dPx,
JΩ

where (Ω, Xt, Px,x € X) be a Markov process on X. Let another Markovian semi-
group {Qt} be obtained by the Girsanov transform: for some Girsanov density Zt,
{Qt} is expressed as Qtf(x) = fQ f{Xt)ZtdPx. If χPt(ε) > 0 and Zt > 0 Pm-a.e.,

then χQt(ε) > 0. Here Pm( ) = fχ Px(')dm.

Proof. There exists a > 0 such that Pm(Zt < a) < χPt(ε)/2. Let B\ and B2 be

measurable subsets of X with m(B\) > ε and m{Bi) > ε. Then

/ Qt\Bχ lBl dm = f lB](Xt)lB2(X0)ZtdPm
Jx Jςi
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> a / lBι(Xt)lB2(X0)dPm-

^ aχpt(ε) D

5. Examples

Let X be a separable Banach space and H a separable Hubert space which is

densely and continuously embedded in X. We take the Borel σ-field T and assume

that the probability measure m on X has a full support for simplicity. Let TC^ be

the space of smooth cylindrical functions on X;

= {/ = F e C™(W\ eu...,ene

The //-valued gradient operator V on TC™ is defined by

We assume that (V, JFC£°) is closable as an operator from L2(X) to L2(X -> //), and

denote the closure by the same symbol. Let a be a measurable function on X taking

values in the space of symmetric bounded operators on H such that for some ε > 0,

a(x) >εlά m-a.e.x, and | |α | | o p e Lι. Then the bilinear form (£°, .FC£°) defined by

= ί
Jx

/.«€ τc%

is proved to be closable. Let the closure be denoted by (£°, Dom(£°)). We also assume

the following logarithmic Sobolev inequality: for some a > 0,

f f log (-/-Λ dm < aS°(f, /), / e Dom(f°).
»/χ \H/ll2/

Recall that this implies the Poincare inequality:

- I / - ί f dm I < S°(f, /), / e Dom(£°)
α II ix II2

and the associated semigroup decays exponentially in the L2 sense.

Let b be an //-valued measurable function. This is considered as a drift coeffi-

cient.

EXAMPLE 5.1 (cf. [5]). Suppose that \a~x/2b\H £ L2 and there exist some c e

[0, 1) and k\, k2 > 0 such that
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< kι (ε°(f, f) +11/H2,)172 (ε°(g, g) + \\g\\l)1/2, f,s e vom(ε°),
IX

a n d

f + k2\\f\\l f e Dom(f°).

For example, this is satisfied when exp(θ\a~ι/2b\2

H) e L1 for some θ > a (cf. [10,

Proposition 3.4]).

Then a bilinear form (£, Dom(f)) defined by

\g)= / {(flV/, V g ) H - (fc, Vf)Hg} dm, f , g e D o m ( £ : ) = D o m ( 5 υ )
Jx

satisfies (F1MF8) in the section 4 with Γ(/, g) = (flV/, Vg)H-{b, V f)Hg, Γo(/, g) =

(αV/, Vg)//, ^ Ξ 1, χ = 0, σ = 2/α, ξ = |fl~1/2fc|^/2, r = 2, and /c = 1/2. From

Proposition 4.3, the associated semigroup {Pt} satisfies (E). Moreover, since the in-

equality

/ /2 l°g(Vτ^ ) dm Z τ^z{£(f,f) + k2\\f\\2

2}, feΌomiS)
JX

holds, the resolvent operators are bounded ones from L2 to L 2 logL. Since the semi-

group is analytic (see [14, Corollary 1.2.21]), we can apply Lemma 2.2 to conclude

that Pt satisfies (I) for every t > 0. Hence, from Theorem 3.6, the following inequal-

ity holds: for some M > 0, 8 > 0, and p e L2,

jPtf - ί fpdml < Me-δt\\f\\2, f e L\ t > 0,
II Jx II2

and pdm is an invariant probability measure for {Pt}.

EXAMPLE 5.2. Suppose that (£°,Dom(£0)) is quasi-regular and exp(θ\a~ι/2b\2

H) e

L1 for some θ > α/4. Fix p > 1 such that θ > a/4 p2/(p — l)2. In the same way as in

[10, sections 2, 3], we can construct a conservative Markovian semigroup {Pt} associ-

ated with a formal generator -V*αV + (l?, V )# by using the Girsanov transformation.

{Pt} turns out to be strongly continuous on Lp and satisfies (I) for every t > 0 from

a similar argument to that in [10, Proposition 3.1] and Lemma 2.2. Also, {Pt} satisfies

(E) from Theorem 3.6 and Proposition 4.5. So, from Theorem 3.6, there exist some

M > 0, δ > 0 and p e Lp/(p~l) such that

- / , •

Ptf- / fpdm < Me-" 11/11 _, / € L " , ί > 0 ,
p
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and p dm is an invariant probability measure for {Pt}.

Lastly, we remark some symmetric cases.

EXAMPLE 5.3. Let M be a compact, simply connected Riemannian manifold. Fix

x e M. The path space and the based loop space over M are defined by PX(M) = [γ e

C([0, 1] -> M) I y(0) = x} and LX(M) = {γ e C([0, 1] -> M) \ y(0) = γ{\) = x}. We

can define the Brownian motion measure μx on PX(M), the pinned Brownian motion

measure vx on LX(M), the gradient operators V ( P ) and V(L) on each space, and the

natural Dirichlet forms £{P) and Z(L) by

See e.g. [1] for the detail. Let the associated semigroups and the resolvents be denoted

by P^P\ R^p\ etc. It is known that £ ( P ) satisfies the Poincare inequality (and more-

over, the logarithmic Sobolev inequality; see [8, 2, 11, 12]). So χp(P)(ε) > 0 holds for

all t > 0 and ε > 0 from Proposition 3.4. Note that a slightly weaker assertion is men-

tioned in [1]. From Theorem 5.2 in [1], £ ( L ) satisfies (i) in the remark in the end of

the section 3. Hence its generator has a spectral gap at 0 if and only if some Pf

( (or

(aR^L))n) satisfies (I). But whether this property holds or not is yet to be investigated.
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