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1. Introduction

The characteristics of an elastic isotropic stratified strip Ω = {x = (x\,X2)', X2 Ξ

(0, L)} C M2 are the density p and Lame coefficients λ and μ, that we assume to be

measurable functions, depending on X2 only, and bounded from below and above by

two positive constants. We shall derive a limiting absorption principle (LAP) and a di-

vision theorem for the selfadjoint operator (D(A), A) (see (2)) associated with Ω with

Dirichlet and free surface conditions on [xj = L] and {x2 = 0}, respectively. These

boundary conditions come from a model of a seismic problem. For other studies deal-

ing with elasticity in different situations see for instance [7] and [12].

Roughly speaking, a LAP means that the resolvent operator z —> RA(Z) •= (A —

zld)~ι can be extended continuously to the essential spectrum (a part of the real axis)

in suitable topologies. It is an important stage in scattering theory (cf. [1]). A division

theorem enables to deal with a perturbed or a multistratified strip (cf. [3]).

A multiplication operator in Θ°°L2(1R) := {(/")„>!;Σ°° l l/Ίl£ 2 ( R ) < oo} by a fam-

ily of functions μn, n > 1, is defined by

j V{M) = {(/")„>! € θ°°L 2(R);(μ I I/
Λ)π> 1 e Θ°°L2(M)}

[M(r)n>! =(μnf
n)n>ι.

As we will see A is unitarily equivalent to M with μn being the dispersion curves λn

of Λ. Such a result holds for other differential operators, in particular for the acoustic

operator B (cf. (9)) studied in [4] and [5]. But it is the first time that the following

original phenomena are proved (cf. [3], ch.5 and ch.7). They do not take place in the

acoustic case.

I The functions λn are not necessarily monotonic on M+.

• One can have λ^O) = λ;"(0) = 0 in addition to λ^(0) = 0.

One of our objectives is to show the spectral consequences of these phenomena and

illustrate the fundamental difference between the elastic and the acoustic cases.



578 T. BOUHENNACHE

Unlike the acoustic case the main difficulty is that there is little information about

the functions λn so deriving a LAP and a division theorem was carried out by proving

only some general properties for these functions. This suggests to study M in the ab-

stract framework taking these properties as hypotheses. This can then be directly used

in dealing with other differential operators, which is another objective of this paper. In

this framework functions μn are allowed to be non-monotonic on M+ and μ!n can have

roots with arbitrary orders. The richness of the elastic case, as (V) shows, justifies this

framework and proves that it applies to concrete problems.

1.1. Definition of A and dispersion curves λw, n > 1 The differential

operator of linear elasticity in an isotropic medium in R2 is given by (v4u)/ =
2 i ^ . ^ 7 ( u ) where

Oij(u) = λ(V u)8ij + 2με ί7(u), with ε l7(u) = - ί — + — j , 1 < i, j < 2,

and u = (u\,u2) is the displacement field. The function u belongs to H](Ω, C2), so

that σ,7(u) e L2(Ω), and Λu can then be understood in the sense of distributions.

It is well-known that the trace U\X2=L belongs to //1 / 2(R, C2). If in addition Λu e

L 2(Ω,C 2) then (σπ(u), σ/2(u)) e H(Ω, div), / = 1,2, (cf. [6], ch.9, p. 239) so

,̂•2̂ )1̂ =0 makes sense in #~ 1 / 2(M). Denote V = {u e Hι(Ω,C2)\ulX2=L = 0} and

H the Hubert space L2(Ω, C2) with the inner product (u, \)H = / Ω Σ i uϊϋϊpdx. The

operator Λ is defined by

f V(A) = {u e V; Λu e H, σ 1 2 (u) k 2 = 0 = σ22{u)\X2=Q = 0},
(2)

[ Λu = ̂ u , Vu G V(A).

It is selfadjoint in H. Indeed, taking the boundary conditions satisfied by u e V(A)

into account and integrating by parts we obtain

(3) (Λu, y)H = a(u, v) := j | λ(V u ) ( V ^ + 2μ J^eιv(u)M^l dx, Vv e V.

One can build, as in [11], a suitable extension mapping from V into Hλ(M},C2) and

deduce a Korn inequality:

3c> 0 such that a(u, u) + | |u | |^ > c| |u| | 2 , Vu e V.

This, in other words, means that the bounded hermitian form a( , •) is coercive over

V. Using (3) we prove that Λ is the selfadjoint operator associated with a( , •) (see

[9], ch.6, 2.1; or [6], ch.6, p. 1205).

The partial Fourier transform T is defined, for all u e H, by
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, x2) = Π.m.(2τrΓ1/2 ί u(xu x2)e~ipx'dxu a.e. (p,x2) e Ω,
JR

and is unitary from H onto //. Since /), λ and μ, depend only on x2, the operator

A := TAT~X, which is unitarily equivalent to A, is the direct sum, as in [7], of the

field of reduced operators: A = fR Apdp. The operators Ap are defined as follows.

Denote

Λ» = - -
dx2 dx2 \ dx2

9 . du\ d / Λ JM2 . , \ I
—pμ,u2 + ipμ + I (λ + 2μ) + ιpλu\ I /

dx2 dx2 \ dx2 J /

V = {u e H\(0, L), C2);u(L) = 0} and H the Hubert space L2((0, L), C2) with the

inner product (u, v)^- = f0 J^ 2 u(vlpdx2. We have

= uey V ^ ^ ί ^+ipuΛ = 0, (ϊλpm +(λ + 2μ)^ ) =θ),

Λ^u = ̂ u , Vu G

As for A we prove that Ap is selfadjoint. In fact, for u e V(AP) we have

(5) (Apu, \)π =ap(u,\)

:= / λ (ipu\ + — - ) (ipvγ + —^ ) + 2μ(ipuι)(ipvι)
Jo V d*2/ \ J x 2 /

du2 dv2

ιpυ2
dx2, Vv G V.

dx2dx2 *~yr~* dχ2J yr~* ^

Using inequality lab < εa2 + b2/ε we verify

(6) Ξ c > 0 , | | u | | ^ < c ( l + / ? 2 ) | | u | | ^ +£^(11,11), V U G V .

Thus ap( , •) is coercive and we check, using (5), that Ap is the associated selfadjoint

operator. The compactness of embedding V ^ H implies that the resolvent (Ap —

zh)~λ is compact from H into H.

Thanks to (5) we extend the definition of ap( , •) to all p e C and obtain a selfad-

joint holomorphic family of type (a) (cf. [9], ch.7). The associated family of operators

Ap, p G C, is thus selfadjoint holomorphic of type (B). Applying Remark 4.22 of

ch.7 in [9] we infer the existence of two families of analytic functions on R, namely

p —> λn(p) G R, p —> Wn(p) G 77, n > 1, such that, for all p G R, [λn(p)\ n > 1}

are the repeated eigenvalues of Ap and [Wn(p)\ n > 1} a corresponding orthonormal

basis of eigenvectors.

For all u G V(AP) we then have
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(7) Apu = Σ λn(p)(u, Wn(p))πWn(p),
n>\

and A is recovered this way since TAT~X = fR Apdp. In fact, consider the transfor-

mation F : H — > Θ°°L2(R) defined by F u = (/")„> i where

(8) fn(p) = (2πΓι/2U.m. ί Y uj{xx, x2)Wrj(p, x2)e~ipx>pdx, a.e. p e R,
JΩ j=ι

with Wn(p) = (W*(p, •), W2(/?, 0). Using the fact that T is unitary and that Wn(p),

n > 1, is an orthonormal basis we check that F is unitary. On the other hand from

(7) we verify that A - F~ιMF, with μn = λn in (1). For details see [3], ch.4.

1.2. Comparison with the acoustic case and consequences of properties

The approach is similar for the operator B associated with the acoustic strip:

ί V(B) = {ue Hι(Ω); V C2Vu e L 2 (Ω), ulX2=L = 0, C2dX2ulX2=0 = 0},

Bu = -V

We verify that for every /?, the reduced operator Bp is the self adjoint operator associ-

ated with the hermitian form

apB(u,v):= / C 2 — - — - d x 2 + p2 / C2uvdx2.Jo dx2 dx2 Jo

The eigenvalues and eigenvectors of the operators Bp are represented by two families

of analytic functions: {Xn^)n>\ a n d (Wn^)n>ι, and we have (cf. [9], ch.7, 4.7)

L

2\» [ C2\Wn,B\
zdx2, V/7GR.

Jo

Here α^ β ( u , u) is obtained by taking the derivative of p — > ap,B(u, u) for every fixed

u. It is thus clear that λ'n B(p) > 0 for p > 0, and that λ£ B(0) φ 0 for all n. In other

words, (V) does not hold in the acoustic case. In elasticity

(10) ^(p) = a'p(Wn{p), Wn{p)\

with

pL / rfΊί rjΊί \ pL

dx2,

and one can see that we have not necessarily λ'n(p) > 0, for p > 0, nor λ^(0) φ 0.

In fact, we prove (V) in the homogeneous case (i.e. p, λ and μ, constants) with the

fll(u,u) = 2 ί RJk^iuι+μ^-iu2)dx2 + 2p [ ((λ
P Jo V ^-^2 ^ 2 J Jo
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help of a mathematical formal-calculus software. For instance, with L = p = μ, = 1 and

λ = 7 there exists n > 1 such that λ^(0) = —10 so λn is not monotonic on M+ since,

as we will see, λn(p) —> +oo, as p —>• +σo.

In general we prove, see Theorem 2.5, a "global symmetry" property: for every

n there exists n' such that λn(—p) = λn>(p) for all p. One can easily check that the

eigenvalues λn(0), n > 1, of Ao are at most double. If λn(0) is simple then λn is sym-

metric so λ^(0) = 0. For double eigenvalues we have λ;(0) = -λ^(0). If λ^(0) Φ 0

then one of the functions λn or λn> is not monotonic on R+. In the homogeneous case

we prove that this is the case if λ/(λ + 2μ) ^ 1/4. Clearly, the associated dispersion

curves intersect at p = 0.

The non-monotonicity is not only related to double eigenvalues of Ao In fact, we

prove numerically that λn may be non-monotonic on R+ even though the eigenvalue

λn(0) is simple, and that the dispersion curves can intersect for p φ 0. For more details

see [3], ch.5 and ch.7.

In the acoustic case the thresholds were defined as the eigenvalues λπ?#(0), n >

1, of the reduced operator BQ. They are values where a LAP for B is not valid if

the resolvent (B - zhY1 i s considered as an element of B(L2

Sχ(Ω), L2_S2(Ω)) (cf. [4]),

where L^(Ω) denotes the weighted space with ||W||LJ(Ω) = 11(1 + X2Y/2U\\L2(Ω) On the

other hand, the set of thresholds in the elastic case, i.e the set of critical values for

obtaining a LAP, is

(11) Γ = {λ0 e R; 3/?0 e R and n > 1 such that λ0 = μn(po) and μf

n(po) = 0}

with (μn) = (λn). A first consequence of (V) is that Γ does not coincide with the set

of eigenvalues of Λo unlike the acoustic case. Indeed, double eigenvalue of Ao are not

always thresholds, and if λ'n(po) = 0, with p0 φ 0, then λn(po) is not necessarily an

eigenvalue of Ao.

The second consequence of (V) concerns a LAP at thresholds for the selfadjoint

operators Aς£ and A ^ (see (21) and (20)), needed in dealing with a multistratified

strip (cf. [3], ch.4 and ch.6), associated with the half-strip

(12) Ω * : = { X G Ω ; ( - 1 ) * J C I >0}, ik = l,2.

In fact, for the acoustic case the LAP, which is not valid at thresholds for the strat-

ified strip, becomes valid at all thresholds for some multistratified strips (see [4] and

[2]). This is the main result in [2] and the proof there uses the validity of a LAP at

thresholds for the half acoustic strip, in which the property λ^ B(0) φθ is essential. In

elasticity we prove the validity of a LAP at only some particular thresholds for A ^

and AβS, and the non-validity at the whole set of thresholds unlike the acoustic case.

1.3. Abstract framework We shall say that a mapping z —> R(z), defined

from C ± \ Γ into a Banach space F, where Γ C R, is locally δ-Holder continuous
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(δ w i l l a l w a y s b e a p o s i t i v e n u m b e r ) i f f o r a l l c o m p a c t ^ c C \ Γ t h e r e e x i s t s a c o n -

s t a n t c > 0 s u c h t h a t \\R(j/) - R(z)\\γ < c\z' - z \ \ f o r a l l z f , z e K Π C ± .

For f = (fn)n>\, g = (gn)n>\ and a family of real functions μn, n > 1, put

In deriving a LAP we shall prove a local Holder continuous estimate for z —>

RM(Z) := (M - zld)~ι- Since (/?M(z)f, g) = Σ ^ i bw(z), it amounts to deriving the

Holder continuous estimate for this infinite sum. To be able to use this part of the

work in dealing with other operators it is advisable to carry it out in an abstract frame-

work. The latter consists in supposing that

l (μn)n>\ is a family of functions, not necessarily (λn)rt>i, satisfying certain hy-

pothesis (HI).

2. f and g belong to suitable spaces Ys, where the family Ys, s > 0, satisfies an-

other hypothesis (H2).

In the applications we are interested (see the last section) in a class of selfadjoint

differential operators with analytic and real dispersion curves, this is why we assume

that μn are real and regular. On the other hand, assuming that \μn\ goes uniformly to

infinity as n —>• oo, permits to treat separately the terms bn(z) instead of their infinite

sum. Also, supposing that, for every n, \μn(p)\ —> oo, as p —• oo, and that the roots

of μ!n is a discrete set implies that Γ is also discrete. It is then natural to put

I lim (inf \μn(p)\) = oo; and lim (\μn(p)\) = oo, Vn > 1.

• Vn > 1, the roots of μ'n have finite orders and form a discrete set.

The fact that the roots of μ'n have finite orders permits to define appropriate spaces for

obtaining a LAP at thresholds. Hypothesis (HI) is obviously fulfilled in the acoustic

case knowing that λnB(p) > λnβ(0) for all p, and λnβ(0) —> +oo, as n —• +oo. The

proof, as we will see, is much less easy in the elastic case.

For the local Holder continuous estimate of (13) we need local Holder continuity

of p —> fn(p)gn(p). This is why we introduce the second hypothesis below which

enables to use some interesting properties of the elements of Sobolev spaces HS(W)

such as Holder continuity.

• Vs' > s > 0, the embeddings Ys> ^ Ys ^ Θ°°L2(R)

are continuous with dense ranges.

• V0G C£°(R), n > 1, the mappings

(Λ)*>i i—• Φfn and / h ^ (δk

nφf)k>u

defined respectively from Ys into HS(R), and from

HS(R) into Ys, are continuous.

(H2)

In the proof we will indicate more precisely how (HI) and (H2) are needed.
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Denote Hs the weighted space with the norm \\U\\HS •= 11(1 + X\Y^2^\\H- F° r t n e

elasticity Ys will be F(HS) (cf. (8)), with ||f||yί := \\F-ιΐ\\Hs, and (μn) = (λn). We

will see that (HI) and (H2) are satisfied, so the Holder continuous estimate for z —>

RA(z) follows since \\RA(z') - RA(Z)\\B(HS],H-S2) = \\RM(Z') - RM(Z)\\B{YSI,Y_S2).

This paper is organized as follows.

In Section 2 we prove the validity of (HI) and (H2) in elasticity, and give a

"global symmetry" property satisfied by λn and Wn, n > 1. We study in Section 3 the

operator M in an abstract framework. In Section 4 we apply these results to A and

propose a procedure to study other differential operators. We finally prove the validity

(at some thresholds) of a LAP for A%£ and A^\ as well as its failure.

ACKNOWLEDGEMENT. This paper is based on a part of the author's doctoral thesis.

The author would like to express thanks and appreciation to his advisor Yves Dermen-

jian.

2. Validity of hypotheses (HI) and (H2) in the elastic case and some symme-

try properties

In Theorem 2.2 (resp. Theorem 2.3) we prove that the family (λn)n>i (resp.

F(HS), s > 0,) satisfies (HI) (resp. (H2)). Then we define the operators A ^ and A$ξ

and give a property in Theorem 2.4. In Theorem 2.5 we prove a symmetry property

satisfied by (λΛ)π>i and (Wn)n>\.

We need the following lemma.

Lemma 2.1. If a continuous function f satisfies

(14) f{p)<apλ + bp + ε Γ f(τ)dτ, Vpel+,
Jo

where a, b, ε > 0, then

(15) /(/?) < -(eεp - 1) + 2a ( ^ + -Λeεp - X)\ , Vp e R+.
ε \ ε ε2 )

The proof uses GronwalΓs lemma.

Theorem 2.2. The family (λn)n>ι satisfies (HI).

Proof. We first prove that there exists a constant CR- > 0 such that λn(p) >

c\_ p2 for all p e R, n > 1, and after that inίpe^λn(p) -> +σo, as n ^ +oo. This

will complete the proof knowing that λn is analytic.

We use spectral properties of an elastic homogeneous half-space in R2 (with

constant density p0 and Lame coefficients λ0 and μ 0) with a free surface condition
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on X2 = 0. The corresponding reduced operators Ap, p e R, are defined exactly

as Ap\ it suffices to replace L by +00 and (p,λ, μ) by (p0, λ0, μo) For fiχec*

/?, Ap is the selfadjoint operator, in the Hubert space L2(M+, C 2, p^dxi) equipped

with (u, v)L2(K+ ?C2,Podx2) = /R+ Σ i UiϊJΐpdx2, associated with a hermitian and coercive

form ap( , •) defined on H\R+, C2). The spectrum of Ap (cf. [7]) is {4>Po>λo^o/?2} U

[μo/?2//oo,+oo[ where cR^Q^QφQ > 0 is the propagation velocity of Rayleigh waves.

The extension u of u e V by zero belongs to Hι(R+, C2) and we have ap(u, u) >

βp,λ-,At_(u,u) and | |u | |^ < | | U | | L 2 ( R + ) C 2 7 M J C 2 ) , where p+ = ess sup/), λ_ = ess infλ and

μ_ = ess inf μ,. Denoting cR- := cR,p+±_φ we have

ap(u,u) aP,λ.,μ _(u,u) 2 2

hence

(16) λn(p) > inf a?

 2

U > c 2 _ p2, Vp e R, rc > 1.

It remains to prove that

(17) Vm > 0, 3Nm e N such that n > Nm => λn(p) > m, Wp e R.

We shall use (10). Thanks to inequality lab < ε\a\2 + \/ε\b\2 we verify that

|β^(u, u)| < ε| |u| |y + (c|/?| + Cg)||u||^-. Moreover, from (6) and inequality (16) we get

llull2^ < c\ ||u||2^- + C2«p(u, u). The combination of the last two inequalities (we suppose

c2 = 1 since ε can be replaced by ε/c2) yields \a'p(u, u)| < εap(u, u) + (c\p\ +cε)||w||2^-.

Replacing u by Wn(p) in (10) we obtain |λ^(/?)| < c\p\ + cε + ελn(p) so that

^ ( τ )| λ π ( / 0 - λ π ( 0 ) | <

< - p 2 + (cε + eλn(0)) p + ε / |λn(τ) - λπ(0)| dτ.
* Jo

Applying Lemma 2.1 to f(p) = \λn(p) — λn(0)|, with a = c/1 and b = cε + ελn(0), we

get

(18) \λn(p) - λπ(0)| < λπ(0) (eβ* - 1) + j ( ^ - 1) + c Γ ^ + ^

In view of (16) we can suppose, in order to prove (17), that 0 < p < Po :=

mι/2/cR- + 1. Take ε > 0 small enough that eεP° - 1 < 1/2. We have

Ξ m\ Wp e [0, Po]
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Then inequality (18) gives

λn(p) > K(0) - \λn(p) - λn(0)| > ^ - m\ V/7 e [0, Po],

which ends the proof since λn(0) -• +oo, as n —• +oo. D

Theorem 2.3. The family F(HS), s > 0, raίw/kw (H2).

Proof. We will only prove the continuity for the mapping f = (fk)k>\ ι—> Φfn>

Let f = F u with u = £/=i gi(x\)Ui(x2) e 5 0 H where {u, ;ι = 1,...,Λ^}, is an

orthonormal family in the Hubert space H and S = <S(R) is the Schwartz class. Clearly

l/2

(19) ||f||F(Hv) = | |u | | f t = ί X ] Ilg/H2

L?(R) j = \T \\fgi\\2

Hsim J

For all n > 1, we have

TO?) = (2π)"1 / 2 / ^gi(xi)(u f , Wnip))^-^ dxx = Σ(uh Wn(p))π(fgi)(p).
j R

 I=1 f=l

It is well-known (cf. [13], Proposition 25.1) that for all ψ e S and h e HS(R)

the product ψh belongs to HS(R) and we have, with k = E(s) + 2 and E(s) de-

noting the smallest integer such that E(s) < s < f'ί.y) + 1, the following inequality

\\ψh\\Hs(R) < C5llVΛll///t(iR)ll̂ ll//ί(R) Combining this inequality and equation (19), with

ψ = φ{Ui, Wn(p))π and h = Tgi, yields

Using the fact that u/, / = 1, . . . , TV, is orthonormal we verify that c is independent

from f. Thanks to the density of S (8) H in /f5 the last estimate is valid for all f e

F(HS). D

Denote SSA and 5 A S the unitary transformations on H defined by SSA(u\,u2) =

(u\,—U2) and SAS = —SSA. Denote also HSA (resp. HAS) the subspace of functions

(u\,U2) such that u\ is symmetric (resp. anti-symmetric) and u2 is anti-symmetric

(resp. symmetric). The orthogonal projections u1 on HSA and u 2 on HAS of u are
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given by

, u(xw) + SSAu(-xι,.) A 2( . u(xu-) - SSAu(-xw)
u(x i , ) = , and u ( * i , ) = r

The symmetry of our problem makes that A is reduced by HSA and HAS (cf. [9],

ch.5, 3.9), and it is thus the direct sum of the operators AS A and AAS defined as fol-

lows:

AS Au = Au, Vu G D(AS A) = HSA Π £>(A),

AA Su = Au, Vu G £>(AAS) = HAS Π £>(A).

Thus for all z € C^1 we have

| |*A(Z)U|& = II^ΛSAωu1!^ + \\RAAS(Z)U2\\2

H.

We shall now see that AS A and AAS are, respectively, unitarily equivalent to the oper-

ators A | A and A^fk defined as follows. Recall that Ω^ is the half-strip defined in (12).

Denote

V£A = {u = («,, i*2) e Hι(Qk, C2);ulX2=L = u2]X]=0 = 0},

VAf = {u = («,, κ2) G //^Ω,, C2);u,X 2 = L = Mi,Xl=0 = 0}.

One sets

ί ^(A| A ) = (UG V^fMu G L2(Ω,, C2), σi2(u)|Λ2=0 = ̂ ( u ) , ^ = σπ(u),Xl=o = 0},
1 A^Au = .Λu, Vu G P(A|A),

ί V ( A ^ = { u e V£>Λu e L2(Q^ C 2 ) ' σi2(u)|,2=0 = σ22(u)|X2=0 = σ2i(u),Xl=0 = 0},

These operators are selfadjoint in the Hubert space //Ω/t = L2(Ωk, C2) equipped with

the inner product (u, v)#Ω = fΩ Σ\ ui

Theorem 2.4. The operator A^A (resp. A ^ ) w unitarily equivalent to AS A

AAS).

Proof. For a given function u defined on Ω^ denote by UfA\x (resp. UASύ) the

function equal to u/\/2 on Ω ,̂ and to 5SAu(—JCI, JC 2)/V2 (resp. 5ASu(—JCI, x2)/\/2)

on Ωfc/ with A:r = 3 — k. We verify that UfA (resp. ZYAS) is a unitary transformation

defined from Hςιk onto //S A (resp. //A S) and that

(22) A| A = <μξArιASAUΪA

9 (resp. AA^ = φί™)-1 A^UJ?). D
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Let us now give the consequence on (λπ)n>i and (Wn)n>\ of the symmetry of our

differential problem. The operators Ap and A-p are unitarily equivalent, in fact

ί V(A-p) = SSAV(AP) = SASV(AP)

\ A_p = SSAAp(SSArι = SASAp(SAS)-].

One can verify that the eigenvalues of Ap, in particular for p = 0, are at most

double (for the details see [3], ch.5, 4.2). Denote H (resp. H ) the subspace of

the functions u = (u\,U2) £ H such that ui - 0 (resp. u\ = 0). These subspaces

reduce AQ which is then the direct sum of the corresponding operators AQA and AA S.

We check that ΛQA and AAS have simple eigenvalues and that an eigenvalue λn(0) of

Ao is simple if and only if it is an eigenvalue of only one of these operators.

Theorem 2.5. For all n there exists n' such that λn(—p) = λn>(p) for all p.

If λn(0) is a simple eigenvalue of AQ then the function λn is symmetric. If λn(0) is

an eigenvalue of AQA (resp. AAS) we can choose Wn such that Wn(—p) = SSAWn(p)

(resp. Wn(-p) = SASWn(/?)), for all p e R. In this case, for all u e HAS := Hs Π HAS

(resp. u e //5

SA := HSΠHSA), s > 1/2, Fu - (fk\>\ is such that fn is anti-symmetric.

Proof. To prove the first assertion we suppose that λn(0) is a simple eigenvalue.

The case where λn(0) is double is handled in a similar fashion.

According to Kato [9], ch.7, there exists ε, η > 0 small enough such that λn(p) is

the unique eigenvalue of Ap in (λn(0)—ε, λn(0)+ε) for \p\ < η. Denote by λn the func-

tion p —> λn(—p). Since A-p is unitarily equivalent to Ap, λn(p) is an eigenvalue of

Ap and necessarily coincides with λn(p) for p sufficiently small, and thus everywhere

because of the analyticity. Therefore λn(—p) = λn'(p) for all /?, where n' = n, and λn

is symmetric.

Denote Qn(p) the orthogonal projection associated with the eigenvalue λn(p).

Since λn(0) is simple and according to [9], ch.7, the mapping p —> Qn(p) £

B(H) is analytic in a neighborhood of 0, and in view of (23) we have Qn(—p) =

SSAQn(p)(SSA)~] = SASQn(p)(SAS)~ι. Suppose up to the end of the proof that λn(0)

is an eigenvalue of AQA. Take an associated eigenvector vo £ HSA with λn(0) and de-

fine the function p —> \(p) := Qn(p)vo £ H which is analytic and does not van-

ish in a neighborhood of 0. Thus, in this neighborhood the function p —> W(p) :=

v(p)/\\V(P)\\~H ^s well-defined, analytic and ||tV(/?)Hτ/= 1.

Since v0 e HSA we have (5'SA)~1Vo = v0, therefore

W(-P) - Q n ( p ) V o - ^ ^ ( P X ^ Γ V Q _ Sy(p) _ sSA

\\QΛ-P)VO\\-H \\SSAQ(p)(SSA)-'\\\ \\S*SV(p)\l

The function W can be continued analytically along the real axis (cf. [9], ch.7). This

continuation, denoted Wn, obviously satisfies Wn(—p) - SSAWn(p) for all p.
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If u e Hs with 5 > 1/2 we verify (cf. (8)) that the integral

(24) fn(p) = (2πΓι/2 ί <u(*i, •), W^p))^*™ dxu Vp € R,
JR

with Fu = (fk)k>\, is convergent. Using the variable change x\ —> —x\ we obtain

(25) fn(-p) = (2τr)-1/2 ί (u(-Xι, •), Wn{-p))Έe-ipx^ dxλ.
JR

Clearly, for u e HAS we have 5ASu(—x\, •) = U(JCI, •)• Since λn(0) is an eigenvalue of

AS

O

A we have SASWn(-p) = -SSAWn(-p) = -Wn(p). Knowing that 5 S A is unitary we

thus have

(u(-*i, •), Wn(-p))π= (SASu(-xu •), SASWn(-p))π=-(u(xu •), Wn(p))π.

Therefore, in view of (24) and (25), the function / " is anti-symmetric. D

3. Multiplication operator M in 0°°L2(1R) and unitarily equivalent opera-

tors to M

We suppose that (μn)n>i (resp. Ys, s > 0) is an arbitrary family of functions (resp.

spaces) satisfying hypothesis (HI) (resp. (H2)). It is well-known that the multiplica-

tion operator M defined by (1) has an absolutely continuous spectrum (cf. [14]) and

that its spectral measure EM can be explicitly given. In this work we derive a LAP

outside thresholds (cf. Theorem 3.3), and at thresholds in appropriate spaces (cf. The-

orem 3.5), as well as a division theorem (cf. Theorem 3.7).

This enables to deduce similar results for any self adjoint operator D in a Hubert

space Z°, unitarily equivalent to such a M. More precisely, suppose there exists a uni-

tary transformation U : Z° —> Y° such that D = U~XMU. Then D has an absolutely

continuous spectrum and its spectral measure, Ep, is given by ED = U~1EMU. Using

the spaces Zs := U~ι(Ys) a LAP for D and a division theorem is directly derived.

We need the following lemmas.

Lemma 3.1. Let k > 0 be an integer and s > k+ 1/2. Any f e HS(R) is Holder

continuous and belongs to Ck(M) Π L°°(R). More precisely, there exist two constants

c(s) and c(s, 8), with 0 < δ < min(l, s - 1/2), such that

\f(p)\ < Φ)\\f\\H'(R)> \f(Pf) ~ f(p)\ < Φ, δ)\p' - p\*\\f\\H'(m> v^> P' e R

Let J i , j 2 > 1/2 and f = ( / π ) π > i e Ys\ g = (gn)n>ι e Ys\ According to (H2), fn

and gn belong locally to HS](R) and HS2(R), respectively. Then by the last lemma for

φ e C£°(R) and δ < min(l, s\ - 1/2, s2 - 1/2) there exists a constant c > 0 such that

(26) Mp')fn(p')gn(p') ~ Φ(p)Γ(p)gn(p)\ < c\p' -
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Lemma 3.2. Let I be a compact interval of R and h a δ -Holder continuous

function on I, δ e (0, 1):

3C(A), |λ(μ') - h(μ)\ < C{h)\μf - μ|δ, Vμ', μ e 7,

vanishing at the end points of I. Then, for all compact K C C, the function

is δ-Holder continuous on K Π C±m. there exists a constant c, independent of h, such

that

\b{z\ h) - b(z, h)\ < cC{h)\z' - z\δ, Vz', zeKDC*.

For all μo € / we have

(27) lim b(z) = p.v. I dμ ± iπh(μ0).
±imz°>0 ^ ^ ~ ^°

For the proof we refer to Gakhov ([8], ch.l, 5) or Muskhelishvili ([10], ch.2, 22).

To apply the last lemma we shall invert locally the functions μn, n > 1, thanks to

variable changes, and use (26). To do so we fix an enumeration pi, j e Jn C Z, of

the roots of μ'n which form a discrete subset of R by (HI). We set p® to be the root

of μ'n, if it exists, with smallest modulus (if there are two roots with opposite signs

and the same modulus we take the positive one). Then denote px

n (resp. p~ι) the first

root greater (resp. less) than p®, if it exists, and so on. The roots are thus pi, j e Jn.

If μ'n does not vanish, that is Jn = 0, we set p® = — oo and p\ = +00.

If 7n,maχ •= max Jn < oo we set pJ

n

n'max+ = +00. Similarly, if jn,mm •= r n i n j ^ >

—00 we set pj" ™™-1 = — 00. Let us define Jn as follows: (1) Jn = {0} if Jn = 0, in

this case pQ

n = - 0 0 and p\ = +00. (2yjn = Jn U {jn,mm - 1}, if 7n,min > - 0 0 . (3)

Jn = Jn, otherwise. Thus, for all j e Jn, μn : (pJ

n, pi+l) — > U := μn((pi, pi+l)) is
C°° diffeomoφhism, we denote Pn its inverse.

3.1. Limiting absorption principle outside thresholds For all s > 0, denote

Y~s the anti-dual of Ys. Identifying Y° to its anti-dual and using (H2) we verify

that the embeddings YS] H F° H Y~Sl are continuous and have dense ranges for

all s\,S2 > 0. For all z G C^, RM(Z) can then be considered as an element of

B(YS], Y~Sl). Likewise, RD(Z) can be considered as an element of B(ZSι, Z~S2).

Theorem 3.3. Let sus2 > 1/2. The mapping z — > RM(Z) e B(YS\ Y~S2\ de-

fined on C±, can be extended continuously to C ± \ Γ. This extension, denoted R^(z),

is locally δ-Hδlder continuous, δ < min(l, s\ — 1/2, s2 — 1/2).
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The precedent assertion holds when we replace M by D and Y by Z.

For all μQ € M \ Γ, / = (/")„>! e Ys> and g = {gn)n>x e YSl, we have

± 1 1 _l_ \ Λ J 7 V Is )K \ Is I

\AO) \nD(μ0)U ιf,U ιg) = {Rt(μoy,g) = > p.v. / — — dp
~( JR βn(p) ~ Mo

(29) ±in Σ ΓiPώ^ώ

Proof. L e t K c C^ 1 \ Γ b e a c o m p a c t set, w e shal l p r o v e t h a t t h e r e ex i s t s c-cκ

s u c h t h a t

( 3 0 ) \(RM(z')f-RM(z)f, g)| < c\τ! - zfWfWri \\g\\m

for all ΐeYSi,ge YS2 and z, z' e K Π C^1.

The assertion of the theorem will follow since

£ u, U\)γ-s2χγS2

(31) I I ^ $

In view of (HI) and since K is compact, there exists no > 1 such that |μπ(/?) —

zl"1 < 1 for all p e R, z G /^ and n > Λ0. Set bo(z) = Σ w >« o

b «^) ( c f ( 1 3)) U s i n S

Schwartz inequality we have

Ibo(z') - bo(z)| < \z - z\ • l|f|IHIglly° < co\z' - z\δ\\f\\γsι M,«.

To end the proof of (30) it remains to establish an analogous estimate for bπ, 0 < n <

«o:

(32) \bn(z') -K(z)\ < cn\z' - z\δ\\f\\γu\\g\\γ^.

Let 0i € C%°(W) be equal to 1 on a neighborhood of μ~ι(K Π R). Put φo(p) =

1-0100,

JR μn(p)-zJ μ(p)z J β(p)z

Due to the assumption on the support of φ\ one has

SUP 1—Γ\ ΐϊ; P ^^ze K\ :=d < oo,

so there exists Co such that, for all z\ z e K Π C ± ,

(33) \bo(z ) — bo(z)\ < d\z — z\ ll/n|lL2(R)ll^n|lL2(M) :
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On the other hand, using the variable change p = Pn(μ) we get

where

(34) b\{z):= ( hj^-dn and

Taking 0i with a sufficiently small support, one can assume that the support of

its restriction to (pi, pi+ ) is compact. So, we verify, using (26), that μ —> hj(μ),

which has a compact support in /n

7, is <5-Holder continuous: \hj(μf) — hj(μ)\ <

<7l|f||r'i||g||y*2 \μf - μ\\ for all μ', μ e /nΛ Applying Lemma 3.2, it follows that

\b\{z') - b{{z)\ < d\z' - zhlflly^i ||g||y*2. Using this formula and (33) we deduce (32).

D

3.2. Limiting absorption principle at thresholds In view of (HI), for all n >

1 and j e Jn, the order of the root pi of p —> μn(p) — μn(pJ

n), denoted Ni > 2,

is finite. Thus there exist two functions GJ

nVG
J

n2 e C°°(R), such that GJ

nλ(pi) φ 0,

GJ

n2(pJ

n) φ 0 and

(35) μn(p) - μn(pΐ) = (p - pj

n)
NiGj

nX(p\ ^-(p) = (p - pJ

n)
Ni-ιGJ

nt2(p).

Since Pi (resp. Pί~λ) is the inverse of the restriction of μn to [pi, pi+l] (resp.

[pi~\ pi]) we get

(36)
dμ μf

n(Pn(μ)) (Pn(μ) - pi)N"~ιGJ

n 2(Pn

y(μ))

(37)
J P Γ 1 1 ^

6?M μ'n(Pt\μ)) (Pn~\μ) ~ PJn)N"~ιGJ

n2(Prί'

The function Pi (resp. /V~ ) is locally 1-Holder continuous on li (resp. /«~ )

but not on In U{μ^} (resp. /^~ U{μ^}), where it is locally (1/Λ^)-Holder continuous.

In fact, using the left hand side equation in (35), one can verify that

(38) \pj(μ') - pj(μ)\ < c\μ! - μ\λ/N\ Wμ\ μ e Vn U {μ }̂,

(39) |PΓ V ) - Ptl(β)\ < c ^ ~ V\l/NJ' V , μ € It1 U {μ̂ }

In view of (H2) and Lemma 3.1, for all n > 1, k > 1, j e Jn and s > k - 1/2,
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the subspace defined below is closed in Ys. For έ = 0 w e set NY*(j, 0) := Ys.

NYM, k) := It = (fm)m>ι e Ys; ~(pJ

n) = 0, / = 0, ..., * - 1 ] .
I dp1 J

Lemma 3.4. Let k > 0 be an integer and s > k + 1/2. For all f e HS(R)

satisfying dJf/dpJ(O) = 0, j = 0 , . . . , k, we have v := f /pk+λ e Hs~(k+ι\R) Π L/0C(R),

and there exists a constant c = c(k,s) such that IMI//s-(*+n(R) < c||/| |// t(R)

The proof for k = 0 was given by Agmon [1], it can be generalized by recurrence

to all k (for details see [3], annex C, Corollary C. 7). The case k = 1 was proved in

[5].
Let μo be a threshold. Set

J»* := {(/ι, j ) e N x Z; μπ(

nμo := {rc > 1; 3j e Z such that (n, j) e Jμo} c N.

A multi-index α is defined by its values anj e N, (π, j ) e Jμo. Denote \a\ =

max{anj;(n, j) e Jμo}. Recall that Nί is the order of the root pJ

n of p —> μn(p) —

μn(pJn), and denote N μ o the multi-index {Nϊ\(n, j) e Jμo}. For all multi-index a and

s > \a\ — 1/2, let us define the following closed subspace of Ys:

NYs(μ0,a):= p | NYs

n{j,anJ).

Denote NY-s(μ0,a) its anti-dual. We also define NZs(μ0,a) by U-ι(NYs(μ0,a))

and denote its anti-dual NZ~s(μo, a).

We verify that NYs(μo,a) is dense in 7°, which enables to identify any f e

Y° to the anti-linear form g —> (f, g)yo on NYs(μo,a). With this identification, if

α 1 , a 2 are two multi-indexes and s\ > lα1! + 1/2, s2 > \a2\ + 1/2, the embed-

dings NYSι(μo,aι) H 7° ^ NY~S2(μo, a2) are continuous. The resolvent RM(z)

can thus be considered as an element of B(NYSι(μo, α?1), NY~S2(μo,a2)). Likewise

RD(z) e B(NZS](μ0,a
ι), NZ-S2(μ0,a

2)). As in (31) we have

(40) \\RD(z) — RD

Theorem 3.5. Assume that a\ +θί2

n . = N]

n—\} for all (n, j) e Jμo. The mapping

z —> RM(z) e B(NYs'(μ0,a
ι), NY-S2(μ0,a

2)), defined on C±

f can be extended con-

tinuously to {μo}U(C±\Γ). This extension, denoted R%{z), is locally (δ/\Nμo\)-Holder

continuous, δ < min(l, s\ — \aι\ — 1/2, s2 — \a2\ — 1/2).

In view of (40) the precedent assertion holds when we replace M by D and Y by

Z.
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For allfe NYs'(μ0,a
ι) and g € NYS2(μ0, a2), we have

(41) (R±(μo)U-]f, U~ιg) = {R%(

fn(p)g"(p) J , . Y- fn(po)gn(Po)
dp±ιπ /

Mo

f fn(P)8\r, J , .
p.v. / dp±ιπ

-pi

where μ ^ } w ί/*<? derivative of μn of order Ni, and e( ) ί/ι̂  mapping, defined on N,

which takes the value 0 Ϊ/ /ί5 argument is even and 1 otherwise.

Proof. As in the proof of Theorem 3.3, the same estimate holds for bo, bo and

b\ if μn(Pn ) and μn(Pn+ ) are not equal to μo It only suffices to prove a similar

estimate for

where we suppose that supp φ\ c (pJ

n~
λ, pί+l).

Since f e NYs*(μ0,a
ι) and g e NYs'(μ0,oί2) we have fn(p) = (p - pif^hλ{p)

and gn(p) = (p — pJnTnjh2(p) where, according to Lemma 3.4, hi, I = 1,2, is δι-Holder

continuous, with δι < min(l, si — \aι\ — 1/2). Setting h = h\hi, we then verify that

(44) \h{p') - h(p)\ < c\p' - p\*\\t\\γ>ι | |g| |^2, with 5 = min^ 1 , δ2).

Since ax

n •+ a2 j = Ni — 1 we have

(45) f(p)¥ΐp) = (p- pJ

n)
Ni-ιh(p).

Using the variable changes p - PJ~\μ) and p = Pii(μ), and taking (36) and (37) into

account, we get

f φλ(PJ(μ))h(Pi(μ)) J Nj f φι(Pt\μ)MPΓ\μ)) ,
bj(z)= / j dμ-(-lΓ" / ; —j dμ.

Jit (μ - z)\GJ

nl{Pi{μ))\ JiΓ' (μ - z)\GJ

n2(PΓ\μ))\

Assume that μi+ > min(μ^, μJ

n~ ) and define the function H( ) as follows:

• if Nn is even (here we suppose in addition that μJ

n < μJ

n~ ):
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φx{PJ{μ))h{PΪ{μ))

\GJ

nt2(Pn(β))\

i-i μ))

\G]

n2{PΓ \μ))\

\GJ

n2(Pkμ))\

if μ G [μJ

n,μ
J

n

 1 ] ,

if μ e [μi~\ μJ

n

+ll

otherwise,

if Nn is odd:

\GJ

n2(Pl(μ))\

0

if μ G [μJ

n \μJ

n],

if μ G [μJ

n, μJ

n

+l],

otherwise.

Knowing that H( ) vanishes at μJ

n if Nn is even and that it is continuous at the

same point if Nn is odd, we verify, using (44) and (38)-(39) that:

3c > 0, ') - H(μ)\ < c\\t\\γ^ \\g\\γn \μ' - r, μ

The desired estimate for h\(z) follows by invoking Lemma 3.2 since b{(z) =

fRH(μ)/(μ — z)dμ. Formula (41)-(42) is a consequence of (27) since H{μ{) = 0 if

N ί is even. D

Other variant of the LAP at thresholds: let a1, a2 such that

(46)

For

α;,.,c£,.>l, aι

nJ+alj = Ni, V(n, 7) e J ^ .

> lα1! + 1/2 and 52 > | α 2 | + 1/2 the previous theorem gives a LAP with

μo,^ 1 ), Λ^F~52(Mo,«2)) One can in fact prove a similar result only with:

(47) si > lor 1 !- 1/2, 5 2 > | o f 2 | - l / 2 and > \aι\ + |of2|.

This will be used below in the case where the function μn is symmetric, and applied

later to obtain a LAP at some thresholds for the operators associated with a half-strip

(see Theorem 4.1). The conditions on s\ and s2 are thus improved compared to apply-

ing Theorem 3.5.

The difference from the proof of Theorem 3.5 lies in the treatment of b{(z) (cf.

(43)). Indeed, for f G NYS](μ0, a1) and g G NYS2(μ0,a
2) we have, according to

Lemma 3.4, fn(p) = (p - pJn)<^ιhλ{p) and ~^(p) = (p - pJ

n)<J-ιh2(p) where, hh

I = 1,2, are locally Holder continuous. Given (46) and (47) there exist r\ and r2 such

that 0 < r\ < si - \aι\ + 1/2, 0 < r2 < s2 - \ot2\ + 1/2 and n + r2 = 1. Verifying that
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hι(pi) = 0, we check that hx(p)/\p - pj\n and h2(p)/\p - pip are locally δλ and δ2

Holder continuous, respectively, for δ\ < s\ — \ax\ + \/2 — r\ and δ2 < s2 — \a2\ + l/2 — r2.

The function h defined below is then δ-Holder continuous with δ = nήn(δ\ ,62).

h(p):=± : —-, if ±(p-pJ

n)>0.

\P - piP\P - pip

Since ax

n • + a2 • - Ni and r\ + r2 = 1 we have, as in (45), fn(p)gn(p) = (p —

pi)N"~ιh(p). We then proceed as above by using the variable changes p = Pi~ (μ)

and p = Pn(μ), and applying Lemma 3.2. Hence z —> R]^(z) is locally (5/|Nμ o |)-

Hόlder on {/xo}U(C±\r).

Considering the upper-bound over the set of (r\, r2) one verifies that <5 > 0 could

be any real such that

δ <min(l,*i - \ax\ + \/2,s2-\ci2\ + \/2,(s\ + s2 - \aι\ - \a2\)/2).

Optimality: let s\ and £2 be sufficiently large. The previous results concerning

the LAP at thresholds require the condition αj. + a2 > NJ: - 1 for all (j,n) e Jμo.

One can prove its optimality (in some cases). More precisely, if a\ j Λ-a^ • < Ni — 1,

and if a\ • + a2

 y is even or a\ • + a2 • and NJ

n are odd then we do not have a LAP

with B(NYs*(μ0,a
ι), NY-s'(βo,oί2)). Indeed, for all si > Nί - 3/2 and f e YS]

such that fn e NYs

n'(j,otx

nj) \ NY°](j,aι

nj + 1) we prove (cf. [3]) that there exists

g G NYS2(μ0, Qf2), with s2 > a2

nj + 1/2, such that

lim \(RD(μo ± is)U~xl U~xg)\ = lim \(RM(βo ± iε)t, g)| = +oc.

3.3. Symmetry property and the limiting absorption principle at thresholds

Let μ 0 = MA20(0) ^ e a threshold such that: (1) μno is a symmetric function, (2) μ 0 =

βn(Po) with μ'n(po) = 0 implies n = n0 and p0 = 0, (3) μ^0(0) ^ 0, that is to say

N% = 2. Denote

(48) Ys

μoΛS := {f e Γ; f"°(-p) = -fn°(p)} and Zs

μoΛS = U~xYs

μoΛS.

According to Theorem 3.5 there is a LAP at μ 0 with β(Λ/Ύ^(0, 1),Y~S) and

B(YS, NY-/(0, 1)), where s > 1/2, s' > 3/2. We also remarked that a LAP holds

with:

(49) B(NY^(0, 1), NY~Q

S2(P, 1)) where sus2 > 1/2 and sx + s2 > 2.

Taking the symmetry property into account the following theorem improves this result.

Theorem 3.6. Let s\,s2 > 1/2 with si + s2 > 2. The mapping z —> RM(Z) e

ΛS, Y~S2l defined on C ± , can be extended continuously to {μ0} U (C± \ Γ). This



596 T. BOUHENNACHE

extension is locally (δ/2)-Hδlder continuous, 8 < min(l, s\ — 1/2, S2 — 1/2, (s\ + S2 —

2)/2).
The precedent assertion holds when we replace, respectively, M by D and Y by

Z.

Proof. The key idea is the construction of a linear continuous mapping β :

Ys —• NYξQ(09 1) such that Ran(/^ - β) is a subset of (Y^^ which is the or-

thogonal subspace to Y®Q A S in the Hubert space Y°.

Take a symmetric function φ e C£°(R) such that 0(0) = 1. Thanks to (H2),

(φδno)k>i belongs to Ys for all s > 0, and a suitable mapping β is given by

For all f e Γ^ A S , g e YSl and z e C ± , we have RM(z)f e Y°Q A S and g - βg

AS)X . therefore

Since f and β g belong to NY*l

o(0, 1) and NY^(0, 1), respectively, it suffices to use

the LAP with (49). D

3.4. Division theorem We have the following division theorem outside thresh-

olds. One can prove a similar result at thresholds.

Theorem 3.7. Let μ0 e R\Γ and s > 1/2. Set s = max(0, l-s). IfϊeYs verifies

one of the following three equivalent conditions: (1) for all n > 1 and po such that

μn(Po) = Mo, we have fn(p0) = 0, (2) R+

M(μ0)f = Λ^(μ o ) t (3) 1m(R±(μo)t, f> = 0,

then R±(μo)fe Y~~s. In particular, R%(μo)f G Y° if s > 1.

5 ί̂ u = ί/"1^ Ŵ  cα« replace the last two conditions by R^(μo)u = Rp(μo)u and

lm{R^(μo)u, u) = 0, respectively. In this case R^(μo)u e Z~s.

Proof. We verify, using (28)-(29), that the three conditions of the theorem are

equivalent and that in such a case

g)γ->xY> = T f fn{p)f{p) dpg ) u , v)z->xz> = (

where v = U~ιg. To prove the theorem it suffices to show that

\(R±(μo)lg)γ-sxYs\ < c\\g\\γ~s, V g G f C Y~s.

Let us go back to the proof of Theorem 3.3 (where K is now {μo}, and φ\ = ψ2
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with ψ e C™((pJ

n, pi+X))) and remark that it suffices to prove

(50) ^

In fact, similar results obviously hold for bo(μo) and bo(μo) Recall (cf. (34)) that

μn(p) - Mo JR P ~ Po μ>n(p) ~ μo

Denote p0 the unique root of p —> μn(p) — βo in (pi, pl+l). The function ψ fn

vanishes at p0 and belongs to HS(R) by (H2). According to Lemma 3.4 (in which we

consider the case k = 0) we have ψ(p)fn(p) = (p — po)ψ(p)υ(p), where ψυ belongs

to Hs~ι(M) Π Lj^ίM) and there exists a constant c\ such that

(52) / ψ(p)υ(p)φ(p)dp

This inequality is still valid, using the density of C£°(M) in HS(R), for all φ e HS(I

On the other hand, since po is a simple root of p —> μn(p) — μo (because μo ¥•

we have

(p - po)ψ(p)

μn(p) - μo

thus

(P ~ Po)Ψ(p)
Φ(p) := / ; gn(p) e HS(R) c Hs(β),

μn(p) - μ0

and, in view of (H2), ||0||#S(IR) < c\'llgllrϊ(R). Combining this inequality with (52) we

obtain (50), with cf

0 = c\c". •

4. Application to the elastic strip and generalization to other differential op-

erators

4.1. The elastic strip case Let us go back to the elastic strip. Now (μn) = (λn)

and Ys := F(HS), s > 0. In view of Theorems 2.2 and 2.3 hypotheses (HI) and (H2)

are satisfied and we are then within the framework of Section 3. More precisely, the

conditions of application of this section are satisfied with D = Λ, U = F and Zs - Hs.

Thus A has an absolutely continuous spectrum (in particular A has no eigenval-

ues), and there is a LAP outside thresholds (cf. Theorem 3.3), and at thresholds in

appropriate spaces (cf. Theorem 3.5), as well as a division theorem (cf. Theorem 3.7).

4.2. Validity of a LAP for A^£ and Aςξ at some thresholds The simple

eigenvalues λn(0) belong to Γ (cf. (11)) since, in view of Theorem 2.5, λn is sym-

metric so that λ^(0) = 0. According to (V) the order N% > 2 of the root p = 0 of
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p —> λn(p) — λn(0) may be such that N% > 2. In the following definitions of the

disjoint subsets Γ S A and Γ A S of Γ we only consider the case N% = 2.

ΓSA(resp. ΓA S) = {λ0 = λπ(0); λ0 is an eigenvalue of AAS(resp. A*A), N° = 2,

and there are no p -φ 0 and n! > 1 such that λo = λπ/(p) and λ'n,(p) = 0}.

According to Theorem 2.5, if λ0 e Γ S A (resp. ΓA S) we have H*A C F~lY^AS (cf.

(48)) (resp. HAS C F~lY^AS). Applying Theorem 3.6 we deduce that z —> RA(z) e

B(H*A, H-S2) (resp. B(HAS, H-S2)) can be extended continuously to Γ S A U (C± \ Γ)

(resp. Γ A S U (C ± \ Γ)). This extension is locally ((5/2)-Hδlder continuous where

(53) δ < min(l, s{ - 1/2, s2 - 1/2, (s{ + s2 -

The following theorem gives a LAP for A | A and A^ (cf. (20) and (21)). Denote

Hnk,s the weighted space equipped with the norm ||u||#ΩjfcS := ||(1 + x\)sf2\\\\Hςik. One

can verify that the transformation U^A (resp. UAS), used in (22), is also unitary from

HQktS onto HfA (resp. HAS).

Theorem 4.1. The operator A^A has an absolutely continuous spectrum {in par-

ticular it has no eigenvalues). Let s\, s2 > 1/2. The mapping z —> RASA(Z) G

B(Hnk,Si, Hnk,-s2)
 c a n b e continuously extended to C5" \ Γ {resp. Γ S A U (C± \ Γ) if

in addition s\ + s2 > 2). This extension is locally δ-Holder continuous, δ < min(l, si —

1/2,5-2 - 1/2), (resp. (δ/2)-Hδlder continuous with (53)).

The precedent assertion holds when we replace A^A by A^ and Γ S A by ΓA S.

Proof. Since A is the direct sum of AS A and AA S the latter have, as A, an abso-

lutely continuous spectrum. Therefore, this also holds for A^A and A ^ since they are,

respectively, unitarily equivalent to the latter (cf. (22)).

We will restrict ourselves to proving a LAP for A^A on r S A U ( C ^ \ r ) . From (22)

follows that RASA(Z) = (U^A)~1RASA(Z)U^A. Therefore, and this will end the proof, for

any u e HΩk^

\\RASA(Z')U - RASA(Z)U\\H^_S2 2

\H_J\UJ;AU\\HS] = \\RA(Z) - RA(z)\\B{Hs\H-S2)\\u\\HΏk,S] •

4.3. Non validity of a LAP for A^A and A ^ at all thresholds In the acous-

tic case the set of thresholds is {λΠβ(0); n > 1}, and for each n the function λnβ is

symmetric and λ^ B φ 0. Then a similar result to the previous theorem gives a LAP

at all thresholds for the operators associated with a half-strip. The difference with the

elastic case is that Theorem 4.1 does not provide such a result. The reason is that, due

to (V), Γ S A U Γ A S does not necessarily coincide with Γ.
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Theorem 4.2. Assume that the eigenvalue λo = λn(0) is simple and that λ^(0) =

λ£(0) = λ^(0) = 0. The limits of RASA(Z) and RA*s(z), as z -* λ0 with ±lmz > 0, do

not exist for the topology of B(HaktSι, /fo*,-s2)> where s\ and S2 are sufficiently large.

Proof. We will prove the non-existence of the first limit and suppose that λ0 is

an eigenvalue of AAS. The other cases can be treated in a similar fashion.

Let φ e C™(R) be an anti-symmetric function with a small enough support such

that φf(0) f 0. We claim that the following function u belongs to H^A with s suffi-

ciently large.

ί
JR

= / <Kp)Wn(p, x2)eipx> dp.
J

Indeed, in view of Theorem 2.5 and since λo is an eigenvalue of AAS we have

SSAWn(—p, •) = —Wn(p, •) for all p. Thus, using variable change p —> —p we obtain

SSAu(Xι,x2) = ί φ(-p)SSAWn(-p, x2)e-ipx^ dp
JR

= ί Φ(p)Wn(p, x2y
p{-χλ)dp = u(-xι,x2).

JR

We also verify that u e HSi for all s, and, using (8), that Fu = {φ^)k>\-

Denote ur = V2u|Ω)t, so

(RAί*(z)u',υ!)HQk = (RA(z)u,u)H = ί J ^ 1 dp,
k
 JR λn\p) — z

and put Iε := (RASA(X0 + iε)uf, uf)Hςι . Let us prove that \Iε\ -> oo, as ε -+ 0, which

will end the proof. Since λn{p) - λ0 = pNG(p), where N = Λ̂ n°, and G(p) = GJ

nl(p)

(see (35)) we have

f pNG(p)\φ(p)\2 , f ε\φ(p)\2

JR P2NGHP) + * 2 ^ A p2^G2(p) + ε2 ^^

It then suffices to prove that the real part 1^ of Iε goes to infinity. Since φ\0) ^ 0

and N is even and greater or equal to 4, there exist r > 0 and c r such that

\N+2

The convergence above is a consequence of the monotonic convergence theorem.

D

4.4. Generalization to other differential operators Our objective here is not

to state a general result concerning a precise class of differential operators but rather to
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propose a path to follow in which we use the general results of Section 3. It remains

that in any particular case some steps have to be verified.

For a given differential selfadjoint operator D on a stratified strip Ω, or more gen-

erally on Ω; x I where Ωf is a regular and bounded open set in W1, n > 1, we pro-

pose to follow the following steps. Using the partial Fourier transform defined in (4) it

is expected to obtain a family of reduced operators whose eigenvalues and eigenvec-

tors are represented by two families of analytic real and vectorial functions denoted,

respectively, λn^> and Wn^, n > 1. We have to verify that D is unitarily equivalent to

the multiplication operator in φ ° ° L2(R) by (λπ>o)n>i» v i a the unitary transformation

defined by (8) where Wn have been replaced by Wno- The proof of Theorem 2.3 is

still valid if we replace Wn by Wn,D
 s o that (H2) is satisfied. It only remains to ver-

ify (HI). The main difficulty is to prove inf^R |λn>£)(/?)| —> +σo, as n —> oo. One can

follow the proof of Theorem 2.2 and the idea of utilizing (10).

It is easy to verify this procedure when D = B and recover the well-known results

of the acoustic case obtained in [4] and [5].

For some differential operators allowing separation of variables, such as B, we

have λno{p) = λ(p) + cn, where cn -> +oo, as n —> +oo and λ(p) —> +00, as p —> 00;

or λn>£>(/?) > λnj)(0) with λnj)(0) —> +00, as n —• +00. In both cases (HI) is satisfied.
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