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Introduction

We study 1-conformally flat statistical submanifolds of flat statistical manifolds.
Let φ be a function on a domain Ω in an affine space A""1"1. Denoting by D the canon-
ical flat affine connection on Aπ+1, we can consider a Hessian domain (Ω, D, § =
Ddφ) a flat statistical manifold. In this paper, we show that, if g is positive defi-
nite, rt-dimensional level surfaces of φ are 1-conformally flat statistical submanifolds
of (Ω, Z), g), and that a 1-conformally flat statistical manifold with a Riemannian met-
ric can be locally realized as a submanifold of a flat statistical manifold.

The concept of α-conformally equivalence was first treated in [9] with respect to
sequential estimation theory. On the realization of statistical manifolds in the affine
space, see [5] [6] [7].

1. Theorems

Let D be the canonical flat affine connection on an (n + l)-dimensional real affine
space An+1, and {xl, ... , xn+l} the canonical affine coordinate on it, i.e., Ddx1 = 0.
If the Hessian Ddφ = Σi j(92φ)/(9xldxj)dxldxj of a function φ on a domain Ω in
A"+1 is non-degenerate, we call (Ω, D, g = Ddφ) a Hessian domain.

For a torsion-free affine connection V and a pseudo-Riemannian metric h on a
manifold N, the triple (N, V, h) is called a statistical manifold if Vh is symmetric. If
the curvature tensor R of V vanishes, (N, V, h) is said to be flat. A Hessian domain
(Ω, D, g = Ddφ) is a flat statistical manifold. Conversely, a flat statistical manifold is
locally a Hessian domain [1][10].

For a e R, statistical manifolds (N, V, h) and (N, V, h) are said to be a-
conformally equivalent if there exists a function φ on N such that

h(X, Y) = eφh(X, 7),

, z) = h(vxγ, z) - l - d φ ( Z ) h ( x , Y)

, Z) + dφ(Y)h(X, Z)}

for X, 7, Z e X(N\ where X(N) is the set of all tangent vector fields on N. A
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statistical manifold (N, V, h) is called α-conformally flat if (N, V, h) is locally ot-

conformally equivalent to a flat statistical manifold [6].

For a pseudo-Riemannian manifold (N, h) and a submanifold TV of N, we call

(N, V, h) a statistical submanifold of (N, h) if (N, V, h) is a statistical manifold,

where V is an affine connection on N and h the induced pseudo-Riemannian metric

for h. Let V be an affine connection on N. We denote by TXN 0 TXN^ the orthog-

onal decomposition of TXN with respect to Λ, where TXN and TXN are the set of all

tangent vectors at x on N and on N, respectively. If (V^y)^ is the TXN-component

of (VχY)x for X, Y e X(N) and an arbitrary x in N, we call (N, V, h) the statistical

submanifold realized in (W, V, Λ).

Amari said that, if (N, V, h) is a statistical manifold for a Riemannian metric

h and a submanifold N of TV, (W, V, h) is a statistical manifold for the above in-

duced connection V and the induced metric h [1], For a pseudo-Riemannian metric

h, (N, V, h) is a statistical manifold if h is non-degenerate. Then, through this paper,

we call a statistical submanifold realized in a statistical manifold (N, V, Λ), simply, a

statistical submanifold of (N, V, Λ).

In this paper we aim to prove the next theorems.

Theorem 1. Let M be a simply connected n-dimensional level surface of φ on

an (n + \)-dimensional Hessian domain (Ω, Z), g = Ddφ) with a Riemannian metric g,

and suppose that n > 2. If we consider (Ω, Z), g) a flat statistical manifold, (M, Z), g)

w 0 1 -conformally flat statistical submanifold 0/(Ω, D,g\ where we denote by D and

g the connection and the Riemannian metric on M induced by D and g.

Theorem 2. An arbitrary I-conformally flat statistical manifold of dimn > 2

with a Riemannian metric can be locally realized as a submanifold of a flat statisti-

cal manifold of άim(n + 1).

We shall show a corollary of Theorem 1 with relation to protectively flat connec-

tions and dual-projectively flat connections in the last section.

2. Statistical Manifolds and Affine Differential Geometry

In this section, we study a level surface M of φ on an (n + l)-dimensional Hessian

domain (Ω, D, g), using affine differential geometry and the concept of statistical sub-

manifold. A level surface M of φ is an n-dimensional submanifold of Ω if and only if

dφx i 0 for all x e M. Henceforward, we suppose that n > 2, that § is a Riemannian

metric, and that dφx ^0 for all x 6 M.

Let E be the gradient vector field on Ω defined by

g ( X , E) = dφ(X) for X e



1-CθNFORMALLY FLAT STATISTICAL SUBMANIFOLDS 503

Since g is positive definite and dφx ^ 0 for all x e M, dφ(E) does not vanish on
M and a vector Ex is vertical to TXM with respect to g, where TXM is the set of all
tangent vectors at x on M. We set E = —dφ(E)~lE on M. Then the vector field E is
transversal to M, and so is E.

Let L be a canonical immersion of M into Ω. For ί> and an affine immersion
0, E), we can define the induced affine connection DE, the fundamental form gE, the
shape operator SE and the transversal connection form τE on M by

(D 0XF = DEY + gE(X,Y)E

(2) DxE = S£(X) + τE(X)E for X, 7 6 Λ'(M).

We denote by (M, D, g) the statistical submanifold of (Ω, D, g), considering (Ω, D, g)
a statistical manifold. Then the next holds.

Lemma 2.1. A statistical submanifold (M, D, g) coincides with a manifold
(Λf, DE', g£) induced by an affine immersion (i, E), i.e.,

D = DE, g = gE on M.

Proof. Let D^ be the induced affine connection, gE the fundamental form, SE

the shape operator, and τE the transversal connection form, for D and E. Since E*
and Ex are vertical to T^Af for x e M with respect to g, D = DE = DE holds. From
(1) and ί)xY = D~EY + gE(X, Y)E, we have

(3) gE = -dφ(EΓlgE

By [3] we know that

(4) gE = -dφ(EΓl g

From (3) and (4) g = gE holds. D

Since g is non-degenerate, so is gE. Then 0, E) is called a non-degenerate im-
mersion. Moreover, the immersion (L, E) has the following property.

Lemma 2.2. An affine immersion (i, E) is equiaffine, i.e.,

τ £ = 0 on M.

Proof. We have

(5) τ~E=(dlog\dφ(E)\)(X)
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by [3]. Calculating the right-hand side of (5), we have

τE = dφ(E)~lX(dφ(E)).

Thus, we obtain

DXE = -Dx(dφ(EΓlE)

= -X(dφ(EΓl)E - dφ(E)~lDXE

= dφ(EΓ2X(dφ(E))E - dφ(EΓl{SE(X) + τ~E(X)E}

= -dφ(EΓlSE(X).

Hence SE = -dφ(EΓlS~E and τE = 0 hold. D

It is known that the structure induced by a non-degenerate equiaffine immersion is

the statistical manifold structure. Conversely, Kurose proved the next proposition.

Proposition 2.3 ([6]). A simply connected statistical manifold can be realized in

Aπ+1 by a non-degenerate equiaffine immersion if and only if it is 1 -conformally flat.

Such an immersion is uniquely determined up to affine transformations of An+1.

Proposition 2.3 can be proved by projectively flatness of the dual connection of a

given connection [2]. Finally, let us show Theorem 1.

Proof of Theorem 1. By Lemma 2.2 and Proposition 2.3 a statistical manifold

(M, DE, gE) is 1-conformally flat. Thus Theorem 1 holds by Lemma 2.1. D

3. Proof of Theorem 2

Let (N, V, h) be a 1-conformally flat statistical manifold of dimn > 2 with a Rie-

mannian metric h. By Proposition 2.3 (W, V, h) can be realized by a non-degenerate

equiaffine immersion. We denote by (i, E) a non-degenerate equiaffine immersion into

An+1 which realizes (N, V, h). Then we can immerse (N, V, h) into a flat statistical

manifold as the next lemma.

Lemma 3.1. For a simply connected open subset U of N and a small ε > 0, we

define a function φ on U = (Jq(ΞU{ι(q) θ (-ε, ε) Eq} by

Φ(P} = e~* for p = L(PQ) + tEpo, pQ e U, t € (-ε, ε).

Then (U, V, h) is a statistical submanifold of a flat statistical manifold (U, D, Ddφ).
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Proof. For X, Y e X(U\ we have

and

(Dχdφ)(Y) = X(dφ(Y» - dφ(DχY)

= -Λ(X, Y)dφ(E)

= ft(χ, r).

Thus, (Ϊ7, V, A) is a submanifold of (U, D,
We also denote by £ a vector field on U whose value is Epo at p =

On t((7) we have

E(dφ(E))=l,

and

(DEdφ)(E) = E(dφ(E)) - dφ(DEE) = 1.

Thus (Ddφ)L(pQ) is positive definite for po € ί/. From continuity of a function
is a Riemannian metric on ί/ for a small ε. Hence (£/, D, DJ0) is a flat statistical
manifold. D

4. Dual-Projectively Flat Connections

In this section, we describe dual-projectively flatness of an affine connection D on
a level surface M and protectively flatness of the dual-connection D' of D.

Let (Λf , h) be a pseudo-Riemannian manifold. Torsion free affine connections V
and V on N are protectively equivalent if there exists a 1-form K such that

for X, Y € X(N). An affine connection V is called protectively flat if V is locally
protectively equivalent to a flat affine connection. Torsion free affine connections V
and V on N are dual-projectively equivalent if there exists a 1-form K such that

Λ(V xy, Z) = h(VxY, Z) - *(Z)Λ(X, F)

for X, F, Z € X(N). An affine connection V is called dual-projectively flat if V is
locally dual-projectively equivalent to a flat affine connection [4],
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For a statistical manifold (N, V, A) there exists the torsion free affine connection

V on N such that

Xh(Y, Z) = A(VXF, Z) + A(7, V'XZ)

The connection V is said to be the dual connection of V, and (N, V, h) the dual
statistical manifold of (N, V, A). If (Ns,Vs,hs) and (Ns,Vs',hs) are statistical sub-
manifolds of (W, V, A) and (TV, V, A), respectively, (ΛP, V5', A*) is the dual statistical

manifold of (ΛP, V*,A 5 ) [I].
Statistical manifolds (N, V, A) and (N, V, A) are α-conformally equivalent if and

only if the dual statistical manifolds (N, V, A) and (N, V', A) are (— oO-conformally
equivalent. Especially, a statistical manifold (N, V, A) is 1-conformally flat if and only
if the dual statistical manifold (N, V, A) is (-l)-conformally flat [6].

Moreover, Kurose showed that, by Proposition 9.1 in [8], a statistical manifold
(N, V, A) is (— l)-conformally flat if and only if V is a projectively flat connection
with symmetric Ricci tensor, and that

Proposition 4.1 ([6]). A statistical manifold (N, V, A) is \-conformally flat if

and only if the dual connection V is a projectively flat connection with symmetric
Ricci tensor.

On projectively flatness, Ivanov described the next proposition on section 2 in [4].

Proposition 4.2 ([4]). A statistical manifold (N, V, A) is l-conformally flat if

and only if V is a dual-pro Actively flat connection with symmetric Ricci tensor.

For a level surface of a Hessian domain, we obtain the next corollary of Theorem
1 by Proposition 4.1 and 4.2.

Corollary 4.3. Let M be a simply connected n-dimensional level surface of φ

on an (n + l)-dimensional Hessian domain (Ω, D,g = Ddφ) with a Riemannian metric
g, and suppose that n > 2. Let (M, D, g) be a statistical submanifolds of (Ω, D, g)
and D' the dual connection of D. Then, D is a dual-projectively flat connection with

symmetric Ricci tensor and D' is a projectively flat connection with symmetric Ricci
tensor.
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