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Introduction

We study 1-conformally flat statistical submanifolds of flat statistical manifolds.
Let ¢ be a function on a domain 2 in an affine space A"*'. Denoting by D the canon-
ical flat affine connection on A™! we can consider a Hessian domain (%2, D,g =
Ddg) a flat statistical manifold. In this paper, we show that, if g is positive defi-
nite, n-dimensional level surfaces of ¢ are 1-conformally flat statistical submanifolds
of (2, D, &), and that a 1-conformally flat statistical manifold with a Riemannian met-
ric can be locally realized as a submanifold of a flat statistical manifold.

The concept of a-conformally equivalence was first treated in [9] with respect to
sequential estimation theory. On the realization of statistical manifolds in the affine
space, see [5][6][7].

1. Theorems

Let D be the canonical flat affine connection on an (n + 1)-dimensional real affine
space A™!, and {x!,...,x"*!} the canonical affine coordinate on it, i.e., Ddx' = 0.
If the Hessian Ddg = 3, ;(8%¢)/(8x'3x/)dx'dx’ of a function ¢ on a domain  in
A™! is non-degenerate, we call (R, D, § = Ddg) a Hessian domain.

For a torsion-free affine connection V and a pseudo-Riemannian metric & on a
manifold N, the triple (N, V, h) is called a statistical manifold if VA is symmetric. If
the curvature tensor R of V vanishes, (N, V, k) is said to be flat. A Hessian domain
(2, D, g = Ddy) is a flat statistical manifold. Conversely, a flat statistical manifold is
locally a Hessian domain [1][10].

For @« € R, statistical manifolds (N, V, k) and (N, V,h) are said to be a-
conformally equivalent if there exists a function ¢ on N such that

R(X,Y) = e?h(X,Y),
h(VxY, Z) = h(VxY, Z) — 1—;3(1¢(2)h(x, Y)

+— % (dSOORY, Z) + d(VYh(X, Z))

for X,Y,Z € X(N), where X(N) is the set of all tangent vector fields on N. A
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statistical manifold (N, V, k) is called a-conformally flat if (N, V,h) is locally o-
conformally equivalent to a flat statistical manifold [6].

For a pseudo-Riemannian manifold (N, %) and a submanifold N of N, we call
(N, V., h) a statistical submanifold of (N, h) if (N,V,h) is a statistical manifold,
where V is an affine connection on N and h the induced pseudo-Riemannian metric
for . Let V be an affine connection on N. We denote by T, N @& T, N' the orthog-
onal decomposition of T, N with respect to h, where T, N and T, N are the set of all
tangent vectors at x on N and on N, respectively. If (VxY), is the T, N-component
of (VxY), for X,Y € X(N) and an arbitrary x in N, we call (N, V, h) the statistical
submanifold realized in (N, V, h).

Amari said that, if (N, V,h) is a statistical manifold for a Riemannian metric
% and a submanifold N of N, (N, V,h) is a statistical manifold for the above in-
duced connection V and the induced metric # [1]. For a pseudo-Riemannian metric
h, (N, V, h) is a statistical manifold if & is non-degenerate. Then, through this paper,
we call a statistical submanifold realized in a statistical manifold (N, V, k), simply, a
statistical submanifold of (N, V, k).

In this paper we aim to prove the next theorems.

Theorem 1. Let M be a simply connected n-dimensional level surface of ¢ on
an (n + 1)-dimensional Hessian domain (2, D, g = Dd¢) with a Riemannian metric g,
and suppose that n > 2. If we consider (£2, D, &) a flat statistical manifold, (M, D, g)
is a 1-conformally flat statistical submanifold of (2, D, ), where we denote by D and
g the connection and the Riemannian metric on M induced by D and 3.

Theorem 2. An arbitrary 1-conformally flat statistical manifold of dimn > 2
with a Riemannian metric can be locally realized as a submanifold of a flat statisti-
cal manifold of dim(n + 1).

We shall show a corollary of Theorem 1 with relation to projectively flat connec-
tions and dual-projectively flat connections in the last section.

2. Statistical Manifolds and Affine Differential Geometry

In this section, we study a level surface M of ¢ on an (n+1)-dimensional Hessian
domain (2, D, ), using affine differential geometry and the concept of statistical sub-
manifold. A level surface M of ¢ is an n-dimensional submanifold of € if and only if
do, #0 for all x € M. Henceforward, we suppose that n > 2, that g is a Riemannian
metric, and that de¢, # 0 for all x € M.

Let E be the gradient vector field on © defined by

g X, E)=dp(X) for X € X(Q).
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Since g is positive definite and de, # 0 for all x € M, dp(E) does not vanish on
M and a vector E, is vertical to T, M with respect to g, where T, M is the set of all
tangent vectors at x on M. We set E = —dp(E)"'E on M. Then the vector field E is
transversal to M, and so is E.

Let ¢ be a canonical immersion of M into Q. For D and an affine immersion
(t, E), we can define the induced affine connection DZ, the fundamental form gE , the
shape operator S£ and the transversal connection form £ on M by

0} DxY = DEY + g5(X, Y)E
) DxE = SE(X)+tE(X)E for X,Y € X(M).

We denote by (M, D, g) the statistical submanifold of (2, D, g), considering (2, D, §)
a statistical manifold. Then the next holds.

Lemma 2.1. A statistical submanifold (M, D, g) coincides with a manifold
(M, DE, g% induced by an affine immersion (1, E), i.e.,

D=DE, g=gf on M.

Proof. Let DE be the induced affine connection, gE the fundamental form, SE

the shape operator, and t% the transversal connection form, for D and E. Since E,
and E, are vertical to T, M for x € M with respect to g, D = DE = DE holds. From
(1) and DxY = DEY + gE(X, Y)E, we have

3) gf =—dp(E)'gk.

By [3] we know that

©) g" =—do(E)'g.

From (3) and (4) g = g% holds. O

Since g is non-degenerate, so is g£. Then (i, E) is called a non-degenerate im-
mersion. Moreover, the immersion (¢, E) has the following property.

Lemma 2.2. An affine immersion (i, E) is equiaffine, i.e.,
t£=0 on M.
Proof. We have

G) tE = (dlog |de(E))(X)
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by [3]. Calculating the right-hand side of (5), we have
£ = dp(E) "' X (dp(E)).

Thus, we obtain

DyE = —Dx(do(E)™'E)
= —X(dp(E)"")E — dp(E)"' DxE
= dp(E)*X(dp(E))E — dw(E)‘l{SE(X) +1E(X)E}
= —do(E) ' SE(X).
Hence SE = —dg(E)~'SE and £ =0 hold. O

It is known that the structure induced by a non-degenerate equiaffine immersion is
the statistical manifold structure. Conversely, Kurose proved the next proposition.

Proposition 2.3 ([6]). A simply connected statistical manifold can be realized in
A™! by a non-degenerate equiaffine immersion if and only if it is 1-conformally flat.
Such an immersion is uniquely determined up to affine transformations of A"*!.

Proposition 2.3 can be proved by projectively flatness of the dual connection of a
given connection [2]. Finally, let us show Theorem 1.

Proof of Theorem 1. By Lemma 2.2 and Proposition 2.3 a statistical manifold
(M, DE, gf) is 1-conformally flat. Thus Theorem 1 holds by Lemma 2.1. a

3. Proof of Theorem 2

Let (N, V, h) be a 1-conformally flat statistical manifold of dimn > 2 with a Rie-
mannian metric 4. By Proposition 2.3 (N, V, h) can be realized by a non-degenerate
equiaffine immersion. We denote by (¢, E) a non-degenerate equiaffine immersion into
A™! which realizes (N, V, k). Then we can immerse (N, V, h) into a flat statistical
manifold as the next lemma.

Lemma 3.1. For a simply connected open subset U of N and a small ¢ > 0, we
define a function ¢ on U = Uyev (Uq) @ (=&, 8) - Eg} by

¢(p)=e~" for p=upo)+tE,, po€U,t € (—¢,¢).

Then (U, V, h) is a statistical submanifold of a flat statistical manifold (U, D, Dd¢).
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Proof. For X,Y € X(U), we have
d¢(X) =0, do(E)= -1,

and

X(d¢(Y)) —dp(DxY)
—d¢(VxY +h(X, Y)E)
—h(X, Y)d¢(E)

= h(X,Y).

(Dxd¢)(Y)

Thus, (U, V, h) is a submanifold of (U, D, Dd¢).
We also denote by E a vector field on U whose value is E po At p = 1(po) +tEp,.
On «(U) we have

E(d¢(E)) =1, DgE =0,
and
(Ded$)(E) = E(d$(E)) — d¢(DgE) = 1.

Thus (Dd¢),,) is positive definite for py € U. From continuity of a function ¢, Dd¢
is a Riemannian metric on U for a small &. Hence (U, D, Dd¢) is a flat statistical
manifold. O

4. Dual-Projectively Flat Connections

In this section, we describe dual-projectively flatness of an affine connection D on
a level surface M and projectively flatness of the dual-connection D’ of D.

Let (N, h) be a pseudo-Riemannian manifold. Torsion free affine connections V
and V on N are projectively equivalent if there exists a 1-form « such that

VyY = VyY +k(X)Y +k(¥)X

for X,Y € X(N). An affine connection V is called projectively flat if V is locally
projectively equivalent to a flat affine connection. Torsion free affine connections V
and V on N are dual-projectively equivalent if there exists a 1-form « such that

h(VxY, Z) = h(VxY, Z) — k(Z)h(X, Y)

for X,Y,Z € X(N). An affine connection V is called dual-projectively flat if V is
locally dual-projectively equivalent to a flat affine connection [4].
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For a statistical manifold (N, V, k) there exists the torsion free affine connection
V’ on N such that

Xh(Y, Z) = h(VxY, Z) + h(Y, Vi Z)

The connection V' is said to be the dual connection of V, and (N, V’, h) the dual
statistical manifold of (N, V, k). If (N*, V*, h*) and (N°®, V¥, h*) are statistical sub-
manifolds of (N, V, h) and (N, V', h), respectively, (N*, V¥, h*) is the dual statistical
manifold of (N*, V*, h®) [1].

Statistical manifolds (N, V, k) and (N, V, k) are «a-conformally equivalent if and
only if the dual statistical manifolds (N, V', #) and (N, V' h) are (—a)-conformally
equivalent. Especially, a statistical manifold (N, V, k) is 1-conformally flat if and only
if the dual statistical manifold (N, V', k) is (—1)-conformally flat [6].

Moreover, Kurose showed that, by Proposition 9.1 in [8], a statistical manifold
(N, V', h) is (—1)-conformally flat if and only if V' is a projectively flat connection
with symmetric Ricci tensor, and that

Proposition 4.1 ([6]). A statistical manifold (N,V,h) is 1-conformally flat if
and only if the dual connection V' is a projectively flat connection with symmetric
Ricci tensor.

On projectively flatness, Ivanov described the next proposition on section 2 in [4].

Proposition 4.2 ([4]). A statistical manifold (N,V,h) is 1-conformally flat if
and only if V is a dual-projectively flat connection with symmetric Ricci tensor.

For a level surface of a Hessian domain, we obtain the next corollary of Theorem
1 by Proposition 4.1 and 4.2.

Corollary 4.3. Let M be a simply connected n-dimensional level surface of ¢
on an (n+ 1)-dimensional Hessian domain (Q, D, § = Ddy) with a Riemannian metric
g, and suppose that n > 2. Let (M, D, g) be a statistical submanifolds of (R, D, g)
and D' the dual connection of D. Then, D is a dual-projectively flat connection with
symmetric Ricci tensor and D' is a projectively flat connection with symmetric Ricci
tensor.
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