CONVERGENCE TOWARDS AN ELASTICA IN A RIEMANNIAN MANIFOLD

Norifito KOISO

(Received May 27, 1998)

0. Introduction

Consider a springy circle wire in a riemannian manifold M. We describe it as a closed curve γ with unit line element and fixed length. For such a curve, its elastic energy is given by

$$
E(\gamma)=\oint\left|D_{x} \gamma^{\prime}\right|^{2} d x
$$

Solutions of the corresponding Euler-Lagrange equation are called elastic curves. We discuss a corresponding parabolic equation in this paper. We will see that the equation becomes an initial value problem:

$$
\left\{\begin{array}{l}
\partial_{t} \gamma=-D_{x}^{3} \gamma^{\prime}+R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+D_{x}\left(w \gamma^{\prime}\right), \tag{EP}\\
-w^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} w=2\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime \prime}-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right), \\
\gamma(x, 0)=\gamma_{0}(x),
\end{array}\right.
$$

where $w=w(x, t)$ is an unknown real valued function.
In [3], we treated the case of euclidean spaces and saw that the above equation has a unique long time solution and that the solution converges to an elastica. In this paper, we treat general riemannian manifolds, and get the following

Theorem 5.6. Let M be a compact real analytic riemannian manifold, and let $\gamma_{0}(x)$ be a closed curve with unit line element and length L. Suppose that there are no closed geodesics of length L in M. Then (EP) has a unique solution $\gamma(x, t)$ for all time, and the solution $\gamma(*, t)$ converges to an elastica when $t \rightarrow \infty$.

Remark 0.1. Even if the metric of M is not real analytic, there is a solution of (EP) which has a subsequence converging to an elastica (Theorem 4.1, 5.5). This proves the existence of an elastica. Existence of an elastica has been originally shown in [4] by using Palais-Smale's condition (C). Another proof has been given in [1] by using a direct method.

Remark 0.2. The equation (EP) is not the so-called curve shortening equation. The principal part of (EP) is $\left(\partial / \partial t+\partial^{4} / \partial x^{4}\right) \gamma$ and $\left(\partial^{2} / \partial x^{2}\right) w$. Main difficulty of our equation comes from being coupled.

1. Preliminaries

By scaling, we may assume that the length of the initial curve γ_{0} is 1 . From now on, a closed curve means a map from $S^{1} \equiv \mathbf{R} / \mathbf{Z}$ into a riemannian manifold M. The variable in S^{1} is denoted by x, and differentiation with respect to x is denoted by $*^{\prime}$ or $*^{(n)}$. The covariant differentiation on M is denoted by D.

For tensors on M, we use pointwise inner product $(*, *)$ and norm $|*|$. For functions on S^{1} and vector fields along a closed curve γ, we use L_{2} inner product $\langle *, *\rangle$ and L_{2} norm $\|*\|$. Sobolev H^{s} norm is denoted by $\|*\|_{s}$. For a tensor field ξ along a closed curve γ, H^{s} norm $\|\xi\|_{s}$ is defined by $\|\xi\|_{s}^{2}=\sum_{i=0}^{s}\left\|D_{x}^{i} \xi\right\|^{2}$.

We recall basic lemmas from [3]. Some of them are extended to the case of tensor fields. We frequently use them to get estimation, but always makes no mention of them.

Lemma 1.1 ([3, Lemma 3.1]). For a tensor field ξ along a closed curve γ,

$$
\max |\xi|^{2} \leq 2\|\xi\| \cdot\left\{\|\xi\|+\left\|D_{x} \xi\right\|\right\} .
$$

Lemma 1.2 ([3, Lemma 3.2]). For integers $0 \leq p \leq q \leq r$,

$$
\left\|D_{x}^{q} \xi\right\| \leq\left\|D_{x}^{p} \xi\right\|^{(r-q) /(r-p)} \cdot\left\|D_{x}^{r} \xi\right\|^{(q-p) /(r-p)} .
$$

Lemma 1.3 ([3, Lemma 4.1]). Let a and b be L_{1} functions on S^{1} such that $a \geq$ 0 and $\|a\|_{L_{1}}>0$. Then, the ODE for a function v on S^{1} :

$$
-v^{\prime \prime}+a v=b
$$

has a unique solution, and the solution is estimated as

$$
\begin{aligned}
& \max |v| \leq 2\left\{1+\|a\|_{L_{1}}^{-1}\right\} \cdot\|b\|_{L_{1}}, \\
& \max \left|v^{\prime}\right| \leq 2\left\{1+\|a\|_{L_{1}}\right\} \cdot\|b\|_{L_{1}}
\end{aligned}
$$

We need also Hölder norms. The usual Hölder space for functions on S^{1} is denoted by $C_{x}^{n+4 \mu}$. The weighted Hölder space (time derivative is counted 4 times) for functions on $S^{1} \times[0, T)$ is denoted by $C^{n+4 \mu}$. See [3] for the detailed definition.

Lemma 1.4 ([3, Proposition 5.6]). Set $D=S^{1} \times[0, T)$. Let $a: D \rightarrow \mathbf{R} ; b_{i}, d_{i}, f$: $D \rightarrow \mathbf{R}^{N} ; c_{i}: D \rightarrow \mathbf{R}^{N \times N}$ be $C^{4 \mu}$ functions and $\phi: S^{1} \rightarrow \mathbf{R}^{N} a C_{x}^{4+4 \mu}$ function. Suppose that a is non-negative and $\|a\|_{L_{1}} \geq C>0$. Then, the linear PDE for a \mathbf{R}^{N}
valued function u and a function v :

$$
\left\{\begin{array}{l}
\partial_{t} u+u^{(4)}+\sum_{i=0}^{3} c_{i} u^{(i)}+\sum_{i=0}^{1} d_{i} v^{(i)}=f \\
-v^{\prime \prime}+a v=\sum_{i=0}^{3} b_{i} u^{(i)} \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

has a unique $C^{4+4 \mu}$ solution on D, and the $C^{4+4 \mu}$ norm of the solution is bounded by a constant depending on the $C^{4 \mu}$ norms of $f, a, b_{i}, c_{i}, d_{i}$, the $C_{x}^{4+4 \mu}$ norm of ϕ, and C^{-1}.

2. The equation

To derive the equation of motion governed by an energy, we perturb the curve $\gamma=\gamma(x)$ with a time parameter $t: \gamma=\gamma(x, t)$. Then the elastic energy changes at $t=0$ as

$$
\begin{aligned}
\frac{d}{d t} E(\gamma) & =2\left\langle D_{x} \gamma^{\prime}, D_{t} D_{x} \gamma^{\prime}\right\rangle \\
& =2\left\langle D_{x} \gamma^{\prime}, R\left(\partial_{t} \gamma, \gamma^{\prime}\right) \gamma^{\prime}+D_{x}^{2} \partial_{t} \gamma\right\rangle \\
& =-2\left\langle\partial_{t} \gamma, R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}\right\rangle+2\left\langle\partial_{t} \gamma, D_{x}^{3} \gamma^{\prime}\right\rangle \\
& =2\left\langle\partial_{t} \gamma, D_{x}^{3} \gamma^{\prime}-R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}\right\rangle,
\end{aligned}
$$

where $\gamma(x, 0)=\gamma(x)$. Therefore, $-D_{x}^{3} \gamma^{\prime}+R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}$ would be the most efficient direction to minimize the elastic energy. However, this direction does not preserve the condition $\left|\gamma^{\prime}\right| \equiv 1$. To force to preserve the condition we have to add certain term. Let V be the space of all directions satisfying the condition in the sense of first derivative. Namely,

$$
V=\left\{\alpha \mid\left(\gamma^{\prime}, D_{x} \alpha\right)=0\right\} .
$$

We can check that a direction is L_{2} orthogonal to V if and only if it has a form $D_{x}\left(w \gamma^{\prime}\right)$ with some function $w(x)$. Therefore, the "true direction" should be

$$
\partial_{t} \gamma=-D_{x}^{3} \gamma^{\prime}+R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+D_{x}\left(w \gamma^{\prime}\right),
$$

where the function w has to satisfy the condition

$$
\left(\gamma^{\prime}, D_{x} \partial_{t} \gamma\right)=0
$$

To simplify this relation, we use the following

Lemma 2.1. For a curve γ with $\left|\gamma^{\prime}\right| \equiv 1$, we have the following identities.

$$
\begin{aligned}
& \left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right)=0 \\
& \left(\gamma^{\prime}, D_{x}^{2} \gamma^{\prime}\right)=-\left|D_{x} \gamma^{\prime}\right|^{2}, \\
& \left(\gamma^{\prime}, D_{x}^{3} \gamma^{\prime}\right)=-\frac{3}{2}\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime} \\
& \left(\gamma^{\prime}, D_{x}^{4} \gamma^{\prime}\right)=-2\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime \prime}+\left|D_{x}^{2} \gamma^{\prime}\right|^{2} .
\end{aligned}
$$

Proof. We can get these by a simple calculation.
Therefore we have

$$
\begin{aligned}
0= & \left(D_{x}\left\{-D_{x}^{3} \gamma^{\prime}+R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+D_{x}\left(w \gamma^{\prime}\right)\right\}, \gamma^{\prime}\right) \\
= & -\left(\gamma^{\prime}, D_{x}^{4} \gamma^{\prime}\right)+\left(\gamma^{\prime}, D_{x}\left\{R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}\right\}\right)+\left(\gamma^{\prime}, D_{x}^{2}\left(w \gamma^{\prime}\right)\right) \\
= & 2\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime \prime}-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}+\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) D_{x} \gamma^{\prime}, \gamma^{\prime}\right) \\
& \quad+\left(\gamma^{\prime}, w^{\prime \prime} \gamma^{\prime}+2 w^{\prime} D_{x} \gamma^{\prime}+w D_{x}^{2} \gamma^{\prime}\right) \\
= & 2\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime \prime}-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right)+w^{\prime \prime}-\left|D_{x} \gamma^{\prime}\right|^{2} w .
\end{aligned}
$$

Thus the equation for the function $w(x)$ becomes

$$
-w^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} w=2\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime \prime}-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right) .
$$

If we put

$$
v=w+2\left|D_{x} \gamma^{\prime}\right|^{2}
$$

then we have

$$
-v^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} v=-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}+2\left|D_{x} \gamma^{\prime}\right|^{4}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right) .
$$

Therefore our equation becomes
(EP)

$$
\left\{\begin{array}{l}
\partial_{t} \gamma=-D_{x}^{3} \gamma^{\prime}+R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+D_{x}\left(w \gamma^{\prime}\right), \\
-w^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} w=2\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime \prime}-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right), \\
\gamma(x, 0)=\gamma_{0}(x) .
\end{array}\right.
$$

Or, equivalently,
$\left(\mathrm{EP}_{v}\right) \quad\left\{\begin{array}{l}\partial_{t} \gamma=-D_{x}^{3} \gamma^{\prime}+R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+D_{x}\left\{\left(v-2\left|D_{x} \gamma^{\prime}\right|^{2}\right) \gamma^{\prime}\right\}, \\ -v^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} v=-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}+2\left|D_{x} \gamma^{\prime}\right|^{4}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right), \\ \gamma(x, 0)=\gamma_{0}(x) .\end{array}\right.$
Note that both γ and w (or v) are unknown functions on $S^{1} \times \mathbf{R}_{+}$.

3. Short time existence

In this section, we consider a modified equation for an \mathbf{R}^{N} valued function γ and a function v :

$$
\left\{\begin{array}{l}
\partial_{t} \gamma=-\gamma^{(4)}+F\left(x, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, \gamma^{(3)}, v, v^{\prime}\right) \tag{ST}\\
-v^{\prime \prime}+G\left(x, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, \gamma^{(3)}\right) \cdot v=H\left(x, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, \gamma^{(3)}\right)
\end{array}\right.
$$

where F, G and H are given C^{∞} functions on $S^{1} \times\left(\mathbf{R}^{N}\right)^{6}, S^{1} \times\left(\mathbf{R}^{N}\right)^{4}$ and $S^{1} \times\left(\mathbf{R}^{N}\right)^{4}$, respectively, and the function G is non-negative. For functions γ and v, we take their jets and use abbreviated notations such as $F\left(x, j_{3} \gamma, j_{1} v\right), G\left(x, j_{3} \gamma\right)$ and $H\left(x, j_{3} \gamma\right)$.

Theorem 3.1. For any C^{∞} initial data γ_{0} with $G\left(x, j_{3} \gamma_{0}\right)>0$ at some point $x \in S^{1}$, there is a positive time T so that (ST) has a unique C^{∞} solution on the time interval $[0, T)$.

To prove this, we need "cut off" functions for F, G and H. Let $\rho_{a}(y)$ be a C^{∞} function of y such that $\rho_{a}(y)=1$ for $|y| \leq a, \rho_{a}(y)=0$ for $|y| \geq 2 a$, and $0 \leq \rho_{a}(y) \leq$ 1 for all y. Let v_{0} be the solution of the ODE: $-v^{\prime \prime}+G\left(x, j_{3} \gamma_{0}\right) \cdot v=H\left(x, j_{3} \gamma_{0}\right)$ and put $A=\max \left(\left|j_{3} \gamma_{0}\right|^{2}+\left|j_{1} v_{0}\right|^{2}\right)$. Set

$$
\begin{aligned}
\tilde{F}\left(x, j_{3} \gamma, j_{1} v\right) & =\rho_{2 A}\left(\left|j_{3} \gamma\right|^{2}+\left|j_{1} v\right|^{2}\right) \cdot F\left(x, j_{3} \gamma, j_{1} v\right) \\
\tilde{H}\left(x, j_{3} \gamma\right) & =\rho_{2 A}\left(\left|j_{3} \gamma\right|^{2}\right) \cdot H\left(x, j_{3} \gamma\right)
\end{aligned}
$$

For the function G, we take a point $x_{0} \in S^{1}$ and positive numbers $B \leq 1$ and C so that $G\left(x, j_{3} \gamma\right) \geq C$ for all 3-jets $\{x, \gamma\}$ with $\left|x-x_{0}\right|,\left|j_{3}\left(\gamma-\gamma_{0}\right)\right|^{2} \leq B$. Set

$$
\tilde{G}\left(x, j_{3} \gamma\right)=\rho_{B / 2}\left(\left|j_{3}\left(\gamma-\gamma_{0}\right)\right|^{2}\right) \cdot G\left(x, j_{3} \gamma\right)+1-\rho_{B / 2}\left(\left|j_{3}\left(\gamma-\gamma_{0}\right)\right|^{2}\right)
$$

Take any point x with $\left|x-x_{0}\right| \leq B$. If $\left|j_{3}\left(\gamma-\gamma_{0}\right)\right|^{2} \leq B$, then $\tilde{G}\left(x, j_{3} \gamma\right) \geq$ $\min \left\{G\left(x, j_{3} \gamma\right), 1\right\} \geq C$. If $\left|j_{3}\left(\gamma-\gamma_{0}\right)\right|^{2} \geq B$, then $\tilde{G}\left(x, j_{3} \gamma\right)=1$. In particular, for any function γ, we have

$$
\oint \tilde{G}\left(x, j_{3} \gamma\right) d x \geq B C .
$$

Note that if γ is sufficiently close to γ_{0} in C^{3} topology, then $\tilde{G}\left(x, j_{3} \gamma\right)=$ $G\left(x, j_{3} \gamma\right)$ and $\tilde{H}\left(x, j_{3} \gamma\right)=H\left(x, j_{3} \gamma\right)$. It also implies that the solution \tilde{v} of the ODE: $-\tilde{v}^{\prime \prime}+\tilde{G}\left(x, j_{3} \gamma\right) \cdot \tilde{v}=\tilde{H}\left(x, j_{3} \gamma\right)$ coincides with v. Therefore, if we have a solution for the equation

$$
\left\{\begin{array}{l}
\partial_{t} \gamma=-\gamma^{(4)}+\tilde{F}\left(x, j_{3} \gamma, j_{1} v\right) \tag{ST}\\
-v^{\prime \prime}+\tilde{G}\left(x, j_{3} \gamma\right) \cdot v=\tilde{H}\left(x, j_{3} \gamma\right)
\end{array}\right.
$$

then it is a solution for the original equation for some short time.
Now we consider the equation

$$
\left\{\begin{array}{l}
\partial_{t} \gamma=-\gamma^{(4)}+\lambda \tilde{F}\left(x, j_{3} \gamma, j_{1} v\right), \tag{ST}\\
-v^{\prime \prime}+\tilde{G}\left(x, j_{3} \gamma\right) \cdot v=\tilde{H}\left(x, j_{3} \gamma\right),
\end{array}\right.
$$

where λ is a constant in $[0,1]$.
Lemma 3.2. Let $\gamma=\gamma(t, x)$ be a $C^{4+4 \mu}$ solution of $\left(\widetilde{\mathbf{S T}}_{\lambda}\right)$ with a C^{∞} initial data $\gamma_{0}(x)$. Then γ is C^{∞}.

Proof. If γ belongs in the class $C^{n+4+4 \mu}$, then the functions $\tilde{G}\left(x, j_{3} \gamma\right)$ and $\tilde{H}\left(x, j_{3} \gamma\right)$ belong to the class $C^{n+1+4 \mu}$. Hence Lemma 1.4 implies that v and v^{\prime} belong to $C^{n+1+4 \mu}$, therefore also $\tilde{F}\left(x, j_{3} \gamma, j_{1} v\right)$ belongs to $C^{n+1+4 \mu}$. Thus we see that γ belongs to $C^{n+5+4 \mu}$. By induction, we see the smoothness of the solution γ.

Lemma 3.3. Consider the $O D E:-v^{\prime \prime}+\tilde{G}\left(x, j_{3} \gamma\right) \cdot v=\tilde{H}\left(x, j_{3} \gamma\right)$. For any nonnegative integer n and a positive number C, there is a positive number K with the following property:

If $\|\gamma\|_{n} \leq C$, then $\|v\|_{n} \leq K \cdot\left\{1+\left\|\gamma^{(n+1)}\right\|\right\}$.
Proof. Since $|v|$ and $\left|v^{\prime}\right|$ are bounded by Lemma 1.3, the claim holds for $n=$ 0,1 . Suppose that the claim holds for an integer $n(\geq 1)$ and that $\|\gamma\|_{n+1} \leq C$. Then, by Lemmas 1.1 and 1.2, we have

$$
\begin{aligned}
\|v\|_{n+1} & \leq\|v\|_{n}+\left\|v^{(n+1)}\right\| \\
& \leq C+\left\|\tilde{G}\left(x, j_{3} \gamma\right) \cdot v\right\|_{n-1}+\left\|\tilde{H}\left(x, j_{3} \gamma\right)\right\|_{n-1} \\
& \leq C+C_{1} \cdot\left\|\tilde{G}\left(x, j_{3} \gamma\right)\right\|_{n-1}+\left\|\tilde{H}\left(x, j_{3} \gamma\right)\right\|_{n-1} .
\end{aligned}
$$

The last expression involves the derivatives of γ up to $\gamma^{(n+2)}$. Counting the fact that $\left|\gamma^{(n)}\right|$ is bounded, we see

$$
\begin{aligned}
\|v\|_{n+1} & \leq C_{2} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|+\left\|\left|\gamma^{(n+1)}\right| \cdot \mid \gamma^{(4)}\right\|_{(\# 3)}\right\} \\
& \leq C_{2} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|+\left\|\gamma^{(n+1)}\right\| \cdot \max \left|\gamma^{(4)}\right|_{(\# 3)}\right\} \\
& \leq C_{3} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|+\max \left|\gamma^{(n+1)}\right|(\# 3)\right\} \\
& \leq C_{4} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|\right\},
\end{aligned}
$$

where (\#3) means that the indicated term appears only if $n \geq 3$.
Lemma 3.4. Let γ be a solution of $\left(\widetilde{\mathrm{ST}}_{\lambda}\right)$ on a finite time interval $[0, T)$. For any non-negative integer n, the norm $\left\|\gamma^{(n)}\right\|$ is uniformly bounded with respect to $\lambda \in$ $[0,1]$.

Proof. First of all, for $n \leq 2$, we have

$$
\begin{aligned}
\frac{d}{d t}\left\|\gamma^{(n)}\right\|^{2} & =2\left\langle\gamma^{(n)}, \partial_{t} \gamma^{(n)}\right\rangle \\
& =2\left\langle\gamma^{(n)},-\gamma^{(n+4)}+\lambda \tilde{F}\left(x, j_{3} \gamma, j_{1} v\right)^{(n)}\right\rangle \\
& =-2\left\|\gamma^{(n+2)}\right\|^{2} \pm 2 \lambda\left\langle\gamma^{(2 n)}, \tilde{F}\left(x, j_{3} \gamma, j_{1} v\right)\right\rangle \\
& \leq-2\left\|\gamma^{(n+2)}\right\|^{2}+2\left\|\tilde{F}\left(x, j_{3} \gamma, j_{1} v\right)\right\| \cdot\left\|\gamma^{(2 n)}\right\|
\end{aligned}
$$

Thus for $n=0$, we have

$$
\frac{d}{d t}\|\gamma\|^{2} \leq 2 C_{1} \cdot\|\gamma\|
$$

hence $(d / d t)\|\gamma\|$ is bounded. Also, for $n=2$, we have

$$
\frac{d}{d t}\left\|\gamma^{\prime \prime}\right\|^{2} \leq-2\left\|\gamma^{(4)}\right\|^{2}+2 C_{2}\left\|\gamma^{(4)}\right\| \leq C_{3}
$$

Therefore, the norm $\|\gamma\|_{2}$ increases at most linear order.
Suppose that we know estimation of $\|\gamma\|_{n+1}$ for an integer $n(\geq 1)$. By Lemma 3.3, we have

$$
\begin{aligned}
\|v\|_{n} & \leq C_{4} \\
\|v\|_{n+1} & \leq C_{5} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|\right\} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{d}{d t}\left\|\gamma^{(n+2)}\right\|^{2} & =2\left\langle\gamma^{(n+2)},-\gamma^{(n+6)}+\lambda \tilde{F}\left(x, j_{3} \gamma, j_{1} v\right)^{(n+2)}\right\rangle \\
& \leq-2\left\|\gamma^{(n+4)}\right\|^{2}+2\left\|\gamma^{(n+4)}\right\| \cdot\left\|\tilde{F}\left(x, j_{3} \gamma, j_{1} v\right)^{(n)}\right\| \\
& \leq-\left\|\gamma^{(n+4)}\right\|^{2}+\left\|\tilde{F}\left(x, j_{3} \gamma, j_{1} v\right)^{(n)}\right\|^{2}
\end{aligned}
$$

Here, the term $\tilde{F}\left(x, j_{3} \gamma, j_{1} v\right)^{(n)}$ contains the derivatives of γ and v up to $\gamma^{(n+3)}$ and $v^{(n+1)}$, and $\left|\gamma^{(n)}\right|$ and $\left|v^{(n-1)}\right|$ are bounded. Therefore we have to estimate the following terms:

$$
\begin{aligned}
& \left\|\gamma^{(n+3)}\right\|, \quad\left\|\left|\gamma^{(n+2)}\right| \cdot\left|\gamma^{(4)}\right|\right\|, \quad\left\|\left|\gamma^{(n+2)}\right| \cdot\left|v^{\prime \prime}\right|\right\| \\
& \left\|\left|\gamma^{(n+1)}\right| \cdot\left|\gamma^{(5)}\right|\right\|, \quad\left\|\left|\gamma^{(n+1)}\right| \cdot\left|\gamma^{(4)}\right| \cdot\left|\gamma^{(4)}\right|\right\|, \quad\left\|\left|\gamma^{(n+1)}\right| \cdot\left|v^{(3)}\right|\right\|, \\
& \left\|\left|\gamma^{(n+1)}\right| \cdot\left|v^{\prime \prime}\right| \cdot\left|v^{\prime \prime}\right|, \quad\right\|\left|\gamma^{(n+1)}\right| \cdot\left|v^{(4)}\right| \cdot\left|v^{\prime \prime}\right| \\
& \left\|v^{(n+1)}\right\|, \quad\left\|\left|v^{(n)}\right| \cdot\left|\gamma^{(4)}\right|\right\|, \quad\left\|\left|v^{(n)}\right| \cdot\left|v^{\prime \prime}\right|\right\| .
\end{aligned}
$$

Note that terms with multiple factors appear only if $n \geq$ (their number of factors). By Lemma 1.2, we can estimate each factor as:

$$
\left\|\gamma^{(n+3)}\right\| \leq C_{6} \cdot\left\|\gamma^{(n+4)}\right\|^{2 / 3}
$$

$$
\begin{aligned}
\max \left|\gamma^{(n+2)}\right| & \leq C_{7} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|^{1 / 2} \cdot\left\|\gamma^{(n+3)}\right\|^{1 / 2}\right\} \\
& \leq C_{8} \cdot\left\{1+\left\|\gamma^{(n+4)}\right\|^{1 / 2}\right\}, \\
\max \left|\gamma^{(n+1)}\right| & \leq C_{9} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|^{1 / 2}\right\} \leq C_{10} \cdot\left\{1+\left\|\gamma^{(n+4)}\right\|^{1 / 6}\right\}, \\
\left\|v^{(n+1)}\right\| & \leq C_{11} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|\right\} \leq C_{12} \cdot\left\{1+\left\|\gamma^{(n+4)}\right\|^{1 / 3}\right\}, \\
\max \left|v^{(n)}\right| & \leq C_{13} \cdot\left\{1+\left\|v^{(n+1)}\right\|^{1 / 2}\right\} \\
& \leq C_{14} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|^{1 / 2}\right\} \leq C_{15} \cdot\left\{1+\left\|\gamma^{(n+4)}\right\|^{1 / 6}\right\} .
\end{aligned}
$$

When $n \geq 2$, we have

$$
\begin{aligned}
\left\|\gamma^{(4)}\right\| & \leq C_{16} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|\right\} \leq C_{17} \cdot\left\{1+\left\|\gamma^{(n+4)}\right\|^{1 / 3}\right\}, \\
\left\|v^{\prime \prime}\right\| & \leq C_{18} \cdot\left\{1+\left\|v^{(n)}\right\|\right\} \leq C_{19} \\
\left\|\gamma^{(5)}\right\| & \leq C_{20} \cdot\left\{1+\left\|\gamma^{(n+3)}\right\|\right\} \leq C_{21} \cdot\left\{1+\left\|\gamma^{(n+4)}\right\|^{2 / 3}\right\}, \\
\left\|v^{(3)}\right\| & \leq C_{22} \cdot\left\{1+\left\|v^{(n+1)}\right\|\right\} \leq C_{23} \cdot\left\{1+\left\|\gamma^{(n+4)}\right\|^{1 / 3}\right\}
\end{aligned}
$$

When $n \geq 3$, we have

$$
\begin{aligned}
\max \left|v^{\prime \prime}\right| & \leq C_{24} \cdot\left\{1+\max \left|v^{(n-1)}\right|\right\} \leq C_{25}, \\
\max \left|\gamma^{(4)}\right| & \leq C_{26} \cdot\left\{1+\max \left|\gamma^{(n+1)}\right|\right\} \leq C_{27} \cdot\left\{1+\left\|\gamma^{(n+2)}\right\|^{1 / 2}\right\} \\
& \leq C_{28} \cdot\left\{1+\left\|\gamma^{(n+4)}\right\|^{1 / 6}\right\} .
\end{aligned}
$$

Combining all, we conclude

$$
\left\|\tilde{F}\left(x, j_{3} \gamma, j_{1} v\right)^{(n)}\right\| \leq C_{29} \cdot\left\{1+\left\|\gamma^{(n+4)}\right\|^{5 / 6}\right\},
$$

and

$$
\frac{d}{d t}\left\|\gamma^{(n+2)}\right\|^{2} \leq C_{30}
$$

Proof (of Theorem 3.1). We use the so-called open closed method. Take any positive time T. By the implicit function theorem with Lemma 1.4 , the set Λ of λ which has a solution γ of $\left(\widetilde{\mathrm{ST}}_{\lambda}\right)$ on $[0, T)$ is open in the interval $[0,1]$. On the other hand, by Lemma 3.4, Λ is closed in $[0,1]$. Since Λ contains 0 , it should coincide with $[0,1]$. By definition, the solution of $\left(\widetilde{\mathbf{T T}}_{\lambda}\right)$ with $\lambda=1$ is a solution of $(\widetilde{\mathrm{ST}})$, which gives a short time solution of (ST). For detailed discussion, see [3, Proof of Theorem 6.5].

Theorem 3.5. The equation (EP) with non-geodesic initial data of unit line element has a unique short time solution $\gamma(x, t)$. Moreover, every closed curve $\gamma(*, t)$ has unit line element.

Proof. We may assume that the induced tangent bundle of the initial data γ_{0} is orientable, taking a double cover if necessary. Then, using a tubular neighbourhood of $\gamma_{0},\left(\mathbf{E P}_{v}\right)$ is expressed as (ST), hence has a short time solution. Let $\{\gamma, v\}$ be a solution. Since $\partial_{t}\left|\gamma^{\prime}\right|^{2}=2\left(\gamma^{\prime}, D_{t} \gamma^{\prime}\right)=2\left(\gamma^{\prime}, D_{x} \partial_{t} \gamma\right)=0$, we have $\left|\gamma^{\prime}\right|^{2} \equiv 1$. Let $\{\gamma+\zeta, v+u\}$ be another solution of (ST) in the tubular neighbourhood of γ_{0}. Then $\{\zeta, u\}$ satisfies the equation:

$$
\left\{\begin{array}{l}
\partial_{t} \zeta=-\zeta^{(4)}+f\left(x, t, \zeta, \zeta^{\prime}, \zeta^{\prime \prime}, \zeta^{(3)}, u, u^{\prime}\right) \\
-u^{\prime \prime}+G\left(x, \gamma, \gamma^{\prime}, \gamma^{\prime \prime}, \gamma^{(3)}\right) \cdot u=h\left(x, t, \zeta, \zeta^{\prime}, \zeta^{\prime \prime}, \zeta^{(3)}, u\right)
\end{array}\right.
$$

Here, $|f|$ and $|h|$ are bounded by $C\left\{\sum_{i=0}^{3}\left|\zeta^{(i)}\right|+|u|+\left|u^{\prime}\right|\right\}$, because $\{\gamma+\zeta, v+u\}$ is bounded. Therefore, we have $\|u\|_{1} \leq C_{1}\|\zeta\|_{3}$, and

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|\zeta\|_{1}^{2} & =\left\langle\zeta, \partial_{t} \zeta\right\rangle+\left\langle\zeta^{\prime}, \partial_{t} \zeta^{\prime}\right\rangle=\left\langle\zeta-\zeta^{\prime \prime},-\zeta^{(4)}+f\right\rangle \\
& =-\left\|\zeta^{\prime \prime}\right\|^{2}-\left\|\zeta^{(3)}\right\|^{2}+\langle\zeta, f\rangle \\
& \leq-\left\|\zeta^{\prime \prime}\right\|^{2}-\left\|\zeta^{33}\right\|^{2}+C_{2} \cdot\|\zeta\| \cdot\left(\|\zeta\|_{3}+\|u\|_{1}\right) \\
& \leq C_{3} \cdot\|\zeta\|_{1}^{2}
\end{aligned}
$$

Since $\zeta=0$ at $t=0$, we have $\zeta \equiv 0$. Replacing $t=0$ to arbitrary $t=t_{0}$, we see that the set of all t such that two solutions coincide is open. Hence the solutions coincide for all time.

4. Long time existence

In this section, we consider the original equation:
(EP) $\quad\left\{\begin{array}{l}\partial_{t} \gamma=-D_{x}^{3} \gamma^{\prime}+R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+D_{x}\left(w \gamma^{\prime}\right), \\ -w^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} w=2\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime \prime}-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right), \\ \gamma(x, 0)=\gamma_{0}(x),\end{array}\right.$
where γ_{0} is a closed curve of unit line element.
Theorem 4.1. Let M be a compact riemannian manifold and γ_{0} a closed curve of unit line element. Then (EP) has a unique solution for a time interval $[0, T)$ and one of the followings holds.

1) There is a sequence of times $t_{i} \rightarrow T$ such that $\gamma\left(*, t_{i}\right)$ converges to a closed geodesic in C^{1} topology.
2) $\quad T=\infty$.

To prove this, we need some preparation. For a closed curve γ, let v and w be solutions of the ODE:

$$
\begin{aligned}
-v^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} v & =-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}+2\left|D_{x} \gamma^{\prime}\right|^{4}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right) \\
-w^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} w & =2\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime \prime}-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right)
\end{aligned}
$$

and put

$$
\delta=-D_{x}^{3} \gamma^{\prime}+R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+D_{x}\left(w \gamma^{\prime}\right) .
$$

In Lemmas 4.2-4.6, we consider this ODE and estimate v, w and δ by γ^{\prime}. They will be applied to the PDE (EP) later.

Lemma 4.2. For any non-negative integer n and any positive real number C, there is a positive number K with the following property:

If $\left\|D_{x} \gamma^{\prime}\right\| \geq C^{-1},\left\|\gamma^{\prime}\right\|_{1} \leq C$ and $\left\|\gamma^{\prime}\right\|_{n} \leq C$, then

$$
\|w\|_{n+1} \leq K \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+2} \gamma^{\prime}\right\|\right\}
$$

Proof. The assumption and Lemma 1.3 imply that

$$
\|v\|_{C^{\prime}} \leq\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2}+2\left\|\left|D_{x} \gamma^{\prime}\right|^{2}\right\|^{2}+\left\|D_{x} \gamma^{\prime}\right\|^{2} .
$$

But we know that $\max \left|D_{x} \gamma^{\prime}\right| \leq C_{1} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{1 / 2}\right\}$. Therefore,

$$
\|v\|_{C^{\prime}} \leq C_{2} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2}\right\}
$$

Moreover,

$$
\begin{aligned}
\left\|\left|D_{x} \gamma^{\prime}\right|^{2}\right\| & \leq C_{3} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{1 / 2}\right\}, \\
\left\|\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime}\right\| & \leq 2\left\|\left|D_{x} \gamma^{\prime}\right| \cdot\left|D_{x}^{2} \gamma^{\prime}\right|\right\| \leq C_{4} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{3 / 2}\right\} .
\end{aligned}
$$

Thus we proved the claim for $n=0$:

$$
\|w\|_{1} \leq C_{5} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2}\right\} .
$$

Suppose that the claim holds for a non-negative integer n and that $\left\|\gamma^{\prime}\right\|_{n+1} \leq C$. Then, we know $\|w\|_{n+1} \leq C_{6} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+2} \gamma^{\prime}\right\|\right\}$. Therefore,

$$
\begin{aligned}
\left\|w^{(n+2)}\right\| \leq & \left\|\left\{\left|D_{x} \gamma^{\prime}\right|^{2} \cdot w\right\}^{(n)}\right\|+2\left\|\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{(n+2)}\right\| \\
& +\left\|\left\{\left|D_{x}^{2} \gamma^{\prime}\right|^{2}\right\}^{(n)}\right\|+\left\|\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right)^{(n)}\right\| \\
\leq & C_{7} \cdot\left\{1+\left\|\left|D_{x}^{n+1} \gamma^{\prime}\right| \cdot\left|D_{x} \gamma^{\prime}\right| \cdot|w|\right\|+\|w\|_{n}\right\} \\
& +C_{8} \cdot\left\{1+\left\|\left|D_{x}^{n+3} \gamma^{\prime}\right| \cdot\left|D_{x} \gamma^{\prime}\right|\right\|+\left\|\left|D_{x}^{n+2} \gamma^{\prime}\right| \cdot\left|D_{x}^{2} \gamma^{\prime}\right|\right\|\right. \\
& \left.+\left\|\left|D_{x}^{n+1} \gamma^{\prime}\right| \cdot\left|D_{x}^{3} \gamma^{\prime}\right|\right\|(\# 2)\right\} \\
& +C_{9} \cdot\left\{1+\left\|\left|D_{x}^{n+1} \gamma^{\prime}\right| \cdot\left|D_{x} \gamma^{\prime}\right|\right\|\right\},
\end{aligned}
$$

where (\#2) means that the indicated term appears only when $n \geq 2$.
Here, we know that

$$
\begin{aligned}
\max \left|D_{x}^{n+1} \gamma^{\prime}\right| & \leq C_{10} \cdot\left\{1+\left\|D_{x}^{n+2} \gamma^{\prime}\right\|^{1 / 2}\right\} \leq C_{11} \cdot\left\{1+\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{1 / 4}\right\}, \\
\max |w| & \leq\|w\|_{1} \leq C_{12} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2}\right\} \\
& \leq C_{13} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{1 / 2}\right\}, \\
\max \left|D_{x} \gamma^{\prime}\right| & \leq C_{14} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|\right\}, \\
\max \left|D_{x}^{n+2} \gamma^{\prime}\right| & \leq C_{15} \cdot\left\{1+\left\|D_{x}^{n+2} \gamma^{\prime}\right\|^{1 / 2} \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{1 / 2}\right\} \\
& \leq C_{16} \cdot\left\{1+\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{3 / 4}\right\}, \\
\left\|D_{x}^{3} \gamma^{\prime}\right\|(\# 2) & \leq C_{17} .
\end{aligned}
$$

Thus we have

$$
\|w\|_{n+2} \leq C_{18} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|\right\}
$$

and the induction completes the proof.
Lemma 4.3. Set

$$
\phi=R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+D_{x}\left(w \gamma^{\prime}\right) .
$$

For any non-negative integer n and any positive real number C, there is a positive number K with the following property:

If $\left\|D_{x} \gamma^{\prime}\right\| \geq C^{-1},\left\|\gamma^{\prime}\right\|_{1} \leq C$ and $\left\|\gamma^{\prime}\right\|_{n} \leq C$, then

$$
\|\phi\|_{n} \leq K \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+2} \gamma^{\prime}\right\|\right\} .
$$

Proof. The assumption and Lemma 4.2 imply that

$$
\begin{aligned}
\|\phi\| & \leq C_{1} \cdot\left\{1+\left\|w^{\prime}\right\|+\max |w|\right\} \\
& \leq C_{2} \cdot\left\{1+\|w\|_{1}\right\} \leq C_{3} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2}\right\} .
\end{aligned}
$$

Thus the claim holds for $n=0$.
Suppose that the claim holds for a non-negative integer n and that $\left\|\gamma^{\prime}\right\|_{n+1} \leq C$. Then, we know $\|\phi\|_{n} \leq C_{4} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+2} \gamma^{\prime}\right\|\right\}$. Therefore,

$$
\begin{aligned}
\left\|\phi^{(n+1)}\right\| \leq & \left\|D_{x}^{n+1}\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}\right)\right\|+\left\|D_{x}^{n+2}\left(w \gamma^{\prime}\right)\right\| \\
\leq & C_{5} \cdot\left\{1+\left\|D_{x}^{n+2} \gamma^{\prime}\right\|+\left\|\left|D_{x}^{n+1} \gamma^{\prime}\right| \cdot\left|D_{x} \gamma^{\prime}\right|\right\|\right. \\
& \left.+\left\||w| \cdot\left|D_{x}^{n+2} \gamma^{\prime}\right|\right\|+\left\|\left|w^{\prime}\right| \cdot\left|D_{x}^{n+1} \gamma^{\prime}\right|\right\|+\|w\|_{n+2}\right\} .
\end{aligned}
$$

Here, by Lemma 4.2, the terms except 4th and 5th are estimated linearly by $\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|$. For the excepted terms, Lemma 4.2 also implies that

$$
\begin{aligned}
\left\||w| \cdot\left|D_{x}^{n+2} \gamma^{\prime}\right|\right\| & \leq C_{6} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2} \cdot\left\|D_{x}^{n+2} \gamma^{\prime}\right\|\right\} \\
& \leq C_{7} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2} \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{1 / 2}\right\} \\
& \leq C_{8} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{1 / 2}\right\} \\
& \leq C_{9} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|\right\} \\
\left\|\left|w^{\prime}\right| \cdot\left|D_{x}^{n+1} \gamma^{\prime}\right|\right\| & \leq C_{10} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2} \cdot \max \mid D_{x}^{n+1} \gamma^{\prime} \|\right\} \\
& \leq C_{11} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|\right\}
\end{aligned}
$$

Lemma 4.4. For any non-negative integer n and any positive real number C, there is a positive number K with the following property:

If $\left\|D_{x} \gamma^{\prime}\right\| \geq C^{-1}$ and $\left\|\gamma^{\prime}\right\|_{n+1} \leq C$, then

$$
\left\|D_{x}^{n} \delta\right\| \leq K \cdot\left\{1+\left\|D_{x}^{n+3} \gamma^{\prime}\right\|\right\}
$$

where δ is defined below Theorem 4.1.

Proof. Lemma 4.3 implies that

$$
\begin{aligned}
\left\|D_{x}^{n} \delta\right\| & \leq\left\|D_{x}^{n+3} \gamma^{\prime}\right\|+\left\|D_{x}^{n} \phi\right\| \\
& \leq C_{1} \cdot\left\{1+\left\|D_{x}^{n+3} \gamma^{\prime}\right\|+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+2} \gamma^{\prime}\right\|\right\}
\end{aligned}
$$

Here, we know

$$
\begin{aligned}
\left\|D_{x}^{2} \gamma^{\prime}\right\| & \leq C_{2} \cdot\left\|D_{x}^{3} \gamma^{\prime}\right\|^{1 / 2} \leq C_{3} \cdot\left\{1+\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{1 / 2}\right\} \\
\left\|D_{x}^{n+2} \gamma^{\prime}\right\| & \leq C_{4} \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{1 / 2}
\end{aligned}
$$

which completes the proof.

Lemma 4.5. Let γ be the solution of (EP). For any non-negative integer n and any positive real number C, there is a positive number K with the following property: If $\left\|D_{x} \gamma^{\prime}\right\| \geq C^{-1}$ and $\left\|\gamma^{\prime}\right\|_{n+1} \leq C$, then

$$
\frac{d}{d t}\left\|D_{x}^{n+2} \gamma^{\prime}\right\|^{2} \leq K \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2} \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{2}\right\}-\left\|D_{x}^{n+4} \gamma^{\prime}\right\|^{2}
$$

Proof.

$$
\begin{aligned}
\frac{d}{d t}\left\|D_{x}^{n+2} \gamma^{\prime}\right\|^{2} & =2\left\langle D_{x}^{n+2} \gamma^{\prime}, D_{t} D_{x}^{n+2} \gamma^{\prime}\right\rangle \\
& =2\left\langle D_{x}^{n+2} \gamma^{\prime}, \sum_{i=0}^{n+1} D_{x}^{i}\left(R\left(\delta, \gamma^{\prime}\right) D_{x}^{n+1-i} \gamma^{\prime}\right)+D_{x}^{n+3} \delta\right\rangle \\
& =2\left\langle D_{x}^{n+2} \gamma^{\prime}, R\left(\delta, \gamma^{\prime}\right) D_{x}^{n+1} \gamma^{\prime}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \quad-2\left\langle D_{x}^{n+3} \gamma^{\prime}, R\left(\delta, \gamma^{\prime}\right) D_{x}^{n} \gamma^{\prime}\right\rangle \\
& +2 \sum_{i=2}^{n+1}\left\langle D_{x}^{n+4} \gamma^{\prime}, D_{x}^{i-2}\left(R\left(\delta, \gamma^{\prime}\right) D_{x}^{n+1-i} \gamma^{\prime}\right)\right\rangle \\
& \\
& +2\left\langle D_{x}^{n+4} \gamma^{\prime}, D_{x}^{n+1}\left\{-D_{x}^{3} \gamma^{\prime}+\phi\right\}\right\rangle \\
& \leq \\
& C_{1} \cdot\left\{\left\|D_{x}^{n+2} \gamma^{\prime}\right\| \cdot\left\||\delta| \cdot\left|D_{x}^{n+1} \gamma^{\prime}\right|\right\|+\left\|D_{x}^{n+3} \gamma^{\prime}\right\| \cdot\|\delta\|\right. \\
& \\
& \left.+\left\|D_{x}^{n+4} \gamma^{\prime}\right\| \cdot\left\{\|\delta\|+\left\|D_{x}^{n-1} \delta\right\|\right\}(\# 1)\right\} \\
& \\
& -2\left\|D_{x}^{n+4} \gamma^{\prime}\right\|^{2}+2\left\|D_{x}^{n+4} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+1} \phi\right\|,
\end{aligned}
$$

where (\#1) means that the indicated term appears only when $n \geq 1$.
Here, we know that

$$
\begin{aligned}
\left\|D_{x}^{n+2} \gamma^{\prime}\right\| & \leq C_{2} \cdot\left\|D_{x}^{n+4} \gamma^{\prime}\right\|^{1 / 3}, \\
\max \left|D_{x}^{n+1} \gamma^{\prime}\right| & \leq C_{3} \cdot\left\{1+\left\|D_{x}^{n+2} \gamma^{\prime}\right\|^{1 / 2}\right\} \leq C_{4} \cdot\left\{1+\left\|D_{x}^{n+4} \gamma^{\prime}\right\|^{1 / 6}\right\}, \\
\left\|D_{x}^{n+3} \gamma^{\prime}\right\| & \leq C_{5} \cdot\left\|D_{x}^{n+4} \gamma^{\prime}\right\|^{2 / 3} .
\end{aligned}
$$

Moreover, by Lemma 4.4,

$$
\begin{aligned}
\|\delta\| & \leq C_{6} \cdot\left\{1+\left\|D_{x}^{3} \gamma^{\prime}\right\|\right\} \\
& \leq C_{7} \cdot\left\{1+\left\|D_{x}^{n+3} \gamma^{\prime}\right\|\right\} \leq C_{8} \cdot\left\{1+\left\|D_{x}^{n+4} \gamma^{\prime}\right\|^{2 / 3}\right\}, \\
\left\|D_{x}^{n-1} \delta\right\| & \leq C_{9} \cdot\left\{1+\left\|D_{x}^{n+2} \gamma^{\prime}\right\|\right\} \quad(\text { when } n \geq 1),
\end{aligned}
$$

and by Lemma 4.3,

$$
\left\|D_{x}^{n+1} \phi\right\| \leq C_{10} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|\right\} .
$$

Combining all gives the result.
Lemma 4.6. For any positive real number C and a C^{1} neighbourhood U of the set of all closed geodesics of unit line element, there is a positive number K with the following property:

If γ is a closed curve of unit line element not in the set U and if $\left\|D_{x} \gamma^{\prime}\right\| \leq C$, then

$$
\left\|D_{x}^{3} \gamma^{\prime}\right\| \leq K \cdot\{1+\|\delta\|\}
$$

Proof. Since

$$
\left(\gamma^{\prime}, \delta\right)=-\left(\gamma^{\prime}, D_{x}^{3} \gamma^{\prime}\right)+\left(\gamma^{\prime}, w^{\prime} \gamma^{\prime}+w D_{x} \gamma^{\prime}\right)=\frac{3}{2}\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}^{\prime}+w^{\prime}
$$

we see

$$
\left\|w^{\prime}\right\| \leq\|\delta\|+3\left\|\left(D_{x} \gamma^{\prime}, D_{x}^{2} \gamma^{\prime}\right)\right\|
$$

$$
\begin{aligned}
& \leq C_{1} \cdot\left\{\|\delta\|+\max \left|D_{x} \gamma^{\prime}\right| \cdot\left\|D_{x}^{2} \gamma^{\prime}\right\|\right\} \\
& \leq C_{2} \cdot\left\{1+\|\delta\|+\left\|D_{x} \gamma^{\prime}\right\|^{1 / 2} \cdot\left\|D_{x}^{2} \gamma^{\prime}\right\|^{3 / 2}\right\} \\
& \leq C_{3} \cdot\left\{1+\|\delta\|+\left\|D_{x}^{3} \gamma^{\prime}\right\|^{3 / 4}\right\} .
\end{aligned}
$$

Put

$$
\varphi=-D_{x}^{2} \gamma^{\prime}+w \gamma^{\prime}
$$

Then we have

$$
\left(\gamma^{\prime}, \varphi\right)=-\left(\gamma^{\prime}, D_{x}^{2} \gamma^{\prime}\right)+w=\left|D_{x} \gamma^{\prime}\right|^{2}+w
$$

Therefore,

$$
\oint w d x=\left\langle\gamma^{\prime}, \varphi\right\rangle-\left\|D_{x} \gamma^{\prime}\right\|^{2}
$$

Let α be a vector field along γ such that $D_{x} \alpha=\gamma^{\prime}$ on $0 \leq x \leq 1$ and $\alpha(0)=0$. Then,

$$
\begin{aligned}
\left\langle\gamma^{\prime}, \varphi\right\rangle= & \left\langle D_{x} \alpha, \varphi\right\rangle=\int_{0}^{1}\left(D_{x} \alpha, \varphi\right) d x \\
= & {[(\alpha, \varphi)]_{0}^{1}-\int_{0}^{1}\left(\alpha, D_{x} \varphi\right) d x } \\
= & (\alpha(1), \varphi(0))-\int_{0}^{1}\left(\alpha, \delta-R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}\right) d x \\
= & -\left(\alpha(1), D_{x}^{2} \gamma^{\prime}(0)\right)+w(0) \cdot\left(\alpha(1), \gamma^{\prime}(0)\right) \\
& -\int_{0}^{1}(\alpha, \delta) d x+\int_{0}^{1}\left(\alpha, R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}\right) d x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \oint w d x-\left(\alpha(1), \gamma^{\prime}(0)\right) \cdot w(0) \\
& =-\left(\alpha(1), D_{x}^{2} \gamma^{\prime}(0)\right)-\int_{0}^{1}(\alpha, \delta) d x \\
& \quad+\int_{0}^{1}\left(\alpha, R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}\right) d x-\left\|D_{x} \gamma^{\prime}\right\|^{2}
\end{aligned}
$$

Here,

$$
\left\{|\alpha|^{2}\right\}^{\prime}=2\left(\alpha, D_{x} \alpha\right)=2\left(\alpha, \gamma^{\prime}\right) \leq 2|\alpha|
$$

and so

$$
|\alpha|^{\prime} \leq 1 \quad \text { and } \quad|\alpha| \leq 1 \quad \text { on } \quad 0 \leq x \leq 1 .
$$

Thus,

$$
\begin{aligned}
& \left|\oint w d x-\left(\alpha(1), \gamma^{\prime}(0)\right) \cdot w(0)\right| \\
& \leq C_{4} \cdot\left\{1+\max \left|D_{x}^{2} \gamma^{\prime}\right|+\|\delta\|+\left\|D_{x} \gamma^{\prime}\right\|+\left\|D_{x} \gamma^{\prime}\right\|^{2}\right\} \\
& \leq C_{5} \cdot\left\{1+\|\delta\|+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{1 / 2} \cdot\left\|D_{x}^{3} \gamma^{\prime}\right\|^{1 / 2}\right\} \\
& \leq C_{6} \cdot\left\{1+\|\delta\|+\left\|D_{x}^{3} \gamma^{\prime}\right\|^{3 / 4}\right\} .
\end{aligned}
$$

We know that $\left(\alpha(1), \gamma^{\prime}(0)\right) \leq 1$ and the equality holds if and only if the curve γ is a closed geodesic. If there is a sequence γ_{i} of closed curves such that $\left(\alpha_{i}(1), \gamma_{i}^{\prime}(0)\right) \rightarrow 1$ for the corresponding vector field α_{i}, then the sequence has a C^{1} convergent subsequence, because the curves are H^{2} bounded. Since the limiting curve is a closed geodesic, this contradicts the assumption. Therefore we have a positive number $C_{0}<1$ such that

$$
\left(\alpha(1), \gamma^{\prime}(0)\right) \leq 1-C_{0}
$$

for all closed curves satisfying the condition.
We choose the origin 0 so that $\oint w d x=w(0)$. Then

$$
\begin{aligned}
& \left|\oint w d x-\left(\alpha(1), \gamma^{\prime}(0)\right) \cdot w(0)\right| \\
& \quad=\left|\left\{1-\left(\alpha(1), \gamma^{\prime}(0)\right)\right\} \cdot w(0)\right| \\
& \quad \geq C_{0}|w(0)| .
\end{aligned}
$$

Thus, we see

$$
|w(0)| \leq C_{8} \cdot\left\{1+\|\delta\|+\left\|D_{x}^{3} \gamma^{\prime}\right\|^{3 / 4}\right\}
$$

hence

$$
\max |w| \leq|w(0)|+\left\|w^{\prime}\right\| \leq C_{9} \cdot\left\{1+\|\delta\|+\left\|D_{x}^{3} \gamma^{\prime}\right\|^{3 / 4}\right\}
$$

Therefore, we have

$$
\begin{aligned}
\left\|D_{x}^{3} \gamma^{\prime}\right\| & =\left\|\delta-R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}-D_{x}\left(w \gamma^{\prime}\right)\right\| \\
& \leq C_{10} \cdot\left\{\|\delta\|+\left\|D_{x} \gamma^{\prime}\right\|+\max |w| \cdot\left\|D_{x} \gamma^{\prime}\right\|+\left\|w^{\prime}\right\|\right\} \\
& \leq C_{11} \cdot\left\{1+\|\delta\|+\left\|D_{x}^{3} \gamma^{\prime}\right\|^{3 / 4}\right\},
\end{aligned}
$$

and

$$
\left\|D_{x}^{3} \gamma^{\prime}\right\| \leq C_{12} \cdot\{1+\|\delta\|\}
$$

Let γ be a solution of (EP). Since $\left|\gamma^{\prime}\right| \equiv 1$, we have

$$
\begin{aligned}
\frac{d}{d t}\left\|D_{x} \gamma^{\prime}\right\|^{2} & =2\left\langle\delta,-\delta+D_{x}\left(w \gamma^{\prime}\right)\right\rangle=-2\|\delta\|^{2}-2\left\langle D_{x} \delta, w \gamma^{\prime}\right\rangle \\
& =-2\|\delta\|^{2}-2\left\langle D_{t} \gamma^{\prime}, w \gamma^{\prime}\right\rangle=-2\|\delta\|^{2} .
\end{aligned}
$$

Thus we have the following
Lemma 4.7. For a solution γ of (EP), $\left\|D_{x} \gamma^{\prime}\right\|^{2}$ is non-increasing.
Lemma 4.8. For any positive real numbers C, T and any non-negative integer n, there is a positive number K with the following property:

If γ is a solution of (EP) on $[0, T)$ and if $\left\|D_{x}^{3} \gamma^{\prime}\right\| \leq C \cdot\{1+\|\delta\|\}$, then $\|\gamma\|_{n}^{\prime} \leq K$.
Proof. We know that $\left\|D_{x} \gamma^{\prime}\right\| \leq C_{1}$. From Lemma 4.5, we have

$$
\frac{d}{d t}\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2} \leq C_{2} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2} \cdot\left\|D_{x}^{3} \gamma^{\prime}\right\|^{2}\right\}-\left\|D_{x}^{4} \gamma^{\prime}\right\|^{2} .
$$

It implies that

$$
\frac{d}{d t} \log \left\|D_{x}^{2} \gamma^{\prime}\right\|^{2} \leq C_{3} \cdot\left\{1+\left\|D_{x}^{3} \gamma^{\prime}\right\|^{2}\right\} .
$$

Combining it with inequality

$$
\frac{d}{d t}\left\|D_{x} \gamma^{\prime}\right\|^{2}=-2\|\delta\|^{2} \leq-C_{4}\left\|D_{x}^{3} \gamma^{\prime}\right\|^{2}+C_{5}
$$

which follows from the assumption, we have

$$
\frac{d}{d t}\left(\log \left\|D_{x}^{2} \gamma^{\prime}\right\|^{2}+C_{6} \cdot\left\|D_{x} \gamma^{\prime}\right\|^{2}\right) \leq C_{7} .
$$

Hence,

$$
\left\|D_{x}^{2} \gamma^{\prime}\right\| \leq C_{8}
$$

Suppose that $\left\|\gamma^{\prime}\right\|_{n+1} \leq C$ for an integer $n(\geq 1)$. Then, Lemma 4.5 implies that

$$
\frac{d}{d t}\left\|D_{x}^{n+2} \gamma^{\prime}\right\|^{2} \leq C_{9} \cdot\left\{1+\left\|D_{x}^{n+3} \gamma^{\prime}\right\|^{2}\right\}-\left\|D_{x}^{n+4} \gamma^{\prime}\right\|^{2} \leq C_{10} .
$$

Thus the induction completes the proof.

Proof (of Theorem 4.1). Suppose that no sequences $\gamma\left(*, t_{i}\right)$ converge to closed geodesics. By Lemmas 4.7 and 4.6, the assumption of Lemma 4.8 is satisfied. Therefore, for any finite time interval $[0, T)$, the solution γ is bounded in C^{∞} norm. Thus the solution in Theorem 3.1 can be continued onto $[0, \infty)$.

5. Convergence

In this section, we assume that the solution γ of (EP) does not have the property (1) of Theorem 4.1. In particular, $\left\|D_{x} \gamma^{\prime}\right\| \geq C^{-1}$ and the solution is defined for all time interval $[0, \infty)$. To show the convergence of the solution γ, we need some preparation.

Lemma 5.1. For any non-negative integer n and a positive real number C, there is a positive number K with the following property:

If $\|\delta\|_{n} \leq C$, then $\left\|\gamma^{\prime}\right\|_{n+3} \leq K$.
Proof. For $n=0$, the claim holds by Lemma 4.6. Suppose that the claim holds for n and that $\|\delta\|_{n+1} \leq C$. Then we know that $\left\|\gamma^{\prime}\right\|_{n+3} \leq C_{1}$. Thus, from Lemma 4.3, we have

$$
\begin{aligned}
\left\|D_{x}^{n+4} \gamma^{\prime}\right\| & \leq C_{2} \cdot\left\{\left\|D_{x}^{n+1} \delta\right\|+\left\|D_{x}^{n+1} \phi\right\|\right\} \\
& \leq C_{3} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\| \cdot\left\|D_{x}^{n+3} \gamma^{\prime}\right\|\right\} .
\end{aligned}
$$

Proposition 5.2. For any non-negative integer n and any positive number C, there is a positive number K with the following property:

If γ is a solution of (EP) and if $\|\delta\|_{n} \leq C$, then

$$
\left\|\partial_{t} w\right\|_{n+1} \leq K \cdot\left\{\|\delta\|+\left\|D_{x}^{n+3} \delta\right\|\right\}
$$

Proof. From the defining equation of v :

$$
-v^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} \cdot v=2\left|D_{x} \gamma^{\prime}\right|^{4}-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right),
$$

we have

$$
\begin{aligned}
- & \partial_{t} v^{\prime \prime}+\left|D_{x} \gamma^{\prime}\right|^{2} \cdot \partial_{t} v \\
= & -\partial_{t}\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\} \cdot v+\partial_{t}\left\{2\left|D_{x} \gamma^{\prime}\right|^{4}-\left|D_{x}^{2} \gamma^{\prime}\right|^{2}-\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right)\right\} \\
= & -2\left(D_{x} \gamma^{\prime}, R\left(\delta, \gamma^{\prime}\right) \gamma^{\prime}+D_{x}^{2} \delta\right) \cdot v \\
& +8\left(D_{x} \gamma^{\prime}, R\left(\delta, \gamma^{\prime}\right) \gamma^{\prime}+D_{x}^{2} \delta\right) \cdot\left|D_{x} \gamma^{\prime}\right|^{2} \\
& -2\left(D_{x}^{2} \gamma^{\prime}, R\left(\delta, \gamma^{\prime}\right) D_{x} \gamma^{\prime}+D_{x}\left\{R\left(\delta, \gamma^{\prime}\right) \gamma^{\prime}\right\}+D_{x}^{3} \delta\right) \\
& -\left(\left(D_{\delta} R\right)\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right)-2\left(R\left(D_{x} \delta, D_{x} \gamma^{\prime}\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right) \\
& -2\left(R\left(\gamma^{\prime}, R\left(\delta, \gamma^{\prime}\right) \gamma^{\prime}+D_{x}^{2} \delta\right) \gamma^{\prime}, D_{x} \gamma^{\prime}\right) .
\end{aligned}
$$

By Lemma 5.1, the assumption implies that $\left\|\gamma^{\prime}\right\|_{n+3} \leq C_{1}$. Hence, (the H^{n} norm of the last expression) $\leq C_{2} \cdot\left\{\|\delta\|+\left\|D_{x}^{n+3} \delta\right\|\right\}$.

Therefore, Lemma 1.3 implies that

$$
\begin{aligned}
\left\|\partial_{t} v\right\|_{1} & \leq C_{3} \cdot\left\{\|\delta\|+\left\|D_{x}^{3} \delta\right\|\right\}, \\
\left\|\partial_{t} v\right\|_{n+1} & \leq C_{4} \cdot\left\{\|\delta\|+\left\|D_{x}^{n+2} \delta\right\|\right\} \quad(\text { when } n \geq 1) .
\end{aligned}
$$

Moreover, from

$$
\partial_{t}\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}=2\left(D_{x} \gamma^{\prime}, R\left(\delta, \gamma^{\prime}\right) \gamma^{\prime}+D_{x}^{2} \delta\right),
$$

we have

$$
\left\|\partial_{t}\left\{\left|D_{x} \gamma^{\prime}\right|^{2}\right\}\right\|_{n+1} \leq C_{5} \cdot\left\{\|\delta\|+\left\|D_{x}^{n+3} \delta\right\|\right\} .
$$

Thus the claim holds for any non-negative integer n.
Lemma 5.3. The norm $\|\delta\|$ tends to 0 when $t \rightarrow \infty$. The integrals

$$
\int_{0}^{\infty}\|\delta\|^{2} d t, \quad \int_{0}^{\infty}\left\|D_{x}^{2} \delta\right\|^{2} d t
$$

are finite.
Proof. We have

$$
\int_{0}^{\infty}\|\delta\|^{2} d t=\int_{0}^{\infty}-\frac{1}{2} \frac{d}{d t}\left\|D_{x} \gamma^{\prime}\right\|^{2} d t=-\frac{1}{2}\left[\left\|D_{x} \gamma^{\prime}\right\|^{2}\right]_{0}^{\infty}<\infty .
$$

Moreover,

$$
\begin{array}{rl}
\frac{d}{d t}\|\delta\|^{2}=2\left\langle\delta, D_{t} \delta\right\rangle \\
=2 & 2\left\langle\delta,-D_{t} D_{x}^{3} \gamma^{\prime}+D_{t}\left(R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}\right)+D_{t} D_{x}\left(w \gamma^{\prime}\right)\right\rangle \\
=2\langle\delta,-R(\delta, & \left.\gamma^{\prime}\right) D_{x}^{2} \gamma^{\prime}-D_{x}\left(R\left(\delta, \gamma^{\prime}\right) D_{x} \gamma^{\prime}\right) \\
& \quad-D_{x}^{2}\left(R\left(\delta, \gamma^{\prime}\right) \gamma^{\prime}\right)-D_{x}^{4} \delta \\
& +\left(D_{\delta} R\right)\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}-R\left(D_{x} \delta, D_{x} \gamma^{\prime}\right) \gamma^{\prime} \\
& +R\left(\gamma^{\prime}, R\left(\delta, \gamma^{\prime}\right) \gamma^{\prime}+D_{x}^{2} \delta\right) \gamma^{\prime} \\
& +R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) D_{x} \delta \\
& \left.+R\left(\delta, \gamma^{\prime}\right)\left(w \gamma^{\prime}\right)+D_{x}\left\{-\partial_{t} w \cdot \gamma^{\prime}+w \cdot D_{x} \delta\right\}\right\rangle .
\end{array}
$$

Here, from Lemmas 4.6 and 4.2, we know

$$
\begin{aligned}
\left\|D_{x}^{3} \gamma^{\prime}\right\| & \leq C_{1} \cdot\{1+\|\delta\|\} \\
\|w\|_{1} & \leq C_{2} \cdot\left\{1+\left\|D_{x}^{2} \gamma^{\prime}\right\|^{2}\right\} \leq C_{3} \cdot\left\{1+\left\|D_{x}^{3} \gamma^{\prime}\right\|\right\} \leq C_{4} \cdot\{1+\|\delta\|\} .
\end{aligned}
$$

Thus, using equation: $\left(D_{x} \delta, \gamma^{\prime}\right)=0$,

$$
\begin{aligned}
\frac{d}{d t}\|\delta\|^{2} \leq & -2\left\|D_{x}^{2} \delta\right\|^{2}-2\left\langle D_{x} \delta, \partial_{t} w \cdot \gamma^{\prime}\right\rangle \\
& \left.+C_{5} \cdot\|\delta\| \cdot\left\{1+\|\delta\|^{N}\right\} \cdot\left\{\|\delta\|+\left\|D_{x}^{2} \delta\right\|\right\}\right\} \\
\leq & -\left\|D_{x}^{2} \delta\right\|^{2}+C_{6} \cdot\|\delta\|^{2} \cdot\left\{1+\|\delta\|^{N}\right\},
\end{aligned}
$$

where N is an absolute constant.
Thus $\|\delta\|$ tends to 0 . In particular,

$$
\frac{d}{d t}\|\delta\|^{2} \leq-\left\|D_{x}^{2} \delta\right\|^{2}+C_{7} \cdot\|\delta\|^{2}
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{\infty}\left\|D_{x}^{2} \delta\right\|^{2} d t & \leq C_{7} \int_{0}^{\infty}\|\delta\|^{2} d t-\int_{0}^{\infty} \frac{d}{d t}\|\delta\|^{2} d t \\
& <\infty
\end{aligned}
$$

Lemma 5.4. For any non-negative even integer $n,\left\|D_{x}^{n} \delta\right\|$ tends to 0 when $t \rightarrow$ ∞.

Proof. Suppose

$$
\left\|D_{x}^{n} \delta\right\| \rightarrow 0, \quad \int_{0}^{\infty}\left\|D_{x}^{n+2} \delta\right\|^{2} d t<\infty
$$

for a non-negative even integer n. This holds for $n=0$ by Lemma 5.3.
As in the proof of Lemma 5.3, we have

$$
\begin{aligned}
\frac{d}{d t}\left\|D_{x}^{n+2} \delta\right\|^{2}= & 2\left\langle D_{x}^{n+2} \delta, D_{t} D_{x}^{n+2} \delta\right\rangle \\
= & 2\left\langle D_{x}^{n+2} \delta, \sum_{i=0}^{n+1} D_{x}^{i}\left(R\left(\delta, \gamma^{\prime}\right) D_{x}^{n+1-i} \delta\right)+D_{x}^{n+2} D_{t} \delta\right\rangle \\
= & 2\left\langle D_{x}^{n+2} \delta, R\left(\delta, \gamma^{\prime}\right) D_{x}^{n+1} \delta\right\rangle-2\left\langle D_{x}^{n+3} \delta, R\left(\delta, \gamma^{\prime}\right) D_{x}^{n} \delta\right\rangle \\
& +2 \sum_{i=2}^{n+1}\left\langle D_{x}^{n+4} \delta, D_{x}^{i-2}\left(R\left(\delta, \gamma^{\prime}\right) D_{x}^{n+1-i} \delta\right)\right\rangle_{(\# 2)}+2\left\langle D_{x}^{n+4} \delta, D_{x}^{n} \delta\right\rangle,
\end{aligned}
$$

and $D_{x}^{n} \delta$ in the last term is expanded as

$$
\begin{aligned}
& D_{x}^{n}\left\{-R\left(\delta, \gamma^{\prime}\right) D_{x}^{2} \gamma^{\prime}-D_{x}\left(R\left(\delta, \gamma^{\prime}\right) D_{x} \gamma^{\prime}\right)-D_{x}^{2}\left(R\left(\delta, \gamma^{\prime}\right) \gamma^{\prime}\right)-D_{x}^{4} \delta\right. \\
& \quad+\left(D_{\delta} R\right)\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+R\left(D_{x} \delta, D_{x} \gamma^{\prime}\right) \gamma^{\prime}+R\left(\gamma^{\prime}, R\left(\delta, \gamma^{\prime}\right) \gamma^{\prime}+D_{x}^{2} \delta\right) \gamma^{\prime} \\
& \left.+R\left(\gamma^{\prime}, D_{x} \gamma^{\prime}\right) D_{x} \delta+R\left(\delta, \gamma^{\prime}\right)\left(w \gamma^{\prime}\right)+D_{x}\left\{\partial_{t} w \cdot \gamma^{\prime}+w D_{x} \delta\right\}\right\} .
\end{aligned}
$$

Form the assumption, Lemma 5.1 implies that $\left\|\gamma^{\prime}\right\|_{n+3} \leq C_{1}$. Therefore, Lemma 4.2 implies that $\|w\|_{n+2} \leq C_{2}$, and Lemma 5.2 implies that $\left\|\partial_{t} w\right\|_{n+1} \leq C_{3} \cdot\left\{\left\|D_{x}^{n+3} \delta\right\|+\right.$ $\|\delta\|\}$. Moreover, we know that $\max |\delta| \leq C_{4} \cdot\left\{1+\left\|D_{x} \delta\right\|^{1 / 2}\right\}$ and $\left\|D_{x}^{n+1} \delta\right\| \leq C_{5} \cdot\{1+$ $\left.\left\|D_{x}^{n+2} \delta\right\|^{1 / 2}\right\}$. Thus all terms in the last expression except the term

$$
2\left\langle D_{x}^{n+4} \delta,-D_{x}^{n} D_{x}^{4} \delta\right\rangle=-2\left\|D_{x}^{n+4} \delta\right\|^{2}
$$

are bounded by the form $C_{6} \cdot\left\|D_{x}^{n+4} \delta\right\| \cdot\left\{\|\delta\|+\left\|D_{x}^{n+3} \delta\right\|\right\}$. Therefore,

$$
\begin{aligned}
\frac{d}{d t}\left\|D_{x}^{n+2} \delta\right\|^{2} & \leq-\left\|D_{x}^{n+4} \delta\right\|^{2}+C_{7} \cdot\left\{\|\delta\|^{2}+\left\|D_{x}^{n+3} \delta\right\|^{2}\right\} \\
& \leq-\frac{1}{2}\left\|D_{x}^{n+4} \delta\right\|^{2}+C_{8} \cdot\|\delta\|^{2} .
\end{aligned}
$$

Thus we have $\left\|D_{x}^{n+2} \delta\right\| \rightarrow 0$ and $\int_{0}^{\infty}\left\|D_{x}^{n+4} \delta\right\|^{2} d t$ is finite.
Note that Lemma 5.4 holds on any compact C^{∞} riemannian manifold satisfying the assumption of this section. In particular, δ converges to 0 in C^{∞} topology when t tends to ∞. Combining it with Lemma 5.1, we have the boundedness of the solution γ.

Theorem 5.5. Let M be a compact riemannian manifold, and let $\gamma_{0}(x)$ be a closed curve with unit line element and length L. If there are no closed geodesics of length L in the manifold M, then (EP) has a unique solution $\gamma(x, t)$ for all time, and the solution has a subsequence converging to an elastica.

If the metric is real analytic, we have the main result.
Theorem 5.6. Let M be a compact real analytic riemannian manifold, and let $\gamma_{0}(x)$ be a closed curve with $\left|\gamma_{0}^{\prime}\right|=1$ and length L. If there are no geodesics of length L in the manifold M, then (EP) has a unique solution $\gamma(x, t)$ for all time, and the solution converges to an elastica when $t \rightarrow \infty$.

Proof. The proof of Theorem 8.6 of [3] remains valid. We use Simon's real analytic implicit function theorem. For detail, see [3].

Remark 5.7. We have an example of almost oscillate solution on a C^{∞} riemannian manifold. See [2].

References

[1] N. Koiso: Elasticae in a riemannian submanifold, Osaka J. Math. 29 (1992), 539-543.
[2] N. Koiso: Convergence to a geodesic, Osaka J. Math. 30 (1993), 559-565.
[3] N. Koiso: On the motion of a curve towards elastica. Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger (Collection SMF Séminaires \& Congrès no 1, ed. A. L. Besse). (1996), 403-436.
[4] J. Langer and D. A. Singer: Curve straightening and a minimax argument for closed elastic curves, Topology, 24 (1985), 75-88.

Department of Mathematics Graduate School of Science Osaka University
Toyonaka, Osaka, 560-0043
Japan

