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AND THEIR AUTOMORPHISM GROUPS
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A Hopf surface is a compact complex surface whose universal covering is C2 —
(0, 0). Hopf surfaces with infinite cyclic fundamental groups are called primary and the
others secondary. The holomorphic automorphism groups of primary Hopf surfaces are
determined by Namba [5] and Wehler [7]. In this paper we give an explicit description
of the covering transformations of secondary Hopf surfaces based on the result of Kato
[2], [3] and calculate all the holomorphic automorphism groups. The method of proof
is to expand any automorphism into Taylor series at the origin and check the compat-
ibility with the covering transformations.

1. The covering transformation groups of Hopf surfaces

Let G denote the fundamental group of a given secondary Hopf surface. As Kato
[2, p. 231] showed, we may assume G C GL(2, C) except the case that

(0) G is isomorphic to Z0Zm, m > 2, and generated by g(z\, 22) = (<xnz\ +λzί(» <*£2)
and Λ(ZI, 7.2) = (βnι\,az-ι} where α, λ € C, 0 < \a\ < 1, a = a primitive m-th root of
1, (m,n)= 1 and n > 2.

Due to Kato [2, Prop. 8; 3, Prop. 8'] and the classification of the finite subgroups
of £7(2) which operate freely on S3, we shall give an explicit classification of the cov-
ering transformation groups G in GL(2, C) modulo conjugate as follows.

We put H = {g € G;|detg| = 1}, K = [g e G detg = 1}. Kato classified them
according to the type of K but we prefer to divide them into decomposable and inde-
composable cases. Note that the following sequence

1 -» H -> G -> Z -> 1

is exact and G is decomposable if the sequence splits and indecomposable otherwise.
We may assume moreover that H is a finite subgroup of ί/(2).

We take hereafter ζ = exp(τπ/4), € = exp(2τπ/5), Pn = exp(τπ/n), « = a primitive
m-th root of 1 and α, β, γ € C with 0 < |α|, \β\, \γ\ < 1.
(1) The case when G is decomposable and abelian: G is isomorphic to ZθZm with
m > 2. A generator g of Z and a generator h of Zm are simultaneously conjugate to

(A) g(z\, Z2) = («zι. βϊ2) and h(z\, £2) = (az\,anz2) where (m, n) = 1, or
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(B) g(zι, z2) = (αzi + Z2, <*Z2) and
(2) The case when G is decomposable and not abelian: G = Zx H where Z is gen-

erated by g(z\, z2) = (yzi, yz2>, i.e.,

Z = (y/ > with / =

and H = Hi is a finite subgroup of I/(2) which operates freely on S3 classified by

Hopf and Threlfall-Seifert (Cf. Orlik [6, Th.l, p. I l l ] or Brieskorn[l, p. 347]). In fact

we have the following 6 cases where we give a sytem of generators very explicitly.

Here a is still a primitive /n-th root of 1 and we denote by (g) the subgroup generated

by g.
(Cl) G = (γl) x //! where H{ = (al) x «y(2ω) and K = A2(2M} with

I is 0 \ /O J\\
(2 (2-£ + 1), m) = 1, 2£ + 1 > 3 and £ > 3. Note that B2

k(2£+i) \ l π - I / M Λ n / /

where s and J2 have finite order 21 + 1 and 2k~l and that A2(2£+i) = (I _Λ\

is the cyclic group of order 2(2^ + 1). Note also that n2 = 1 (mod pj) implies

n = ±1 (mod pj) for odd prime p. We may consider #4(2€+1) = #2£+ι for fc = 2.

(C2) G = (y/) x ^2 where ^2 = (α/) x Bn and ̂  = Bn with (w, 4«) = 1 and

n > 2. Note that / ? „ = ( [ . J , I " _λ \\ is the binary dihedral group of order

4n.

(C3) G = (γl) x 3̂ where 3̂ = (al) x C and K = C with (m, 6) = 1. Note that

C = Π - / ' T i l 1 ) is the binary tetrahedral group of order 24.

(C4) G = (γl) x H4 where H4 = (al) x Cg 3, and K = B2 with (m, 6) = 1 and

k > 1. Note that Cg3, = / ( ' _• ) ' ̂  ( )} is a group of order 8 ' ̂  where

ω is a primitive 3*-th root of 1. Note also that C'24 is abstractly isomorphic to C but

not conjugate.

(C5) G = (γl) x H5 where //5 = (al) x D ana K = D with (m, 6) = 1 and the

binary octahedral group D = ( \ ^ _ ι ) , 4 = ( I) of order 48.
\\0 ζ 1J ^2\ζ -ζJI

(C6) G = (//) x ^6 where H6 = (αl) x E and K = E with (m, 30) = 1 and

/A 3 0\ /O -1\ , /€4-6 6 2 -^ 3 \ \
the binary icosahedral group £" = ( 1 2 ) » 1 i π ) ' ^ \ 2 3 * )) °̂

order 120.

(3) The case when G is indecomposable: In the following cases from (Dl) to (D6)

G = GO U gGo, GO = (y2/) x H and g = γu
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and in the case (D7)

G = Go U gG0 U £2G0, Go = (χ3/> x H and g = γu.

(D4) H = H2 as in (C2) and u =

(D5) H = (al)x. , with (m, 2)= l a n d ιι = . Note

finite order mκ > 3 with n =έ n2 = 1 (mod m). Let m = 2*(2€ + 1) and b - a2M.
Then we note that any solution of n =£ n2 = 1 (mod 2*) gives one of bn = fc"1, — & or
— £~]. Note also that t e C* and the conjugacy class is independent of the value of t.

(D2) H = i( a _° J V K = {±7} and u = ( ° ' j with m = 2(2t + 1) > 6 and

f E C*. Note that we may assume f = 1 in the conjugate class.

(D3) H = H\ as in (Cl) and u = ί J where t2 = (-s)* for some integer k

and ί τΠ This condition not mentioned in [2] is necessary.

^ ) with n > 3.
2* /

M.

that H - HI with n = 2.

(D6) # = /f3 as in (C3) and M = ̂  °Λ

( y.3 y.3\
I.

? -?/

2. Automorphism groups of secondary Hopf surfaces

According to the above classification we will prove the following theorem.

Theorem 1. The holomorphic automorphism group Aut(X) = Aut(X)/G of each
secondary Hopf surface X = {C2 — (0, 0)}/G is described as follows.
(0) The case G is not conjugate to any subgroup of GL(2, C):

Aut(X) = {/(zi, z2) = (anz\ + bz^ az2)',a eC*,be C} with n>2.
(1) The case G is contained in GL(2, C) and abelian:

The case (A) is divided into the following 5 families.
(Al) In the case when a = β and n = 1 (mod m),

Aut(X) = GL(2, C).
(A2) In the case when a - β and n φ n2 = 1 (mod m\

(o ϊ) C H
(A3) 7/z the case when ak = β for some integer k >2 and k = n (mod m\

Aut(X) = {/(zi, z2) = («ι, cz} +*z2);β, * € C*, c € C}.
(A4) In the case when a = βe for some integer I >2 and nt = 1 (mod m\
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Aut(X) = {/(zi, z2) = (azi + cz*2, bz2)',a, beC*,ce C}.
(A5) In the other cases than (Al), (A2), (A3) and (A4),

Aut(X) =

(B) Aut(X) =

(2) The case G is decomposable and not abelian:

(CD AΪt(X) = C*//(" ;°_Λ , (°, d\\ = C*/ S2(2<+1) with I > 1.

(o 9-»«c-J.

(a b\ cr* Λ c(o αj α 6 C ' f c €

(C2) At(X) = C*/ , = C*/ β* if π > 3,

(C3)

(C4)

(C5)

(C6)
(3) The case G is indecomposable:

~'
> 3.

•—• //J1/2 0 \ /O ί~'\\
(Dl) Aut(X) = C*/( ί Q 5_,/2J , r Q J| S C*/ βmκ

(D2) AΪΓt(X) = j (^bt

 bt

±^ \ a, b e C and a2 - b 2J 0 J.

(D3) AΪt(X) = C*/ °_, , = C*/ 52(2<+1)

(D4) A t ( X ) = C*/ , = C*7 Bz, w/ίΛ n > 3.

(D5)

(D6)

(D7)

3. Automorphism groups for the decomposable cases

When G is torsion free, that is, in the case of the primary Hopf surface, the holo-

morphic automorphism group Aut(X) is calculated in Namba [5, §2] except for the
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case (0) and Wehler [7, p. 24] for the cases including the case (0).
In the case (0) all the generators of the automorphism group given by Wheler are

compatible with the torsion elements of G and we get the result.
In the case (1)(A) or (B) all the generators of the automorphism group are given

by Namba and we have only to check the compatibility with the torsion elements of

G and get the result. Note that I j is contained in H if and only if a = a"2 in

the case (A).
In the other cases any automorphism φ not only should have the form

*J>0

by Hartogs theorem, but also should satisfy

φ~l o γl oφ = γl

because dφ~l oγlodφ-γl. Hence

As 0 < |χ| < 1, we have

ί arbitrary if i + j = 1 [ arbitrary if ί + j = 1
and by = {

0 otherwise 0 otherwise.
aU = j 1 u

 anc* bU =

In particular φ € GL(2, C). So Aut(X) is the normalizer NGL(2,C)(G) of G in
GL(2, C). Moreover, since any element of G whose absolute value of determinent is
one should be contained in //, we see that φ is contained in Λ^GL(2,o(^)

In the case (2) we see that C*7 x H C Aut(X) = NGL(2,C)(H) C NGL(2,C)(K). Kato
[2, Lemma 5; 3, p. 222] determined NGL(2tC)(K) as follows.

Thβn= (θ ft-') aΠd *< = (c ί)-

#Gί,(2,o(Am) = {egί,, /gc;Z», c, e, f e C*} (m > 3),

= C*I B^(n> 3),
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= #GL(2,o(C) = ΛfcL(2fc)(D) = C*/ - D and

= C*7 £.

So, we have only to prove in the cases (Cl) and (C4).

In the case (Cl) where K = A2(2M} we have NGL(2^(K) = (egb, f~gc\b, c, e, f e

C*}. Each element of the group B'2k(2M) = (gs,dgλ) has the form d2pgs<, or d2p+lgs<,.

Note that J2*"' = -1 and -gs = g-s. Since gbdgl = dgb-2gb,~gcgs = gs-*gc

 and

gcdgl = dgjgc, we have gb e NGL(2^((gs,dg{)) if b~2 = (-s)p for some integer

p. Clearly ~g{ € NcL(2,o(H) and we get the result.
In the case (C4) where K = B2 we have NGL(2,C)(K) = C*7 D. We put h =

? o)' " = (o and υ = """ h =

and D = ( u , v ) for a primitive 3*-th root α> of 1. Put Λf = ̂ ^2,0( .̂3*). It is easy to

see M2, v e N. Moreover, uυu~l = u~lvhu~l implies u e N. So, the result follows.

4. Automorphism groups for the indecomposable cases

With the discussion in §3 we see that any automorphism φ is contained in

#GL(2,o(//). Since the inner-automorphism induced by φ preserves the value of the

determinant, it keeps the subset ywGo and in the case (D7) the subset χ2M2Go, too.

So, φ e Aut(X) if and only if [w, φ] = uφu~lφ~l e H in the cases from (Dl) to (D6).

Also φ e Aut(X) if and only if [M, φ], [u2, φ] e H in the case (D7). Note also that

[v, <P\], [v, Ψ2\ € H implies [υ, φ^lφ2] € H if φλ, φ2 e WGL(2,c)(#).
Now we will verify the above condition for each case.

In the case (Dl) we have NGL(2^(K) = NGL(2^(H) = [egb, fgc\b, c,e,fe C*}

Note that ~g\ = /, gb"gc = ~gcgb-\ and gcgc, = gc-\c>. Then,

i fb~2 o^ ^ r /-i Λ"V ° ^ f ί<> *~l\
[W' Cgb] = U b2) and [M' ̂ J = V 0 ,2c-2J **u=(t 0 J *

These elements are contained in H if b2 = sk,c2 = set2 for some integers k, i. There-

fore we get the result. Note that g-\ e H and hence g^\ e Aut(X) when bn = —b or

-ft-1.

In the case (D2) we have NGL(2,c)(K) = GL(2, C). The commutator of u and

equal to
(a b\ .
(c d) 1S

1 (d2 - c2Γ2 -bd + act-2

ad-be \bdt2-ac a2 - b2t2

and should be contained in H. So, ac = bdt2 and d2 = ±a2. Since H does not contain
i

. I, we have d = ±a. Hence we get the result.
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In the case (D3) we put v = ί" . _Λ and w = ί }. Then, Aut(X) is

contained in the automorphism group C*/(υ, w) of the case (Cl). [u, υ] = v~2 e H
/t-2 Q\

implies υ e Aut(X). Since w e H, we should have [M, w] = I 2 I e 77. This

means /2 = (— s)k for some integer k and we get the result.

In the case (D4) we put h\ = I . l\ and A2 = \~ _ι ) with u =

fa °,\ Then we know NGL(2^(H) = C*/(*i,«) and [u,hλ} = u2 = h2 e H.
\ ° ^2n / _

Clearly [w, 11] = / € H. Therefore Aut(X) = C*7(Aι, w).

In the case (D5) we put A, = K lY *2 = ( ' .̂ ) and υ = -̂  P _^ V We

know NGL(2.c)(H) - C*/(M, υ) in the case (C2) with n = 2 for u = ί *. _ j J. Note

that M4 = (w"1!;)2 = — /, υ3 = / and w3ι>Mυ = A I . Note also that H is the direct product

of (al) and B2 = {±7, ±Aι, ±A2, ±AιA2}. So

and we see that v & Aut(X). Clearly u e Aut(X). Also A I e Aut(X) because [M, A I ] =
M2 = A2 G H. Therefore C*7(*i, M> C Aut(X). But the result follows, because ( A i , u) =
84 is a maximal proper subgroup of (M, υ) = D of index 3.

In the case (D6) we use the same elements h\ and A2 as in the case (D5) and

Λ3 = -L P ^ J. We know NGL(2,C)(H) = C*7(w, A 3) in the case (C3). Clearly

M e Aut(X). Since [w,A 3] = h\h2h^h\h2 e //, we have A3 E Aut(X). So Aut(X) =

C*7(M,A3).

In the case (D7) we know ΛΓGL(2,C)(//) = C*7/M l = P A)' M =

. Let A I and A2 denote the same elements as in the case (D5). Note

that A2 = A2 = —7, A J " 1 A 2 A ι = A^"1 and 77 is the direct product of (a I) and
£2 = {±I,±hι,±h2,±hιh2}. Note also M? = A2, [ M , M I ] = A 1 A 2 M ~ 1 A 1 A 2 # 77,
[M,M]] = -Ai e 77, [w2, M^] = -AιA 2 e 77 and [M,M] = [u2, u] = I e H. Therefore
C*7(ί^,M) C Auίt(X) and u\ & Aut(X). The result follows, because (ιι2, ιι> = C is a
maximal proper subgroup of (MI, u) = D. The proof of Theorem 1 is completed.
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