EXPLICIT DESCRIPTION OF HOPF SURFACES AND THEIR AUTOMORPHISM GROUPS

Takao MATUMOTO and Noriaki NAKAGAWA

(Received June 29, 1998)
A Hopf surface is a compact complex surface whose universal covering is $\mathbf{C}^{2}-$ $(0,0)$. Hopf surfaces with infinite cyclic fundamental groups are called primary and the others secondary. The holomorphic automorphism groups of primary Hopf surfaces are determined by Namba [5] and Wehler [7]. In this paper we give an explicit description of the covering transformations of secondary Hopf surfaces based on the result of Kato [2], [3] and calculate all the holomorphic automorphism groups. The method of proof is to expand any automorphism into Taylor series at the origin and check the compatibility with the covering transformations.

1. The covering transformation groups of Hopf surfaces

Let G denote the fundamental group of a given secondary Hopf surface. As Kato [2, p. 231] showed, we may assume $G \subset G L(2, \mathbf{C})$ except the case that
(0) G is isomorphic to $\mathbf{Z} \oplus \mathbf{Z}_{m}, m \geq 2$, and generated by $g\left(z_{1}, z_{2}\right)=\left(\alpha^{n} z_{1}+\lambda z_{2}^{n}, \alpha z_{2}\right)$ and $h\left(z_{1}, z_{2}\right)=\left(a^{n} z_{1}, a z_{2}\right)$ where $\alpha, \lambda \in \mathbf{C}, 0<|\alpha|<1, a=$ a primitive m-th root of $1,(m, n)=1$ and $n \geq 2$.

Due to Kato [2, Prop. 8; 3, Prop. 8^{\prime}] and the classification of the finite subgroups of $U(2)$ which operate freely on S^{3}, we shall give an explicit classification of the covering transformation groups G in $G L(2, \mathbf{C})$ modulo conjugate as follows.

We put $H=\{g \in G ;|\operatorname{det} g|=1\}, K=\{g \in G ; \operatorname{det} g=1\}$. Kato classified them according to the type of K but we prefer to divide them into decomposable and indecomposable cases. Note that the following sequence

$$
1 \rightarrow H \rightarrow G \rightarrow \mathbf{Z} \rightarrow 1
$$

is exact and G is decomposable if the sequence splits and indecomposable otherwise. We may assume moreover that H is a finite subgroup of $U(2)$.

We take hereafter $\zeta=\exp (\pi i / 4), \epsilon=\exp (2 \pi i / 5), \rho_{n}=\exp (\pi i / n), a=$ a primitive m-th root of 1 and $\alpha, \beta, \gamma \in \mathbf{C}$ with $0<|\alpha|,|\beta|,|\gamma|<1$.
(1) The case when G is decomposable and abelian: G is isomorphic to $\mathbf{Z} \oplus \mathbf{Z}_{m}$ with $m \geq 2$. A generator g of \mathbf{Z} and a generator h of \mathbf{Z}_{m} are simultaneously conjugate to
(A) $g\left(z_{1}, z_{2}\right)=\left(\alpha z_{1}, \beta z_{2}\right)$ and $h\left(z_{1}, z_{2}\right)=\left(a z_{1}, a^{n} z_{2}\right)$ where $(m, n)=1$, or
(B) $g\left(z_{1}, z_{2}\right)=\left(\alpha z_{1}+z_{2}, \alpha z_{2}\right)$ and $h\left(z_{1}, z_{2}\right)=\left(a z_{1}, a z_{2}\right)$.
(2) The case when G is decomposable and not abelian: $G=\mathbf{Z} \times H$ where \mathbf{Z} is generated by $g\left(z_{1}, z_{2}\right)=\left(\gamma z_{1}, \gamma z_{2}\right)$, i.e.,

$$
\mathbf{Z}=\langle\gamma I\rangle \text { with } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

and $H=H_{i}$ is a finite subgroup of $U(2)$ which operates freely on S^{3} classified by Hopf and Threlfall-Seifert (Cf. Orlik [6, Th.1, p. 111] or Brieskorn[1, p. 347]). In fact we have the following 6 cases where we give a sytem of generators very explicitly. Here a is still a primitive m-th root of 1 and we denote by $\langle g\rangle$ the subgroup generated by g.
(C1) $G=\langle\gamma I\rangle \times H_{1}$ where $H_{1}=\langle a I\rangle \times B_{2^{k}(2 \ell+1)}^{\prime}$ and $K=A_{2(2 \ell+1)}$ with $\left(2^{k}(2 \ell+1), m\right)=1,2 \ell+1 \geq 3$ and $k \geq 3$. Note that $B_{2^{k}(2 \ell+1)}^{\prime}=\left\langle\left(\begin{array}{cc}s & 0 \\ 0 & s^{-1}\end{array}\right),\left(\begin{array}{ll}0 & d \\ d & 0\end{array}\right)\right\rangle$ where s and d^{2} have finite order $2 \ell+1$ and 2^{k-1} and that $A_{2(2 \ell+1)}=\left\langle\left(\begin{array}{cc}-s & 0 \\ 0 & -s^{-1}\end{array}\right)\right\rangle$ is the cyclic group of order $2(2 \ell+1)$. Note also that $n^{2} \equiv 1\left(\bmod p^{j}\right)$ implies $n \equiv \pm 1\left(\bmod p^{j}\right)$ for odd prime p. We may consider $B_{4(2 \ell+1)}^{\prime}=B_{2 \ell+1}$ for $k=2$.
(C2) $G=\langle\gamma I\rangle \times H_{2}$ where $H_{2}=\langle a I\rangle \times B_{n}$ and $K=B_{n}$ with ($m, 4 n$) $=1$ and $n \geq 2$. Note that $B_{n}=\left\langle\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right),\left(\begin{array}{cc}\rho_{n} & 0 \\ 0 & \rho_{n}^{-1}\end{array}\right)\right\rangle$ is the binary dihedral group of order $4 n$.
(C3) $G=\langle\gamma I\rangle \times H_{3}$ where $H_{3}=\langle a I\rangle \times C$ and $K=C$ with $(m, 6)=1$. Note that $C=\left\langle\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right\rangle$ is the binary tetrahedral group of order 24.
(C4) $\quad G=\langle\gamma I\rangle \times H_{4}$ where $H_{4}=\langle a I\rangle \times C_{8 \cdot 3^{k}}^{\prime}$ and $K=B_{2}$ with $(m, 6)=1$ and $k \geq 1$. Note that $C_{8 \cdot 3^{k}}^{\prime}=\left\langle\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), \frac{\omega}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right\rangle$ is a group of order $8 \cdot 3^{k}$ where ω is a primitive 3^{k}-th root of 1 . Note also that C_{24}^{\prime} is abstractly isomorphic to C but not conjugate.
(C5) $G=\langle\gamma I\rangle \times H_{5}$ where $H_{5}=\langle a I\rangle \times D$ and $K=D$ with $(m, 6)=1$ and the binary octahedral group $D=\left\langle\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right\rangle$ of order 48.
(C6) $G=\langle\gamma I\rangle \times H_{6}$ where $H_{6}=\langle a I\rangle \times E$ and $K=E$ with ($m, 30$) $=1$ and the binary icosahedral group $E=\left\langle\left(\begin{array}{cc}\epsilon^{3} & 0 \\ 0 & \epsilon^{2}\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \frac{1}{\sqrt{5}}\left(\begin{array}{cc}\epsilon^{4}-\epsilon & \epsilon^{2}-\epsilon^{3} \\ \epsilon^{2}-\epsilon^{3} & \epsilon-\epsilon^{4}\end{array}\right)\right\rangle$ of order 120.
(3) The case when G is indecomposable: In the following cases from (D1) to (D6)

$$
G=G_{0} \cup g G_{0}, \quad G_{0}=\left\langle\gamma^{2} I\right\rangle \times H \text { and } g=\gamma u
$$

and in the case (D7)

$$
G=G_{0} \cup g G_{0} \cup g^{2} G_{0}, \quad G_{0}=\left\langle\gamma^{3} I\right\rangle \times H \text { and } g=\gamma u .
$$

(D1) $H=\left\langle\left(\begin{array}{cc}a & 0 \\ 0 & a^{n}\end{array}\right)\right\rangle, K=\left\langle\left(\begin{array}{cc}s & 0 \\ 0 & s^{-1}\end{array}\right)\right\rangle$ and $u=\left(\begin{array}{cc}0 & t^{-1} \\ t & 0\end{array}\right)$ where s has the finite order $m_{K} \geq 3$ with $n \not \equiv n^{2} \equiv 1(\bmod m)$. Let $m=2^{k}(2 \ell+1)$ and $b=a^{2 \ell+1}$. Then we note that any solution of $n \not \equiv n^{2} \equiv 1\left(\bmod 2^{k}\right)$ gives one of $b^{n}=b^{-1},-b$ or $-b^{-1}$. Note also that $t \in \mathbf{C}^{*}$ and the conjugacy class is independent of the value of t.
(D2) $H=\left\langle\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right)\right\rangle, K=\{ \pm I\}$ and $u=\left(\begin{array}{cc}0 & t^{-1} \\ t & 0\end{array}\right)$ with $m=2(2 \ell+1) \geq 6$ and $t \in \mathbf{C}^{*}$. Note that we may assume $t=1$ in the conjugate class.
(D3) $H=H_{1}$ as in (C1) and $u=\left(\begin{array}{cc}0 & t^{-1} \\ t & 0\end{array}\right)$ where $t^{2}=(-s)^{k}$ for some integer k and $t \neq 1$. This condition not mentioned in [2] is necessary.
(D4) $\quad H=H_{2}$ as in (C2) and $u=\left(\begin{array}{cc}\rho_{2 n} & 0 \\ 0 & \rho_{2 n}^{-1}\end{array}\right)$ with $n \geq 3$.
(D5) $\quad H=\langle a I\rangle \times\left\langle\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right),\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)\right\rangle$ with $(m, 2)=1$ and $u=\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right)$. Note that $H=H_{2}$ with $n=2$.
(D6) $\quad H=H_{3}$ as in (C3) and $u=\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right)$.
(D7) H is the same as in the case (D5) and $u=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)$.

2. Automorphism groups of secondary Hopf surfaces

According to the above classification we will prove the following theorem.
Theorem 1. The holomorphic automorphism group $\operatorname{Aut}(X)=\widetilde{\operatorname{Aut}}(X) / G$ of each secondary Hopf surface $X=\left\{\mathbf{C}^{2}-(0,0)\right\} / G$ is described as follows.
(0) The case G is not conjugate to any subgroup of $G L(2, \mathbf{C})$:

$$
\widetilde{\operatorname{Aut}}(X)=\left\{f\left(z_{1}, z_{2}\right)=\left(a^{n} z_{1}+b z_{2}^{n}, a z_{2}\right) ; a \in \mathbf{C}^{*}, b \in \mathbf{C}\right\} \text { with } n \geq 2 .
$$

(1) The case G is contained in $G L(2, \mathrm{C})$ and abelian:

The case (A) is divided into the following 5 families.
(A1) In the case when $\alpha=\beta$ and $n \equiv 1(\bmod m)$,

$$
\widetilde{\operatorname{Aut}}(X)=G L(2, \mathbf{C}) .
$$

(A2) In the case when $\alpha=\beta$ and $n \not \equiv n^{2} \equiv 1(\bmod m)$,

$$
\widetilde{\operatorname{Aut}}(X)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
0 & c \\
d & 0
\end{array}\right) ; a, b, c, d \in \mathbf{C}^{*}\right\} .
$$

(A3) In the case when $\alpha^{k}=\beta$ for some integer $k \geq 2$ and $k \equiv n(\bmod m)$,

$$
\widetilde{\operatorname{Aut}}(X)=\left\{f\left(z_{1}, z_{2}\right)=\left(a z_{1}, c z_{1}^{k}+b z_{2}\right) ; a, b \in \mathbf{C}^{*}, c \in \mathbf{C}\right\} .
$$

(A4) In the case when $\alpha=\beta^{\ell}$ for some integer $\ell \geq 2$ and $n \ell \equiv 1(\bmod m)$,

$$
\widetilde{\operatorname{Aut}}(X)=\left\{f\left(z_{1}, z_{2}\right)=\left(a z_{1}+c z_{2}^{\ell}, b z_{2}\right) ; a, b \in \mathbf{C}^{*}, c \in \mathbf{C}\right\} .
$$

(A5) In the other cases than (A1), (A2), (A3) and (A4),

$$
\widetilde{\operatorname{Aut}}(X)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) ; a, b \in \mathbf{C}^{*}\right\} .
$$

(B) $\widetilde{\operatorname{Aut}}(X)=\left\{\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) ; a \in \mathbf{C}^{*}, b \in \mathbf{C}\right\}$.
(2) The case G is decomposable and not abelian:
(C1) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left\langle\left(\begin{array}{cc}i s & 0 \\ 0 & -i s^{-1}\end{array}\right),\left(\begin{array}{ll}0 & d \\ d & 0\end{array}\right)\right\rangle=\mathbf{C}^{*} I \cdot B_{2(2 \ell+1)}$ with $\ell \geq 1$.
(C2) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left\{\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right),\left(\begin{array}{cc}\rho_{2 n} & 0 \\ 0 & \rho_{2 n}^{-1}\end{array}\right)\right)=\mathbf{C}^{*} I \cdot B_{2 n}$ if $n \geq 3$, and
$\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left(\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right)=\mathbf{C}^{*} I \cdot D$ if $n=2$.
(C3) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left\langle\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right\rangle=\mathbf{C}^{*} I \cdot D$.
(C4) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left(\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right\rangle=\mathbf{C}^{*} I \cdot D$.
(C5) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left(\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right)=\mathbf{C}^{*} I \cdot D$.
(C6) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left\langle\left(\begin{array}{cc}\epsilon^{3} & 0 \\ 0 & \epsilon^{2}\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \frac{1}{\sqrt{5}}\left(\begin{array}{cc}\epsilon^{4}-\epsilon & \epsilon^{2}-\epsilon^{3} \\ \epsilon^{2}-\epsilon^{3} & \epsilon-\epsilon^{4}\end{array}\right)\right\rangle=\mathbf{C}^{*} I \cdot E$.
(3) The case G is indecomposable:
(D1) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left(\left(\begin{array}{cc}s^{1 / 2} & 0 \\ 0 & s^{-1 / 2}\end{array}\right),\left(\begin{array}{cc}0 & t^{-1} \\ t & 0\end{array}\right)\right) \cong \mathbf{C}^{*} I \cdot B_{m_{K}}$ with $m_{K} \geq 3$.
(D2) $\widetilde{\operatorname{Aut}}(X)=\left\{\left(\begin{array}{cc}a & b t^{-1} \\ \pm b t & \pm a\end{array}\right) ; a, b \in \mathbf{C}\right.$ and $\left.a^{2}-b^{2} \neq 0\right\}$.
(D3) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left\langle\left(\begin{array}{cc}i s & 0 \\ 0 & -i s^{-1}\end{array}\right),\left(\begin{array}{ll}0 & d \\ d & 0\end{array}\right)\right\rangle=\mathbf{C}^{*} I \cdot B_{2(2 \ell+1)}$ with $\ell \geq 1$.
(D4) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left\langle\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right),\left(\begin{array}{cc}\rho_{2 n} & 0 \\ 0 & \rho_{2 n}^{-1}\end{array}\right)\right\rangle=\mathbf{C}^{*} I \cdot B_{2 n}$ with $n \geq 3$.
(D5) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left(\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right),\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right)\right)=\mathbf{C}^{*} I \cdot B_{4}$.
(D6) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left(\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right\rangle=\mathbf{C}^{*} I \cdot D$.
(D7) $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left\langle\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right\rangle=\mathbf{C}^{*} I \cdot C$.

3. Automorphism groups for the decomposable cases

When G is torsion free, that is, in the case of the primary Hopf surface, the holomorphic automorphism $\operatorname{group} \operatorname{Aut}(X)$ is calculated in Namba [5, §2] except for the
case (0) and Wehler [7, p. 24] for the cases including the case (0).
In the case (0) all the generators of the automorphism group given by Wheler are compatible with the torsion elements of G and we get the result.

In the case (1)(A) or (B) all the generators of the automorphism group are given by Namba and we have only to check the compatibility with the torsion elements of G and get the result. Note that $\left(\begin{array}{cc}a^{n} & 0 \\ 0 & a\end{array}\right)$ is contained in H if and only if $a=a^{n^{2}}$ in the case (A).

In the other cases any automorphism φ not only should have the form

$$
\varphi\left(z_{1}, z_{2}\right)=\left(\sum_{i, j \geq 0} a_{i j} z_{1}^{i} z_{2}^{j}, \sum_{i, j \geq 0} b_{i j} z_{1}^{i} z_{2}^{j}\right)
$$

by Hartogs theorem, but also should satisfy

$$
\varphi^{-1} \circ \gamma I \circ \varphi=\gamma I
$$

because $d \varphi^{-1} \circ \gamma I \circ d \varphi=\gamma I$. Hence

$$
\begin{aligned}
\varphi\left(\gamma z_{1}, \gamma z_{2}\right) & =\left(\sum_{i, j \geq 0} a_{i j}\left(\gamma z_{1}\right)^{i}\left(\gamma z_{2}\right)^{j}, \sum_{i, j \geq 0} b_{i j}\left(\gamma z_{1}\right)^{i}\left(\gamma z_{2}\right)^{j}\right) \\
& =\left(\sum_{i, j \geq 0} a_{i j} \gamma^{i+j} z_{1}^{i} z_{2}^{j}, \sum_{i, j \geq 0} b_{i j} \gamma^{i+j} z_{1}^{i} z_{2}^{j}\right) \\
& =\left(\sum_{i, j \geq 0} \gamma a_{i j} z_{1}^{i} z_{2}^{j}, \sum_{i, j \geq 0} \gamma b_{i j} z_{1}^{i} z_{2}^{j}\right) .
\end{aligned}
$$

As $0<|\gamma|<1$, we have

$$
a_{i j}=\left\{\begin{aligned}
\text { arbitrary } & \text { if } i+j=1 \\
0 & \text { otherwise }
\end{aligned} \text { and } b_{i j}=\left\{\begin{aligned}
\text { arbitrary } & \text { if } i+j=1 \\
0 & \text { otherwise } .
\end{aligned}\right.\right.
$$

In particular $\varphi \in G L(2, \mathbf{C})$. So $\widetilde{\operatorname{Aut}}(X)$ is the normalizer $N_{G L(2, C)}(G)$ of G in $G L(2, \mathbf{C})$. Moreover, since any element of G whose absolute value of determinent is one should be contained in H, we see that φ is contained in $N_{G L(2, C)}(H)$.

In the case (2) we see that $\mathbf{C}^{*} I \times H \subset \widetilde{\operatorname{Aut}}(X)=N_{G L(2, \mathbf{C})}(H) \subset N_{G L(2, \mathbf{C})}(K)$. Kato [2, Lemma 5; 3, p. 222] determined $N_{G L(2, \mathrm{C})}(K)$ as follows.

Let $A_{m}=\left\langle\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)\right\rangle$. We put $g_{b}=\left(\begin{array}{cc}b & 0 \\ 0 & b^{-1}\end{array}\right)$ and $\bar{g}_{c}=\left(\begin{array}{cc}0 & c^{-1} \\ c & 0\end{array}\right)$. Then,

$$
\begin{aligned}
& N_{G L(2, \mathbf{C})}\left(A_{m}\right)=\left\{e g_{b}, f \bar{g}_{c} ; b, c, e, f \in \mathbf{C}^{*}\right\}(m \geq 3), \\
& N_{G L(2, \mathbf{C})}\left(B_{n}\right)=\mathbf{C}^{*} I \cdot B_{2 n}(n \geq 3),
\end{aligned}
$$

$$
\begin{aligned}
& N_{G L(2, \mathrm{C})}\left(B_{2}\right)=N_{G L(2, \mathrm{C})}(C)=N_{G L(2, \mathrm{C})}(D)=\mathbf{C}^{*} I \cdot D \text { and } \\
& N_{G L(2, \mathrm{C})}(E)=\mathbf{C}^{*} I \cdot E .
\end{aligned}
$$

So, we have only to prove in the cases (C 1) and (C4).
In the case (C 1) where $K=A_{2(2 \ell+1)}$ we have $N_{G L(2, \mathrm{C})}(K)=\left\{e g_{b}, f \bar{g}_{c} ; b, c, e, f \in\right.$ $\left.\mathbf{C}^{*}\right\}$. Each element of the group $B_{2^{k}(2 \ell+1)}^{\prime}=\left\langle g_{s}, d \bar{g}_{1}\right\rangle$ has the form $d^{2 p} g_{s^{q}}$ or $d^{2 p+1} \bar{g}_{s^{q}}$. Note that $d^{2^{k-1}}=-1$ and $-g_{s}=g_{-s}$. Since $g_{b} d \bar{g}_{1}=d \bar{g}_{b^{-2}} g_{b}, \bar{g}_{c} g_{s}=g_{s^{-1}} \bar{g}_{c}$ and $\bar{g}_{c} d \bar{g}_{1}=d \bar{g}_{c^{2}} \bar{g}_{c}$, we have $g_{b} \in N_{G L(2, \mathbf{C})}\left(\left\langle g_{s}, d \bar{g}_{1}\right\rangle\right)$ if $b^{-2}=(-s)^{p}$ for some integer p. Clearly $\bar{g}_{1} \in N_{G L(2, \mathrm{C})}(H)$ and we get the result.

In the case (C4) where $K=B_{2}$ we have $N_{G L(2, \mathbf{C})}(K)=\mathbf{C}^{*} I \cdot D$. We put $h=$ $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right), u=\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right)$ and $v=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)$. Then $h=v^{-1} u^{2} v, C_{8.3^{k}}^{\prime}=\left\langle u^{2}, \omega v\right\rangle$ and $D=\langle u, v\rangle$ for a primitive 3^{k}-th root ω of 1 . Put $N=N_{G L(2, \mathbf{C})}\left(C_{8 \cdot 3^{k}}^{\prime}\right)$. It is easy to see $u^{2}, v \in N$. Moreover, $u v u^{-1}=u^{-1} v h u^{-1}$ implies $u \in N$. So, the result follows.

4. Automorphism groups for the indecomposable cases

With the discussion in $\S 3$ we see that any automorphism φ is contained in $N_{G L(2, \mathbf{C})}(H)$. Since the inner-automorphism induced by φ preserves the value of the determinant, it keeps the subset $\gamma u G_{0}$ and in the case (D7) the subset $\gamma^{2} u^{2} G_{0}$, too. So, $\varphi \in \widetilde{\operatorname{Aut}}(X)$ if and only if $[u, \varphi]=u \varphi u^{-1} \varphi^{-1} \in H$ in the cases from (D1) to (D6). Also $\varphi \in \widetilde{\operatorname{Aut}}(X)$ if and only if $[u, \varphi],\left[u^{2}, \varphi\right] \in H$ in the case (D7). Note also that $\left[v, \varphi_{1}\right],\left[v, \varphi_{2}\right] \in H$ implies $\left[v, \varphi_{1}^{-1} \varphi_{2}\right] \in H$ if $\varphi_{1}, \varphi_{2} \in N_{G L(2, \mathbf{C})}(H)$.

Now we will verify the above condition for each case.
In the case (D1) we have $N_{G L(2, \mathrm{C})}(K)=N_{G L(2, \mathrm{C})}(H)=\left\{e g_{b}, f \bar{g}_{c} ; b, c, e, f \in \mathbf{C}^{*}\right\}$. Note that $\bar{g}_{c}^{2}=I, g_{b} \bar{g}_{c}=\bar{g}_{c} g_{b^{-1}}$ and $\bar{g}_{c} \bar{g}_{c^{\prime}}=g_{c^{-1} c^{\prime}}$. Then,

$$
\left[u, e g_{b}\right]=\left(\begin{array}{cc}
b^{-2} & 0 \\
0 & b^{2}
\end{array}\right) \text { and }\left[u, f \bar{g}_{c}\right]=\left(\begin{array}{cc}
t^{-2} c^{2} & 0 \\
0 & t^{2} c^{-2}
\end{array}\right) \text { for } u=\left(\begin{array}{cc}
0 & t^{-1} \\
t & 0
\end{array}\right)
$$

These elements are contained in H if $b^{2}=s^{k}, c^{2}=s^{\ell} t^{2}$ for some integers k, ℓ. Therefore we get the result. Note that $g_{-1} \in H$ and hence $g_{\sqrt{-1}} \in \widetilde{\operatorname{Aut}}(X)$ when $b^{n}=-b$ or $-b^{-1}$.

In the case (D2) we have $N_{G L(2, \mathrm{C})}(K)=G L(2, \mathrm{C})$. The commutator of u and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is equal to

$$
\frac{1}{a d-b c}\left(\begin{array}{cc}
d^{2}-c^{2} t^{-2} & -b d+a c t^{-2} \\
b d t^{2}-a c & a^{2}-b^{2} t^{2}
\end{array}\right)
$$

and should be contained in H. So, $a c=b d t^{2}$ and $d^{2}= \pm a^{2}$. Since H does not contain $\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$, we have $d= \pm a$. Hence we get the result.

In the case (D3) we put $v=\left(\begin{array}{cc}i s & 0 \\ 0 & -i s^{-1}\end{array}\right)$ and $w=\left(\begin{array}{ll}0 & d \\ d & 0\end{array}\right)$. Then, $\widetilde{\operatorname{Aut}}(X)$ is contained in the automorphism group $\mathrm{C}^{*} I\langle v, w\rangle$ of the case $(\mathrm{C} 1) .[u, v]=v^{-2} \in H$ implies $v \in \widetilde{\operatorname{Aut}}(X)$. Since $w \in H$, we should have $[u, w]=\left(\begin{array}{cc}t^{-2} & 0 \\ 0 & t^{2}\end{array}\right) \in H$. This means $t^{2}=(-s)^{k}$ for some integer k and we get the result.

In the case (D4) we put $h_{1}=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$ and $h_{2}=\left(\begin{array}{cc}\rho_{n} & 0 \\ 0 & \rho_{n}^{-1}\end{array}\right)$ with $u=$ $\left(\begin{array}{cc}\rho_{2 n} & 0 \\ 0 & \rho_{2 n}^{-1}\end{array}\right)$. Then we know $N_{G L(2, \mathbf{C})}(H)=\mathbf{C}^{*} I\left\langle h_{1}, u\right\rangle$ and $\left[u, h_{1}\right]=u^{2}=h_{2} \in H$. Clearly $[u, u]=I \in H$. Therefore $\widetilde{\operatorname{Aut}}(X)=\mathbf{C}^{*} I\left\langle h_{1}, u\right\rangle$.

In the case (D5) we put $h_{1}=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right), h_{2}=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$ and $v=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)$. We know $N_{G L(2 . \mathbf{C})}(H)=\mathbf{C}^{*} I\langle u, v\rangle$ in the case (C2) with $n=2$ for $u=\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right)$. Note that $u^{4}=\left(u^{-1} v\right)^{2}=-I, v^{3}=I$ and $u^{3} v u v=h_{1}$. Note also that H is the direct product of $\langle a I\rangle$ and $B_{2}=\left\{ \pm I, \pm h_{1}, \pm h_{2}, \pm h_{1} h_{2}\right\}$. So

$$
[u, v]=\frac{1}{2}\left(\begin{array}{cc}
1+i & 1+i \\
i-1 & 1-i
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\zeta & \zeta \\
\zeta^{3} & -\zeta^{3}
\end{array}\right)=-h_{1} h_{2} v\left(h_{1} h_{2}\right)^{-1} \notin H
$$

and we see that $v \notin \widetilde{\operatorname{Aut}}(X)$. Clearly $u \in \widetilde{\operatorname{Aut}}(X)$. Also $h_{1} \in \widetilde{\operatorname{Aut}}(X)$ because $\left[u, h_{1}\right]=$ $u^{2}=h_{2} \in H$. Therefore $\mathbf{C}^{*} I\left\langle h_{1}, u\right\rangle \subset \widetilde{\operatorname{Aut}}(X)$. But the result follows, because $\left\langle h_{1}, u\right\rangle=$ B_{4} is a maximal proper subgroup of $\langle u, v\rangle=D$ of index 3.

In the case (D6) we use the same elements h_{1} and h_{2} as in the case (D5) and $h_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)$. We know $N_{G L(2, \mathbf{C})}(H)=\mathbf{C}^{*} I\left\langle u, h_{3}\right\rangle$ in the case (C3). Clearly $u \in \widetilde{\operatorname{Aut}}(X)$. Since $\left[u, h_{3}\right]=h_{1} h_{2} h_{3} h_{1} h_{2} \in H$, we have $h_{3} \in \widetilde{\operatorname{Aut}}(X)$. So $\widetilde{\operatorname{Aut}}(X)=$ $\mathbf{C}^{*} I\left\langle u, h_{3}\right\rangle$.

In the case (D7) we know $N_{G L(2, \mathrm{C})}(H)=\mathbf{C}^{*} I\left\{u_{1}=\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right), u=\right.$ $\left.\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\zeta^{3} & \zeta^{3} \\ \zeta & -\zeta\end{array}\right)\right\rangle$. Let h_{1} and h_{2} denote the same elements as in the case (D5). Note that $h_{1}^{2}=h_{2}^{2}=-I, h_{1}^{-1} h_{2} h_{1}=h_{2}^{-1}$ and H is the direct product of $\langle a I\rangle$ and $B_{2}=\left\{ \pm I, \pm h_{1}, \pm h_{2}, \pm h_{1} h_{2}\right\}$. Note also $u_{1}^{2}=h_{2},\left[u, u_{1}\right]=h_{1} h_{2} u^{-1} h_{1} h_{2} \notin H$, $\left[u, u_{1}^{2}\right]=-h_{1} \in H,\left[u^{2}, u_{1}^{2}\right]=-h_{1} h_{2} \in H$ and $[u, u]=\left[u^{2}, u\right]=I \in H$. Therefore $\mathbf{C}^{*} I\left\langle u_{1}^{2}, u\right\rangle \subset \widetilde{\operatorname{Aut}}(X)$ and $u_{1} \notin \widetilde{\operatorname{Aut}}(X)$. The result follows, because $\left\langle u_{1}^{2}, u\right\rangle=C$ is a maximal proper subgroup of $\left\langle u_{1}, u\right\rangle=D$. The proof of Theorem 1 is completed.

References

[1] E. Brieskorn: Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.
[2] M. Kato: Topology of Hopf surfaces, J. Math. Soc. Japan, 27 (1975), 222-238.
[3] M. Kato: Erratum to "Topology of Hopf surfaces", J. Math. Soc. Japan, 41 (1989), 173-174.
[4] K. Kodaira: On the structure of compact complex analytic surfaces II, Amer. J. Math. 88 (1966), 682-721.
[5] M. Namba: Automorphism groups of Hopf surfaces, Tôhoku Math. J. 26 (1974), 133-157.
[6] P. Orlik: Seifert manifolds, Lecture Notes in Math. 291, Springer-Verlag, 1972.
[7] J. Wehler: Versal deformations for Hopf surfaces, J. Reine Angew. Math. 328 (1982), 22-32.

T. Matumoto Department of Mathematics Hiroshima University Higashi-Hiroshima 739-8526 Japan
N. Nakagawa
Osaka Toin High School Daito-City, Osaka 574-0013 Japan

