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0. Introduction

Abelian functions are meromorphic functions of n complex variables having

2n independent periods. Today the thoery of abelian functions is remarkably de-

velopped. One of the important properties of abelian functions is to admit an

algebraic addition theorem. In the one dimensional case Weierstrass obtained the

result that a meromorphic function admits an algebraic addition theorem if and

only if it is an elliptic function or a rational function or a rational function of an

exponential function. Weierstrass also noted an analogous statement in the case

of n complex variables. But he did not publish his proof. Even its manuscript

does not remain. This fact is seen in [10] and in [14]. The first attempt to prove

Weierstrass' statement is due to Painleve([10]). Painleve's argument, however, is

not acceptable at least for the author. Later, Severi called meromorphic functions

of n complex variables with μ (< 2n) independent periods admitting an algebraic

addition theorem quasi-abelian functions (or degenerate abelian functions), and

published a thick book[13] about them(see also [11]). However his theory is not

written in a clear language so that it is difficult for us to understand what he wrote.

So it seems to the author that Weiersrass' statement is not yet established.

We study this problem in this paper. First we give examples which are sim-

ple but suggestive for our problem. Through these examples we can recognize the

notion of algebraically non-degenerate fields, which we introduce in Section 2(Def-

inition 2.9), is natural. Let 9Jί(Cn) be the meromorphic function field on Cn, and

let K be a subfield of 9Jί(Cn), whose transcendence degree Trans K over C is n.

We prove that if K is non-degenerate and admits an algebraic addition theorem,

then there exist a discrete subgroup Γ of Cn and a projective algebraic variety Y

such that K is considered as a subfield of the meromorphic function field 9Jt(Cn/Γ)

on Cn/Γ and K is isomorphic to the rational function field C(F) on Y (Theorem

2.6). Applying this result to the one-dimensional case, we give a short proof of

Weierstrass' theorem (Theorem 2.7).
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Next we consider the meromorphic extension of / £ K to a compactification

G of G = C n /Γ in Section 3. The meromorphic extension of / to G is equivalent

to the holomorphic extension of the line bundle given by / to G. In Section 5 we

characterize extendable line bundles on G to G (Theorem 5.10). We note that G

has a fibre bundle structure σ : G -» A on a A -dimensional abelian variety A with

fibres Cp+S x ( C * ) ί + t . We take complex coordinates (xu... ,xn) of C n such that

the projection to the space of the first k variables gives this fibration.

Using above results, we finally prove the following main theorem (Theorem

6.2).

Main Theorem Let K be a non-degenerate subfield o/9Jt(Cn) with Trans K =

n which admits (AAT). Let Γ be the discrete subgroup of Cn in Theorem 2.6. We

take complex coordinates (xi,... ,xn) of Cn as in Section 3. Suppose that K is

algebraically non-degenerate with respect to (x i , . . . ,xn). Then we have

cι/r = σ x {σy x A,

where A is an r-dimensional abelian variety (n = p + q + r ) , and K is a subfield of

C(zi,... ,zp,wi,... ,wq,go,gi, .. ,gr), where Zι,...,zp andwι,...,wq are coordi-

nate functions of Cp and (C* ) q respectively, and go, g\,..., gr are generators of the

abelian function field UJl(A) on A.

A part of this work was done when the author visited the University of Padova

from 1995 to 1996 as a research fellow of the Ministry of Education, Science and

Culture, Japan. He is very grateful to Prof. Mario Rosati who gave him the

opportunity doing research at the University of Padova and kindly told him Severi's

work on quasi-abelian functions. He is also grateful to Prof. Massimo Lanza de

Cristoforis for his hospitality.

1. Definitions and examples

Let 9Jt(Cn) be the meromorphic function field on C n . Consider a subfield

K C 9Jl(Cn) with Trans K = n, where Trans K is the transcendence degree of K

over C. Let fo,fi,...,fn be generators of K.

DEFINITION 1.1. We say that / o , / i , . . . , / n admit an algebraic addition theo-

rem (in the sequel we abbreviate it (AAT)) if for any j = 0 , 1 , . . . , n there exists a

non-zero rational function Rj such that

(1.2)

fj{x + y) = Rj(fo(x),fi(x),.. .,fn(x),fo{y),h(y), • ,/»(l/)) for all x,y 6 C1.

The following lemma is elementary. So we omit its proof.
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L e m m a 1 . 3 . Let K = C ( / 0 , / i , . . , / n ) . Suppose that generators / 0 , / i , . . . , fn

of K admit (AAT). Then other generators go,gi,...,gn also admit (AAT).

DEFINITION 1.4. A subfield K C 9Jt(Cn) with Trans K = n admits (AAT) if

K has generators fo,fi,...,fn of K which admit (AAT).

DEFINITION 1.5. A meromorphic function / on Cn is degenerate if there exist

an invertible linear transformation L : Cn —> C 1, z = L(ζ) and a natural number

r with r < n such that f(L(ζ)) depends only on ζi,...,ζ" r. We say that / is

non-degenerate if it is not degenerate.

DEFINITION 1.6. A subfield K C Wl(Cn) is said to be non-degenerate if there

exists a non-degenerate meromorphic function / £ if.

We give some examples which are simple but suggestive in our investigation.

Example 1.7. Let fi(z,w) = z, f2(z,w) = ez. We put Ki := C(l,/i,/2) C OT(C2).

Then Trans Kj = 2, and Kj is degenerate. The generators l,/i,/2 admit (AAT).

The period group Γ/ of A7 is equal to {0} x C

Example 1.8. Take gι(z,w) = z and g2(z,w) = ew. Let Kn := C(l,^i,^2) C

OT(C2). Then Trans Ku — 2, and KJI is non-degenerate. Generators l1gίig2

admit (AAT). The period group Γπ of if// is equal to {0} x 2π\/ z ΪZ.

Example 1.9. Let h1(z,w) = z + w, h2{z,w) = ew. We set KIΠ := C(l,fti,Λ2) C

9Jl(C2). Then Trans Km — 2, and Km is non-degenerate. Generators l,/ii,/ι2

admit (AAT). The period group Γ/// of if/// is equal to 2TΓΛ/^-Ϊ I -, ) Z.

The subfield if/// is mapped to if// isomorphically by the following invertible

linear transformation (T),

Moreover, if we restrict if/// to {z = 0}, then we obtain if/, i.e.

/ι2(O,u0) = if/. Therefore if/, if// and if/// are isomorphic each other. So we

set if := if/ (= if// = Km). Functions pi,^2 are extendable meromorphically

to P2 as functions on C2/Γ// = C x C*. Since gi(0,w) = 0, p2(0,ti;) = ew, the

transcendence degree of Ku restricted to {z — 0} is 1. Similarly, the transcendence

degree of if// restricted to {w = 0} is 1. Therefore, we can see after the following

consideration that if// is a better model of if (see Section 2).

2. Picard varieties

Throughout this section we assume that a subfield if of Wl(Cn) is non-

degenerate, Trans K — n and admits (AAT).
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DEFINITION 2.1. Meromorphic functions / i , . . . , fm € Wl(Cn) are analytically
independent at a e Cn if

(a) / i , . . . , fm are holomorphic at α,

(b) the (ra,n)-matrix ffH*2) has rank m, where (zi,... ,zn) are complex

coordinates of Cn.

Lemma 2.2. For a non-degenerate meromorphic function / G K , there exist

aίι\ . . ., α(n) £ Cn such that / ( z + α ^ ) , . . . , f(z+a^) are analytically independent

at z = 0.

Proof. Since / is non-degenerate, df /dz\,..., df /dzn are linearly independent

over C. Then there exist α ^ , . . . , α^n^ G Cn such that / is holomorphic at a^ (j =

1,... ,n) and

*.[£(.«>)] *α
Thus we obtain the lemma. D

Proposition 2.3. There exist holomorphic functions </?o, ψ\ > ψN on Cn

such that these functions give a holomorphic immersion

Φ := (φ0 : φλ : : φN) : Cn —+ ΫN

into the N-dimensional complex projective space FAT and hi := φi/ψo,..., /IΛΓ :=

ΨN/ΨO generate K.

Proof. Take a non-degenerate function f £ K. Let α ( 1 ) , . . . ,α ( n ) € C1 be
vectors in Lemma 2.2. We set g1(z) := / (* + α ( 1 )), . . ., gn(z) := /(^ + α ( n ) ). Let

Then G(z) is a meromorphic function on Cn. We set

A := {z £ Cn some #; is not holomorphic at z or G(z) = 0}.

Then we obtain a holomorphic immersion

Since A is an analytic set of codimension 1 in Cn, there exist a finite number of
vectors b^\ . . ., &(r) G Cn such that
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where A - b& := {a - b^ a E A}. Letting &<°) = 0, we define

9Φ) :=gj(z + b{i)), i = O,. . . , r ; j = l , . . . , n .

Take a set of generators {/o,/i, .,/n} of K. We set

:= {9%j]i = 0,.. . , r and j = 1,... ,n } U {/0,/i,. . . , / „ } .

There exist holomorphic functions φo, ψι,... y?jv on C n such that φo, ψι,... ĈΛΓ

have no common divisor and hi = ψi/ψo (i — 1, .A/"). Then these functions give

the desired mapping. El

Let ψo, ψι,... (/?jv and /i i , . . . , hjsf be holomorphic functions and meromorphic

functions in Proposition 2.3 respectively. Let (xo : x\ : : x^) be homogeneous

coordinates of ΨN- Consider all the algebraic relations among hi,..., HN We denote

by V the set of all corresponding homogeneous polynomials, i.e.

V — {homogeneous polynomial P with P(ψo, ψι,..., ΨN) — 0}.

We set

Y :={(xo:xi:--:xN)el?N;P(xo,Xu.-.,XN)=0 for a l l PeV}.

Then Y is an algebraic subvariety of FAΓ It follows from the definition of Y that

Φ(Cn) C Y and Y is the Zariski closure of Φ(C n ). We set Ω := Φ(C n).

Proposition 2.4. Ω is a connected complex abelian Lie group whose group

structure is induced from the abelian group ( C n , + ) .

Proof. For p, q E Ω we define

P' q := Φ(z + w), z E Φ " 1 ^ ) , ! * ; E Φ " 1 ^ ) .

We now check this definition is well-defined.

Take z,z' E Φ - 1 ( p ) . If ^i(^) ^ 0, then ^ ( ^ ) 7̂  0 and

Similarly we have the same property for w, w1 E Φ " 1 (q). If ψi{w) Φ 0, then ψi(w')

0 and
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Consider (φo(z + w) : ψ\{z + w) : ••• : ΨN{Z + w)) There exists i such that

^(2; + w) φ 0. Without loss of generality we may assume that i — 0. Since K

admits (AAT), there exists a rational function Rj for any j φ 0 such that

hj (z + w) = Rj ί hi (z),..., /IΛΓ (^), hi (w),..., hw (w) I

(zf),..., hpffz'), hι(w'),..., hjsf(wf) )
)

The following properties are obvious;

(a) P ' Q — <Z * P f° r
 PJ <Z £ Ω

(b) (p ςf) r = p (q r) for p,q,r £ Ω.

We set e := Φ(0). Then e p = p e = p for all p G Ω. For any p E !1, / :=

Φ(—2) (2 G Φ~1(p)) is the inverse element of p. Hence Ω has a group structure,

and Φ : C n —> Ω is an epimorphism.

We define Γ := Ker Φ = Φ~1(e). Since Φ : C n -> Ω is a holomorphic im-

mersion, Γ must be a discrete subgroup of C n . Then we obtain an isomorphism

Φ : C n /Γ —> Ω between two abelian groups, which is a biholomorphic mapping.

Since mappings (z,w) *-> z + w and z «-> —z are holomorphic, we can verify that

mappings Ω x Ω -> Ω, (p,q) *-> p q and Ω —» Ω, p ι-> p " 1 are holomorphic. The

connectedness of Ω is trivial. Then Ω is a connected complex abelian Lie group,

and Φ : C n /Γ —> Ω is a Lie group isomorphism. D

By the above proposition we can consider K as a subfield of 9Jl(Cn/Γ), where

9Jί(Cn/Γ) is the meromorphic function field on C n /Γ. Let G := C n /Γ. We denote

by C(Y) the rational function field on Y.

Proposition 2.5. The Lie group isomorphism Φ : G —> Ω induces the iso-

morphism Φ* : C(F) —> K, R ι->> R o Φ. Therefore dim Y = dim G - n.

Proof. It is obvious that Φ : C(Y) —> K is a homomorphism between two

fields. Then it sufficies to show that Φ is onto.

For any / G K there exists a rational function R such that / = R(hχ,...,

Then we can take homogeneous polynomials P and Q such that

We define

Then S G C(y) and Φ*5 = /. D

The following theorem summarizes the above results.
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Theorem 2.6. Let K be a subfield offfl(Cn) with Trans K = n. Suppose that

K is non-degenerate and admits (AAT). Then there exist holomorphic functions

ψo,ψι, ...,ψN onCn, a discrete subgroup Γ of Cn, an algebraic subvariety Y of

ΨN and a connected complex abelian Lie group Ω in Y such that

(a) φoi ψι,..., ψN 9^ve a Lie group isomorphism

Φ = (ψo : Ψi : ' : ΨN) : G := C n /Γ —> Ω,

( ^ ψi/φΰ) IΨN/ΨO generate K and K is considered as a subfield of the

meromorphic function field SDt(G) on G,

(c) Y is the Zariski closure of Ω and

Φ* : £(Y) —> K

Z5 an isomorphism, therefore d i m y = dimG = n.

Applying Theorem 2.6 in the case n — 1, we can give a short proof of the

necessity in the following well-known theorem of Weierstrass.

Theorem 2.7 (Weierstrass). Consider a subfield K of the meromorphic func-

tion field SDt(C) on C with Trans K = 1. In this case, K is a maximal subfield admit-

ting (AAT) if and only if K coincides with an elliptic function field or C(exp(aζ))

(a € C*) or C(C). Here we say that K is a maximal subfield admitting (AAT)

if K has no algebraic extension L/K in 9Jt(C) such that L admits (AAT) and

(L:K)> 2.

Proof. We prove the necessity. Suppose that K is a maximal subfield admitting

(AAT). By Theorem 2.6 there exist holomorphic functions φo, φι,..., φπ on C, a

discrete subgroup Γ of C, an algebraic subvariety Y of P̂ v and a connected complex

abelian Lie group Ω such that

(a) Φ = (φ0 : ψι : : φπ) ' G := C/Γ —> Ω is a Lie group isomorphism,

(b) φi/φo,..., ΨN/ΨO generate K and K is considered as a subfield of 9Jl(G),

(c) Y is the Zariski closure of Ω and d i m y = l.

When rank Γ = 2, K is an elliptic function field.

If rank Γ = 0 or 1, then G = C or C*. Assume that some ψi/φo G K is

not extendable meromorphically to the one-dimensional complex projective space

Pi. Changing indecies if necessarily, we may assume that h := ψi/φo is so. By

Picard's theorem we can take c G C such that the number of the elements of the

set {( E C; ft(() = c} is infinite. We define a hyperplane H of PAT by

H := {(xo : xι : -" : XN) £ ΪW;xi - CXQ = 0}.
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Then the number of the points of the set H Π Ω is infinite. Since dimF = 1,

H Π Y = Y or a finite set. On the other hand HίlΓίC H ΠY. Then H ΠY = Y.

This means that h = c on G = C/Γ. This is a contradiction. D

DEFINITION 2.8. Let K be a subfield of 9Jl(Cn) satisfying the assumptions in

Theorem 2.6. The n-dimensional projective algebraic variety Y is called a Picard

variety of K.

Let K' be another subfield of 9Jΐ(Cn) satisfying the assumptions in Theorem

2.6, and let Y' be a Picard variety of K'. Then K and K1 are isomorphic if and

only if Y and Y' are birationally equivalent.

In the examples of the previous section, both Ku and Km have the same
Picard variety P2 The invertible linear transformation (T) gives an isomorphism
between Ku and Km. The linear transformation (T) is extendable to an auto-
morphism of F 2 The restriction of Km to {z — 0} is Kj. However Ku does not
have such a property. Then Ku is a better model than Km.

Let L be a complex linear subspace of Cn. For / £ 9Jl(Cn) we denote by /(/)
the set of indeterminacy of /. We define

the restriction of / to L, if L <£. /(/),

We set K\L:={f\L;f€K}.
The following definition reflects the above phenomenon.

DEFINITION 2.9. A subfield K of M(Cn) is algebraically degenerate with re-
spect to complex coordinates (xi, . . . ,xn) if there exists i (1 < i < n) such that for
the (n—1)-dimensional complex linear subspace L := {(#i,. . . , X{~\, 0, x%+\,..., xn)}
ofCn

Trans K = Trans K\L.

If there does not exist such a complex linear subspace L, then K is said to be
algebraically non-degenerate with respect to coordinates (a?i,... , # n ) .

3. Extension to compactifications of G

Throughout this section we assume that a subfield K C UJl(Cn) with Trans K =
n is non-degenerate and admits (AAT). We have just proved in the previous sec-
tion that K is considered as a subfield of 9Jί(Cn/Γ). By Remmert-Morimoto's
theorem ([7] and [9]), we have

G:=cn/r^cp x (σy xx,

where X = Cr/Γ* is a toroidal group of rank Γ* = r + m (1 < m < r) and
p + q + r — n. Here we say that a connected complex Lie group Go is a toroidal
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group if H°(Go, O) — C. It is well-known that a toroidal group is abelian(Morimoto

[8]). Since there exists a non-degenerate meromorphic function on X, it is a quasi-

abelian variety(cf.[3] and [6]). For the definition of quasi-abelian varieties, see

Definition 4.1 in the next section. By Andreotti-Gherardelli fibration theorem([5],

see also [2]), there exists a fibre bundle structure σ : X —> A on a fc-dimensional

abelian variety A with fibres Cs x (C*)*, where 0 < 2s < r - ra, t = r — m — 2s

and k = m + s.

REMARK. Such a fibration is not always unique for X(see an example in [4]).

Consider one of such fibrations σ : X —> A. Replacing fibres Cs x (C*)* with

P*+ ί, we obtain the associated P^-bundle σ : X —> A. We note that G has the

structure of C?+β x (C*)*+ί-bundle r :G —> A on A by σ : X —> A. Let

G : = PJ x P? x ~X.

Then the structure of Pi+t-bundle σ : ~X —> A gives a Pf-bundle r :G —> A,

where ί = p + q + s + t. Take complex coordinates (#i, . . . ,xn) of Cn such that

the projection to the space of the first k variables gives the C p + S x (C*)9+i-bundle

r : G —> A, and fix them.

Proposition 3.1. Let K be a subfield o/9Jl(Cn) with Trans K — n. Suppose

that K is non-degenerate and algebraically non-degenerate with respect to coordi-

nates (#1,.. . ,xn), and admits (AAT). We setH := {(x±,... ,Xi-ι,Q,xi+±,... ,xn)}

for any i. Then Trans K\H = n — 1 and K\H is non-degenerate and algebraically

non-degenerate with respect to coordinates (x\,..., Xi~ι, Xi+i,..., xn)t and admits

(AAT).

Proof. It is obvious that K\H is non-degenerate and admits (AAT). By Lemma

2.2 and a well-known fact that the analytical independence induces the algebraical

independence, we have

Trans K\H > n - 1.

It follows from Proposition 2.10 and the assumption of the proposition that

Trans K\H < n - 1.

The rest is to show that K\H is algebraically non-degenerate with respect to

coordinates (#i, . . . ,#i_i,£i+i,... ,xn). Suppose that K\H is algebraically degen-

erate with respect to coordinates (xι,...,Xi-i,Xi+i,...,xn) Then there exists an

(n — 2)-dimensional complex linear subspace HQ = {xι = Xj = 0 (i φ j)} such

that

Trans K\H = Trans K\Ho.
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Let L := {(0,..., 0, xu 0,..., 0)}. Then

Cn = L Θ H.

We set H' := Lθ Ho = {(xi, . ,£j_i,0,£j+i,... , #n)} We take a non-zero func-

tion f £ K with /Iff = 0. Then f\H, φ 0. Since Trans K\Ho = n - 1, there exist

<7i,...,<7n-i £ -K" such that # i | # 0 , . . . ,pn-i|if0

 a r e algebraically independent. In

this case, /|fj', <?i|#',... ,gn-i\H' are algebraically independent. In fact, if these

functions are algebraically dependent, then there exists a non-zero irreducible poly-

nomial P(X, Yi,..., Yn-i) such that

P(I\H' , 0i |H' , . , Pn-i I if') = 0.

Since f\π0 = 0, we obtain

This contradicts that ^i|//0,... ,0n-i|iίo a r e algebraically independent. Therefore
we obtain

Trans K\H> = n.

Hence K is algebraically degenerate with respect to coordinates (#i, . . . ,xn). This

is a contradiction. D

By an inductive argument we obtain the following corollary.

Corollary 3.2. Let K be a subfield ofWt(Cn) as in Proposition 3.1. Then,

for any k-dimensional complex linear subspace L — {xiχ = 0,... ,Xin_k = 0} ofCn

we have

Trans K\L = k.

Theorem 3.3. Let K be a subfield ofWl(Cn) with Trans K = n. We assume

that K is non-degenerate and admits (AAT). Consider a Ψ[-bundle τ : G —> A

and coordinates (#i, . . . ,xn) as above. We further assume that K is algebraically

non-degenerate with respect to coordinates (#i, . . . ,xn) Then any function f G K

is extendable meromorphically to G.

Proof. For a e A we set

Fa := T-\a)
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Let π : Cn —> G be the projection. Any / E K is considered as a meromorphic

function on Cn with period Γ.

Take any 1-dimensional complex linear subspace L = {(0,..., 0, Xk+i, 0,..., 0)}

of Cn with

π(L) c F o = r- 1(0).

Then π(L) = C or C*. By Corollary 3.2 Trans if|L = 1 and K\L admits (AAT).

Let Φ : G —> Ω C PTV be the Lie group isomorphism in Theorem 2.6. Since Φ|π(χ,)

is one-to-one, UΓ|χ, is not doubly periodic. Therefore any ψ E K\L is extendable

meromorphically to Pi by Theorem 2.7. It follows from (AAT) that fa{x) '=

f(x + a) E K for all a E Cn. Then any / E K is meromorphically extendable to

Fa by virtue of Hartogs' theorem for meromorphic functions([12]). Using again

the same theorem, we can conclude that / E K is extendable meromorphically to

G. D

4. Normal form of ample generalized theta factors

We collect here a part of results in [4], which is needed in our arguments.

Let X = Cn/Γ be a toroidal group of rank Γ = n + m(l<m<n). We denote

by M£+m the real linear subspace of Cn spanned by Γ. Let Cp = R£ + m n V ^ T ^ + m

be the maximal complex linear subspace contained in ]Rp+m.

DEFINITION 4.1. A toroidal group X — Cn/Γ is said to be a quasi-abelian

variety if there exists a hermitian form Ή on Cn such that

(a) Ή is positive definite on Cψ,

(b) the imaginary part Λ:=ImΉ oίTί is Z-valued on Γ x Γ.

We call such a hermitian form Ή an ample generalized Riemann form of X.

DEFINITION 4.2. An ample generalized Riemann form Ή of a quasi-abelian

variety X = Cn/Γ is of kind k if rank ΛΓ = 2(ra + k), where ΛΓ '= *4|Rn+mχRn+m.

Let p : Γ x Cn —> C* be a factor of automorphy(see [16] for the definition).

DEFINITION 4.3. A factor of automorphy p is called a generalized theta factor

if it is represented as

p(7,x) =e(CΊ(x) +c(7))

for all 7 E Γ and x E Cn, where CΊ is a linear polynomial, 0(7) is a constant and

e(x) := exp(2π\/^Λx).

A generalized theta factor p : Γ x Cn —> C* has the following expression

p(Ί,x) =

for (7,x) E Γ x Cn, where 7ί is a hermitian form on Cn with Λ:=lm/H Z-valued

on Γ x Γ, Q is a C-bilinear symmetric form on Cn, C is a C-linear form on Cn and
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ψ is a semi-character of Γ associated with .A ([7]). In this case we say that p is

of type (Ή,ψ,Q,C). As usual theta factors, p is equivalent to a generalized theta

factor of type (H, ψ, 0,0), which we call a reduced generalized theta factor of type

Suppose that p is a reduced generalized theta factor of type (Ή,ψ). If Ή is an

ample generalized Riemann form, then p is said to be ample. We may assume that

Ή is positive definite on Cn if Ή is ample([5]). In this case there exists a theta

factor p : Γ x C n —> C* such that p is the restriction of p to Γ x Cn, where Γ is a

discrete subgoup of rank 2n with Γ C Γ and A = Cn /Γ is an abelian variety.

Now we assume that Ή is of kind k (0 < 2k < n — m). We denote by Hn the

Siegel upper half space of degree n. Let P and P be period matrices of Γ and Γ

respectively. After a suitable change of period matrices using invertible matrices

and unimodular matrices, we obtain normal forms of P and P as follows

P=(W D), W = (wij)eHn

D =

where di (i = 1,...,n) are positive integers with dι\d2\ \dn, and

(4.4) P =

w

W"

P"),

where we put

_Wm+fc,l ••• Wrn+k,rn+k _

W" := :

Any # e Cn can be represented as
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We assign

χ =

It is well-known that p is equivalent to the following theta factor p0 i C*,

for 7 G Γ with 7 = Wη' + Dη" and x G C n . Then p is equivalent to p 0 := Po|rx(θ

Take complex coordinates (z, w) = {z\,..., zm+fc; w\,..., wn_m_fc) of C n , where

z — ( z i , . . . , zm_|_fc) and w — (wι,... ,wn-m-k) represent the first m + k rows

and the last n — m — k rows in (4.4) respectively. Every 7 G Γ has the unique

representation

= w

where

a —

+D

γm+k

=P'a

b = 7 n—k

Then we have the explicit representation of po as follows

=e\-taz- - taWla

for 7 = P'a + P"b and x = (z, w) G C n . Thus we obtain the following proposition.

Proposition 4.5. Let p : Γ x C n —» C* be a reduced generalized theta factor

of type (Ή,ψ). Assume that Ή, is ample and of kind k. Then we can take a period

matrix PofTas in (4-4) and p is represented as

(4.6) P(Ί,%) = (

for 7 = P'a + P"b G Γ and x = (z, w) G C n .

5. Extendable line bundles on quasi-abelian varieties

Let G = C n /Γ be a non-compact quasi-abelian variety of rank Γ = n + m

(1 < m < n). Consider a holomorphic line bundle L\ ->> G. Then we have L\ =

Lo 0 Lp, where LQ is a topologically trivial holomorphic line bundle and Lp is

a holomorphic line bundle given by a reduced generalized theta factor p of type

CH,ψ) ([17], see also [1]). Suppose that % is an ample generalized Riemann form
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of kind k (0 < 2k < n — m). Then we may assume that a period matrix P of Γ has

the form in (4.4) and p is expressed as (4.6) in Proposition 4.5.

The projection τ : C n —> £rn+k ^Q ^ e g r s t ^ m _μ ̂  variables gives a Ck x

(C*)n~m~2 f c-bundle r : G - > A o n a n ( m + A:)-dimensional abelian variety A We

denote by r : G -> A the associated P™~m~fc-bundle on A. Now we consider the

following problem.

Problem 5.1. Which line bundle L\ is extendable to G?

This problem was considered by M.Stein in his Dissertation[15] in the case

that G is a toroidal group, r : G -» T is a (C*)n~m-bundle on an m-dimensional

complex torus T and Lγ is any holomorphic line bundle. We have to modify his

method. Because a part of his arguments does not fit when k φ 0.

First we define a mapping p : C n —-> Cm+k x ( C * ) n " m - 2 f c x Ck by

, . . . ,Xn) = (#1, ,£m+fc,e(£m +fc+i), . . . ? e(xn_fc), £n_fc+i, . . . ,Xn)

Then p(Γ) is a subgroup of C m + f c x (C* )"-™-2fc x Cfc. Any η = (ηu . . . , ηn) e p(T)

acts on C m + f c x ( C * ) n - m ~ 2 f c x Ck by

V (2/lj J2/Π) = (2/1 +^l,...,2/m+fc +Wfc52/m+ik+l -^m+fc+1,.. , 2/n-fe '^n-fc,

2/n-fc+i +ryn-fc+i,...,2/n + ̂ n).

This action is extendable to C771"1"*5 x p ^ - m ~ f c χ h e n we consider p(T) as a subgroup

of the automorphism group of C m + f c x p^~ m ~ f c

# w e have the isomorphisms

G =

G ^ ( C m + f c x ( C * ) n - m " 2 f c x C

For the sake of simplicity we write

G = + f c fc

There exists the inclusion mapping 1 : G — C n /Γ ->• G. Let πi : C n -> G and

π 2 : C m + f c x p j - m " f c -> G be projections. We have the following diagram

c n >

-i
G >

(pm+k w mn—m—k

G
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The meaning of the extendability of L\ to G is that there exists a holomorphic line
bundle L -» G such that

where

L{G) = π2 (Cm+k x (C*) n - m - 2 k x Ck)

Take a subset / C {1,..., n - m - 2k}. Let Ic := {1,..., n - m - 2k} \ I. We

define

We set

P(/) := Xm+k+i(I) x x Xn-k(I) x (Pi \ {0})fc,

G(I) := π2 (Cm + f c x P(7)) .

Then we have ι{G) C G(I) C G.
We denote

Γ :=τ(p(Γ))=τ(Γ),

where r : Cm + f c x p ^ - m - 2 f c _>, Cm + A : is the projection to the space of the first

(m + fc)-variables. Then Γ* is a discrete subgroup of rank 2(ra + k) and A =

Cm+fc/Γ*. A period matrix P* of Γ* is

We define a theta factor p0 : Γ* x Cm + f c -> C* by

for 7* = W'a* + D'b* and ^ G C m + f c . Let Lpo -ϊ Abe the holomorphic line bundle

on A defined by p0. Let L := r*Lp0 be the pull-back of LPo by r : G -* A. For any

/ C {1,... ,n - m - 2k} we have Cm + f c x P(J) = C n . Then Z | G ( / ) is given by a

factor of automorphy

pi : p(Γ) x (Cm + f c x P(/)) —> C*,

Pifay) =Po(τ(η),τ(y))'

On the other hand, ρ(j,x) = po (r op(7),r op(a )). Hence we have (^~1)*LP =

I/|6(G) Thus we obtain the following proposition.
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Proposition 5.2. For Lp there exists a holomorphic line bundle LPo —> A

given by a theta factor ρ0 : Γ* x €"*+* -+ C* such that Lp = τ*LP0.

Let L —> G(I) be a holomorphic line bundle on G(I), where / c { l , . . . , n —ra —

2k}. Assume that L is given by a factor of automorphy a : p(T) x ( C m + f c x P(/)) ->•

C*. Then £*L := £*(L|,(G)) is given by a factor of automorphy 5 : 7 x C n -» C ,

L e m m a 5.3. Suppose that holomorphic line bundles L —> G(I) and L\ —> G

are given by factors of automorphy a : Γ x C n -> C* and β : p(Γ)x ( C m + f c x P(/)) -^

C*, respectively. Then

if and only if there exists a holomorphic function c : C n —> C* swc/i

)c(z)- 1 = α(p(7),p(x)) /or (7,3?) G Γ x C n .

Proof. It holds that (t λ)*Lι = L\L(G) if a n d only if L\ = L*L. Since t*L is

given by a factor of automorphy α(p(7),p(x)), we obtain the conclusion. D

Proposition 5.4. Lei Li —»• G be a topologically trivial holomorphic line

bundle on G. Suppose that there exists a holomorphic line bundle L —»• G on G

such that

Then there exists a homomorphism ψ : Γ* -» C* such that L\ -> G is given by the

homomorphism φ := ψ> o τ :Γ ^ C*.

Proof. Let

Dn-k :=

dn-k-

We assume that Lγ is defined by a factor of automorphy a(j,x) = exp (0(7, x)) .

The summand of automorphy a(j,x) has the following properties.

(ii) α(7,x) is Z}n_fcZn~fc-periodic with respect to # i , . . . ,xn-fc

Take a subset / C {1,. . . ,ra - m — 2k}. By Lemma 5.3 there exist a factor

of automorphy β1 : p(Γ) x ( C m + f c x P(/)) ->• C* and a holomorphic function

c1 : C n -> C* such that

(5.5) β7 (p(j),p(x)) = cT(x -\-j)a(j,x)cI(x) for all (j,x) G Γ x Cn.

Take a holomorphic function fT(x) on C n such that c7(x) = exp (fT(x)) . Let

βj be the j- th unit vector of C n . Then a{djβj,x) — 1 (j = 1,. . . , n — k). We have a
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mapping b1 : p(Γ) x (Cm + f c x P(/)) -> C such that β1 (p{η),y) = exp (b1 (0(7), j/)) .

Let E = cι{Lβi) E H2 (G(/), Z) be the first Chern class of the line bundle Lβi on

G(I) given by β1. Then it is well-known that

Since L\ is topologically trivial, £7(p(7i),p(72)) = 0 for 71,72 E Γ by (5.5). Then

L^J is topologically trivial. Therefore we may assume that β1 (p(dj6j),p(x)) = 1

for j = 1,..., n — k. Hence we have

^ Ϊ Z , j = 1,... ,n - k.

We define a JDn_fcZn~fc-periodic function

Let x = (x',x",x'") e C™+fc x C n~m- 2 f c x Cfe. Considering fc/(x) as a periodic

function of x", we obtain the Fourier expansion

f'(x)= Σ fί(x',x"Ήtσ(x"/d"))+ ^

where we set

x"/d" = t(x

Similarly we have

0(7,3) =

By the right hand side of (5.5), b1 (p(7),p(x)) is holomorphic on C with respect to

xn-k+j {j — 1) > k). On the other hand, b1 {p{η),y) is holomorphic on Pi\{0} with

respect to yn-k+j. Since the (n — fc + j)-th element (p(x))n_ fe+ of p(x) is equal to

a:n_fc+j, b1
 (P(Ύ),P(X)) is holomorphic on Pi with respect to xn-k+j (j = 1,..., fe).

Hence it does not depend on x'". Thus we obtain
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For i G /, Xm+k+i(I) = C. Then b1 (p(j),y) is holomorphic on C with re-

spect to ym+k+i. If J G /c, then Xm+k+j(I) = Pi \ {0}. Therefore b1 (p(j),y) is

holomorphic on Pi \ {0} with respect to ym+k+j- Hence we have

(5.6) <σ(* ') = 0

for all σ = (CΓI, ...,σn_m_2fc) with θ{ < 0 for some i G / or with σy > 0 for some

j G /c. It follows from (5.5) that

σeZn-m-2k

(5.7)
n-fc ,

x e( ^{x'Ίd")) + 51 ?Ή + ZπV^Ϊ^, n7 G Z.

By (5.6) and (5.7) we obtain

(5.8) α7 > σ(zV") + / σ V + Ί',x'" + 7"')e( V(x"/d")) - fl(x',x'") = 0

for all σ = (σi,...,σn_m_2fc) with σ̂  < 0 for some i G / or with σ̂  > 0 for some

j G /c, and

(5.9) b^0(x') = α7,0(x', x'") + /o7^' + 7 V + V ) - / 0V, *'") + constant.

We define

σ{ <0 for some

σj>0 for some j'G/c

Then go(x) and 07(x) are holomorphic functions on Cn.

Take disjoint subsets Iλ,..., IN of {1,..., n - m - 2k} such that

N
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And we set
N

g{x) :=9o(x) +

Then c(x) := exp(g(x)) is a Dn_ f cZ
n~ f c-periodic C*-valued holomorphic function

on C n . We define

5(7,x) :— c(x + 7)01(7,x)c(x)~1.

Then a is a factor of automorphy equivalent to a. It follows from (5.8) and (5.9) that

5(7, x) does not depend on (#", a;"7). Therefore there exists a factor of automorphy

α 0 : Γ* x C m + f c -> C* such that

α(7,ar) = α o ( r ( 7 ) , r ( a : ) ) .

The holomorphic line bundle L α o on A = C m + f c /Γ* given by α 0 is topologically

trivial. And A is an abelian variety. Then there exists a homomorphism ψ : Γ* —>

C* such that αo and ^ are equivalent. D

Theorem 5.10. Let L\ —> G be the holomorphic line bundle given in the

beginning of this section. Suppose that there exists a holomorphic line bundle L —>•

G such that

Then there exists a holomorphic line bundle V —»• A given by a theta factor such

that

Lλ S τ*L'.

Proof. Let L\ — L o 0 Lp. By Proposition 5.2 there exists a holomorphic line

bundle LPo -> A given by a theta factor p0 : Γ* x C m + f c -> C* such that L p ^ τ*L P 0 .

Then L p is extendable to G. Since Lo = L\ <S> L" 1 , there exists a holomorphic line

bundle L o ->• G such that

(*Γ )*L0 = Lo|t(G)

Thus we obtain a homomorphism ^ ' Γ* ->• C* by Proposition 5.4 such that Lo is

given by the homomorphism φ :— φ or :T ^ C. D

6. Main result

Consider a subfield K of 9Jί(Cn) with Trans K — n which is non-degenerate

and admits (AAT). Take a non-degenerate function / E K. Let Li := [(/)o] be the

holomorphic line bundle on G = C n /Γ given by the zero-divisor (/) 0 of /. Here we

have

G = CP x
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where X is a quasi-abelian variety. Consider a compactification G of G and com-

plex coordinates (x±,... ,xn) of Cn as in Section 3. We assume that K is alge-

braically non-degenerate with respect to coordinates (x\,... , #n) Then / is ex-

tendable meromorphically to G, hence L\ is extendable holomorphically to G. We

know that the meromorphic functions on Cp x (C*)q which are extendable mero-

morphically to Ψp+q are the rational functions.The restriction g \— f\χ of / to X

is a non-degenerate meromorphic function on the quasi-abelian variety X.

Proposition 6.1. Let X = Cr/Γ be a quasi-abelian variety of rank Γ = r + s

(1 < s < r). Suppose that there exists a non-degenerate meromorphic function g

on X. Let X be the compactification of X determined by L\ \— [(^)o] o,s in the

previous section. If g is extendable meromorphically to X, then rank Γ = 2r and

X is an abelian variety.

Proof. Suppose that 1 < s < r. Then we have a bundle τ : X -ϊ A on an

abelian variety A with dim A < dim X. By Theorem 5.10 there exists a holomorphic

line bundle V -> A such that Lλ = τ*Lι. Let r : X -^ A be the associated φ[~~s~k-

bundle. We denote by ~g and L\ the meromorphic extension of g to X and the

holomorphic extension of L\ to X, respectively. There exist φ,ψ e H° (X, O(Lχ))

such that ~g = ψ/φ. Since L\ =τ*Lt, we have

H°(X,O(L1))=Ψ*H0(A,O(L1)).

Then <7 is degenerate. This is a contradiction. D

Theorem 6.2(Main Theorem). Let K be a non-degenerate subfield ofUJl(Cn)

with Trans K — n which admits (AAT). Let Γ be the discrete subgroup of Cn in

Theorem 2.6. We take complex coordinates (xι,... ,xn) of Cn as in Section 3.

Suppose that K is algebraically non-degenerate with respect to (xι,... ,xn) Then

we have

where A is an r-dimensional abelian variety (n = p + q + r), and K is a subfield of

C ( * i , . >.,zp,wι,...,wq,go,gi,... , # r ) , where zι,...,zp and wι,...,wq are coordi-

nate functions of Cp and (C*)q respectively, and go,9i, ,9r are generators of the

abelian function field UJl(A) on A.

Proof. By Theorem 2.6 we have that K is a subfield of Wl(Cn /Γ) and

= Cp x(C*)q xX,

where X = Cr/Γ* is a quasi-abelian variety. Since K is non-degenerate, X is

an abelian variety by Proposition 6.1. Furthermore any / G K is extendable

meromorphically to Ψp+q x X by Theorem 3.3. Then we obtain the conclusion. D
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