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1. Introduction

In [10], we determined all normal octic CM-ίields with class number one and
noticed that class numbers of quaternion octic CM-fields are always even. Here,
quaternion octic fields, or simply, quaternion fields are number fields whose Galois
groups are isomorphic to the quaternion group of order 8. Later, the first author
[9] determined all quaternion CM-fields with class number two: there is exactly
one such number field. Now determination of CM-fields with ideal class groups of
exponent < 2 is a natural extension of class number one and two problems. In this
paper, we prove:

Main Theorem There are exactly two quaternion CM-fields with ideal class
groups of exponent 2. Namely, the two following quaternion CM-fields:

Q (J- (2 + V2) (3 +

with discriminant 2 2 43 6 and class number 2, and

with discriminant 365676 and class number 8.

The proof consists of algebraic discussion, analytic discussion and numerical compu-
tation. In chapter 2, we determine possible forms of quartic subfields of quaternion
CM-fields whose class groups have 4-rank being zero. Then, we determine possible
forms, as radical extensions, of such quaternion CM-fields. In this determination,
we use Frohlich's description of quaternion fields [2], various results on quadratic
fields (e.g. Redei-Reichardt Theorem [11] and Scholz' Theorem [12]) and Kubota's
description of bicyclic biquadratic fields [5]. In chapter 3, we give upper bounds on
discriminants of quaternion CM-fields whose class groups have exponent 2 by using
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analytic estimate on the value of L-functions at s = 1 [6]. Then, we determine all
such CM-ίields by computing relative class numbers with an algorithm developed
in [8].1

Let F be an arbitrary algebraic number field of finite degree. We use the
following notations throughout this paper. We denote by Dp the discriminant,
C(F) the ideal class group, h(F) the class number, UF the unit group, and Up the
totally positive unit group of F. In this paper, prime numbers always mean positive
rational prime numbers. A prime number p is said to be ramified in an extension
F1/F2 of algebraic number fields if a prime ideal of F\ above (p) is ramified in
F1/F2. If p is ramified in F/Q, p is said to be ramified in F. We denote by tL/F

the number of finite primes of L which are ramified in L/F for an extension L/F.
We abbreviate ti, = tL/Q. We denote by TL the number of prime numbers ramified
in L. (Note TL counts prime ideals of Q while ti, counts prime ideals of L.) When
p is a prime number, we denote by ep(p) the ramification index of p in F/Q and
/F(P) the inertia degree of p in F/Q. When F is a CM-field, h~(F) denotes the
relative class number of F.

The letter N always denotes a quaternion field and K denotes a bicyclic bi-
quadratic field.

2. Determination of Possible Forms of N

In this chapter, we determine possible forms of a quaternion CM-field N whose
ideal class group has 4-rank being zero. We shall firstly review Frohlich's description
of quaternion fields. We shall secondly determine possible forms of the quartic
subfield K of N (see Theorem 9.) We shall then determine possible forms of N
as a radical extension (see Theorem 11.) We lastly give an efficient method for
calculating decomposition of rational primes in N/Q.

2.1. Frohlich's description

We shall review Frohlich's description [2] of quaternion fields that plays the
central role in algebraic part of this paper. Before giving his description, we note
that dΐ's, which are discriminants here, slightly differ from d^s of [2] which are
square free integers. Now we quote Frohlich's description:

Proposition 1 (Theorem 3 on [2, page 146]). Let K be a bicyclic biquadratic
Geld. Denote by d\, cfe and ds the discriminants of the three distinct quadratic
subήelds of K. Then there is a quaternion ήeld N containing K if and only if the

1The UBASIC program for computing these relative class numbers is available from the first
author.
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following condition is satisfied by all primes p's of Q including the infinite prime:

dud2\ (-\,d1\ (-l,d2

s

) )

Here ( , •/•) is the Hubert symbol

This condition at the infinite prime is equivalent to:

(2) di > 0, d2 > 0.

If p is a prime number coprime to DK, (1) is trivial at p. If p \ d2 is a prime number
coprime to di, (1) at p is rewritten in the Kronecker symbol and the parity of the
contribution θ of p in the character (d2/ ):

(3) (£ )=,(-!)
If p divides all three of dj's, we have p = 2. In this case, we pick up d = d̂  = 4

(mod 8) and put d' = d/4. Then (1) reads:

(4) d ' Ξ 3 (mod 8).

Proposition 1 also implies

(5) If 2 does not totally ramify in K, di φ 4 (mod 8) for i = 1,2 and 3.

The notion of pure quaternion field is useful for studying ramification in quater-
nion fields:

DEFINITION 2. A quaternion field N is called a pure quaternion ήeld if all

prime numbers dividing DN divide the discriminant of the quartic subήeld of N.

It is obvious that a quartic subfield of a quaternion field is uniquely defined. Con-
versely, a pure quaternion field is almost defined by the quartic subfield:

Lemma 3 (Theorem 4 on [2, page 146]). Let K be bicyclic biquadratic
Reid which satisήes the condition given in Proposition 1 and T — TK the number
of prime numbers ramified in K. Then, the number of pure quaternion fields
containing K is 2T~1 if the prime number 2 ramifies in K or 2T~2 otherwise.

Pure quaternion fields are basis for studying all quaternion fields:

Lemma 4 (Theorem 4 on [2, page 146]). For a quaternion field N and
its quartic subfield K, we can find a pure quaternion field No = K(y/δo) and a
fundamental discriminant Δ coprime to DK such that N = K(Λ/ASQ).
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Here, a fundamental discriminant is a discriminant of some quadratic field, i.e., it

is either a square free integer congruent to 1 modulo 4 or four times a square free

integer congruent to 2 or 3 modulo 4. Now, we can determine the discriminant of

N as follows:

Proposition 5. Let notations be as in Lemma 4. The discriminant D^ of N

is written as DNQ Δ 4 in the notation of the Lemma 4 and the discriminant DN0 of

No is given by DNo = WD^ if 2 has ramification index 2 in K/Q or DNo — Ό\

otherwise.

Proof. Let k be a quadratic subfield of TV, x the character associated to

AΓ/fc, d the conductor of χ and t)2 the conductor of χ 2 . Set %Δ to be the character

associated to k(y/~A)/k. Then χo — XXΔ is associated to iVo/fe. Since Δ and Djy0

are coprime, Conductor-Discriminant formula now implies DN = DN0Δ
4

We factor DN0 into prime powers. It is obvious that signatures and the odd

components of DNo and Dz

κ or 16D^ agree. When (2) does not ramify in K,

2-components of discriminants are trivial and agree. When eχ{2) = fκ(2) = 2, we

choose k to be the splitting field of (2) in K/Q. We then look at localizations of

N/k at primes above (2). It follows that 2-components of DN0 and 16D^ agree.

It remains to show that 2-components of DN0 and D\ agree when eχ(2) = 2

and fκ(2) = 1 hold.

Let A: be a subfield of K whose discriminant is not a multiple of 8. Then,

DNo = DκDlNk/QD2 and Dκ = DlNk/Qϋ2 holds. The choice of k implies (2) is

either inert or ramified in k/Q. When (2) is inert in k/Q, (4) divides D2 and our

target is equivalent to D = (2)t>2. When (2) is ramified in k/Q, (4) exactly divides $2

and our target is equivalent to D = (2)fl2. Therefore it suffice to show the assertion

that orders of the prime p of A: above (2) in d and (2)^2 agree. Obviously, we have

χ 2 ( l + 4α) = χ ( l + 8α + 16α2) for arbitrary integer α of k. With HenseΓs Lemma,

this implies χ ( l + Sα) = 1 for α such that 4α £ ^2 Since (4) divides ϊ>2, we see

2d2 C D. Take an element β G p " 1 ^ - ^ such that 1 ^ χ 2 ( l + /J) = χ(l + 2β + β2).

Since we have β2 G p~2d2 C (2)-1(4)D2 C D by (Ό2) C (4) and 2D2 C D, we see

χ ( l + 2/3) φ 1 while 2β e pD2 Hence, we get pfl2 t- ^ S i n c e P2ί)2 = 2D2 C D C D2,

this implies D = 2D2. •

REMARK. It is not generally true that the conductor of χ is 2 times the

conductor of χ 2 , even if the conductors are even. A counterexample arises when

the conductor of χ 2 is exactly divisible by (2). The choice of k in the proof is to

avoid complicatedness coming from such a case. Indeed, we would have D = 2p$2

if we have chosen k whose discriminant is a multiple of 8 in the case eκ(2) = 4.
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2.2. Determination of possible forms of K

We determine possible forms of K by means of construction of appropriate

ideal characters of appropriate quadratic subfields of K. We use norm residue

symbols for such construction. The description obtained is however given in ratio-

nal terms: it is written in term of rational congruences, the Legendre symbols and

the rational quartic residue symbols ( f )4. Although the quartic residue symbols

are denned up to inversion, we are interested in the values at quadratic residues

and hence the ambiguity does not matter. We extend the rational quartic residue

symbol by

ί +1 if α = 1 (mod 16)

1 - 1 if a = 9 (mod 16)

for o Ξ 1 (mod 8). We use Frδhlich's description [2] of quaternion fields, Redei-

Reichardt Theorem [11] and Scholz' Theorem [12]. We also implicitly use the theory

of genera and the ambiguous ideal theory.

In this chapter, we write βd for the fundamental unit of Q(Vd) which is greater

than 1 in the embedding of Q(\fd) —> R in which \fd becomes positive. We also

write Od for the ring of integers of Q(\fd). Let K be a real bicyclic biquadratic

field, ki (i = 1,2, 3) the three distinct quadratic subfields of K and d^s respective

discriminants of k^s. Then, K contains square roots \fd[, y/d^ and \fd%. We

choose the signature of y ^ to be the product of the signatures of \[d[ and y/dΰ:

\fd\\fd2 — df\/cζ for some positive integer d!. It turned out that confusion in the

choice cause a delicate problem (§2.4..) The following fact is also implicitly used

(see [5] for details including a numerical algorithm):

(7) u2

klu
2

k2u
2

k3 cu2

Kc u k ι u k 2 u k 3 n u%.

We also quote the following class number formula for a real bicyclic biquadratic

field (see e.g. [5]):

(8) h(K) = ^

where Qκ is the unit index QK = \Uκ Uk1Uk2Uk3] £ {1,2,4}.

Let N/k be a cyclic quartic extension. Then, construction of appropriate

characters of k gives an unramified cyclic extension of degree [N : k] over N when

there are too many totally ramified prime ideals in N/k. For the construction of

the character, we use norm residue symbols (see e.g. [4].) We denote by kp the

localization of k at p for a prime ideal p and Ukp the unit group of kp. We use

the fact that the Artin map canonically determines a character Ukp —^ Gal (M/k)

for a cyclic extension M/k and a finite prime p. The order of the character is the

ramification index of p. If p is coprime to the order of Gal (M/k), the norm residue

symbol becomes a power residue symbol modulo p up to group isomorphism of
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the image. In this case, we think of the norm residue symbol as the canonical
power residue symbol. We sometimes identify the cyclic group Gal (U/k) with a
suitable subgroup of C 1 for convenience, in particular, elements of order 1 and 2
in Gal(f//fc) become ±1. (We use all values of norm residue symbols an power
residue symbols in the following context. They are used in a different way from the
way rational quartic residue symbols are used.) Products of norm residue symbols
are then used in the following Lemma:

Lemma 6. Let N be a quaternion field, k = Q{\fd) one of its quadratic
subfields, pi,p2, . ,p£ finite primes ofk, and χ$ a product of odd powers of norm
residue symbols ofN/k at pi,p2,. ,p£ Set S = {±1} ifNk/Q6d = -1 or S = {1}
otherwise. Assume that χ^(ε^) G S. Then, there is an ideal character χ of2-power
order ofk such that χ((α)) = χ^(ct) for each totally positive integer α coprime to
P1P2 * * Pi- Assume further that the A-rank ofC(N) is zero. Then, the extension of
k associated to χ2 is contained in N. The order ofχ is 4 if one of the pi's is totally
ramified in N/k.

Proof. The assumption on χ^(εd) implies that χ^(U£) — 1 and χ^(Uk) C
{±1}. Embed Uk/U£ into {±1}2 by signature and extend χ$ : Uk/ϋ£ —> {±1}
to a character Xoo of {±1}2. Identify Xoo with the character it induces on kx

via signature. Then, the product χf — X̂ Xoo vanishes on XJk. Hence, there is an
ideal character χ such that χ((α)) = x'{®) for each element α of kx. Taking a
suitable odd power, we can choose χ so that the order of x is a 2-power. This
implies the first statement. Let L be the extension of k associated to x and M
the extension of k associated to χ2. By construction of L, LN/N is unramified
cyclic extension of a 2-power degree. (Note that iV is totally imaginary.) If M
is not contained in TV, then LN/N must be an unramified cyclic extension whose
relative degree is a multiple of 4. Hence, C(N) must have a non-trivial 4-rank,
which contradicts the assumption on C(N). Therefore, the second statement of the
Lemma holds. Assume that some p̂  (1 < i < £) is totally ramified in N/k, i.e., the
order of the norm residue symbol at p̂  is 4. Then 4 divides the order of x and p̂
has the ramification index 2 in M/k associated to χ2. Comparison of ramification
indices shows that M C iV is a proper subfield of N and hence M/k is quadratic.
Therefore, the order of χ2 is 2, or equivalently, the order of x is 4. We have proven
the last statement of the Lemma. •

The following two Lemmas are used for calculation of quadratic residue sym-
bols at fundamental units.

Lemma 7. Let qι, q2,..., qt be even number of distinct prime numbers con-
gruent to 3 modulo 4 and d — qιq2 ... qt- Write q̂  for the prime ideal of Q(y/d)
above qι for 1 < i < t. Then, (εd/c\i) = -1 for some 1 < i < t.
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Lemma 8. Let q = 3 (mod 8) be a prime number and q be the prime ideal

of Q(x/q) above q. Then, (εq/q) = - 1 .

These two Lemmas are proven in a similar way. Hence, we give a proof of the
former and omit that of the latter.

Proof.2 Define α and 6 by εd = α + by/d if εd G Z + Zy/d or ε3

d = α + by/d

otherwise. Then, α + by/d becomes the fundamental unit of Z + Zy/d.
Taking norm, we see that α2 — b2d — 1. (The sign of the right hand side is

plus since ft's are congruent to 3 modulo 4.) This identity implies the congruence
α2 — b2 = 1 (mod 4) which implies that α is odd and 6 is even. The identity also
reads (α - l)(α + 1) = b2d.

Suppose that the qι divides α — 1 for each 1 < i < t. Then, the claims of
the previous paragraph implies that there is a decomposition 6 = 26162 such that
α — 1 = 2b2d and α+1 = 26?>. Subtracting these identities, we get b2 — b2d = 1 where
0 < 1611 < 6/2 < 6. This contradicts the choice of α and 6 in the first paragraph of
this proof. Hence, some qι must divide α + 1. Therefore, we have α + by/d = — 1
(mod qi). Since qι = 3 (mod 4), this implies (ε<i/(\i) = (α + by/d/qi) = (—1/q̂ ) =
(-I/ft) = - 1 . •

We recall QK — \Uκ ' U^U^Uks] for a real bicyclic biquadratic field K with
three distinct subfields fei, k2 and k3.

Theorem 9. Let N be a quaternion CM-field whose ideal class group has
A-rank being zero, K the quartic subfield of N. Then, the number T — Tκ of
prime numbers ramified in K is at most 3, the number tx of finite primes of K
ramified in K/Q is at most 4, class number h(K) of K is odd and the 2-rank p of

is one. More specifically K is of one of the following forms:

la. K = Q(y/2, y/q), tκ = 4, T = 2 and Qκ = 2 with q=l (mod 8) such
that

l b . K = Q(y/p, y/q), t κ = 4, T = 2 a n d Qκ = 2 with p = q=l ( m o d 4)

which satisfy p < q and

(ϊ) -l;
4 VP/4

2a. K = Q(\/2, y/qr), tκ = A, T = 3 and Qκ = 2 with q = r = 3 (mod 8)
such that q <r;

2 Franz Lemmermeyer kindly told us this elementary proof. The authors would like to express
their gratitude to him.
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2b. K = Q(y/p, \/2r), tκ = 4, T = 3 and Qκ = 2 with p = 5 (mod 8) and
Γ Ξ 3 (mod 4) such that

2 c . i f = Q ( v ^ , v ^ r ) , t κ = 4,T = 3 andQκ = 2 with p=l ( m o d 4 ) a n d

g Ξ r Ξ 3 (mod 4) such that q < r and

3a. if = Q(y/2q, y/qf), tκ = T = 3 and Qκ = A with q = 7 (mod 8) and
r = 3 (mod 8) such that

3b. if = Q(y/pξ,y/qr), tκ = T = 3 and Qκ = 4 with p = q = r = 3
(mod 4) such that

or
4. if = Q(\/2, y^), tκ = T = 2 and Qκ = 4 with g = 3 (mod 8).

Here p, g, r denote distinct prime numbers. The 2-rank pr of UK Π NN/KN

is at most 1 in aii cases and p* = Q except possibly in case 3a and 3b.

Corollary 10. The two numbers tx and p' satisfy the following inequality:

(9) tκ + p' < 4.

Proof of Theorem 9. To avoid inessential complicatedness such as introduc-
ing notation for 2-class numbers, we assume that the odd part of C(N) is trivial.
This assumption implies that the class numbers of quadratic subfields of if are
powers of 2.

We have eκ{p) < 2 for each odd prime p. Now, we divide the proof into the
following four cases, which are discussed in separate subsections:

1. Two prime numbers p < q satisfy

eκ(p) = eκ(q) = 2 and fκ(p) = fκ(q) = 1;
2. Exactly one prime number p satisfies

eκ(p) = 2 and fκ(p) = 1;
3. All prime numbers ramified in if have inertia degree 2 in if or
4. All odd prime numbers ramified in if have inertia degree 2 in if

and eκ(2) =4.
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2.2.1. Case 1

Let k be the splitting subfield of p in K. Write p and p' for the two primes
of k above p. Let χp and χp> be the respective norm residue symbols of N/k at p
and p'. Then, we have χp o NkjQ — χpχ^f by commutation relation of Gal (N/Q).
Let x^ be the Dirichlet character induced by χp. Put χ$ = y^ o N^JQ on numbers
and x = x^ o iV /̂g on ideals. Then, Lemma 6 implies that K is associated to
χ2. The transfer Theorem in class field theory implies that K is the composite of
k and the quadratic field associated to the Dirichlet character induced by (x11)2,
i.e., Q(y/p) C K. The same argument proves Q(y/q) C If. Therefore, K is of
the form K — Q(Λ/p, >/g) where p and g are prime numbers not congruent to 3
modulo 4. The assumption on p and q eliminates the possibility of q — 2. Now (q)
splits as (ςf) = qq' in Q(y/p). Let χq be the norm residue symbol of N/Q(y/p) at
q. If Xq(εp) = 1, we would have χq(εp) = ±1. Hence, application of Lemma 6 to
a product of χq and a suitable character at infinity would imply that K/k would
be associated to a suitable extension of χq to ideal classes. However, K/k is also
ramified at q7, a contradiction. Hence, we have

(10) χfcP) = - l .

Since q is odd, χ2 is written by the quadratic residue symbol χ2 = (β/q). By Scholz'
Theorem, the above identity implies that {p/q)4(q/p)4 = —1 and that C (Q(y/pq))
has 4-rank being zero. The former gives the form of K stated in cases la and lb.
The latter implies that K — Q(y/ε^) since the 4-rank of the strict ideal class group
of Q(VPV)

 i s 1 b y t n e Redei-Reichardt Theorem [11]. Thus, we have Qκ = 2. This
implies that h(K) = 1 since h(Q(y/p)) and h(Q(y/q)) are one and h(Q(λ/pq)) = 2.
Since εpq >̂ 0, either pεpq or qεpq is a square of a totally positive element ξ(p, q)
of Q(yjpq)' Let r be one of p or q chosen so that rεpq — ξ(p,q)2:

(11) rεpq = ξ(p,qf r=p or q, and 0 < ξ(p,q) G Q(yfpq).

Put

(12) 7/ = r/(p, ςf) = ξ(p, g ) / ^ ε r > 0.

Then ?7εr is a square root of εpq. Thus, we have E/j£ = C/̂  U τ/ί/^ and p = 1. We
now show that // = 0. Suppose contrary ρf > 0. Then, pf = p = 1 and 77 would
be a norm in N/K. Taking relative norm to Q(y/r), we see ε2

r would be a norm in
N/Q{yjr). However, an argument similar to (10) shows that ε2 cannot be a norm
residue in N/Q(y/r). We are led to a desired contradiction, proving p' = 0. This
finishes case 1.
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2.2.2. Case 2

The same argument to the one given in case 1 shows Q(y/p) C K. By (3), the
discriminant d of the splitting subfield k of p in K is a product of coprime negative
prime discriminants. Since d is positive, d is a product of an even number of prime
discriminants.

We firstly investigate odd divisors of d. Let q be an odd prime divisor of d.
Then (q) remains prime in Q(y/p). and the norm residue symbol of N/Q(y/p) at
qop gives the quartic residue symbol ( lqop)±. On the other hand, q = 3 (mod 4)
implies

(εP/qoP)l = (εp/qop) = (NQ(Vp)/Q(εp)/q) = (-1/g) = - 1 .

We secondly show that the discriminant d is a product of exactly two coprime
negative prime discriminants. Suppose contrary that d has at least three prime
factors. Then, two distinct odd prime numbers q and r divide d. As was shown
in the previous paragraph, the respective quartic residue symbols ^/qop)4 and
(•/rop)4 given by the norm residue symbols of N/Q(y/p) at qop and rop satisfy
(εl/QOp)* = {εl/rop)4 = - 1 . Thus, χtf = (•/qop)4( /rop)4 satisfies χ*{ε2

p) = 1, i.e.,
χKεp) = ϋ Since ^Q(y/p)/Q{εP) = —1, application of Lemma 6 to χ$ implies that
K/Q(y/P) 1S associated to {•/qop)\{ /rop)\ = (•/qop)( /rop). Hence, qop and rop

are the only ramified ideals in K/k, contradicting the assumption of this paragraph.
Therefore, d is a product of exactly two coprime negative prime discriminants.

Let q < r be the two distinct prime divisors of d. As we saw in the first
paragraph, neither q nor r is congruent to 1 (mod 4). If p = 2, K — Q(y/2, y/qr)
is of the form 2a. If pd is odd, K = Q(y/p, \Jqτ) is of the form 2c. If d is even, (5)
implies K — Q(y/p, \/2r) which is in the form 2b. Thus, the form of K falls into
one of 2a, 2b or 2c.

Now, we investigate numeric invariants. We show that UK is generated by
— l,ε p ,ε g r and a square root of εpqr. The fundamental unit εpqr of k is totally
positive since r = 3 (mod 4). Thus one of the prime ideals above p, q and r is
principal. Solving congruences x2 — pqry2 = ±4p, ±4q or ±4r modulo p if p is odd
or x2 —pqry2 = ±p, ±q or ±r modulo 8 if p = 2, we see that the prime ideal above
p in Q(yjpqr) is principal. Solving the same congruences modulo r, we see that the
prime ideal above p in Q(y/pqr) is generated by an integer which has a negative
norm. Thus, there is a totally positive integer ξ(p;q,r) such that:

(13) ί(p; q, r)2 = qrεpqr 0 < ξ(p; g, r) G Q(y/pq^).

We have (ξ(p; g, r)/y/qr)2 = ε p g r . The fundamental unit ε 9 r of fc is totally positive
since Γ Ξ 3 (mod 4). Thus rεqr is a square in k. Since y/r £ K, εqr is non-square
in if. We now see that UK has the desired system of generators. This determination
of generators implies that Qκ = 2, that yθ = 1 or more precisely U% = UχUεqrUκ.
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The latter also uses the fact ζ{p' >q,r)/y/qr has the same signature as y/qr. Using
Redei-Reichardt Theorem, we see

KQ(y/p)) = h(Q(y/qr)) = 1; h(Q(y/pqf)) = 2.

This together with QK = 2 implies that h(K) = 1.
Lastly, we show that p1 = 0. Suppose contrary that p' = p = 1 or more

specifically that εqr were a norm in N/K. Then ε2

qr would be a norm in N/k. Let χp

be the norm residue symbol of N/k at a prime p of k above p. Then, the hypothesis
implies that χ2

p{εqr) = Xp{e2

qr) = 1. On the other hand, χg(-l) = Xp((-1)2) = 1
is clear. Thus, χ2 would be trivial on Uq^^y Using the fact that p is totally
ramified in N/k, we see that the order of χ2 is 2. Noting that h(Q(y/qr)) = 1, we
see that %p would induce an ideal character of order 2. Let L be the extension of
Q(y/qr) associated to it. The normal closure of L would be a totally real dihedral
octic field containing K. Thus, LK/K would be an unramified quadratic extension
while h(K) = 1. Hence, we are led to a desired contradiction, proving p' — 0. We
finish case 2.

2.2.3. Case 3

By (3), discriminants G '̂S are products of coprime negative prime discrimi-
nants. We firstly show that tκ/ki < 2 for i = 1,2 and 3. Let k be one of the fc^'s
and d its discriminant. Suppose that more than two primes are ramified in K/k.
Then, at least two odd primes are ramified in K/k. Remembering the assumption
of this case, we pick up two odd prime numbers pi and p2 such that p\θd and
P2θd are ramified primes in K/k. The norm residue symbols of N/k at p\ and p<ι
define the quartic residue symbols (•/piθd)4 and (•/p2θd)± respectively. Similar
argument to the second paragraph of case 2 shows that {εd/piθd)4 — ±1 for i — 1
and 2. If (sd/piOd)± = 1 for i = 1 or 2, Lemma 6 applied to k and PiOd leads to a
contradiction. If (εd/piθd)4 = {sd/P2θd)A = —1» Lemma 6 applied to /c, p\θd and
P2θd leads to a contradiction to that three primes are ramified in K/k. Hence we
must have tκ/k ^ 2 for each quadratic subfield k of K.

We secondly show that tκik — 1 f°r some quadratic subfield k of K. In fact,
we shall see in the next paragraph that tK/k = 1 for each quadratic subfield k of
K. Separation of the proof of this fact in two steps is a detour to overcome the
difficulty due to the behavior of prime ideal above (2). Let p be the smallest prime
number ramified in K and k the inertia subfield of K at p. Then, the discriminant
d of k is odd and tKjk > 1. Suppose that there is a prime number r > p > 2 such
that r remains inert in k/Q and rod ramifies in K/k. As was shown in the first
paragraph, {εd/rod)^ = 1 implies tK/k — 1 contrary to the supposition. Thus, we
must have {εd/rθd)4 = - 1 . By Lemma 7, there is a prime ideal q of k ramified
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in k/Q such that (ε^/q) = —1 Now, Lemma 6 applied to fc, ro^ and q implies

that rod is the only ramified prime in K/k, a contradiction. Hence we must have

tκ/k = l

We now show that tK/k. — 1 for i — 1,2 and 3 or equivalently that the

discriminant di of each ki is a product of exactly two coprime negative prime dis-

criminants. Let p, k and d be as in the previous paragraph. We assume without loss

of generality that k = k±. Then d decomposes into a product d — df

2d
f

3 of coprime

fundamental discriminants and the field K is of the form K — Q{y/p*df

2, y/p*d3)

where p* is a prime discriminant divisible by p. The result of the first paragraph

implies d2 is a product of at most two prime discriminants. As was said in the

beginning of this case, the discriminant cfe = p*d'2 is a product of coprime negative

prime discriminants. On the other hand, d^ is positive. Combining these three

points, we see that d2 is a product of exactly two coprime negative prime discrimi-

nants. The same argument proves that d3 is also a product of exactly two coprime

negative prime discriminants. These imply that d'2 and d3 are prime discriminants

and hence that d — d2d
f

3 is also a product of exactly two coprime negative prime

discriminants. Hence each discriminant di is a product of exactly two coprime

negative prime discriminants.

Now, using (5) if the prime number 2 ramifies in K, we see that K =

Q(y/PQi y/W) f° r prime numbers p, q and r which are not congruent to 1 (mod 4)

such that

P J \ Q

Here, we assume without loss of generality that p < q,r; d2 = —r and df

3 = —q.

The forms of K in case 3a and 3b follow easily.

We now proceed to numeric invariants. For simplicity we write

(14) Pi=P, P2 = q, P3 = r.

Here the numbering (mod 3) is chosen so that pi and di are coprime: ki =

Q(y/Pi+ιPi+2). It is easily verified that

(15)

In particular, we have that PiSPiPi+2 is a square in Q(y/piPi+2). Recall that

2 I
[ PiPi+2 2 / PiPi+2-

Using congruence, we see that the equation

(17) x2 - di+1y
2 = -APi
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has positive rational integral solutions in x and y. We set

(18) π(pi,Pi+2) = (x + y\ΛΪ~^)/2

or equivalently let π(pi,Pi+2) be an integer in Q(y/PiPi+2) oί norm — pi. Then,

(19) η(puPi+i,Pi+2) = π(pi+1,Pi)π{pi+2,Pi+i)l ^/Pi+iPi+2

is a unit such that

(20) r/(pi,p i +i,p i + 2) 2 = ̂ d^di+i and 7 7 ( ^ , ^ + 1 , ^ + 2 ) ^ ^ + 1 > 0.

On the other hand, Sdi+1 is non-square in K since Pi6di+1 is a square in if while

y/pϊ £ K. Therefore, we have QK — 4, p — 1 and ft (AT) is odd. Unfortunately, we

cannot determine p' without specifying N in this case.

2.2.4. Case 4

Similar argument to case 2 and case 3 shows that the number of odd ramified

primes in the relative extension K over each quadratic subfield of K is at most 1.

Inspecting the signature of prime discriminants and using (4), we see that K is of

the form given in case 4 of the Theorem or

with q = 3 (mod 8), r = 3 (mod 4) and (q/r) = — 1. The latter possibility is

eliminated by a similar argument to the third paragraph of case 3 with Lemma 8.

Thus, K must be of the form given in case 4 of the Theorem.

. Numeric invariants are determined in [9]. •

2.3. Determination of possible forms of iV's as radical extensions

We shall determine possible forms of quaternion fields containing K's described

in the previous section as follows:

Theorem 11. Let N be a quaternion CM-βeld whose class group has A-rank

being zero and K its quartic subGeld. Then, N is written as a radical extension

N = K(y/-δ(N)) with a totally positive element δ(N) - -Aδ0 of K. Here δ0

is a product of quadratic integers in appropriate quadratic sub fields and Δ is a

fundamental discriminant coprime to DK . Moreover, the norm of δg divides Djζ

and No — K(y/δό) is a pure quaternion field.
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We only need to determine all pure quaternion fields containing K and to appeal

to Lemma 4. However, we must not forget to determine real pure quaternion fields,

since Δ can be negative in Lemma 4. Therefore, we determine all pure quaternion

fields containing K which is of one of the forms listed in Theorem 9.

Lemma 3 and the following Lemmas are essential for this determination and

are used without mention:

Lemma 12. Let δ be an integer of K. Then K(y/δ) is a quaternion field if

and only ifNκ/kiδ G (Kx)2 \ (A;*)2 for i = 1, 2 and 3.

We also use the following Lemma for studying the behavior of 2.

L e m m a 13. Let d=l (mod 4) be a fundamental discriminant, α an integer

in Q(Vd) and α the norm ofα. Assume that α = 1 (mod 4) and that α2 = \α\εd>

Then, a or —a is a square modulo 4θd>

Proof. The following facts are easily verified:

1. α2 i Z + ZVd. iία£Z

2.d = 5 (mod 8) if εd £ Z + Z\fd\

3. o? e Z + ZVd iϊd = b (mod 8).

In the situation of the Lemma, these three points imply that αεd — c? j \α\ resides

in Z + Zy/d. Write αβd = b + cVd. The condition on the norm implies the

congruence b2 — c2 = 1 (mod 4). Hence, b is odd and c is even. We now have the

following congruence:

(21) αεd = b + cVd = b - c + 2c (1 + Vd)/2 = b-c = ±l ( m o d 4 o d ) .

The condition on α2 and that on the norm α imply

(22) α2 = \α\ εd = ±εd (mod 4od).

These two congruences imply the desired statement. •

Put

( 2 3 ) π = φ)=ί+VP*P i f ? Ξ l ( m o d 8 ) or p = 2,

{ -y/pεP if p = δ (mod 8).

Then, y/ϊr generates a cyclic quartic field whose conductor is a power of p.

Proof of Theorem 11. The possible forms of N are determined in the fol-

lowing cases according to the cases listed in Theorem 9. (The radicand Jo is a

radicand in one of "Lemma RE'"s that apply to the given K.)
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2.3.1. Case 1

Let r be one of p or q satisfying

(24) ξ(p, q)2 = rεpq, for some 0 < ξ(p, q) 6 Q(y/pq).

Put

(25) ry(p,(7) = e(p,ςf)/π(r)

where π(r) is defined by (23). Put,

(26) δ(p,q) = φ)π(q)η(p,q).

Then, K (y/±δ(p,q)j are quaternion fields. Counting pure quaternion fields, we

see

Lemma REla. In case la, K ί y/±δ{p,q)j are all of pure quaternion Gelds

containing K.

We must take care of the behavior of 2 if DK is odd. The field K ί y/π(p)π(q)j is

an abelian octic field of conductor pq. On the other hand, the strict class fielα of

K is K (\/-η(p,q)\ Therefore

Lemma RElb. In case lb, K (^—6(p,q)j is the only pure quaternion field

containing K.

This finishes case 1.

2.3.2. Case 2

Let K = Q(Λ/p, y/qr) allowing one of p or q to be 2. We already know that

qrεpqr is a square of a totally positive integer ξ(p; g, r) in Q(yjpqr). Set

(27) 5(p;(7,r) =

Then, K(y/±δ(p; q,r)) and if(^/±ί(p; (/,r)εqr) are quaternion fields. Counting

pure quaternion fields, we see

Lemma RE2a + RE2b. Write δ = δ(p;q,r). Then, K(y/±δ) and

K(^/±δεqr) are all of pure quaternion fields containing K in case 2a or 2b.

Now we proceed to the case of Djζ being odd. We must take care of the

behavior of 2 in this case. By Lemma 13, we have

(28) We can choose the sign s = s(p]q,r) = ±1 such that sξ(p;q,r) is a square

modulo 4 in Q{y/pqr).
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Recalling that qεqr is a square in Q(y/qr) and that Q(y/qr, y/^)/ Q(y/ϊw) is
unramiίied at finite primes, we see

Lemma RE2c. Write δ = δ(p\q,r) and s — s(p;q,r). Then, K ί y/sδ) and

K (y/-sδεqr) are all of pure quaternion fields containing K in case 2c.

This finishes case 2.

2.3.3. Case 3

In this case, it is convenient to number everything according to the numbering
Pi = Pi V2 — Q and P3 = r. Here, p = pi may be 2. Thus, we follow the convention
in the proof of Theorem 9. Moreover, we write

Ci = £pi+lPi+2

for the fundamental units of fc^'s. We know that there is an integer π; in fc^+i such
that

(30) πf = Piti+i πiyJPi-\Pi e kf+λ.

Put

(31) £(Pl,P2,P3) = 7Γl7Γ27Γ3

Then, K ί y/±δ(pι,P25Ps)) andK ί y/±δ(pι,p2,P3)εqr)a3:e quaternion fields: Count-
ing pure quaternion fields, we see that

Lemma RE3a. Write δ = δ(p, q, r). Then, K (V±δ) and K (y/±δεqr) are
all of pure quaternion Belds containing K in case 3a.

Now assume that pi -φ 2 or equivalently 2 / DR. By Lemma 13, we have

(32) We can choose Si = ±1 so that sιττi is a square modulo 4 in fcϊ+i.

(33) Put s(p, g, r) = sis2«3.

Then, we have the following Lemma:

Lemma RE3b. Write δ = δ(p, q, r) and s = s(p, q, r). Then, K (y/sδ\ and

K (y/—sδεqr^ are the all two pure quaternion fields containing K in case 3b.

We finished case 3.
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2.3.4. Case 4

Let q be the prime ideal of Q(y/2q) above q. Then, it is easily verified by

congruence that q has a totally positive generator ξ(q):

(34) ξ(q)2 = qe2q O C ^ G Q f ^ ) .

We have

Lemma RE4. Write δ = δ{q) = (2 + \/2)ξ(q). Then, K(y/±δ) are all two

pure quaternion CM-fields containing K in case 4.

We finished case 4 and hence all cases .•

2.4. Character associated to N/K

We shall give here an efficient method for calculating the decomposition law of

a quaternion field N which is determined in Theorem 11 through "Lemma RE'"s

in §2.3.. This enables us to compute the multiplicative functions n H-» φn in the

notation of [8] and to compute the relative class number h~(N) when TV is a CM-

field. Let K, Δ and δo as in Theorem 11. Further let d\, d<ι and ds be discriminants

of the three distinct quadratic subfields of K. Let / be a prime number and £ a

prime ideal of K above /. We discuss the behavior of £ in N/K according to the

behavior of / in K/Q. The following three cases are easy (with j denoting a natural

number):

(35) If I ramifies in K/Q, £ ramiήes in N/K and φu = 0,

(36) If I divides A, £ ramiήes in N/K and φu = 0,

(37) If I does not ramify in K/Q, divide Δ nor split completely in K/Q, £ remains

inert in N/K. Further, φμ = (j/2 +1)(—I)-7'/2 if j is even or φμ — 0 if j is odd.

We look at N over a quadratic subfield of K containing the inertia subfield of /

in K/Q for the first point. The second point follows from the definition of a pure

quaternion field and Theorem 11. For the third point, we merely look at N over

the splitting subfield of / in K/Q.

Hereafter, we assume that / splits completely in K/Q and that / does not

divide Δ. Then φιs = \{k + l)(/c + 2)(k + S)σj with σ\ = +1 or - 1 according as £

splits or remains inert in N/K. Since I splits completely in K/Q, the completion

K& of K at £ is isomorphic to the /-adic field Qι. The image of Δ δo under this

isomorphism is a square if and only if £ splits in N/K or σ\ — +1. Now, we make

this procedures explicit. By Theorem 11, we can write δo as a product of three

quadratic integers, say (αi + biy/dϊ)/2 for i = 1,2 and 3. Let δ± and δ2 be. respective

square roots of d\ and ^2 in Q\. Define δ^ by δ\δ<ι — d'δs in Qι with d1 being the
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positive integer such that \[d\\fd2 = d'yfd$. Then, the image of Aδo under the

isomorphism K% ̂ > Q\ equals Δ Πt=i(αΐ + biSiδi)/2 for some triple of signs si, S2

and S3 from ±1. The choice of ^/d% in K and that of £3 in Q\ forces 53 = s\8<ι.

On the other hand, four choices for a pair (51,82) corresponds to four conjugates

of £. Noting that NK/Q(Aδo) is coprime to Z, that UQJUQ ~ Z/2Z and that

N and K are normal, we see that the class of Δf|^= 1(αi + biSiδi)/2 modulo U^

is independent of the choice of a pair ($1,52). This means that the "signs" of

respective square roots δ\ and 82 of d\ and d<ι need not be determined while the

square root δs of d% need be calculated from ίi and 62

For an odd prime /, the class modulo UQ is determined by the Legendre symbol

σ\ = (Δ50/£) = ( 2 Δ Π i = i ( α * + Wi)/0 which is calculated in Fι.
For 1 = 2, the procedure becomes slightly complicated. In this case, all d^s are

congruent to 1 modulo 8. Further, each norm (of — &?d;)/4 is odd by Theorem 11.
Then, di and bi are even. Put A{ = α /2 and Bi = bi/2. Then, σ2 = +1 or —1
according as Δ[]^=i(^t + Biδi) Ξ l o r δ modulo 8. Here, δ\ and 2̂ are chosen so
that δi = 1 or 3 modulo 8 according as di = 1 or 9 modulo 16 while δ3 = διδ2/df.

3. Proof of Main Theorem

3.1. Analytic lower bounds

Let N be a quaternion CM-field and K its quartic subfield. Then numeric
invariants Qjy = 1 and WN = 2 are known [10] where QN is the Hasse's unit index
of N and WN is the number of roots of unity in N. There is no confusion between
notations QN and QK'- the former is defined for CM-fields and the latter is defined
for real bicyclic biquadratic fields. We proved in [9] that the quotient (N/(K of
Dedekind zeta functions of N and K is non-negative in the interval ]0,1[. Hence,
we have:

Proposition 14 (see [6, Theorem 1 and 2(a)]). Let N be a quaternion
CM-ήeld such that the Dedekind zeta function of its quartic subfield K satisfies

Then, we have:

(38) h'(N)>
r»l/8 /

N /

Moreover, the hypothesis (H) is satisfied provided that we have

< 3 9 > "-w ί άi/if •
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We point out t h a t for any real bicyclic biquadratic field K we have:

R * C (t \ τ(λ Λ/ U ί i Λ/ \T(Λ Λ/ ϊ 81og(ei) log(6 2 ) log(e 3 )^Hess=i (ζκ) = L{l,χι)L{l,χ2)L(l,χ3) = > /ii^2^3,
Y U\(12^3

P /> x 321og(e1)log(e2)log(e3)Res s =i {ζκ) =

where x*, €*, dj and hi stand for the characters, the fundamental units, the discrim-

inants and the class numbers of the three real quadratic subfields ki of K. Hence,

= DK and (38) may be written

Q K

£>V8 y 128eπ4log(ei)log(e2)log(e3

Lemma 15. Set c = 2 + 7 — log(4π) and c' = 2 + 7 — log(π), where

7 = 0.577215 ---is the Euler's constant, so that we have 3c < 0.14 and 3c' < 4.3.

Let K be a bicyclic biquadratic field. Then,

(42) Ress=1(ζκ) < ^ {log(Dκ) + 3c)3.

Moreover, if 2 is ramiήed in K then

(43) Res s = 1(Cχ) < ^ r {log(Dκ) + 3cf.

Moreover, if 2 is totally ramiβed in K, then the inequality above is valid with 1728

instead of 864.

Proof. From [7] we know that we have L(l,χi) < ^(log(di) + c) in general

or L(l, Xi) < ^(log(dj) + c') if 2 is ramified in ki. Let us note that if 2 is ramified

in K then 2 is ramified in at least two of its quadratic subfields. Now, the Lemma

follows from the arithmetic-geometric mean inequality XYZ < ^f(X + Y + Z)3

applied to Σ*=1 logd{ = log£>#••

Now our strategy is as follows.

Firstly, using the ambiguous class number formula, we show that if a quaternion

CM-field has an ideal class group of exponent 2 then (39) is satisfied, except for a

finite number of ICs for which we use a trick that shows that the hypothesis (H)

is satisfied.

Secondly, using (38) and (42) we thus get an upper bound on the discriminants of

quaternion CM-fields that have ideal class groups of exponent 2.

Thirdly, using the method developed in [8], we compute the relative class numbers

of the quaternion CM-fields of discriminants less than or equal to this upper bound.
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Lemma 16. if TV is a quaternion CM-field with ideal class group of exponent

2, then h(K) = 1 and h~(N) < 2 4 m + 3 where m is the number of prime integers

that divide D^ and do not divide DK, i.e. m is the number of distinct prime

divisors of A in Theorem 11.

Proof. Firstly, we remind the reader of the ambiguous class number formula.
An ideal class of N is said to be ambiguous (in N/K) if it remains invariant under
the complex conjugation. We let A{N/K) be the subgroup of the ideal class group
of TV consisting of ambiguous ideal classes. Let tN/κ be the number of prime ideals
of K that ramify in N/K. Then, using the ambiguous class number formula by
Chevalley (see [1] or [3]), noticing that the [K : Q] infinite primes of K ramify in
N/K and noticing that the index [UR ' U^] is equal to 2^K:Q\ we have:

#A(N/K) = 2t»<«-1[UKnNN/K(Nx) : U2

K]h(K).

By Theorem 9, h(K) is 1 in our situation. Therefore, this ambiguous class number
formula implies that the 2-rank oίC(N) is tx/x — l+p' with p' defined in Theorem 9.
Indeed, every ideal class of C(N) is ambiguous since every ideal class in C(N) has
order 2 . Thus, h(K) = #A(N/K).

Since there are at most four prime ideals of K above any finite prime that di-
vides Djγ and does not divide % , we have t^fχ < 4m+tκ where ΪK is the number
of prime ideals in K that ramify in K/Q. The result follows from Corollary 10.•

For m > 0, set Δ o = 1 and Δ m = lχl2 lm with 3 = / i < 4 = / 2 < 5 =
h < - - - < lm where the U 's i > 3 is the increasing sequence of odd primes greater
than 3. Proposition 5 implies D^ > D^A^ with m being as in Lemma 16.

Lemma 17. If the ideal class group of a quaternion CM-field N has exponent
2, then the hypothesis (H) of Proposition 14 is satisfied if DK > 382617 or if
Dκ > 23914 and 2 has ramification index 2 in K/Q.

Proof. Noticing that h~ (N) < 8 4 2 m (see Lemma 16) and yjDN/D2

K >
it suffices to show that we have

(44)

But one can easily check that (9/16) > (128e/y/Dκ) implies (44), so that (44) is
satisfied if Dκ > 382617. Moreover, if 2 has ramification index 2 in K/Q, then we

have ΛJDN/D^r > AA^y/Djς by Proposition 5, which implies the second result.•
Using the fact that the Dedekind zeta function of a bicyclic biquadratic field

is the product of the Riemann zeta function and the three L-functions of Dirichlet
characters associated to the three quadratic subfields of K, we have the following
result which enables us to show that the hypothesis (H) is satisfied when we have
Dκ < 382616.
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Lemma 18. Let k be a real quadratic Geld of conductor d and quadratic

character χ. Then, the Dedekind zeta function of k is negative on ]0,1[ provided

that S(n) = Σα=i ΣίUi x(δ) satisfies S(n) > 0, 1 < n < d.

3.2. Upper bounds on

Let us assume that K is a quartic subfield of a quaternion CM-field N with

ideal class group of exponent 2 such that the hypothesis (H) is satisfied. Then, we

have:

Indeed, D v > D^A^ and /ι"(iV) < 2 4 m + 3 by Proposition 5 and from (38) and

(40) we get

^DN/DK eπ
4

Now, one can easily see that we have /χ(m) > /κ(2), m > 0 (simply look at

/ κ ( ^ + l)//χ(ra)). Hence (45) implies

( 4 7 ) (i
V

^ < ^ ^

{log(Dκ) + 0.14)3 log(124D|,) 243

One can easily check that (47) implies

Dκ <25 106.

Moreover, instead of using (42), for a fixed K that satisfies hypothesis (H) let us

use (40). We get a more restrictive inequality than (47), namely:

Moreover, if we assume that 2 has ramification index 2 in K, then Δ is odd. Hence,

for m > 0 we set / 0 = 1 and Δ ^ = lλl2 -Ίm with 3 = i i < 5 = Z 2 < 7 = Z 3 < <

lm where the l^s i > 1 is the increasing sequence of odd primes greater than 1

(This sequence {Δ^} is slightly different from the previous sequence {Δ m } which

contains 4.) Then, Proposition 5 implies DN > l β Z ^ Δ ^ . Following the same

line of reasoning as above and using (43) instead of (42), we have:

{AQλ , ( λ _ Λ _ 4 λ/2πβ 1/Λ DKΔ'JIS-™ eπ^

(49) Mm):- [ I - ^ J ^ ^ + ^ s ^ ^ ^ - 1 0 8 «
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Indeed, DN > 16D^Δ^ 4 and h~(N) < 2 4 m + 3 and from (38) and (43) we get

Now, one can easily see that we have /χ(m) > /κ(l), m > 0. Hence (49) implies

(51) d 4^reVΛ £ * £4eπ^
V £ $ 8 (log(^) + 4.3)3log(1296D|,) 243

One can easily check that (51) implies

Dκ < 2 106.

Moreover, instead of using (43), for a fixed K that satisfies hypothesis (H) let us

use (40). We get a more restrictive inequality than (47), namely:

( Λ Dκ 128eπ4

Finally, if 2 is totally ramified in K, then .D v > D^-Δ^ and we get

. 512eπ4

D

All Lemmas labeled Lemma D K . . . in the rest of this paper are obtained by using

(48), (52) or (53).

3.3. An upper bound

Now, for each given K we use (45) and (49) to put an upper bound m m a x

on m, and then we use (46) and (50) with h~(N) = 2 4 m m a x + 3 to put a very

reasonable upper bound on DN. Finally, using this upper bound on DN, we list

DN for each K, compute the exact value of ίjv/κ for each DN then use the upper

bound h~(N) < 2tN/κ~1 in (38) to get rid of many TV's, i.e. we use

All Lemmas labeled Lemma DN. . . in the rest of this paper are obtained by using
(54).
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3.4. Successive examination according to the eight possibility of

forms for K

Examination in cases of eight possible forms for K in Theorem 9 proves Main
Theorem. We explain on one of the eight possible forms for K, how we get up-
per bounds on discriminants of quaternion CM-fields with ideal class groups of
exponent 2.

Now, we assume that the ideal class group of a quaternion CM-field N of the
form 3c in Theorem 9 has exponent 2. Hence K = if(p,gr) = Q(y/P, y/W)i with

p Ξ l (mod 4) and q = r = 3 (mod 4) three distinct primes

such that (2) = (ε) = - 1 .

Then, p1 — 0 and h{K^p^qr)) is odd, so that the 2-rank of C(N) is tN/K(pqr) — 1.
Moreover, Dκ{p qr) = (pqr)2 and D^ = (pqr)6A4 where Δ is a possibly negative
fundamental discriminant coprime to pqr. Moreover, we have

pqr = 5 3 7 = 105

= 5 3 23 = 345

= 17 3 7 = 357
= 17-3-11= 561

or pqr > 5 3 43 = 645, hence we have DκiPtqr) > 382617. Using Lemmas (17)
and (18), we get that the hypothesis (H) is satisfied whenever ^(p,ςr) is a quartic
subfield of a quaternion CM-field with ideal class group of exponent 2. Now, we
lower our previous upper bound on DK- Indeed, for the 65 fields K^qr^s such that
Dκ{p>qr) < 25-106, we use (48) instead of (47). We thus get that only 8 out of these
65 quartic fields could be quartic subfields of quaternion CM-fields with ideal class
groups of exponent 2, i.e., we have proved:

Lemma DK2c. If K(Piqr)
 J S a Quartic subfield of a quaternion CM-field

with ideal class group of exponent 2, then (p, q, r) e { (5,3,7); (5,3,23); (17,3,7);
(17,3,11); (5,3,47); (5,7,23); (41,3,7); (41,3,11)}.

We note that these eight real quartic fields satisfy h{K^qr)) = 1. Using (54), we

get:

Lemma DN2c. If N is a quaternion CM-field with ideal class group of

exponent 2 that is a quadratic extension of some K^qr^ then we have:

(p, qr) DN G 2-rank of C(N) =

(5,3-7) {(5 - 3 7)6, (5 - 3 7)644, (5 3 7)684} 3, 5, 5

(5,3-23) {(5-3 23)6} 3

(17,3 11) {(17 3 II) 6 , (17 3 11)644, (17 3 11)684} 3, 7, 7.



252 S.LOUBOUTIN AND R.OKAZAKI

Now, we compute the relative class numbers of these 9 possible CM-ίields N using
the decomposition law described in section 2.4. and the method developed in [8].
By Theorem 11 we know that N C iVo(λ/Δ) where No is one of the two pure
quaternion fields with discriminants (pqr)6, namely No is the real one if Δ < 0 and
JV0 the imaginary one if Δ > 0. The relative class numbers are as in the next table.
(Let us point out that there are two occurrences of non-isomorphic quaternion CM-
fields with same discriminants and same real quartic subfields.) Hence, there exists
exactly one quaternion CM-field N containing some K^qr^ that has an ideal class
group of exponent 2, namely the pure quaternion field

The ideal class group C(NQ) is isomorphic to (Z/2Z)3.

δ(N)

8 5 5 (21 + 2Λ/Ϊ05)

5 + ^ ( 4 8 3 + 26^345)

(17 + 4Λ/Ϊ7) (2937 + 124^561) (23 + 4^33)

4 (17 + 4VT7) (2937 + 124v/56Ϊ)

8 (17 4- 4VT7) (2937 + 124V^6Ϊ) (23 + 4V^3)

8 (17 + 4\/Ϊ7) (2937 + 124v/δ6Ϊ)

h~(N)

2 3

2 5 3 2

2 5 5 2

2 5 5 2

2 3 3 2

2 3 3 2

2 9 3 2

2 7 13 2

2 9 . 7 2
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Lemma DKla. In case la, ifK is a quartic subήeld of a quaternion CM-field
with ideal class group of exponent 2, then q G {17,73,89,97}.

Lemma DNla. If N is a quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K ?s of Lemma above, then
we have d{N) = 222176 and the 2-rank ofC(N) is 3.

Hence, the only candidate and its relative class number are as follows.

δ(N)

(17 + 4vT7)(6 + V/34)

h~(N)

2 3 3 2

Lemma DKlb. In case lb, if K is a quartic subήeld of a quaternion CM-
field with ideal class group of exponent 2, then (p,q) € { (5,29); (5,41); (13,17);
(5,61); (13,29); (5,89); (5,101); (5,109); (5,149); (13,61); (17,89)}.

Moreover, (p/g)4(g/p)4 = +1 for (p,ςr) e {(5,29); (5,89); (5,101); (13,61)} so that
we can get rid of these four pairs.

Lemma DNlb. If N is a quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K 's of Lemma above, then
we have:

(p, ςι) DN G 2-rank of C(N) =

(5,41) {(5 41)6, (5 41)634, (5 41)644} 3, 5, 5

(13,17) {(13-17)6, (13 17)634, (13 17)644} 3, 5, 5

(5,61) {(5 61)6, (5 61)634} 3, 5

(13,29) {(13-29)6} 3

Moreover, the quaternion fields with discriminants (5 41)6, (13-17)6, and (5 61)634

are real, so that we can get rid of these three discriminants. Hence, surviving
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candidates and their relative class numbers are as follows.

δ(N)

3 (205 + 32\/4Ϊ) -

4 (205 + 32\/4Ϊ) -

o 13 + 3\/Ϊ3 17
3 " 2

1 2

305 + 39v/6Ϊ / o c

2

29 + 5V29
2

L5-h\/205

2

L5 + Λ/205

2

+ X/22Ϊ

2

+ V22Ϊ
2

•f 2\/305)

2Λ/377)

»-

2 5

2 5

2 5

25

2 3

23

(N)

3 2

52

32

52

32

32

Lemma DK2a. In case 2a, UK is a quartic subfield of a quaternion CM-Geld
with ideal class group of exponent 2, then (q, r, qr) G {(3,11,33); (3,19,57)}.

Lemma DN2a. If N is a quaternion CM-ήeld with ideal class group of
exponent 2 that is a quadratic extension of one of the K 's of Lemma above, then
we have:

(q,r) = (3,11), DN = 16 (8 3 II) 6 , 2-rank ofC(N) < 3.

Hence, surviving candidates are the following two non-isomorphic pair of pure
quaternion CM-fields with the same discriminant and their relative class numbers
are as follows.

δ(N)

(2 + Λ/2) (33 + 4 ^ )

(2 + Λ/2) (33 + 4v/66) (23 + 4^33)

h-(N)

23 52

2 3 . 7 2

Lemma DK2b. In case 2b, if K is a quartic subήeld of a quaternion
CM-ήeld with ideal class group of exponent 2, then far) € {(5,7); (5,11)}.
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Lemma DN2b. There is no quaternion CM-Geld with ideal class group of
exponent 2 that is a quadratic extension of one of the K 's of Lemma above.

Lemma DK3a. in case 3a, ifK is a quartic subGeld of a quaternion CM-Geld
with ideal class group of exponent 2, then (q, r) G {(7,11); (7,23)}.

Lemma DN3a. There is no quaternion CM-Geld with ideal class group of
exponent 2 that is a quadratic extension of one of the K 's of Lemma above.

Lemma DK3b. in case 3b, if K is a quartic subGeld of a quaternion

CM-ήeld with ideal class group of exponent 2,

then we have (p, q, r) E {(3,7,11); (3,7,23); (3,11,19)}.

Noticing that in that case we can have p' = 1, using (54) we get:

Lemma DN3b. If N is a quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K 's of Lemma above, then
we have:

(p, q, r) DN e 2-rank of C(N) <

(3,Π,7) {(3 7 II) 6} 2

(3,23,7) {(3 7 23)6} 2

(3,11,19) {(3 11 19)6, (3 11 19)644} 2, 6.

Hence, surviving candidates and their relative class numbers are as follows.

δ(N)

V2Ϊ (11 + 2\/33) (35 + iVff)

3\/69
(203 + 16\/Ϊ6Ϊ)

(11 + 2>/33) (665 2>/57)

4 (517 + 90\/33) (665 + 46\/209) (15 + 2\/57)

h-(N)

2 3 3 2

23 32

23 3 6

2 7 . ? 2

Lemma DK4. In case 4, if K is a quartic subGeld of a quaternion CM-Geld

with ideal class group of exponent 2, then q £ {3,11,19,43}.



256 S.LOUBOUTIN AND R . O K A Z A K I

L e m m a D N 4 . if N is a quaternion CM-ήeld with ideal class group of

exponent 2 that is a quadratic extension of one of the K 's of Lemma above, then

we have:

q DN £ 2-rank of C(N) =

3 {224 3 6 , 2 2 4 3 6 54, 2 2 4 3 6 74} 1, 3, 3

11 {224 11 4,2 2 4 116 34} 1, 3.

Hence, surviving candidates and their relative class numbers are as follows.

δ(N)

(2 + y/ϊ) (3 + y/β)

5 (2 + >/2) (3 + Ve)

7 • (2 + V2) (3 + VE)

(2 + V2) (33 + 7N/22)

3 (2 + \/2) (33 + 7\/22)

h~[N)

2

2 3 3 2

2 3 5 2

2 3 2

23 3 4

The proof of Main Theorem is completed.!
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