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1. Introduction

In [10], we determined all normal octic CM-fields with class number one and
noticed that class numbers of quaternion octic CM-fields are always even. Here,
quaternion octic fields, or simply, quaternion fields are number fields whose Galois
groups are isomorphic to the quaternion group of order 8. Later, the first author
[9] determined all quaternion CM-fields with class number two: there is exactly
one such number field. Now determination of CM-fields with ideal class groups of
exponent < 2 is a natural extension of class number one and two problems. In this
paper, we prove:

Main Theorem There are exactly two quaternion CM-fields with ideal class
groups of exponent 2. Namely, the two following quaternion CM-fields:

Q<¢—Q+w@ﬂ3+¢®>

with discriminant 2243% and class number 2, and

545 5++/21
QIN-——=2 3

(21 + 2v/105)

with discriminant 35876 and class number 8.

The proof consists of algebraic discussion, analytic discussion and numerical compu-
tation. In chapter 2, we determine possible forms of quartic subfields of quaternion
CM-fields whose class groups have 4-rank being zero. Then, we determine possible
forms, as radical extensions, of such quaternion CM-fields. In this determination,
we use Frohlich’s description of quaternion fields [2], various results on quadratic
fields (e.g. Rédei-Reichardt Theorem [11] and Scholz’ Theorem [12]) and Kubota’s
description of bicyclic biquadratic fields [5]. In chapter 3, we give upper bounds on
discriminants of quaternion CM-fields whose class groups have exponent 2 by using
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analytic estimate on the value of L-functions at s = 1 [6]. Then, we determine all
such CM-fields by computing relative class numbers with an algorithm developed
in [8].1

Let F' be an arbitrary algebraic number field of finite degree. We use the
following notations throughout this paper. We denote by Dp the discriminant,
C(F) the ideal class group, h(F) the class number, Up the unit group, and U} the
totally positive unit group of F. In this paper, prime numbers always mean positive
rational prime numbers. A prime number p is said to be ramified in an extension
Fy/F, of algebraic number fields if a prime ideal of F; above (p) is ramified in
Fi/F,. If p is ramified in F//Q, p is said to be ramified in . We denote by t1/r
the number of finite primes of L which are ramified in L/F for an extension L/F.
We abbreviate t;, = t1,,g. We denote by T, the number of prime numbers ramified
in L. (Note Ty, counts prime ideals of @ while ¢7, counts prime ideals of L.) When
p is a prime number, we denote by er(p) the ramification index of p in F/Q and
fr(p) the inertia degree of p in F/Q. When F is a CM-field, h~ (F') denotes the
relative class number of F.

The letter N always denotes a quaternion field and K denotes a bicyclic bi-
quadratic field.

2. Determination of Possible Forms of N

In this chapter, we determine possible forms of a quaternion CM-field N whose
ideal class group has 4-rank being zero. We shall firstly review Frohlich’s description
of quaternion fields. We shall secondly determine possible forms of the quartic
subfield K of N (see Theorem 9.) We shall then determine possible forms of IV
as a radical extension (see Theorem 11.) We lastly give an efficient method for
calculating decomposition of rational primes in N/ Q.

2.1. Frohlich’s description

We shall review Frohlich’s description [2] of quaternion fields that plays the
central role in algebraic part of this paper. Before giving his description, we note
that d;’s, which are discriminants here, slightly differ from d;’s of [2] which are
square free integers. Now we quote Frohlich’s description:

Proposition 1 (Theorem 3 on [2, page 146]). Let K be a bicyclic biquadratic
field. Denote by di, da and ds the discriminants of the three distinct quadratic
subfields of K. Then there is a quaternion field N containing K if and only if the

1 The UBASIC program for computing these relative class numbers is available from the first
author.
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following condition is satisfied by all primes p’s of Q including the infinite prime:

b () () ()

Here (e, 0/e) is the Hilbert symbol.

This condition at the infinite prime is equivalent to:
(2) dy >0, da>0.

If p is a prime number coprime to D, (1) is trivial at p. If p | dy is a prime number
coprime to dj, (1) at p is rewritten in the Kronecker symbol and the parity of the
contribution & of p in the character (dz/e):

3) (%) =#

p

If p divides all three of d;’s, we have p = 2. In this case, we pick up d = d; = 4
(mod 8) and put d’ = d/4. Then (1) reads:

(4) d=3 (modS8).

Proposition 1 also implies
(5) If2 does not totally ramify in K, d; # 4 (mod 8) for i = 1,2 and 3.

The notion of pure quaternion field is useful for studying ramification in quater-
nion fields:

DEFINITION 2. A quaternion field N is called a pure quaternion field if all
prime numbers dividing Dy divide the discriminant of the quartic subfield of N.

It is obvious that a quartic subfield of a quaternion field is uniquely defined. Con-
versely, a pure quaternion field is almost defined by the quartic subfield:

Lemma 3 (Theorem 4 on [2, page 146]). Let K be bicyclic biquadratic
field which satisfies the condition given in Proposition 1 and T = Ty the number
of prime numbers ramified in K. Then, the number of pure quaternion fields

containing K is 2T~ if the prime number 2 ramifies in K or 27~2 otherwise.

Pure quaternion fields are basis for studying all quaternion fields:

Lemma 4 (Theorem 4 on [2, page 146]).  For a quaternion field N and
its quartic subfield K, we can find a pure quaternion field Ny = K(y/0g) and a
fundamental discriminant A coprime to Dk such that N = K(\/Ad).
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Here, a fundamental discriminant is a discriminant of some quadratic field, i.e., it
is either a square free integer congruent to 1 modulo 4 or four times a square free
integer congruent to 2 or 3 modulo 4. Now, we can determine the discriminant of
N as follows:

Proposition 5. Let notations be as in Lemma 4. The discriminant Dy of N
is written as D, A% in the notation of the Lemma 4 and the discriminant Dy, of
Ny is given by Dy, = 16D% if 2 has ramification index 2 in K/Q or Dy, = D%
otherwise.

Proof.  Let k be a quadratic subfield of N, x the character associated to
N/k, 0 the conductor of ¥ and 9, the conductor of x2. Set xa to be the character
associated to k(v/A)/k. Then xo = xxa is associated to Ny/k. Since A and Dy,
are coprime, Conductor-Discriminant formula now implies Dy = Dy, A%.

We factor Dy, into prime powers. It is obvious that signatures and the odd
components of Dy, and D}, or 16D3% agree. When (2) does not ramify in K,
2-components of discriminants are trivial and agree. When ek (2) = fx(2) = 2, we
choose k to be the splitting field of (2) in K/ Q. We then look at localizations of
N/k at primes above (2). It follows that 2-components of Dy, and 16D}, agree.

It remains to show that 2-components of Dy, and D3 agree when e (2) = 2
and fx(2) =1 hold.

Let k be a subfield of K whose discriminant is not a multiple of 8. Then,
Dy, = DKD,%N;C/QD2 and Dg = D,%Nk/ng holds. The choice of k implies (2) is
either inert or ramified in k/Q. When (2) is inert in k/@Q, (4) divides 92 and our
target is equivalent to 9 = (2)d3. When (2) is ramified in k/ Q, (4) exactly divides 0,
and our target is equivalent to @ = (2)02. Therefore it suffice to show the assertion
that orders of the prime p of k£ above (2) in ? and (2)0, agree. Obviously, we have
x%(1+4a) = x(1 +8a+ 16a?) for arbitrary integer a of k. With Hensel’s Lemma,
this implies x(1 + 8a) = 1 for « such that 4a € 0. Since (4) divides 02, we see
202 C 0. Take an element 3 € p~105 — 05 such that 1 # x2(1+8) = x(1+28+3?).
Since we have 32 € p~203 C (2)71(4)o2 C 0 by (02) C (4) and 202 C ?, we see
x(1+ 283) # 1 while 283 € pd,. Hence, we get pdo ¢ 0. Since p205 = 205 C 0 C 09,
this implies 0 = 20,. W

REMARK. It is not generally true that the conductor of x is 2 times the
conductor of x2, even if the conductors are even. A counterexample arises when
the conductor of x? is exactly divisible by (2). The choice of k in the proof is to
avoid complicatedness coming from such a case. Indeed, we would have 0 = 2pd,
if we have chosen k whose discriminant is a multiple of 8 in the case ex(2) = 4.
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2.2. Determination of possible forms of K

We determine possible forms of K by means of construction of appropriate
ideal characters of appropriate quadratic subfields of K. We use norm residue
symbols for such construction. The description obtained is however given in ratio-
nal terms: it is written in term of rational congruences, the Legendre symbols and
the rational quartic residue symbols (e/e)s. Although the quartic residue symbols
are defined up to inversion, we are interested in the values at quadratic residues
and hence the ambiguity does not matter. We extend the rational quartic residue
symbol by
(6) (a/2), = { +i if a=1 (mod16)

-1 if a=9 (mod 16)

fora =1 (mod 8). We use Frohlich’s description [2] of quaternion fields, Rédei-
Reichardt Theorem [11] and Scholz’ Theorem [12]. We also implicitly use the theory
of genera and the ambiguous ideal theory.

In this chapter, we write ¢4 for the fundamental unit of Q(\/E) which is greater
than 1 in the embedding of Q(v/d) — R in which v/d becomes positive. We also
write o4 for the ring of integers of Q(v/d). Let K be a real bicyclic biquadratic
field, k; (i = 1,2,3) the three distinct quadratic subfields of K and d;’s respective
discriminants of k;’s. Then, K contains square roots v/d;, v/dz and /ds. We
choose the signature of v/d3 to be the product of the signatures of v/d; and v/dy:
Vdiv/dy = d'+/ds for some positive integer d’. It turned out that confusion in the
choice cause a delicate problem (§2.4..) The following fact is also implicitly used
(see [5] for details including a numerical algorithm):

(7 U UR, U C Uk C Up, U, U, NUR.

We also quote the following class number formula for a real bicyclic biquadratic
field (see e.g. [5]):
Rk

(8) h(K) = = h(ki)h(kz)h(ks)

where Q is the unit index Qx = [Uk : Uk, Uk, Ug,] € {1,2,4}.

Let N/k be a cyclic quartic extension. Then, construction of appropriate
characters of k gives an unramified cyclic extension of degree [N : k] over N when
there are too many totally ramified prime ideals in N/k. For the construction of
the character, we use norm residue symbols (see e.g. [4].) We denote by k, the
localization of k at p for a prime ideal p and Uy, the unit group of k,. We use
the fact that the Artin map canonically determines a character Uy, — Gal (M/k)
for a cyclic extension M/k and a finite prime p. The order of the character is the
ramification index of p. If p is coprime to the order of Gal (M/k), the norm residue
symbol becomes a power residue symbol modulo p up to group isomorphism of
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the image. In this case, we think of the norm residue symbol as the canonical
power residue symbol. We sometimes identify the cyclic group Gal (U/k) with a
suitable subgroup of C! for convenience, in particular, elements of order 1 and 2
in Gal (U/k) become +1. (We use all values of norm residue symbols an power
residue symbols in the following context. They are used in a different way from the
way rational quartic residue symbols are used.) Products of norm residue symbols
are then used in the following Lemma;:

Lemma 6. Let N be a quaternion field, k = Q(+/d) one of its quadratic
subfields, p1,p2, ..., P, finite primes of k, and x* a product of odd powers of norm
residue symbols of N/k at p1,p2,...,p¢. Set S = {£1} if Nyjgeq = —1 or S = {1}
otherwise. Assume that x!(eq) € S. Then, there is an ideal character x of 2-power
order of k such that x((a)) = x*(c) for each totally positive integer o coprime to
p1p2 - - - pg. Assume further that the 4-rank of C(N) is zero. Then, the extension of
k associated to x? is contained in N. The order of x is 4 if one of the p;’s is totally
ramified in N/k.

Proof.  The assumption on x*(e4) implies that x*(U) = 1 and x*(Ux) C
{+1}. Embed U/U," into {£1}? by signature and extend x*: Uy /U — {£1}
to a character xo, of {£1}2. Identify yo with the character it induces on k*
via signature. Then, the product x’ = x*xoo vanishes on Uy. Hence, there is an
ideal character x such that x((«)) = x'(a) for each element « of k*. Taking a
suitable odd power, we can choose x so that the order of x is a 2-power. This
implies the first statement. Let L be the extension of k associated to x and M
the extension of k associated to x?. By construction of L, LN/N is unramified
cyclic extension of a 2-power degree. (Note that N is totally imaginary.) If M
is not contained in N, then LN/N must be an unramified cyclic extension whose
relative degree is a multiple of 4. Hence, C(N) must have a non-trivial 4-rank,
which contradicts the assumption on C(N). Therefore, the second statement of the
Lemma holds. Assume that some p; (1 < i < £) is totally ramified in N/k, i.e., the
order of the norm residue symbol at p; is 4. Then 4 divides the order of x and p;
has the ramification index 2 in M/k associated to x2. Comparison of ramification
indices shows that M C N is a proper subfield of N and hence M/k is quadratic.
Therefore, the order of x? is 2, or equivalently, the order of x is 4. We have proven
the last statement of the Lemma. B

The following two Lemmas are used for calculation of quadratic residue sym-
bols at fundamental units.

Lemma 7. Let ¢1,q2,...,q; be even number of distinct prime numbers con-
gruent to 3 modulo 4 and d = ¢q1q2...q;. Write q; for the prime ideal of Q(\/E)
above ¢; for 1 < i <t. Then, (e4/q;) = —1 for some 1 < i < t.
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Lemma 8. Let =3 (mod 8) be a prime number and q be the prime ideal
of Q(,/q) above q. Then, (¢,/q) = —1.

These two Lemmas are proven in a similar way. Hence, we give a proof of the
former and omit that of the latter.

Proof.2  Define a and bby eg = a+bVdifeq € Z+ ZVdor €3 =a+bV/d
otherwise. Then, a + bv/d becomes the fundamental unit of Z + Z Vd.

Taking norm, we see that a®> — b>d = 1. (The sign of the right hand side is
plus since g;’s are congruent to 3 modulo 4.) This identity implies the congruence
a?—b2=1 (mod 4) which implies that a is odd and b is even. The identity also
reads (a — 1)(a + 1) = b%d.

Suppose that the ¢; divides a — 1 for each 1 < ¢ < ¢t. Then, the claims of
the previous paragraph implies that there is a decomposition b = 2b;b2 such that
a—1=2b?d and a+1 = 2b3. Subtracting these identities, we get b3 —b?d = 1 where
0 < |b1] < b/2 < b. This contradicts the choice of a and b in the first paragraph of
this proof. Hence, some ¢; must divide a + 1. Therefore, we have a + bv/d = —1
(mod g;). Since ¢; =3 (mod 4), this implies (€4/q:) = (a+bVd/q;) = (=1/q;) =
(-1/@)=-1.m

We recall Qx = [Uk : Uk, Uk, Ui, for a real bicyclic biquadratic field K with
three distinct subfields k;, k2 and ks.

Theorem 9. Let N be a quaternion CM-field whose ideal class group has
4-rank being zero, K the quartic subfield of N. Then, the number T = Tk of
prime numbers ramified in K is at most 3, the number ti of finite primes of K
ramified in K/ Q is at most 4, class number h(K) of K is odd and the 2-rank p of
U;‘; /U% is one. More specifically K is of one of the following forms:

la. K = Q(V2,\/9), tk =4, T =2 and Qg = 2 withg =1 (mod 8) such

that 5
(3), (5)4 =1

1b. K = Q(/p,V2),tk =4, T=2and Qg =2 withp=g=1 (mod 4)
which satisfy p < q and
(-
q

0.0,

2a. K = Q(V2,/q7), tk =4, T =3 and Qg = 2 withg=r =3 (mod 8)
such that q¢ < r;

2Franz Lemmermeyer kindly told us this elementary proof. The authors would like to express
their gratitude to him.
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2b. K = Q(\/p,V2r),tx =4, T =3 and Qx = 2 withp =5 (mod 8) and
r =3 (mod 4) such that
()=
T

2¢c. K = Q(\/p, /@), tk =4, T =3 and Qg =2 withp =1 (mod 4) and
g=r=3 (mod 4) such that ¢ < r and

5)-)-

3a. K = Q(v/2q,/qr), txk =T =3 and Qg = 4 withq =7 (mod 8) and
r =3 (mod 8) such that

Il
w

3b. K = Q(\/pq,\/q7), tk =T = 3 and Qg = 4 withp = q =7

(mod 4) such that
(0)-()-0--
or

4.K=Q(2,\/9),txk =T =2 and Qx = 4 withq=3 (mod 8).

Here p,q,r denote distinct prime numbers. The 2-rank p' of Ux N Ny/xk N> /U%
is at most 1 in all cases and p’ = 0 except possibly in case 3a and 3b.

Corollary 10. The two numbers tx and p’ satisfy the following inequality:
(9) tg +p < 4.

Proof of Theorem 9.  To avoid inessential complicatedness such as introduc-
ing notation for 2-class numbers, we assume that the odd part of C(N) is trivial.
This assumption implies that the class numbers of quadratic subfields of K are
powers of 2.

We have ex(p) < 2 for each odd prime p. Now, we divide the proof into the
following four cases, which are discussed in separate subsections:

1. Two prime numbers p < g satisfy

ex(p) = ex(q) =2 and fx(p) = fx(q) = 1;
2. Exactly one prime number p satisfies
ex(p) =2 and fk(p) = 1;
3. All prime numbers ramified in K have inertia degree 2 in K or
4. All odd prime numbers ramified in K have inertia degree 2 in K
and ex (2) = 4.
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2.2.1. Casel

Let k be the splitting subfield of p in K. Write p and p’ for the two primes
of k above p. Let x, and X be the respective norm residue symbols of N/k at p
and p’. Then, we have xp o Ny g = prg, by commutation relation of Gal (N/Q).
Let x% be the Dirichlet character induced by Xp- Put X' = x"o Ny, /@ on numbers
and x = x% o Ny /@ on ideals. Then, Lemma 6 implies that K is associated to
x%. The transfer Theorem in class field theory implies that K is the composite of
k and the quadratic field associated to the Dirichlet character induced by (x%)2,
ie., Q(,/p) C K. The same argument proves Q(,/g) C K. Therefore, K is of
the form K = Q(,/p,/q) where p and ¢ are prime numbers not congruent to 3
modulo 4. The assumption on p and ¢ eliminates the possibility of ¢ = 2. Now (q)
splits as (¢) = qq" in Q(,/p). Let x4 be the norm residue symbol of N/ Q(,/p) at
q. If x2(ep) = 1, we would have x4(ep) = £1. Hence, application of Lemma 6 to
a product of x, and a suitable character at infinity would imply that K/k would
be associated to a suitable extension of xﬁ to ideal classes. However, K/k is also
ramified at q, a contradiction. Hence, we have

(10) X(ep) = —1.

Since g is odd, xﬁ is written by the quadratic residue symbol xg = (e/q). By Scholz’
Theorem, the above identity implies that (p/q)s(q/p)s = —1 and that C (Q(,/Pq))
has 4-rank being zero. The former gives the form of K stated in cases la and 1b.
The latter implies that K = Q(,/gpq) since the 4-rank of the strict ideal class group
of Q(1/pq) is 1 by the Rédei-Reichardt Theorem [11]. Thus, we have Qx = 2. This
implies that A(K') = 1 since h(Q(,/p)) and h(Q(,/q)) are one and h(Q(\/pPq)) = 2.
Since epq > 0, either pe,q or gepq is a square of a totally positive element &(p, q)
of Q(,/pq). Let 7 be one of p or q chosen so that re, = £(p, q)%

(11) repg = €(p,q)2 T =porgq, and 0 < &(p,q) € Q(V/P9)-
Put
(12) n=n(p,q) = £&(p,q)/Vre, > 0.

Then ne, is a square root of epq. Thus, we have U = U3 UnUZ and p = 1. We
now show that p’ = 0. Suppose contrary p’ > 0. Then, p’ = p = 1 and 1 would
be a norm in N/K. Taking relative norm to Q(+/7), we see €2 would be a norm in
N/Q(/r). However, an argument similar to (10) shows that €2 cannot be a norm
residue in N/ Q(y/r). We are led to a desired contradiction, proving p’ = 0. This

finishes case 1.
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2.2.2. Case 2

The same argument to the one given in case 1 shows Q(,/p) C K. By (3), the
discriminant d of the splitting subfield & of p in K is a product of coprime negative
prime discriminants. Since d is positive, d is a product of an even number of prime
discriminants.

We firstly investigate odd divisors of d. Let ¢ be an odd prime divisor of d.
Then (g) remains prime in Q(,/p). and the norm residue symbol of N/ Q(,/p) at
qgop gives the quartic residue symbol (e/go,)s. On the other hand, ¢ =3 (mod 4)
implies

(ep/90p)] = (ep/90p) = (No(p)/elep)/a) = (-1/g) = —1.

We secondly show that the discriminant d is a product of exactly two coprime
negative prime discriminants. Suppose contrary that d has at least three prime
factors. Then, two distinct odd prime numbers ¢ and r divide d. As was shown
in the previous paragraph, the respective quartic residue symbols (e/qop)s and
(e/rop)s given by the norm residue symbols of N/Q(,/p) at go, and ro, satisfy
(e2/q0p)a = (€2/rop)s = —1. Thus, x* = (8/q0,)4(8/r0,)4 satisfies x*(e2) = 1, i.e.,
x*(ep) = 1. Since N v/p)/@(€p) = —1, application of Lemma 6 to x! implies that
K/Q(\/p) is associated to (e/qop)3(e/ro,)3 = (e/qop)(e/r0,). Hence, go, and rop
are the only ramified ideals in K/k, contradicting the assumption of this paragraph.
Therefore, d is a product of exactly two coprime negative prime discriminants.

Let ¢ < r be the two distinct prime divisors of d. As we saw in the first
paragraph, neither ¢ nor r is congruent to 1 (mod 4). If p =2, K = Q(/2, Var)
is of the form 2a. If pd is odd, K = Q(,/p,/qr) is of the form 2c. If d is even, (5)
implies K = Q(,/p, v/2r) which is in the form 2b. Thus, the form of K falls into
one of 2a, 2b or 2c.

Now, we investigate numeric invariants. We show that Uy is generated by
—1,ep,&4r and a square root of e,4,. The fundamental unit e,4 of k is totally
positive since r =3 (mod 4). Thus one of the prime ideals above p, ¢ and r is
principal. Solving congruences z? — pgry? = +4p, £4q or +4r modulo p if p is odd
or 22 — pgry? = +p, +q or +r modulo 8 if p = 2, we see that the prime ideal above
pin Q(,/pgr) is principal. Solving the same congruences modulo 7, we see that the
prime ideal above p in Q(,/pqr) is generated by an integer which has a negative
norm. Thus, there is a totally positive integer £(p;g,r) such that:

(13) 6(;0; q,T)Q = qTé€pqr I« 5(17; q, ’I”) € Q(\/W)

We have (£(p; q,7)/+/q7)? = €pgr. The fundamental unit €4, of k is totally positive
since r =3 (mod 4). Thus rey, is a square in k. Since \/r ¢ K, €4, is non-square
in K. We now see that Uk has the desired system of generators. This determination
of generators implies that Qx = 2, that p = 1 or more precisely U} = U% Ue, U%.
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The latter also uses the fact £(p;q,7)/\/qr has the same signature as ,/gr. Using
Rédei-Reichardt Theorem, we see

hMQ(Vp) = MR(Var) =1 R(Q(Vpar)) = 2.

This together with Qx = 2 implies that h(K) = 1.

Lastly, we show that p' = 0. Suppose contrary that p’ = p = 1 or more
specifically that €4, were a norm in N/K. Then sgr would be a norm in N/k. Let x,
be the norm residue symbol of N/k at a prime p of k£ above p. Then, the hypothesis
implies that xZ(gqr) = Xp(€2,) = 1. On the other hand, x7(-1) = xp((-1)%) = 1
is clear. Thus, x;‘; would be trivial on Uq(, /). Using the fact that p is totally
ramified in N/k, we see that the order of xZ is 2. Noting that h(Q(,/qr)) = 1, we
see that x% would induce an ideal character of order 2. Let L be the extension of
Q(,/gqr) associated to it. The normal closure of L would be a totally real dihedral
octic field containing K. Thus, LK /K would be an unramified quadratic extension
while h(K) = 1. Hence, we are led to a desired contradiction, proving p’ = 0. We
finish case 2.

2.2.3. Case 3

By (3), discriminants d;’s are products of coprime negative prime discrimi-
nants. We firstly show that tx/x, < 2 for ¢« = 1,2 and 3. Let k be one of the k;’s
and d its discriminant. Suppose that more than two primes are ramified in K/k.
Then, at least two odd primes are ramified in K/k. Remembering the assumption
of this case, we pick up two odd prime numbers p; and py such that p;oq and
p204 are ramified primes in K/k. The norm residue symbols of N/k at p; and ps
define the quartic residue symbols (e/p104)s and (e/p204)4 respectively. Similar
argument to the second paragraph of case 2 shows that (¢4/p;04)4 = £1 for i =1
and 2. If (eq/pioq)a = 1 for i = 1 or 2, Lemma 6 applied to k and p;o4 leads to a
contradiction. If (e4/p104)a = (€4/p204)s = —1, Lemma 6 applied to k, pjoq and
p204 leads to a contradiction to that three primes are ramified in K/k. Hence we
must have tx/, < 2 for each quadratic subfield k of K.

We secondly show that tx/, = 1 for some quadratic subfield k of K. In fact,
we shall see in the next paragraph that tg/x = 1 for each quadratic subfield k of
K. Separation of the proof of this fact in two steps is a detour to overcome the
difficulty due to the behavior of prime ideal above (2). Let p be the smallest prime
number ramified in K and k the inertia subfield of K at p. Then, the discriminant
d of k is odd and g/ > 1. Suppose that there is a prime number r > p > 2 such
that  remains inert in k/Q and ro4 ramifies in K/k. As was shown in the first
paragraph, (€4/r04)s4 = 1 implies tx/, = 1 contrary to the supposition. Thus, we
must have (¢4/704)4 = —1. By Lemma 7, there is a prime ideal q of k£ ramified
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in k/Q such that (¢4/q) = —1. Now, Lemma 6 applied to k, 7oq and q implies
that rog is the only ramified prime in K/k, a contradiction. Hence we must have
tk/k = 1.

We now show that tg/,, = 1 for i« = 1,2 and 3 or equivalently that the
discriminant d; of each k; is a product of exactly two coprime negative prime dis-
criminants. Let p, k and d be as in the previous paragraph. We assume without loss
of generality that k = k1. Then d decomposes into a product d = dydj of coprime
fundamental discriminants and the field K is of the form K = Q(y/p*d,, \/p*d})
where p* is a prime discriminant divisible by p. The result of the first paragraph
implies df is a product of at most two prime discriminants. As was said in the
beginning of this case, the discriminant dy = p*dj, is a product of coprime negative
prime discriminants. On the other hand, ds is positive. Combining these three
points, we see that ds is a product of exactly two coprime negative prime discrimi-
nants. The same argument proves that ds is also a product of exactly two coprime
negative prime discriminants. These imply that d5 and df are prime discriminants
and hence that d = dydj is also a product of exactly two coprime negative prime
discriminants. Hence each discriminant d; is a product of exactly two coprime
negative prime discriminants.

Now, using (5) if the prime number 2 ramifies in K, we see that K =
Q(\/pq, \/qr) for prime numbers p, ¢ and r which are not congruent to 1 (mod 4)

T @)@

Here, we assume without loss of generality that p < ¢q,7; d) = —r and d} = —q.
The forms of K in case 3a and 3b follow easily.
We now proceed to numeric invariants. For simplicity we write

(14) pL=p, P2=¢q, Pp3=T.

Here the numbering (mod 3) is chosen so that p; and d; are coprime: k; =
Q(\/Pit1Pi12)- It is easily verified that

(15) h(Q (vpg)) = h(Q (var)) = h(Q (Vrp)) = 1.

In particular, we have that p;e,,p,,, is a square in Q(,/p;ipit+2). Recall that

(16) dips = dpipiye 2| pipiya,
piPiv2 2 ) DiPiya

Using congruence, we see that the equation

(17) .1‘2 — di+1y2 = —4pi
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has positive rational integral solutions in z and y. We set

(18) T(pi, Pi+2) = (T + y/dit1)/2
or equivalently let 7(p;,pi+2) be an integer in Q(,/Pipiy2) of norm —p;. Then,

(19) Tl(pz',Pi+1,Pz'+2) = W(pz'+1>pz‘)7T(Pz‘+2,P¢+1)/\/Pi+1pi+2

is a unit such that

(20) U(Pi,pi+17pi+2)2 = €d;€d;q1 and 77(PuPi+1,Pi+2)\/Pipi+1 > 0.

On the other hand, e4,,, is non-square in K since p;eq,,, is a square in K while
\/Pi ¢ K. Therefore, we have Qx = 4, p = 1 and h(K) is odd. Unfortunately, we
cannot determine p’ without specifying N in this case.

2.2.4. Case 4

Similar argument to case 2 and case 3 shows that the number of odd ramified
primes in the relative extension K over each quadratic subfield of K is at most 1.
Inspecting the signature of prime discriminants and using (4), we see that K is of
the form given in case 4 of the Theorem or

K = Q(\/ﬂv \/C_I)

with ¢ =3 (mod 8), » =3 (mod 4) and (¢/r) = —1. The latter possibility is
eliminated by a similar argument to the third paragraph of case 3 with Lemma 8.
Thus, K must be of the form given in case 4 of the Theorem.

. Numeric invariants are determined in [9]. B

2.3. Determination of possible forms of N’s as radical extensions

We shall determine possible forms of quaternion fields containing K’s described
in the previous section as follows:

Theorem 11. Let N be a quaternion CM-field whose class group has 4-rank
being zero and K its quartic subfield. Then, N is written as a radical extension
N = K(y/=38(N)) with a totally positive element §(N) = —A8y of K. Here &g
is a product of quadratic integers in appropriate quadratic subfields and A is a
fundamental discriminant coprime to Dy . Moreover, the norm of &g divides Dy
and Ny = K (/) is a pure quaternion field.
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We only need to determine all pure quaternion fields containing K and to appeal
to Lemma 4. However, we must not forget to determine real pure quaternion fields,
since A can be negative in Lemma 4. Therefore, we determine all pure quaternion
fields containing K which is of one of the forms listed in Theorem 9.

Lemma 3 and the following Lemmas are essential for this determination and
are used without mention:

Lemma 12. Let ¢ be an integer of K. Then K(+/8) is a quaternion field if
and only if Ng /6 € (K*)?\ (k})? fori=1, 2 and 3.

We also use the following Lemma for studying the behavior of 2.

Lemma 13. Letd =1 (mod 4) be a fundamental discriminant, o an integer
in Q(V/d) and a the norm of a. Assume thata =1 (mod 4) and that o® = |a| eg.
Then, « or —a is a square modulo 4og4.

Proof. The following facts are easily verified:

1L.o2¢ Z+2Vd. ifa ¢ Z+ ZVd;
2.d=5 (mod?8)ifeyq ¢ Z + ZVd;
3.0°c Z+2ZVdifd=5 (mod 8).

In the situation of the Lemma, these three points imply that aey = o3/ |a] resides
in Z + ZvVd. Write agg = b+ ¢v/d. The condition on the norm implies the
congruence b> —c> =1 (mod 4). Hence, b is odd and c is even. We now have the

following congruence:
(21) agg=b+cVd=b—c+2c-(1+Vd)/2=b—c==41 (mod 4oy).

The condition on o? and that on the norm a imply

(22) o =|aleq = &4 (mod 4og).
These two congruences imply the desired statement. B
Put
if = =
(23) r=1(p) = ++/Pep 1 p=1 (mod8) or p=2,
—/Pep if p=5 (mod38).

Then, /7 generates a cyclic quartic field whose conductor is a power of p.

Proof of Theorem 11.  The possible forms of N are determined in the fol-
lowing cases according to the cases listed in Theorem 9. (The radicand &y is a
radicand in one of “Lemma RE”’s that apply to the given K.)



QUATERNION CM-FIELD AND CLASS GROUP 243

2.3.1. Casel

Let r be one of p or g satisfying

(24) £(p,q)*> = repq, for some 0 < &(p,q) € Q(v/pP9).
Put
(25) n(p,q) = &(p,q)/7(r)

where 7(r) is defined by (23). Put,

(26) 8(p,q) = m(p)m(d)n(p, 9)-

Then, K ( +4(p, q)) are quaternion fields. Counting pure quaternion fields, we
see

Lemma REla. In case 1a, K (\/:l:5(p, q)) are all of pure quaternion fields
containing K.

We must take care of the behavior of 2 if Dy is odd. The field K (\/ﬂ(p)ﬂ(q)) is
an abelian octic field of conductor pg. On the other hand, the strict class field of

Kis K (\/—n(p, q)) Therefore

Lemma RE1b. In case 1b, K (\/ —d(p, q)) is the only pure quaternion field
containing K.

This finishes case 1.

2.3.2. Case 2

Let K = Q(,/p,/q7) allowing one of p or ¢ to be 2. We already know that
grepgr is a square of a totally positive integer £(p; ¢,7) in Q(/pgr). Set

(27) 6(p;g,r) = m(p)é(p; g, 7).

Then, K(1/%(p;q,r)) and K(1/£0(p;q,7)eqr) are quaternion fields. Counting
pure quaternion fields, we see

Lemma RE2a + RE2b. Write 6 = 6(p;q,r). Then, K(v/%4) and
K (y/=%6eqr) are all of pure quaternion fields containing K in case 2a or 2b.

Now we proceed to the case of Dk being odd. We must take care of the
behavior of 2 in this case. By Lemma 13, we have

(28) We can choose the sign s = s(p;q,r) = x1 such that sf(p;q,r) is a square
modulo 4 in Q(./pqr).
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Recalling that geq, is a square in Q(,/gr) and that Q(,/q7,+/—q)/Q(\/pqr) is

unramified at finite primes, we see

Lemma RE2c. Write § = §(p;q,7) and s = s(p;q,r). Then, K (\/5) and
K (\/—sdeq,) are all of pure quaternion fields containing K in case 2c.

This finishes case 2.

2.3.3. Case 3

In this case, it is convenient to number everything according to the numbering
p1 = p, p2 = q and ps = r. Here, p = p; may be 2. Thus, we follow the convention
in the proof of Theorem 9. Moreover, we write

(29) € = Ep,y1pise

for the fundamental units of k;’s. We know that there is an integer m; in k;41 such
that

(30) T = pi€iv1 Tiy/Di_1bi € ki oy
Put
(31) d(p1,p2,p3) = m1Toms.

Then, K (\/:i:S(pl,pg,pg)) andK( :t&(pl,pg,pg)sqr)are quaternion fields: Count-
ing pure quaternion fields, we see that

Lemma RE3a. Write § = d(p,q,7). Then, K (\/:b(S) and K (,/:l:éeqr) are
all of pure quaternion fields containing K in case 3a.

Now assume that p; # 2 or equivalently 2 / Dg. By Lemma 13, we have
(32) We can choose s; = +1 so that s;m; is a square modulo 4 in k1.
(33) Put S(p7 qar) = 818283-

Then, we have the following Lemma:

Lemma RE3b. Write § = é(p,q,r) and s = s(p,q,r). Then, K (\/5) and
K (\ /—séeqr) are the all two pure quaternion fields containing K in case 3b.

We finished case 3.
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2.3.4. Case 4

Let g be the prime ideal of Q(1/2q) above g. Then, it is easily verified by
congruence that q has a totally positive generator £(q):

(34) €(g)® = g2y 0 < £(q) € Q(1/29).
We have

Lemma RE4. Write § = 6(q) = (2 + V2)¢(q). Then, K(v/%0) are all two
pure quaternion CM-fields containing K in case 4.

We finished case 4 and hence all cases.l

2.4. Character associated to N/K

We shall give here an efficient method for calculating the decomposition law of
a quaternion field N which is determined in Theorem 11 through “Lemma RE”’s
in §2.3.. This enables us to compute the multiplicative functions n — ¢, in the
notation of [8] and to compute the relative class number A~ (N) when N is a CM-
field. Let K, A and §p as in Theorem 11. Further let d;, d2 and ds be discriminants
of the three distinct quadratic subfields of K. Let [ be a prime number and £ a
prime ideal of K above [. We discuss the behavior of £ in N/K according to the
behavior of [ in K/ Q. The following three cases are easy (with j denoting a natural
number):

(35) Ifl ramifies in K/Q, £ ramifies in N/K and ¢;; = 0,
(36) Ifl divides A, £ ramifies in N/K and ¢;; = 0,

(37) Ifi does not ramify in K/ Q, divide A nor split completely in K/ Q, £ remains
inert in N/K. Further, ¢;; = (j/2+1)(=1)7/2 if j is even or ¢;; = 0 if j is odd.

We look at N over a quadratic subfield of K containing the inertia subfield of [
in K/ @ for the first point. The second point follows from the definition of a pure
quaternion field and Theorem 11. For the third point, we merely look at N over
the splitting subfield of ! in K/ Q.

Hereafter, we assume that [ splits completely in K/Q and that [ does not
divide A. Then ¢;; = 3(k+1)(k+2)(k + 3)o7 with o; = +1 or —1 according as £
splits or remains inert in N/K. Since [ splits completely in K/@Q, the completion
K¢ of K at £ is isomorphic to the l-adic field @;. The image of Ady under this
isomorphism is a square if and only if £ splits in N/K or ; = +1. Now, we make
this procedures explicit. By Theorem 11, we can write dg as a product of three
quadratic integers, say (a; +b;1/d;)/2 for i = 1,2 and 3. Let §; and &, be respective
square roots of d; and dz in Q;. Define 3 by 6102 = d'd3 in @ with d’ being the
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positive integer such that /di\/d; = d'v/ds. Then, the image of Ady under the
isomorphism K¢ = Q; equals A Hle(a,' + b;s;0;)/2 for some triple of signs s1, s2
and s3 from +1. The choice of v/ds in K and that of 63 in @ forces s3 = s15.
On the other hand, four choices for a pair (sy, s2) corresponds to four conjugates
of £. Noting that Ng/q(Adp) is coprime to I, that Uq, /U ~ Z/2Z and that
N and K are normal, we see that the class of AT]>_, (a; + bis:8;)/2 modulo U S
is independent of the choice of a pair (si,s2). This means that the “signs” of
respective square roots 6; and d2 of d; and do need not be determined while the
square root d3 of d3 need be calculated from 4; and é,.

For an odd prime [, the class modulo U, 51 is determined by the Legendre symbol
o1 = (Ado/L) = (2AI2_, (ai + b:6;)/1) which is calculated in Fj.

For | = 2, the procedure becomes slightly complicated. In this case, all d;’s are
congruent to 1 modulo 8. Further, each norm (a? — b2d;)/4 is odd by Theorem 11.
Then, a; and b; are even. Put A; = a;/2 and B; = b;/2. Then, oo = +1 or —1
according as A H?=1(A,- + B;d;) =1 or 5 modulo 8. Here, §; and §, are chosen so
that §; = 1 or 3 modulo 8 according as d; = 1 or 9 modulo 16 while 63 = §,d2/d’.

3. Proof of Main Theorem

3.1. Analytic lower bounds

Let N be a quaternion CM-field and K its quartic subfield. Then numeric
invariants Qn = 1 and wy = 2 are known [10] where Q is the Hasse’s unit index
of N and wy is the number of roots of unity in N. There is no confusion between
notations Qn and Qg: the former is defined for CM-fields and the latter is defined
for real bicyclic biquadratic fields. We proved in [9] that the quotient {n/{x of
Dedekind zeta functions of N and K is non-negative in the interval |0, 1[. Hence,
we have:

Proposition 14 (see [6, Theorem 1 and 2(a)]). Let N be a quaternion
CM-field such that the Dedekind zeta function of its quartic subfield K satisfies

(H) (K (1 - Eg%f)) <o0.

Then, we have:

(38) B (N) > (1 - 8”1/4) L1 vDy/Dx

D11V/8 4em* Ress—1 (k) log(Dn)

Moreover, the hypothesis (H) is satisfied provided that we have

- 1 [D
(39) h (N)SI&,/%.
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We point out that for any real bicyclic biquadratic field K we have:

8log(e1) log(e2) log(es)

Ress=1 (Cx) = L(1,x1)L(1, x2)L(1, x3) = Vdidads

h1h2h3a

ie.

(40) Ress1 (Cx) = 321log(e;) log(ez) log(e3)h(K)

QrVdidads

where x;, €;, d; and h; stand for the characters, the fundamental units, the discrim-

inants and the class numbers of the three real quadratic subfields k; of K. Hence,
d1d2ds = Dg and (38) may be written

8rel/d

Q VDN
(41) h(N) > (1— DI K

) 128em log(€1 ) log(e2) log(es) log(Dn)

Lemma 15. Set ¢ = 2+ v — log(4n) and ¢ = 2 + v — log(w), where
~ = 0.577215- - - is the Euler’s constant, so that we have 3c < 0.14 and 3¢’ < 4.3.
Let K be a bicyclic biquadratic field. Then,

1

(42) Ress=1(Cx) < 577 (108(Dx) + 3¢)°.
Moreover, if 2 is ramified in K then

1
(43) Ress—1(Cx) < 61 (log(Dk) + 3c')3.

Moreover, if 2 is totally ramified in K, then the inequality above is valid with 1728
instead of 864.

Proof.  From [7] we know that we have L(1,x;) < % (log(d;) + c) in general
or L(1,x;) < 1 (log(d;) + ¢’) if 2 is ramified in k;. Let us note that if 2 is ramified
in K then 2 is ramified in at least two of its quadratic subfields. Now, the Lemma
follows from the arithmetic-geometric mean inequality XY Z < %(X +Y +2)3
applied to Z?zl logd; = log Dk .1

Now our strategy is as follows.

Firstly, using the ambiguous class number formula, we show that if a quaternion
CM-field has an ideal class group of exponent 2 then (39) is satisfied, except for a
finite number of K’s for which we use a trick that shows that the hypothesis (H)
is satisfied.

Secondly, using (38) and (42) we thus get an upper bound on the discriminants of
quaternion CM-fields that have ideal class groups of exponent 2.

Thirdly, using the method developed in [8], we compute the relative class numbers
of the quaternion CM-fields of discriminants less than or equal to this upper bound.
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Lemma 16. If N is a quaternion CM-field with ideal class group of exponent
2, then h(K) = 1 and h=(N) < 2*™*3 where m is the number of prime integers
that divide Dy and do not divide D, i.e. m is the number of distinct prime
divisors of A in Theorem 11.

Proof.  Firstly, we remind the reader of the ambiguous class number formula.
An ideal class of N is said to be ambiguous (in N/K) if it remains invariant under
the complex conjugation. We let A(N/K) be the subgroup of the ideal class group
of N consisting of ambiguous ideal classes. Let ¢y x be the number of prime ideals
of K that ramify in N/K. Then, using the ambiguous class number formula by
Chevalley (see [1] or [3]), noticing that the [K : Q] infinite primes of K ramify in
N/K and noticing that the index [Ug : U%] is equal to 2(K:9], we have:

#A(N/K) = 2!/ Uk N Ny (N*) : U Jh(K).

By Theorem 9, A(K) is 1 in our situation. Therefore, this ambiguous class number
formula implies that the 2-rank of C(N) is ¢y, x —1+4-p' with p’ defined in Theorem 9.
Indeed, every ideal class of C(N) is ambiguous since every ideal class in C(N) has
order 2 . Thus, h(K) = #A(N/K).

Since there are at most four prime ideals of K above any finite prime that di-
vides Dy and does not divide Dk, we have ty/x < 4m+tx where tk is the number
of prime ideals in K that ramify in K/@Q. The result follows from Corollary 10.1H

For m > 0,set Ag =1land A, = l1ls--- 1, with3 =1, <4 =1[0 <5 =
l3 < +++ <y, where the [;’s ¢ > 3 is the increasing sequence of odd primes greater
than 3. Proposition 5 implies Dy > D3 A% with m being as in Lemma 16.

Lemma 17. If the ideal class group of a quaternion CM-field N has exponent
2, then the hypothesis (H) of Proposition 14 is satisfied if Dg > 382617 or if
Dg > 23914 and 2 has ramification index 2 in K/ Q.

Proof.  Noticing that A~ (N) < 8 - 4™ (see Lemma 16) and /Dy /D% >
A2 \/Dg, it suffices to show that we have

(44) (ﬁ): (U_lﬂ)zﬁ
4m 44 4 VDk
But one can easily check that (9/16) > (128¢/v/Dk) implies (44), so that (44) is
satisfied if Dg > 382617. Moreover, if 2 has ramification index 2 in K/@Q, then we
have \/Dy /D% > 4A2 \/Dg by Proposition 5, which implies the second result.m
Using the fact that the Dedekind zeta function of a bicyclic biquadratic field
is the product of the Riemann zeta function and the three L-functions of Dirichlet
characters associated to the three quadratic subfields of K, we have the following

result which enables us to show that the hypothesis (H) is satisfied when we have
Dg < 382616.
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Lemma 18. Let k be a real quadratic field of conductor d and quadratic
character x. Then, the Dedekind zeta function of k is negative on )0, 1] provided
that S(n) =Y."_, Y, x(b) satisfies S(n) >0, 1 <n < d.

3.2. Upper bounds on Dg

Let us assume that K is a quartic subfield of a quaternion CM-field N with
ideal class group of exponent 2 such that the hypothesis (H) is satisfied. Then, we
have:
gmel/4 DgA216™™ < der?

D¥® ) (log(Dk) +0.14)° log(D3 A%,) — 27
Indeed, Dy > D3 A% and h~(N) < 24™*+3 by Proposition 5 and from (38) and
(40) we get

8/t v/Dn/Dxk et _
(46) (1 (DN)1/8> (log(DK)+3c)3log(DN) =5 AT (N).

(45)  fk(m):= (1 -

Now, one can easily see that we have fx(m) > fk(2), m > 0 (simply look at
fx(m+1)/fx(m)). Hence (45) implies

1/4 D 4
(47) 1 8#2/8 K3 < 64er .
D® ) (log(Dk) +0.14)" log(124D%) ~ 243
One can easily check that (47) implies
Dk < 25-10°.

Moreover, instead of using (42), for a fixed K that satisfies hypothesis (H) let us
use (40). We get a more restrictive inequality than (47), namely:

8rel/4 Dk 512er?
4 1-— < o )
- ( Dy/* ) log(12iD%) = g et ()

Moreover, if we assume that 2 has ramification index 2 in K, then A is odd. Hence,
form>0weset fo=1land A, =lly--- 1, with3=10; <5=0<T7T=l3< - <
Iy where the [;’s ¢ > 1 is the increasing sequence of odd primes greater than 1
(This sequence {A],} is slightly different from the previous sequence {A,,} which
contains 4.) Then, Proposition 5 implies Dy > IGD%A;n‘l. Following the same
line of reasoning as above and using (43) instead of (42), we have:

B 4/ 2rel/4 Dg Al *16™™ < e_7r4
Dy* ) (log(Dk) +4.3)° log(16D% A, ¢) ~ 108

(49) fx(m):= (1
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Indeed, Dy > 16D% A/ * and h~(N) < 24™+3 and from (38) and (43) we get

(50) (1 - 4‘/57’61/4) ( vDn/Dk < (N,

(DN)Y8 ) (log(Dx) +3¢/)* log(Dn) ~ 216

Now, one can easily see that we have fx(m) > fx(1), m > 0. Hence (49) implies

) 4/ 2mel/4 Dk <467r4
D¥® ) (log(Dk) +4.3)"log(1206D3,) ~ 243

(51)

One can easily check that (51) implies
Dk <2-10°.

Moreover, instead of using (43), for a fixed K that satisfies hypothesis (H) let us
use (40). We get a more restrictive inequality than (47), namely:

4y/2mel/4 Dy 128er
1- 3/8 7y <
DY/ log(1296D%;) 9

(52) Ress=1 (CK) .

~ Finally, if 2 is totally ramified in K, then Dy > D} A% and we get

8mel/4 Dk 512em4
1- < o= .

All Lemmas labeled Lemma DK. .. in the rest of this paper are obtained by using
(48), (52) or (53).

3.3. An upper bound Dy

Now, for each given K we use (45) and (49) to put an upper bound mmax
on m, and then we use (46) and (50) with h=(N) = 24mmax+3 to put a very
reasonable upper bound on Dy. Finally, using this upper bound on Dy, we list
Dy for each K, compute the exact value of ¢ ~N/k for each Dy then use the upper
bound h~(N) < 2t~/x=1 in (38) to get rid of many N’s, i.e. we use

(54) (1 - (8”1/4 ) vDn/Dk _,

dotn/x+p' _
D)% ) log(Dn) = emr*2 Ress=1 (Ck) -

All Lemmas labeled Lemma DN. .. in the rest of this paper are obtained by using
(54).
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3.4. Successive examination according to the eight possibility of
forms for K

Examination in cases of eight possible forms for K in Theorem 9 proves Main
Theorem. We explain on one of the eight possible forms for K, how we get up-
per bounds on discriminants of quaternion CM-fields with ideal class groups of
exponent 2.

Now, we assume that the ideal class group of a quaternion CM-field N of the
form 3c in Theorem 9 has exponent 2. Hence K = K, o) = Q(,/p,/qr), with

p=1 (mod4)andg=r=3 (mod 4) three distinct primes
such that (g) =(2)=-1.

r

Then, p' = 0 and h(K(pqr)) is 0dd, so that the 2-rank of C(N) is tn/k,,,,, — L.
Moreover, Dk, .., = (pgr)? and Dy = (pqr)®A* where A is a possibly negative
fundamental discriminant coprime to pgr. Moreover, we have

pgr =5-3-7T= 105
=5-3:-23= 345
=17-3-7T= 357
=17-3-11= 561

or pgr > 5-3-43 = 645, hence we have Dk, > 382617. Using Lemmas (17)
and (18), we get that the hypothesis (H) is satisfied whenever K, 4 is a quartic
subfield of a quaternion CM-field with ideal class group of exponent 2. Now, we
lower our previous upper bound on Dk . Indeed, for the 65 fields K, ;s such that
Dipory < 25 10°, we use (48) instead of (47). We thus get that only 8 out of these
65 quartic fields could be quartic subfields of quaternion CM-fields with ideal class
groups of exponent 2, i.e., we have proved:

Lemma DK2c. If K, is a quartic subfield of a quaternion CM-field
with ideal class group of exponent 2, then (p,q,7) € { (5,3,7); (5,3,23); (17,3, 7);
(17,3,11); (5,3,47); (5,7,23); (41,3,7); (41,3,11)}.

We note that these eight real quartic fields satisfy h(K(p 4)) = 1. Using (54), we
get:

Lemma DN2c. If N is a quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of some K, .r), then we have:

(p,qr) Dy € 2-rank of C(N) =
(5,3:7)  {(5-3-7)5, (5-3-7)%%, (5-3-7)%8%} 3,55
(5,3-23) {(5-3-23)%} 3

(17,3-11) {(17-3-11)%, (17-3-11)%4% (17-3-11)%8%} 3,7, 7.
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Now, we compute the relative class numbers of these 9 possible CM-fields IV using
the decomposition law described in section 2.4. and the method developed in [8].
By Theorem 11 we know that N C No(\/Z) where Ny is one of the two pure
quaternion fields with discriminants (pgr)®, namely Ny is the real one if A < 0 and
Ny the imaginary one if A > 0. The relative class numbers are as in the next table.
(Let us point out that there are two occurrences of non-isomorphic quaternion CM-
fields with same discriminants and same real quartic subfields.) Hence, there exists
exactly one quaternion CM-field N containing some K, ;) that has an ideal class

group of exponent 2, namely the pure quaternion field

N=No=Q (\/—5+2‘/5(2l+2\/ﬁ)5Jr

The ideal class group C(Np) is isomorphic to (Z/2Z)3.

V21
5 .

8(N) h=(N)

> +2‘/5 (21 + 2v/105) 2T V2 +2‘/ﬁ 2%
4-5+2‘/g(21+2\/1_0_5) 2% . 32
8'5+2\/5(21+2\/ﬁ)5+2\/_2—1 2% . 52
8-5+2‘/3(21+2\/E3) 2 . 52
> +2‘/5 (483 + 261/345) 23 .32
(17 + 4V/17) (2937 + 124/561) (23 + 4v/33) | 23 .32
4- (17 4 4V/17) (2937 + 1241/561) 29 . 32
8- (17 + 4V/17) (2937 + 124v/561) (23 + 4/33) | 27 - 132
8- (17 4 4V/17) (2937 + 1241/561) 2°. 72
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Lemma DK1a. In case la, if K is a quartic subfield of a quaternion CM-field
with ideal class group of exponent 2, then q € {17,73,89,97}.

Lemma DN1la. If N is a quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K’s of Lemma above, then
we have d(N) = 22217% and the 2-rank of C(N) is 3.

Hence, the only candidate and its relative class number are as follows.

3(N) h™(N)
(17 +4V17)(6 + V34) | 2°-32

Lemma DK1b. In case 1b, if K is a quartic subfield of a quaternion CM-
field with ideal class group of exponent 2, then (p,q) € { (5,29); (5,41); (13,17);
(5,61); (13,29); (5,89); (5,101); (5,109); (5,149); (13,61); (17,89)}.

Moreover, (p/q)4(q/p)a = +1 for (p,q) € {(5,29); (5,89); (5,101); (13,61)} so that
we can get rid of these four pairs.

Lemma DN1b. If N is a quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K’s of Lemma above, then
we have:

(p,q) Dy € 2-rank of C(N) =
(5,41)  {(5-41)%, (5-41)%34, (5-41)%4%} 3,55

(13,17) {(13-17)%, (13-17)%3%, (13-17)%4%} 3,5, 5

(5,61)  {(5-61)%, (5-61)53*} 3,5

(13,29) {(13-29)%} 3

Moreover, the quaternion fields with discriminants (5-41)%, (13-17)%, and (5-61)63*
are real, so that we can get rid of these three discriminants. Hence, surviving
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candidates and their relative class numbers are as follows.

§(N) h=(N)
15 + /205
3. (205 + 32v/41) 5+2—0 25 . 32
1 \/2
4- (205 + 32v41) ——— S V205 | g5 52
134313 17+ /221 5 o2
3. 2°.3
2 2
13 + 313 17+ /221 5 2
4- 2°.5
2 2
M(35+2,/30 5) | 23.32
M (30 + 2V377) | 2832

Lemma DK2a. In case 2a, if K is a quartic subfield of a quaternion CM-field
with ideal class group of exponent 2, then (gq,r,qr) € {(3,11,33);(3,19,57)}.

Lemma DN2a. If N is a quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K’s of Lemma above, then
we have:

(¢;r) = (3,11), Dy =16 (8-3-11)%, 2-rank of C(N) < 3.

Hence, surviving candidates are the following two non-isomorphic pair of pure
quaternion CM-fields with the same discriminant and their relative class numbers
are as follows.

() h=(N)

(2 + v2) (33 + 4/66) 2% .52

(2+V2) (33 + 4V66) (23 + 4V/33) | 2% . 72

Lemma DK2b. In case 2b, if K is a QUartic subfield of a quaternion
CM-field with ideal class group of exponent 2, then (p,r) € {(5,7);(5,11)}.
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Lemma DN2b. There is no quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K’s of Lemma above.

Lemma DK3a. In case 3a, if K is a quartic subfield of a quaternion CM-field
with ideal class group of exponent 2, then (gq,r) € {(7,11);(7,23)}.

Lemma DN3a. There is no quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K’s of Lemma above.

Lemma DK3b. In case 3b, if K is a quartic subfield of a quaternion
CM-field with ideal class group of exponent 2,
then we have (p,q,r) € {(3,7,11);(3,7,23); (3,11,19)}.

Noticing that in that case we can have p’ = 1, using (54) we get:

Lemma DN3b. If N is a quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K’s of Lemma above, then
we have:

(p,qr) DnE€ 2-rank of C(N) <
(3,11,7) {(3-7-11)%} 2
(3,23,7) {(3-7-23)%} 2

(3,11,19) {(3-11-19)5, (3-11-19)%4%} 2, 6.

Hence, surviving candidates and their relative class numbers are as follows.

§(N) h=(N)

3+2‘/ﬁ (11 4 2v/33) (35 + 4V/77) 2% . 32

3421 23+ 369
2 2

(203 + 16v/161) 23 .32

(11 + 2v/33) (665 + 46v/209) (15 + 2v/57) | 2836

4- (517 + 90v/33) (665 + 461/209) (15 + 2v/57) | 27 - 72

Lemma DK4. In case 4, if K is a quartic subfield of a quaternion CM-field
with ideal class group of exponent 2, then q € {3,11,19,43}.
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Lemma DN4. If N is a quaternion CM-field with ideal class group of
exponent 2 that is a quadratic extension of one of the K’s of Lemma above, then

we have:
g Dye€ 2-rank of C(N) =
3 {224-36, 224.36. 54 224-36-74} 1, 3, 3
11 {22%.114,224.115.3%} 1, 3.

Hence, surviving candidates and their relative class numbers are as follows.

6(N) h=(N)

(2+v2) (34 V6) 2

5-(2+V2)(3+V6) | 2°-3?

7-2+V2)(3+V6) | 2352

(2+V2)(33+7V22) | 2.3

3-(2+V2)(33+7v22) | 2°. 3

The proof of Main Theorem is completed.l
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