THE MCKAY NUMBERS OF A SUBGROUP OF GL(N;Q) CONTAINING SL(N;Q)

Hideki SUKIZAKI

(Received July 2, 1997)

1. Introduction

For a finite group G, a prime number p, a non-negative integer k, and a p-block B of G, we put

$$
m_{p}(k, G, B)=|\{\zeta \in \operatorname{Irr}(G) \mid \nu(\zeta(1))=k, \zeta \in B\}|
$$

where $\operatorname{Irr}(G)$ is the set of irreducible complex characters of G and ν is the exponential valuation of some splitting field of G with $\nu(p)=1$. The sum $m_{p}(k, G)=$ $\sum_{B} m_{p}(k, G, B)$ over all p-blocks of G is called the k-th McKay number of G.

Let $G L=G L(n, q)$ be the general linear group of degree n over the finite field $G F(q)$ with q elements, where $q=p^{e}$ is a power of the prime p. Let

$$
L_{h}=L_{h}(n, q)=\left\{x \in G L(n, q) \mid \operatorname{det}(x) \in U_{h}\right\}
$$

where U_{h} is the subgroup of the multiplicative group F_{1} of $G F(q)$ of order h. (Thus h is a divisor of $q-1$.) In particular, $L_{q-1}(n, q)$ is $G L(n, q)$ and $L_{1}(n, q)$ is the special linear group $S L(n, q)$. In general, $L_{h}(n, q)$ satisfies

$$
G L(n, q) \unrhd L_{h}(n, q) \unrhd S L(n, q) .
$$

Moreover, we denote by $P L_{h}=P L_{h}(n, q)$ the factor group of $L_{h}(n, q)$ modulo its center $Z\left(L_{h}(n, q)\right)$.

In Section 4 of this paper, we write $m_{p}(k, G, B)$ concretely in terms of several invariants of partitions, where $G=L_{h}(n, q)$ or $G=P L_{h}(n, q)$.

In Section 5, we show the Alperin-McKay conjecture [1] holds for L_{h} and $P L_{h}$. Note that for L_{h} or $P L_{h}$, every p-block is of defect 0 or maximal defect. Thus it suffices to prove the following. If a p-block B of G is not of defect zero, then for a Sylow p-subgroup P of G and the p-block b of the normalizer $N_{G}(P)$ of P corresponding to B by Brauer's first main theorem, we have

$$
m_{p}(0, G, B)=m_{p}\left(0, N_{G}(P), b\right)
$$

Section 2 is devoted to stating several preliminary results, and Section 3 is devoted a parametrization of irreducible characters of L_{h}. Notations are standard. See, for example, [7].

The author would like to thank Prof. K. Uno for his constant advice, and the referee for his careful reading of the manuscript.

2. Preliminaries

In this section, we mention several definitions and results which are important when studying irreducible characters of $G L$ and related groups.
2.1. Polynomials and Simplices. Let n be a fixed integer. For each positive integer k, denote by F_{k} the multiplicative group of $G F\left(q^{k}\right)$. We take K to be a fixed copy of $F_{n!}$ and regard F_{k} as a subgroup of K for each k with $k \leq n$. For each positive integer k and h, let \hat{F}_{k} and \hat{U}_{h} denote the complex character group of F_{k} and U_{h}, respectively.

Suppose k and l are positive integers and k divides l. Then $F_{k} \leq F_{l}$ and we have a surjective homomorphism $N_{l k}: F_{l} \rightarrow F_{k}$ given by

$$
N_{l k}(\rho)=\rho^{n_{l k}} \quad \text { for all } \rho \in F_{l},
$$

where $n_{l k}=\left|F_{l}\right| /\left|F_{k}\right|=\left(q^{l}-1\right) /\left(q^{k}-1\right)$. Defining $I_{k l}: \hat{F}_{k} \rightarrow \hat{F}_{l}$ by

$$
I_{k l}(\psi)(\rho)=\psi\left(\rho^{n_{l k}}\right) \quad\left(\psi \in \hat{F}_{k}, \rho \in F_{l}\right)
$$

we can embed \hat{F}_{k} in \hat{F}_{l}. In this way, we embed \hat{F}_{k} in \hat{K} for each integer k with $1 \leq k \leq n$. This embedding is well-defined (See Lemma 3.1 in [5]).

Lemma 2.1 (Lemma 3.2 in [5]). For integers k, l with $k \mid l$, under the above identifications, the surjection: $\psi \mapsto \psi^{n_{l k}}$ from \hat{F}_{l} to \hat{F}_{k} is the same map as the restriction of characters.

In the same way, \hat{U}_{h} is embedded in \hat{F}_{k} and in \hat{K}.

Defintion and Notations.

(1) Let σ denote the Frobenius map $\rho \mapsto \rho^{q}$ on K, and $\hat{\sigma}$ the corresponding action on \hat{K}.
(2) An irreducible polynomial f over $G F(q)$ with the degree less than n will be identified with its set of roots in $G F\left(q^{n!}\right)$, which forms a σ-orbit. If $f(x) \neq x$, then f is a σ-orbit in K. If ρ is an element of this orbit, we write $f=\langle\rho\rangle$.
(3) A simplex g over $G F(q)$ is a $\hat{\sigma}$-orbit in \hat{K}. If $\psi \in g$, we write $g=\langle\psi\rangle$.

We denote by \mathcal{F} the set of irreducible polynomials regarded as σ-orbits in K, and
by \mathcal{G} the set of simplices over $G F(q)$. By the degree $\operatorname{deg}(f)$ of an irreducible polynomial f, or $\operatorname{deg}(g)$ of simplex g, we mean the cardinality of the orbit concerned.

If we fix an isomorphism between K and \hat{K}, then \hat{F}_{k} and \hat{U}_{h} correspond to F_{k} and U_{h}, respectively. Moreover, \mathcal{F} and \mathcal{G} correspond bijectively, and then a polynomial and the corresponding simplex have the same degree.
2.2. Partitions. Let $\mu=\left(a_{1}^{l_{1}}, a_{2}^{l_{2}}, \ldots, a_{\delta}^{l_{\delta}}\right)$ be a partition of n. Here we put $a_{1}>$ $a_{2}>\ldots>a_{\delta}>0$ and $l_{i} \neq 0$ is the multiplicity of a_{i} as a part of μ. (Thus $n=l_{1} a_{1}+$ $l_{2} a_{2}+\ldots+l_{\delta} a_{\delta}$.) For convenience sake, we also write $\mu=\left(j^{m_{j}}\right)$, where $m_{a_{i}}=l_{i}$, and $m_{j}=0$ if $j \neq a_{i}$ for any i.

We write $|\mu|=n$ to indicate that μ is a partition of n. Moreover $l(\mu)=\sum l_{i}$ is the length of $\mu, \Lambda(\mu)=\operatorname{gcd}\left(l_{1}, l_{2}, \cdots, l_{\delta}\right), A(\mu)=\operatorname{gcd}\left(a_{1}, a_{2}, \cdots, a_{\delta}\right), \delta(\mu)=\delta$ is the number of distinct parts in μ, and $n^{\prime}(\mu)=\sum\binom{a_{i}}{2} l_{i}$. The partition conjugate to μ is denoted by μ^{\prime}. Let \mathcal{P} be the set of partitions of all nonnegative integers n. Here we regard (0) as the only partition of 0 .
2.3. Applications of the Clifford theory. Let G be a finite group and H be a normal subgroup of G. For $\zeta \in \operatorname{Irr}(H)$ we denote by $T_{G}(\zeta)$ the stabilizer of ζ in G and set

$$
\operatorname{Irr}(G \mid \zeta)=\left\{\chi \in \operatorname{Irr}(G) \left\lvert\,\left(\left.\chi\right|_{H}, \zeta\right)_{H}=\frac{1}{|H|} \sum_{x \in H} \chi(x) \zeta\left(x^{-1}\right) \neq 0\right.\right\}
$$

For $\chi \in \operatorname{Irr}(G)$, let

$$
\operatorname{Irr}(H \mid \chi)=\left\{\zeta \in \operatorname{Irr}(H) \mid\left(\left.\chi\right|_{H}, \zeta\right)_{H} \neq 0\right\} .
$$

Theorem 2.2 (Chapter 3, Theorem 3.8 in [7]). Let $\zeta \in \operatorname{Irr}(H)$ and $T=T_{G}(\zeta)$. For $\chi \in \operatorname{Irr}(G \mid \zeta)$, we have

$$
\left.\chi\right|_{H}=c\left(\sum_{x \in T \backslash G} \zeta^{x}\right),
$$

where c is some positive integer.

Theorem 2.3 (Chapter 3, Theorem 5.12 in [7]). Let $\zeta \in \operatorname{Irr}(H)$ and $T=$ $T_{G}(\zeta)$. If ζ extends to an irreducible character η of T, then we have

$$
\begin{aligned}
\operatorname{Irr}(T \mid \zeta) & =\{\theta \eta \mid \theta \in \operatorname{Irr}(T / H)\} \quad \text { and } \\
\operatorname{Irr}(G \mid \zeta) & =\left\{(\theta \eta)^{G} \mid \theta \in \operatorname{Irr}(T / H)\right\}
\end{aligned}
$$

Theorem 2.4. With the above notation, each one of the following conditions implies that ζ is extendible to an irreducible character of T :
(1) (Chapter 3, Theorem 5.11 in [7]) T / H is cyclic.
(2) $\quad \zeta$ is of degree 1 , and $T=S \ltimes H$, where S is a certain group.

Lemma 2.5. If G / H is cyclic then the following hold.
(1) In the restriction of irreducible characters of G to H, the multiplicity of each irreducible constituent is 1 .
(2) Two irreducible characters of G either have the same restrictions to H, or have restrictions without common irreducible constituents.
(3) For $\zeta \in \operatorname{Irr}(H), \chi \in \operatorname{Irr}(G \mid \zeta)$, we have $|\operatorname{Irr}(H \mid \chi)|=|G| /|H||\operatorname{Irr}(G \mid \zeta)|$.

Proof. Let $T=T_{G}(\zeta)$. Note that T / H is also cyclic.
(1) $\operatorname{Irr}(T / H)$ has only characters of degree 1 . By Theorems 2.4(1) and 2.3, c in Theorem 2.2 is 1.
(2) It is clear from (1) and Theorem 2.2.
(3) By Theorem 2.3, we have $|\operatorname{Irr}(G \mid \zeta)|=|\operatorname{Irr}(T / H)|=|T / H|$, and by Theorem 2.2, we obtain $|\operatorname{Irr}(H \mid \chi)|=|G / T|$. Thus the equality holds.
2.4. \boldsymbol{p}-blocks. Let G be a finite group, $G_{p^{\prime}}$ the set of elements of G whose orders are prime to p, and $C l\left(G_{p^{\prime}}\right)$ the set of conjugate classes of G contained in $G_{p^{\prime}}$. For $C \in C l\left(G_{p^{\prime}}\right)$, let \bar{C} be the sum of all elements of C in the group algebra of G over \mathbb{C}, and $d(C)$ the defect of C, i.e., $d(C)=\nu\left(\left|C_{G}(x)\right|\right)$ for $x \in C$. For a p-block B of G, let $d(B)$ be the defect of B. For $\chi \in \operatorname{Irr}(G)$ and $C \in C l\left(G_{p^{\prime}}\right)$, we define $\omega_{\chi}(\bar{C})$ by

$$
\omega_{\chi}(\bar{C})=|C| \chi(x) / \chi(1)
$$

with $x \in C$. Let \mathfrak{p} be the valuation ideal of ν, i.e., \mathfrak{p} is the set of elements in the field such that the values of ν on them are positive.

Theorem 2.6 (Chapter 3, Theorem 6.28 in [7]). Assume that $\chi, \chi^{\prime} \in \operatorname{Irr}(G)$ belong to p-blocks of the same defect d. Then χ and χ^{\prime} belong to the same p-block if and only if

$$
\omega_{\chi}(\bar{C}) \equiv \omega_{\chi^{\prime}}(\bar{C}) \quad(\bmod \quad \mathfrak{p})
$$

for any $C \in C l\left(G_{p^{\prime}}\right)$ with $d(C)=d$.
Theorem 2.7 (Chapter 3, Theorem 6.29 in [7]). Let B be a p-block of G and let $\chi \in \operatorname{Irr}(G)$ belong to B. Then the following three conditions are equivalent to each other.
(1) $d(B)=0$.
(2) $\nu(\chi(1))=\nu(|G|)$.
(3) The number of irreducible characters belonging to B is 1 .

Therefore the number of p-blocks of defect 0 is the number of characters satisfying the condition (2) above.

3. A parametrization of irreducible characters of $L_{h}(n, q)$

In this section, we treat $\operatorname{Irr}\left(L_{h}\right)$. We remark that the center $Z\left(L_{h}\right)$ of L_{h} is isomorphic to $U_{\operatorname{gcd}(q-1, n h)}$. In particular, $Z(G L) \simeq F_{1}$.
3.1. A parametrization of $\operatorname{Irr}(\boldsymbol{G L})$ and $\operatorname{Irr}\left(\boldsymbol{L}_{\boldsymbol{h}}\right)$. Green [3] showed in 1955 how an irreducible complex character of $G L$ is given by a partition-valued function $\lambda: \mathcal{G} \rightarrow \mathcal{P}$ which satisfies

$$
\begin{equation*}
\sum_{g \in \mathcal{G}}|\lambda(g)| \operatorname{deg}(g)=n . \tag{3.1}
\end{equation*}
$$

In this subsection, we identify the set of all such functions with $\operatorname{Irr}(G L)$. An account of how such a function determines an irreducible character may be found in Section 3 in [4] and Chapter IV in [6], too.

We explain properties of characters of $G L$ which we need in this paper. We denote by $\operatorname{deg}(\lambda)$ the degree of a character λ. Let $\lambda^{\prime}: \mathcal{G} \rightarrow \mathcal{P}$ be the function such that $\lambda^{\prime}(g)$ is the partition conjugate to $\lambda(g)$ for all $g \in \mathcal{G}$. We denote by $\hat{\xi}(\langle\psi\rangle)$ the product of all elements of $\langle\psi\rangle \in \mathcal{G}$, i.e. $\hat{\xi}(\langle\psi\rangle)=\psi^{n_{d 1}}$ where $d=\operatorname{deg}(\langle\psi\rangle)$. It is clear that $\hat{\xi}(\langle\psi\rangle) \in \hat{F}_{1}$.

Theorem 3.1. Let $\lambda: \mathcal{G} \rightarrow \mathcal{P}$ be an irreducible character of $G L$.
(p. 444 in [3], (6.7) in IV of [6]) $\nu(\operatorname{deg}(\lambda))=e \sum_{g \in \mathcal{G}} \operatorname{deg}(g) n^{\prime}\left(\lambda^{\prime}(g)\right)$.
(2) (Example 2 in IV of [6], Theorem 5.4 in [5]) The restriction of λ to $Z(G L)$ is a multiple of $\prod_{g \in \mathcal{G}} \hat{\xi}(g)^{|\lambda(g)|}$.

Let $\alpha \in \hat{F}_{1}$ and $\langle\psi\rangle \in \mathcal{G}$. We define the parallel translation $\tau_{\alpha}: \mathcal{G} \rightarrow \mathcal{G}$ as $\tau_{\alpha}\langle\psi\rangle=\langle\alpha \psi\rangle$. Moreover, we define an action of $\alpha \in \hat{F}_{1}$ on $\operatorname{Irr}(G L)$ as follows. For any irreducible character $\lambda: \mathcal{G} \rightarrow \mathcal{P}$ of $G L$, the character λ^{α} is defined by $\lambda^{\alpha}(\langle\psi\rangle)=$ $\lambda\left(\tau_{\alpha}\langle\psi\rangle\right)=\lambda(\langle\alpha \psi\rangle)$ for any $\langle\psi\rangle \in \mathcal{G}$.

Theorem 3.2 (Proposition 5.2 in [5]). Let $\lambda, \chi \in \operatorname{Irr}(G L)$. Then λ and χ have the same restrictions to L_{h} if and only if $\lambda^{\alpha}=\chi$ for some $\alpha \in \hat{U}_{(q-1) / h}$.

For any irreducible character $\lambda: \mathcal{G} \rightarrow \mathcal{P}$ of $G L$, we denote by λ_{∞} the $\hat{U}_{(q-1) / h^{-}}$
orbit of $\operatorname{Irr}(G L)$ containing λ. Let $\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ denote $\operatorname{Irr}\left(L_{h} \mid \lambda\right)$. (This notation is well defined by virtue of Theorem 3.2.)

Theorem 3.3.

(1) $\operatorname{Irr}\left(L_{h}\right)=\bigcup_{\lambda_{\infty}} \operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ (disjoint), where this union is over all $\hat{U}_{(q-1) / h^{-}}$ orbits in $\operatorname{Irr}(G L)$. Moreover, for each $\lambda \in \operatorname{Irr}(G L)$, we have

$$
\left|\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)\right|=\frac{q-1}{h\left|\lambda_{\infty}\right|} .
$$

(2) For $\lambda \in \operatorname{Irr}(G L)$, the followings hold.
(i) For any $\varphi \in \operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$,

$$
\nu(\operatorname{deg}(\varphi))=e \sum_{g \in \mathcal{G}} \operatorname{deg}(g) n^{\prime}\left(\lambda^{\prime}(g)\right) .
$$

(ii) The restriction of each character in $\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ to $Z\left(L_{h}\right)$ is a multiple of

$$
\prod_{g \in \mathcal{G}} \hat{\xi}(g)^{|\lambda(g)|(q-1) / g \operatorname{cd}(q-1, h n)}
$$

Proof. (1) Since $G L / L_{h}$ is a cyclic group, the first half is clear from Lemma 2.5(2).

Therefore, for $\lambda \in \operatorname{Irr}(G L)$ and $\zeta \in \operatorname{Irr}\left(L_{h} \mid \lambda\right)$, we have $\operatorname{Irr}(G L \mid \zeta)=\lambda_{\infty}$. So we have the latter half by Lemma 2.5(3).
(2)(i) By Theorem 2.2 and Lemma 2.5(1), for $\zeta \in \operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$,

$$
\operatorname{deg}(\lambda)=\left|T_{G L}(\zeta) \backslash G L\right| \operatorname{deg}(\zeta)
$$

Here, $\left|T_{G L}(\zeta) \backslash G L\right|$ divides $\left|L_{h} \backslash G L\right|=(q-1) / h$ which is prime to p. So the p-part of $\operatorname{deg}(\zeta)$ equals that of $\operatorname{deg}(\lambda)$. From Theorem 3.1(1), we have (i).
(ii) The irreducible constituent of a restriction of each character in $\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ to $Z\left(L_{h}\right)$ equals the irreducible constituent of $\left.\lambda\right|_{Z\left(L_{h}\right)}$. By $Z\left(L_{h}\right) \simeq U_{\operatorname{gcd}(q-1, n h)}$, Lemma 2.1 and Theorem 3.1(2), (ii) holds.

By using the above, we can count the number of characters of L_{h}.
3.2. A parametrization $\operatorname{of} \operatorname{Irr}\left(\boldsymbol{L}_{\boldsymbol{h}}\right)$ by polynomials. In order to count irreducible characters effectively, we parametrize $\operatorname{Irr}(G L)$ and $\operatorname{Irr}\left(L_{h}\right)$ by polynomials over $G F(q)$.

Fix an isomorphism from K to \hat{K}. Then, as is seen in 2.1, we have the bijection from \mathcal{F} to \mathcal{G}. Therefore elements in $\operatorname{Irr}(G L)$ are parametrized by partition-valued
functions $\lambda: \mathcal{F} \rightarrow \mathcal{P}$ which satisfy

$$
\begin{equation*}
\sum_{f \in \mathcal{F}}|\lambda(f)| \operatorname{deg}(f)=n . \tag{3.2}
\end{equation*}
$$

We denote polynomials in \mathcal{F} by f_{1}, f_{2}, \cdots. Let $\lambda^{\prime}\left(f_{i}\right)=\left(j^{m(i, j)}\right)$ where $m(i, j)$ is a non negative integer. For $\lambda: \mathcal{F} \rightarrow \mathcal{P}$ with (3.2), we define the sequence of polynomials

$$
\begin{equation*}
\left(\prod_{i} f_{i}^{m(i, 1)}, \prod_{i} f_{i}^{m(i, 2)}, \cdots\right) \tag{3.3}
\end{equation*}
$$

Then it is easy to see that this gives a bijection from the set of partition-valued functions with (3.2) to the set of sequences $\left(h_{1}, h_{2}, \cdots\right)$ of monic polynomials over $G F(q)$ which satisfy the following.
(1) The constant term of each h_{i} does not equal to 0 , and
(2) $\quad \sum_{j} j \operatorname{deg}\left(h_{j}\right)=n$, i.e., $\mu=\left(j^{\operatorname{deg}\left(h_{j}\right)}\right)$ is a partition of n.

From now on, we identify the set of such sequences with $\operatorname{Irr}(G L)$.
Let $g \in \mathcal{G}$ correspond to an irreducible monic polynomial $f(x)=x^{d}+b_{1} x^{d-1}+$ $\cdots+b_{d}$ over $G F(q)$ such that $b_{d} \neq 0$, and let $\alpha \in \hat{F}_{1}$ correspond to $\rho \in F_{1}$. As in 2.1, we regard an irreducible polynomial as the σ-orbit consisting of its roots in K. Because $\tau_{\alpha}(g)$ is the σ-orbit obtained by multiplying all elements of the σ-orbit g by α, it corresponds to the σ-orbit obtained by multiplying all roots of f by ρ, i.e., we have

$$
\begin{equation*}
\tau_{\rho}(f(x))=x^{d}+\rho b_{1} x^{d-1}+\rho^{2} b_{2} x^{d-2}+\cdots+\rho^{d} b_{d} \tag{3.4}
\end{equation*}
$$

We apply this notation when $f(x)$ is reducible, too. If ρ is a primitive m-th root of unity, then

$$
\begin{equation*}
f(x)=\tau_{\rho}(f(x)) \Leftrightarrow b_{k}=0 \quad \text { if } m \nmid k \tag{3.5}
\end{equation*}
$$

In particular, if this condition holds, then we have $m \mid d$ because $b_{d} \neq 0$.
Let $\lambda=\left(h_{1}, h_{2}, \cdots\right) \in \operatorname{Irr}(G L)$ and put $h_{i}(x)=x^{d_{i}}+b_{i, 1} x^{d_{i}-1}+\cdots+b_{i, d_{i}}$. Note that $b_{i, d_{i}} \neq 0$ for any i. The action of α on λ corresponds to the action of ρ in such a way that

$$
\begin{equation*}
\lambda^{\rho}=\left(\tau_{\rho^{-1}}\left(h_{1}\right), \tau_{\rho^{-1}}\left(h_{2}\right), \cdots\right) \tag{3.6}
\end{equation*}
$$

If ρ is a primitive m-th root of 1 , then

$$
\begin{equation*}
\lambda=\lambda^{\rho} \Leftrightarrow b_{i, j}=0 \quad \text { if } m \nmid j . \tag{3.7}
\end{equation*}
$$

In particular, if ρ stabilizes λ, then $m \mid \operatorname{gcd}\left(\operatorname{deg}\left(h_{1}\right), \operatorname{deg}\left(h_{2}\right), \cdots\right)$.

By our identification, λ_{∞} equals the $U_{(q-1) / h}$-orbit of $\operatorname{Irr}(G L)$ containing λ.
We restate Theorems 3.2 and 3.3 by using the above notation.

Corollary 3.4.

(1) $\lambda, \chi \in \operatorname{Irr}(G L)$ have the same restrictions to L_{h} if and only if $\lambda^{\rho}=\chi$ for some $\rho \in U_{(q-1) / h}$.
(2) $\operatorname{Irr}\left(L_{h}\right)=\bigcup_{\lambda_{\infty}} \operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ (disjoint), where this union is over all $U_{(q-1) / h}$-orbits in $\operatorname{Irr}(G L)$. Moreover, we have

$$
\left|\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)\right|=\frac{q-1}{h\left|\lambda_{\infty}\right|}
$$

(3) For $\lambda=\left(h_{1}, h_{2}, \cdots\right) \in \operatorname{Irr}(G L)$ with $h_{i}(x)=x^{d_{i}}+b_{i, 1} x^{d_{i}-1}+\cdots+b_{i, d_{i}}$ and $b_{i, d_{i}} \neq 0$, the following hold.
(i) For any $\varphi \in \operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$.

$$
\nu(\operatorname{deg}(\varphi))=e \sum_{j}\binom{j}{2} \operatorname{deg}\left(h_{j}\right)=e n^{\prime}(\mu)
$$

where μ is the partition $\left(j^{\operatorname{deg}\left(h_{j}\right)}\right)$ of n.
(ii) The restriction of each character in $\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ to $Z\left(L_{h}\right)$ is a multiple of the irreducible character of $U_{\operatorname{gcd}(q-1, n h)}$ corresponding to

$$
\left\{(-1)^{n} \prod_{j}\left(b_{j, d_{j}}\right)^{j}\right\}^{(q-1) / \operatorname{gcd}(q-1, n h)}
$$

Proof. (1) and (2) are clear from Theorems 3.2 and 3.3.
(3) Let us regard λ as a function from \mathcal{F} to \mathcal{P}. We denote polynomials in \mathcal{F} by f_{1}, f_{2}, \cdots. We write $\lambda^{\prime}\left(f_{i}\right)=\left(j^{m(i, j)}\right)$ where $m(i, j)$ is a non negative integer. Then $h_{j}=\prod_{i} f_{i}^{m(i, j)}$ and $\operatorname{deg}\left(h_{j}\right)=\sum_{i} \operatorname{deg}\left(f_{i}\right) m(i, j)$.
(i) By Theorem 3.3(2)(i), the p-part of the degree of each character in $\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ equals

$$
\begin{aligned}
& e \sum_{f \in \mathcal{F}} \operatorname{deg}(f) n^{\prime}\left(\lambda^{\prime}(f)\right)=e \sum_{i} \operatorname{deg}\left(f_{i}\right) \sum_{j}\binom{j}{2} m(i, j) \\
= & e \sum_{j}\binom{j}{2} \sum_{i} \operatorname{deg}\left(f_{i}\right) m(i, j)=e \sum_{j}\binom{j}{2} \operatorname{deg}\left(h_{j}\right) .
\end{aligned}
$$

(ii) If $g \in \mathcal{G}$ corresponds to $f \in \mathcal{F}$, then $\hat{\xi}(g)$ corresponds to the product of all roots of f, i.e., $(-1)^{\operatorname{deg}(f)} f(0)$. We remark that $\left(j^{\operatorname{deg}\left(h_{j}\right)}\right)$ is a partition of n. Then the irreducible constituent of the restriction of λ to $Z\left(L_{h}\right)$ corresponds to

$$
\prod_{f \in \mathcal{F}}\left\{(-1)^{\operatorname{deg}(f)} f(0)\right\}^{|\lambda(f)|(q-1) / \operatorname{gcd}(q-1, n h)}
$$

$$
\begin{aligned}
& =\prod_{i}\left\{(-1)^{\operatorname{deg}\left(f_{i}\right)} f_{i}(0)\right\}^{\left(\sum_{j} j m(i, j)\right)(q-1) / \operatorname{gcd}(q-1, n h)} \\
& =\prod_{j} \prod_{i}\left\{(-1)^{\operatorname{deg}\left(f_{i}\right) m(i, j) j} f_{i}(0)^{m(i, j) j}\right\}^{(q-1) / \operatorname{gcd}(q-1, n h)} \\
& =\left\{\prod_{j}(-1)^{\operatorname{deg}\left(h_{j}\right) j} h_{j}(0)^{j}\right\}^{(q-1) / \operatorname{gcd}(q-1, n h)} \\
& =\left\{(-1)^{n} \prod_{j}\left(b_{j, d_{j}}\right)^{j}\right\}^{(q-1) / \operatorname{gcd}(q-1, n h)}
\end{aligned}
$$

3.3. \boldsymbol{p}-blocks of $\boldsymbol{L}_{\boldsymbol{h}}(\boldsymbol{n}, \boldsymbol{q})$. By Theorem 4 of [2], a defect group of any p-block of $L_{1}=S L(n, q)$ is a Sylow p-subgroup or trivial subgroup. The same argument as for $G L$ in the last paragraph of Section 4 in [2] yields that the same is true for L_{h}. Therefore the defect $d(B)$ of the block B of L_{h} equals to 0 or $\nu\left(\left|L_{h}\right|\right)=e n(n-1) / 2$. In the later case, we say that B is of maximal defect. By Theorem 2.7, any p-block of defect 0 has a character the p-part of whose degree equals that of $\left|L_{h}\right|$, i.e. $p^{e n(n-1) / 2}$. On the other hand, characters in any p-block of the maximal defect have p-parts of degree less than $p^{e n(n-1) / 2}$.

Lemma 3.5. The number of blocks of L_{h} of defect 0 is h. Moreover, for a nonnegative integer k and any block B of L_{h} of defect 0 , we have

$$
m_{p}\left(k, L_{h}, B\right)= \begin{cases}1, & \text { if } k=e n(n-1) / 2 \\ 0, & \text { otherwise }\end{cases}
$$

Proof. The latter half is clear by Theorem 2.7.
Let $\lambda_{a}=(\underbrace{1,1, \cdots, 1}_{(n-1) \text { times }}, x-a) \in \operatorname{Irr}(G L)$ for $a \in F_{1}$. By Theorem 2.7 and Corollary 3.4(3)(i), the set of p-blocks of defect 0 corresponds bijectively to

$$
\begin{aligned}
& \left\{\zeta \in \operatorname{Irr}\left(L_{h}\right) \mid \nu(\zeta(1))=\nu\left(\left|L_{h}\right|\right)=e n(n-1) / 2\right\} \\
& =\bigcup_{a \in F_{1}} \operatorname{Irr}\left(L_{h} \mid \lambda_{a}\right) \\
& =\bigcup_{\left(\lambda_{a}\right)_{\infty}} \operatorname{Irr}\left(L_{h} \mid\left(\lambda_{a}\right)_{\infty}\right) \quad \text { (disjoint) }
\end{aligned}
$$

where the last union is over all $U_{(q-1) / h}$-orbit consisting of characters λ_{a}. Because λ_{a} is stabilized only by $1,\left|\left(\lambda_{a}\right)_{\infty}\right|=(q-1) / h$. Therefore, the number of $U_{(q-1) / h^{-}}$ orbit consisting of characters λ_{a} is h, and $\left|\operatorname{Irr}\left(L_{h} \mid\left(\lambda_{a}\right)_{\infty}\right)\right|=1$ by Corollary 3.4(2). Therefore the number of blocks of defect 0 is h.

For characters belonging to p-blocks of maximal defect, we can determine their distribution to p-blocks by looking at the values at \bar{C} 's for all $C \in C l\left(\left(L_{h}\right)_{p^{\prime}}\right)$
with $C_{L_{h}}(x)(x \in C)$ containing a Sylow p-subgroup of L_{h}. This is possible because of Theorem 2.6. Since an element of L_{h} satisfying this condition is in the center $Z\left(L_{h}\right)$ of L_{h}, it is enough to see the character values on $Z\left(L_{h}\right)$. Moreover $Z\left(L_{h}\right) \simeq U_{\operatorname{gcd}(q-1, n h)}$ is a cyclic group whose order is prime to p. So, it is enough to look at their actual values, not those modulo \mathfrak{p}. Therefore we have the following.

Lemma 3.6. Let $\zeta, \zeta^{\prime} \in \operatorname{Irr}\left(L_{h}\right)$ belong to p-blocks of non-zero defect. Then ζ and ζ^{\prime} belong to the same block if and only if $\omega_{\zeta}(x)=\omega_{\zeta^{\prime}}(x)$ for all $x \in Z\left(L_{h}\right)$.

By this lemma, we can determine distribution of characters to p-blocks of L_{h} of maximal defect by looking at the irreducible constituent of their restriction to $Z\left(L_{h}\right)$. Therefore p-blocks of maximal defect are parametrized by the element of $\widehat{Z\left(L_{h}\right)}$. Because $\widehat{Z\left(L_{h}\right)} \simeq \hat{U}_{\operatorname{gcd}(q-1, n h)} \simeq U_{\operatorname{gcd}(q-1, n h)}, p$-blocks of L_{h} of maximal defect are parametrized by the element of $U_{\operatorname{gcd}(q-1, n h)}$. The number of blocks of L_{h} of maximal defect is $\operatorname{gcd}((q-1), n h)$.

We fix an isomorphism $\widehat{Z\left(L_{h}\right)} \simeq U_{\operatorname{gcd}(q-1, n h)}$, and identify them via the isomorphism. We denote by B_{a} the p-block of L_{h} of maximal defect corresponding to $a \in U_{\operatorname{gcd}(q-1, n h)}$.

In particular, the principal block is B_{1}. Moreover, B_{1} is the set of characters in blocks of non-zero defect of L_{h} such that restrictions of those to $Z\left(L_{h}\right)$ equal to multiples of the trivial character. So these characters are regarded as characters of $L_{h} / Z\left(L_{h}\right)=P L_{h}$. Therefore, we can identify B_{1} with the only p-block \tilde{B}_{0} of maximal defect of $P L_{h}$. On the other hand, by Corollary 3.4 and the proof of Lemma 3.5, the number of p-blocks of defect zero of $P L_{h}$ is $\operatorname{gcd}(q-1, n)(q-1) / \operatorname{gcd}(q-1, n h)$.

Let $\lambda=\left(h_{1}, h_{2}, \cdots\right) \in \operatorname{Irr}(G L)$ and let a_{i} be the constant term of h_{i}. All characters in $\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ have the same restrictions to $Z\left(L_{h}\right)$. So, all constituents belong to the same p-block. By Corollary 3.4(3), characters in $\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ belong to B_{a} if and only if

$$
\begin{equation*}
a=\left((-1)^{n} \prod_{j}\left(a_{j}\right)^{j}\right)^{(q-1) / \operatorname{gcd}(q-1, n h)} \tag{3.8}
\end{equation*}
$$

Lemma 3.7 (Lemma 2.5 in [8]). Let $a_{i}(1 \leq i \leq \delta)$ be positive integers, $A=$ $\operatorname{gcd}\left(a_{1}, a_{2}, \cdots, a_{\delta}\right)$, and $a \in F_{1}$. Then

$$
\left|\left\{\left(x_{1}, x_{2}, \cdots, x_{\delta}\right) \in F_{1}^{\delta} \mid x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{\delta}^{a_{\delta}}=a\right\}\right|=(q-1)^{\delta-1} \beta(A, a)
$$

where $\beta(A, a)$ is the number of solutions in F_{1} to the equation $x^{A}=a$, i.e.,

$$
\beta(A, a)= \begin{cases}\operatorname{gcd}(q-1, A), & \text { if } a \in U_{(q-1) / \operatorname{gcd}(q-1, A)} \\ 0, & \text { otherwise }\end{cases}
$$

Let a be in $U_{\operatorname{gcd}(q-1, n h)}$ and $\mu=\left(a_{1}^{l_{1}}, a_{2}^{l_{2}}, \cdots, a_{\delta}^{l_{\delta}}\right)$ be a partition. By the above lemma, we have

$$
\begin{aligned}
& \text { (3.9) }\left|\left\{\left(x_{1}, x_{2}, \cdots, x_{\delta}\right) \in F_{1}^{\delta} \mid\left((-1)^{n} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{\delta}^{a_{\delta}}\right)^{(q-1) / \operatorname{gcd}(q-1, n h)}=a\right\}\right| \\
& \quad=\left|\left\{\left(x_{1}, x_{2}, \cdots, x_{\delta}\right) \in F_{1}^{\delta} \mid\left\{\left((-1)^{l_{1}} x_{1}\right)^{a_{1}} \cdots\left((-1)^{l_{\delta}} x_{\delta}\right)^{a_{\delta}}\right\}^{(q-1) / \operatorname{gcd}(q-1, n h)}=a\right\}\right| \\
& \quad=(q-1)^{\delta-1} \beta\left(\frac{(q-1) A(\mu)}{\operatorname{gcd}(q-1, n h)}, a\right)
\end{aligned}
$$

4. The McKay numbers of $\boldsymbol{L}_{\boldsymbol{h}}$

For a partition $\mu=\left(a_{1}^{l_{1}}, a_{2}^{l_{2}}, \cdots, a_{\delta}^{l_{\delta}}\right)$ of n, a be in $U_{\operatorname{gcd}(q-1, n h)}$, and a positive integer s, we denote by $\operatorname{Irr}(G L, \mu, a, s)$ the set of irreducible characters $\lambda=$ $\left(h_{1}, h_{2}, \cdots\right)$ of $G L$ satisfying the following.
(1) The partition $\left(j^{\operatorname{deg}\left(h_{j}\right)}\right.$) equals μ,
(2) $\operatorname{Irr}\left(L_{h} \mid \lambda\right) \subseteq B_{a}$, and
(3) λ is stabilized by s-th roots of 1 in $U_{(q-1) / h}$, but is not stabilized by s^{\prime}-th roots of 1 for any $s^{\prime}>s$ with $s \mid s^{\prime}$, i.e., the restriction of λ to L_{h} has s irreducible constituents.
Note that by (3.6) and (3.7) $\operatorname{Irr}(G L, \mu, a, s)$ is closed under the action of $U_{(q-1) / h}$.
We denote by $\operatorname{Irr}(G L, \mu, a)$ the set of irreducible characters λ of $G L$ satisfying (1) and (2) of the above, i.e.,

$$
\operatorname{Irr}(G L, \mu, a)=\bigcup_{s \mid(q-1) / h} \operatorname{Irr}(G L, \mu, a, s) \quad \text { (disjoint). }
$$

And we denote by $\widetilde{\operatorname{Irr}}(G L, \mu, a, s)$ the set of irreducible characters λ of $G L$ satisfying (1),(2) above and the following.
(4) λ is stabilized by s-th roots of 1 in $U_{(q-1) / h}$. (Thus λ is stabilized by s^{\prime}-th roots of 1 for any $s^{\prime}>s$ with $s \mid s^{\prime}$.)
This means that

$$
\widetilde{\operatorname{Irr}}(G L, \mu, a, s)=\bigcup_{s \mid s^{\prime}} \operatorname{Irr}\left(L_{h}, \mu, a, s^{\prime}\right)
$$

Moreover, we put

$$
\begin{aligned}
\operatorname{Irr}\left(L_{h}, \mu, a, s\right) & =\left\{\zeta \in \operatorname{Irr}\left(L_{h}\right) \mid \zeta \in \operatorname{Irr}\left(L_{h} \mid \chi\right), \chi \in \operatorname{Irr}(G L, \mu, a, s)\right\} \\
\operatorname{Irr}\left(L_{h}, \mu, a\right) & =\left\{\zeta \in \operatorname{Irr}\left(L_{h}\right) \mid \zeta \in \operatorname{Irr}\left(L_{h} \mid \chi\right), \chi \in \operatorname{Irr}(G L, \mu, a)\right\} \\
m(\mu, a, s) & =\left|\operatorname{Irr}\left(L_{h}, \mu, a, s\right)\right|, \quad \text { and } \\
m(\mu, a) & =\left|\operatorname{Irr}\left(L_{h}, \mu, a\right)\right| .
\end{aligned}
$$

For an integer $t>1$, we define $\Pi(t)$ by

$$
\Pi(t)=\Pi\left(1-\frac{1}{r^{2}}\right)
$$

where r runs over all prime numbers that divide t. For example, for any positive integers $i, j, \Pi\left(2^{i}\right)=3 / 4, \quad \Pi\left(3^{i}\right)=8 / 9, \quad \Pi\left(2^{i} 3^{j}\right)=24 / 36$, etc. For convenience, we put $\Pi(1)=1$.

At first, we show the following lemma. For a divisor s of $\Lambda(\mu)$, we put

$$
\gamma(\mu, s)=q^{l(\mu) / s-\delta(\mu)}
$$

Note that if $\lambda=\left(h_{1}, h_{2}, \cdots\right) \in \operatorname{Irr}(G L)$ is stabilized by s-th roots of 1 in $U_{(q-1) / h}$, then s divides $\operatorname{gcd}\left((q-1) / h, \operatorname{deg}\left(h_{1}\right), \operatorname{deg}\left(h_{2}\right), \cdots\right)$.

Lemma 4.1.

(1) $|\widetilde{\operatorname{Irr}}(G L, \mu, a, s)|=\gamma(\mu, s)(q-1)^{\delta(\mu)-1} \beta((q-1) A(\mu) / \operatorname{gcd}(q-1, n h), a)$.
(2) Let $\operatorname{gcd}(\Lambda(\mu),(q-1) / h)=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ be the prime decomposition of $\operatorname{gcd}(\Lambda(\mu),(q-1) / h)$, s be a divisor of $\operatorname{gcd}(\Lambda(\mu),(q-1) / h)$ with the prime decomposition $s=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$, and set $c_{i}(1 \leq i \leq k)$ as follow. We put $c_{i}=0$ if $s_{i}=r_{i}$ and $c_{i}=1$ if $s_{i}<r_{i}$. Then

$$
\begin{aligned}
& m(\mu, a, s)=h s^{2} \sum_{\substack{0 \leq d_{i} \leq c_{i} \\
1 \leq i \leq k}}(-1)^{d_{1}+\cdots+d_{k}} \gamma\left(\mu, p_{1}^{s_{1}+d_{1}} \cdots p_{k}^{s_{k}+d_{k}}\right) \\
& \times(q-1)^{\delta(\mu)-2} \beta\left(\frac{(q-1) A(\mu)}{\operatorname{gcd}(q-1, n h)}, a\right)
\end{aligned}
$$

Proof. (1) If $\left(h_{1}, h_{2}, \cdots\right) \in \operatorname{Irr}(G L, \mu, a)$ is stabilized by s-th roots of 1 in $U_{(q-1) / h}$, then we may write

$$
\begin{equation*}
h_{a_{j}}(x)=x^{l_{j}}+\sum_{i=0}^{l_{j} / s-1} b_{j, i} x^{i s} \tag{4.1}
\end{equation*}
$$

for all j by (3.7). Moreover, because this character belongs to B_{a}, by Corollary 3.4(3)(ii) we have

$$
\begin{equation*}
\left((-1)^{n} b_{1,0}^{a_{1}} b_{2,0}^{a_{2}} \cdots b_{\delta, 0}^{a_{\delta}}\right)^{(q-1) / \operatorname{gcd}(q-1, n h)}=a . \tag{4.2}
\end{equation*}
$$

If $i \neq 0$, then the possible of $b_{j, i}$ is any element in $G F(q)$, and the number of all possible of the set of $b_{j, 0}$ is determined by (3.9). Thus

$$
\begin{aligned}
|\widetilde{\operatorname{Irr}}(G L, \mu, a, s)| & =\left(\prod_{j=1}^{\delta} q^{l_{j} / s-1}\right)(q-1)^{\delta-1} \beta\left(\frac{(q-1) A(\mu)}{\operatorname{gcd}(q-1, n h)}, a\right) \\
& =\gamma(\mu, s)(q-1)^{\delta(\mu)-1} \beta\left(\frac{(q-1) A(\mu)}{\operatorname{gcd}(q-1, n h)}, a\right) .
\end{aligned}
$$

(2) The above number includes characters stabilized by s^{\prime}-th roots of 1 for some $s<s^{\prime}$ with $s \mid s^{\prime}$. Thus

$$
\begin{aligned}
& |\operatorname{Irr}(G L, \mu, a, s)| \\
& =\sum_{\substack{0 \leq d_{i} \leq c_{i} \\
1 \leq i \leq k}}(-1)^{d_{1}+\cdots+d_{k}} \gamma\left(\mu, p_{1}^{s_{1}+d_{1}} \cdots p_{k}^{s_{k}+d_{k}}\right)(q-1)^{\delta(\mu)-1} \beta\left(\frac{(q-1) A(\mu)}{\operatorname{gcd}(q-1, n h)}, a\right) .
\end{aligned}
$$

Each $U_{(q-1) / h}$-orbit in $\operatorname{Irr}(G L, \mu, a, s)$ has $(q-1) / h s$ elements. So each orbit gives s characters of L_{h} by Corollary 3.4(2). Consequently, all characters in $\operatorname{Irr}(G L, \mu, a, s)$ give
$h s^{2} \sum_{\substack{0 \leq d_{i} \leq c_{i} \\ 1 \leq i \leq k}}(-1)^{d_{1}+\cdots+d_{k}} \gamma\left(\mu, p_{1}^{s_{1}+d_{1}} \cdots p_{k}^{s_{k}+d_{k}}\right)(q-1)^{\delta(\mu)-2} \beta\left(\frac{(q-1) A(\mu)}{\operatorname{gcd}(q-1, n h)}, a\right)$
irreducible characters of L_{h}.
Theorem 4.2. For a partition $\mu=\left(a_{1}^{l_{1}}, a_{2}^{l_{2}}, \cdots, a_{\delta}^{l_{\delta}}\right)$ of n and $a \in U_{\operatorname{gcd}(q-1, n h)}$,

$$
\begin{aligned}
m(\mu, a)=h\left\{\sum_{t \mid \operatorname{gcd}(\Lambda(\mu),(q-1) / h)} t^{2} \Pi\right. & \left.(t) q^{l(\mu) / t-\delta(\mu)}\right\} \\
& \times(q-1)^{\delta(\mu)-2} \beta\left(\frac{(q-1) A(\mu)}{\operatorname{gcd}(q-1, n h)}, a\right)
\end{aligned}
$$

Proof. We obtain $m(\mu, a)$ by summing $m(\mu, a, s)$ for all s dividing $\operatorname{gcd}(\Lambda(\mu)$, $(q-1) / h)$, i.e., for all $\left(s_{1}, \cdots, s_{k}\right)\left(0 \leq s_{i} \leq r_{i}\right)$. Hence we may write by the previous lemma,

$$
m(\mu, a)=h\left\{\sum_{t \mid \operatorname{gcd}(\Lambda(\mu),(q-1) / h)} e_{t} \gamma(\mu, t)\right\}(q-1)^{\delta(\mu)-2} \beta\left(\frac{(q-1) A(\mu)}{\operatorname{gcd}(q-1, n h)}, a\right),
$$

for some e_{t}. If $t=p_{1}^{t_{1}} \cdots p_{k}^{t_{k}}$, then e_{t} is in fact, obtained as follows.

$$
e_{t}=\sum_{\substack{0 \leq d_{i} \leq c_{i}^{\prime} \\ 1 \leq i \leq k}}(-1)^{d_{1}+\cdots+d_{k}} p_{1}^{2\left(t_{1}-d_{1}\right)} \cdots p_{k}^{2\left(t_{k}-d_{k}\right)}
$$

where $c_{i}^{\prime}=0$ if $t_{i}=0$, and $c_{i}^{\prime}=1$ if $t_{i}>0$. Therefore,

$$
e_{t}=\prod_{t_{i} \neq 0}\left(p_{i}^{2 t_{i}}-p_{i}^{2 t_{i}-2}\right)=t^{2} \Pi(t)
$$

Consequently, we have the statement of the theorem.
Note that each character ζ in $\operatorname{Ir}\left(L_{h}, \mu, a\right)$ satisfies $\nu(\zeta(1))=e n^{\prime}(\mu)$. Therefore, we have the following theorem.

Theorem 4.3. For $0 \leq k<n(n-1) / 2$,

$$
m_{p}\left(e k, L_{h}(n, q), B_{a}\right)=\sum^{\prime} m(\mu, a)
$$

where the sum is taken over all partitions μ of n such that $n^{\prime}(\mu)=k$. And if $i \neq e k$ for any k with $0 \leq k<n(n-1) / 2$, then $m_{p}\left(e k, L_{h}(n, q), B_{a}\right)=0$.

Recall that \tilde{B}_{0} is the unique p-block of maximal defect of $P L_{h}$. Because we can identify B_{1} with $\tilde{B_{0}}$, by Lemmas $3.7,4.1$, and Theorem 4.2 , we have the following.

Corollary 4.4. For $0 \leq k<n(n-1) / 2$,

$$
\begin{aligned}
& m_{p}\left(e k, P L_{h}(n, q), \tilde{B}_{0}\right)=\sum^{\prime} m(\mu, 1) \\
& =\sum^{\prime} h\left\{\sum_{t \mid \operatorname{gcd}(\Lambda(\mu),(q-1) / h)} t^{2} \Pi(t) q^{l(\mu) / t-\delta(\mu)}\right\}(q-1)^{\delta(\mu)-1} \frac{\operatorname{gcd}(q-1, A(\mu))}{\operatorname{gcd}(q-1, n h)},
\end{aligned}
$$

where the first sum is the same as in Theorem 4.3. And if $i \neq e k$ for any k with $0 \leq k<n(n-1) / 2$, then $m_{p}\left(e k, P L_{h}(n, q), \tilde{B}_{0}\right)=0$.

5. The Alperin-McKay conjecture for $\boldsymbol{L}_{\boldsymbol{h}}$

In this section, we show the following theorem, i.e., we prove the Alperin-McKay conjecture for L_{h}. The notations are the same as in the previous sections.

Theorem 5.1. For a Sylow p-subgroup P of L_{h}, let b_{a} be the p-block of $N=$ $N_{L_{h}}(P)$ corresponding to the p-block B_{a} of maximal defect of L_{h}. Then we have

$$
m_{p}\left(0, L_{h}, B_{a}\right)=m_{p}\left(0, N, b_{a}\right) .
$$

Proof. We classify irreducible characters of L_{h} and N respectively by sequences $\iota=\left(s_{0}, s_{1}, s_{2}, \cdots, s_{k}\right)$ of integers s_{i} such that $0=s_{0}<s_{1}<s_{2}<\cdots<s_{k}=n$ for some $k \leq n$.

By Corollary 3.4, the degree of $\zeta \in \operatorname{Irr}\left(L_{h}\right)$ is not divisible by p if and only if ζ is in $\operatorname{Irr}\left(L_{h} \mid \lambda_{\infty}\right)$ for some $\lambda=(h(x), 1,1, \cdots) \in \operatorname{Irr}(G L)$ where $h(x)$ is a polynomial of degree n. For given $\iota=\left(s_{0}, s_{1}, \cdots, s_{k}\right)$, we consider characters $(h(x), 1,1, \cdots) \in$ $\operatorname{Irr}(G L)$ with

$$
h(x)=x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i}, \quad \text { where } \begin{cases}a_{i} \neq 0, & \text { if } i=s_{j} \text { for some } 0 \leq j \leq k-1 \\ a_{i}=0, & \text { otherwise }\end{cases}
$$

Thus the number of characters of this type is $(q-1)^{k}$. By (3.7), an element of $U_{(q-1) / h}$ stabilizes characters of this type if and only if it is a $\operatorname{gcd}\left(s_{1}-s_{0}, \cdots, s_{k}-\right.$ $\left.s_{k-1},(q-1) / h\right)$-th roots of 1 . By Corollary 3.4(2) the number of characters in $\operatorname{Irr}\left(L_{h}\right)$ given by ι is

$$
\operatorname{gcd}\left(s_{1}-s_{0}, \cdots, s_{k}-s_{k-1}, \frac{q-1}{h}\right)^{2} h(q-1)^{k-1}
$$

By (3.8) the above characters belong to a p-block $B_{a}\left(a \in U_{\operatorname{gcd}(q-1, n h)}\right)$ if and only if $a_{0}^{(q-1) / \operatorname{gcd}(q-1, n h)}=a$. Note that for any $a \in U_{\operatorname{gcd}(q-1, n h)}$ the number of solutions a_{0} in U_{q-1} to this equation is $(q-1) / \operatorname{gcd}(q-1, n h)$. Since this number does not depend on a, all B_{a} 's have the same number of characters of this type given by ι.

On the other hand, a Sylow p-subgroup P of L_{h} is conjugate to the subgroup of upper triangle matrices all of whose diagonal entries are 1 . Thus we may assume that N is the subgroup of upper triangle matrices in L_{h}.

But the degree of a character χ of N is not divisible by p if and only if the kernel of χ contains the commutator subgroup P^{\prime} of P. Therefore we may consider such characters as those of $M=N / P^{\prime}$.

Let $Q=P / P^{\prime}$ and let D be the set of elements in N / P^{\prime} corresponding to diagonal matrices in N. Then we have $M=D \ltimes Q$. We denote an element a in D by ($a_{1}, a_{2}, \cdots, a_{n}$) where $a_{i} \in F_{1}$ and $a_{1} a_{2} \cdots a_{n} \in U_{h}$, in such a way that the product of elements in D is the component-wise product. We denote an element b in Q by $\left(b_{1}, b_{2}, \cdots, b_{n-1}\right)$ where $b_{i} \in G F(q)$, and the product of elements in Q is the component-wise sum. Thus the action a on b is given by

$$
b^{a}=a^{-1} b a=\left(a_{1}^{-1} b_{1} a_{2}, a_{2}^{-1} b_{2} a_{3}, \cdots, a_{n-1}^{-1} b_{n-1} a_{n}\right) .
$$

Since D and Q are Abelian groups, every irreducible character of these groups is of degree 1 , and we fix an isomorphism from D (resp. Q) to the group of characters of D (resp. Q).

We construct characters of M by using Theorems 2.3 and 2.4.
For the above sequence $\iota=\left(s_{0}, \cdots, s_{k}\right)$, we consider $b=\left(b_{1}, b_{2}, \cdots, b_{n-1}\right) \in$
$\operatorname{Irr}(Q)$ such that

$$
\begin{cases}b_{i}=0, & \text { if } i=s_{j} \text { for some } 1 \leq j \leq k-1 \\ b_{i} \neq 0, & \text { otherwise }\end{cases}
$$

The number of such characters is $(q-1)^{n-k}$. Then, for $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \operatorname{Irr}(D)$, $b^{a}=b$ if and only if $a_{s_{j}+1}=a_{s_{j}+2}=\cdots=a_{s_{j+1}}(0 \leq j \leq k-1)$. And since $a \in \operatorname{Irr}(D)$, it is necessary that $a_{s_{1}}^{s_{1}-s_{0}} a_{s_{2}}^{s_{2}-s_{1}} \cdots a_{s_{k}}^{s_{k}-s_{k-1}} \in U_{h}$. By Lemma 3.7, the order of the stabilizer of b in D is

$$
\begin{aligned}
& (q-1)^{k-1} \sum_{c \in U_{h}} \beta(m, c) \\
= & (q-1)^{k-1} \sum_{c \in U_{\operatorname{gcd}(m h, q-1) / g \operatorname{cd}(m, q-1)}} \operatorname{gcd}(m, q-1) \\
= & (q-1)^{k-1} \operatorname{gcd}(m h, q-1)
\end{aligned}
$$

where $m=\operatorname{gcd}\left(s_{1}-s_{0}, s_{2}-s_{1}, \cdots, s_{k}-s_{k-1}\right)$. Since the order of D is $h(q-1)^{n-1}$, the number of elements contained in each orbit is $(q-1)^{n-k} / \operatorname{gcd}(m,(q-1) / h)$. Hence the number of orbits in the set of irreducible characters given by ι is $\operatorname{gcd}(m,(q-1) / h)$. From Theorems 2.3 and 2.4, the number of characters χ of M such that the restriction of χ to Q is a sum of certain irreducible characters all of which have the type given by ι is

$$
\begin{aligned}
& \operatorname{gcd}\left(m, \frac{q-1}{h}\right)^{2} h(q-1)^{k-1} \\
& \quad=\operatorname{gcd}\left(s_{1}-s_{0}, s_{2}-s_{1}, \cdots, s_{k}-s_{k-1}, \frac{q-1}{h}\right)^{2} h(q-1)^{k-1}
\end{aligned}
$$

The distribution of irreducible characters of N to p-blocks of maximal defect can be seen by comparing the irreducible constituent of the restriction to the center $Z(M)$ of M. Note that $Z(N)=Z(M)$. Recall that the same is true for L_{h}. See Lemma 3.6. We fix an irreducible character b of Q given by ι, and consider the distribution of the characters in $\operatorname{Irr}(M \mid b)$ to p-blocks. The center $Z(M)$ of M is contained in the stabilizer T of b in D and on the other hand we have $Q \cap Z(M)=\{1\}$. Thus, from Theorem 2.3, for an irreducible character χ in $\operatorname{Irr}(M \mid b)$, there exists an extension \tilde{b} of b to T and an irreducible character η of T such that $\chi=(\tilde{b} \eta)^{M}$. So, in order to look at the restriction of χ to $Z(M)$, we may consider that of η to $Z(M)$. Since T is Abelian, by Theorems 2.3, 2.4, the characters in $\operatorname{Irr}(M \mid b)$ are distributed into p blocks in such a way that all blocks of M of maximal defect have the same numbers of characters in $\operatorname{Irr}(M \mid b)$. Since the above argument can be applied for any character b of Q given by ι, all p-blocks of M of maximal defect have the same numbers of characters given by ι.

Let B_{a} and b_{a} be the same as in the statement of Theorem 5.1. For a fixed ι, the above argument shows that the numbers of characters of L_{h} given by ι belonging to B_{a} and that of N given by ι belonging to b_{a} are equal. Since $\iota=\left(s_{0}, s_{1}, \cdots, s_{k}\right)$ is arbitrary, we have

$$
m_{p}\left(0, L_{h}, B_{a}\right)=m_{p}\left(0, N, b_{a}\right) .
$$

We identify B_{1} with $\tilde{B_{0}}$, and in the same way as we identify b_{1} with the p-block $\tilde{b_{0}}$ of $N_{P L_{h}}(P)$. Therefore, we have the following.

Corollary 5.2. For a Sylow p-subgroup P of $L_{h} / Z\left(L_{h}\right)$, let $\tilde{b_{0}}$ be the p-block of $\tilde{N}=N_{L_{h} / Z\left(L_{h}\right)}(P)$ corresponding to the p-block \tilde{B}_{0} of maximal defect of $L_{h} / Z\left(L_{h}\right)$. Then we have

$$
m_{p}\left(0, L_{h} / Z\left(L_{h}\right), \tilde{B_{0}}\right)=m_{p}\left(0, \tilde{N}, \tilde{b_{0}}\right)
$$

References

[1] J.L. Alperin: The main problem of block theory, Proc. of Conf. on finite groups (Univ. Utah Park City, UT, 1975), Academic Press, New York, 1976.
[2] S.W. Dagger: On the blocks of chevalley groups, J. London Math. Soc. (2)3 (1971), 21-29.
[3] J.A. Green: The characters of the finite general linear groups, Trans. A. M. S. 80 (1955), 402-447.
[4] G.I. Lehrer: The characters of the finite special linear groups, J. Algebra, 26 (1973), 564 583.
[5] G.I. Lehrer: Characters,Classes,and Duality in Isogenous Groups, J. Algebra, 36 (1975), 278-286.
[6] I.G. Macdonald: Symmetric functions and Hall polynomials,Clarendon Press, Oxford, 1979.
[7] H. Nagao and Y. Tsushima: Representations of finite groups, Academic Press, New york, 1989.
[8] J.B. Olsson and K. Uno: Dade's conjecture for general linear groups in the defining characteristic, Proc. London Math. Soc. (3)72 (1996), 359-384.

