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1. Introduction

For a finite group G, a prime number p, a non-negative integer k, and a p-block

B of G, we put

mp(k,G,B) = |{C e Irr(G) | i/(C(l)) = k,ζ € B}\,

where Irr(G) is the set of irreducible complex characters of G and v is the expo-
nential valuation of some splitting field of G with ι/(p) = 1. The sum mp(k,G) =

^2Bτnp(k^G,B) over all p-blocks of G is called the fc-th McKay number of G.

Let GL = GL(n, q) be the general linear group of degree n over the finite field

GF(q) with # elements, where q — pe is a power of the prime p. Let

LΛ = Lh(n,q) = {x E GL(n,q) \ άet(x) G Uh},

where Uh is the subgroup of the multiplicative group F\ of GF(q) of order h. (Thus

ft, is a divisor of g — 1.) In particular, Lq-ι(n,q) is GL(n,q) and Lχ(n,g) is the spe-

cial linear group SL(n,q). In general, Lh(n,q) satisfies

GL(niq) \> Lh{n,q) > SL(n,q).

Moreover, we denote by PLh = PLh(n,q) the factor group of Lh(n,q) modulo its

center Z{Lh{n,q)).

In Section 4 of this paper, we write mp(k,G,B) concretely in terms of several

invariants of partitions, where G — Lh(n,q) or G = PLh{n,q).

In Section 5, we show the Alperin-McKay conjecture [1] holds for Lh and PLh

Note that for Lh or PLh, every p-block is of defect 0 or maximal defect. Thus it suf-

fices to prove the following. If a p-block B of G is not of defect zero, then for a

Sylow p-subgroup P of G and the p-block b of the normalizer NG(P) of P corre-

sponding to B by Brauer's first main theorem, we have

mp(0,G,B) = mp{0,NG(P),b).
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Section 2 is devoted to stating several preliminary results, and Section 3 is devot-

ed a parametrization of irreducible characters of Lh Notations are standard. See, for

example, [7].

The author would like to thank Prof. K. Uno for his constant advice, and the ref-

eree for his careful reading of the manuscript.

2. Preliminaries

In this section, we mention several definitions and results which are importan-

t when studying irreducible characters of GL and related groups.

2.1. Polynomials and Simplices. Let n be a fixed integer. For each positive in-

teger k, denote by Fk the multiplicative group of GF(qk). We take K to be a fixed

copy of Fn\ and regard Fk as a subgroup of K for each k with k <n. For each pos-

itive integer k and ft, let F fc and Uh denote the complex character group of Fk and

Uh, respectively.

Suppose k and I are positive integers and k divides /. Then Fk < Fι and we have

a surjective homomorphism Nik Fι -> Fk given by

Nιk(p)=pnik for all p e Fh

where nlk = \Ft\/\Fk\ = (qι - l)/(qk - 1). Defining Ikl : Fk -> Ft by

hι(Ψ)(p) = Φ(pnik) (ψePkipeFt),

we can embed Fk in Fι. In this way, we embed Fk in K for each integer k with

1 < k < n. This embedding is well-defined (See Lemma 3.1 in [5]).

Lemma 2.1 (Lemma 3.2 in [5]). For integers k, I with k \ I, under the above

identifications, the surjection: ψ κ-> ψnik from Fι to Fk is the same map as the re-

striction of characters.

In the same way, Uh is embedded in Fk and in K.

DEFINITION AND NOTATIONS.

(1) Let σ denote the Frobenius map p ι-> pq on K, and σ the corresponding action

on K.

(2) An irreducible polynomial f over GF(q) with the degree less than n will be

identified with its set of roots in GF(qn]), which forms a σ-orbit. If f(x) φ x,

then / is a σ-orbit in K. If p is an element of this orbit, we write / = (p).

(3) A simplex g over GF(q) is a σ-orbit in K. If ψ G g, we write g = (ψ).

We denote by T the set of irreducible polynomials regarded as σ-orbits in K, and
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by Q the set of simplices over GF(q). By the degree deg(f) of an irreducible poly-

nomial /, or deg(g) of simplex g, we mean the cardinality of the orbit concerned.

If we fix an isomorphism between K and K, then Fk and Uh correspond to Fk

and Uh, respectively. Moreover, T and Q correspond bijectively, and then a polynomial

and the corresponding simplex have the same degree.

2.2. Partitions. Let μ = (α^1, aι

2

2,..., aι

δ

δ) be a partition of n. Here we put a\ >

(i2 > .. > as > 0 and U φ 0 is the multiplicity of α; as a part of μ. (Thus n — l\a\ +

l2a2 + . . . + /^α^.) For convenience sake, we also write μ — {jmj), where mai = U,

and rrij = 0 if j φ a,i for any i.

We write \μ\ = n to indicate that μ is a partition of n. Moreover /(μ) = ^2U is

the length of μ, Λ(μ) = gcd(/i,/2, ,/*), A(μ) = gcd(αi,α2, •• ,α*), ί(μ) = ί is

the number of distinct parts in μ, and n ;(μ) = ^2(ai)h- The partition conjugate to

μ is denoted by μ'. Let V be the set of partitions of all nonnegative integers n. Here

we regard (0) as the only partition of 0.

2.3. Applications of the Clifford theory. Let G be a finite group and H be a

normal subgroup of G. For ζ G lττ(H) we denote by Γ G ( ( ) the stabilizer of ζ in G

and set

I r r ( G I C ) = { x e I r r ( G ) ( \ < )
JJf\

For x G Irr(G), let

Theorem 2.2 (Chapter 3, Theorem 3.8 in [7]). Let ζ G lττ(H) and T = TG(ζ).

For x G Irr(G | ζ), we have

where c is some positive integer.

Theorem 2.3 (Chapter 3, Theorem 5.12 in [7]). Let ζ G Irr(ff) and T

TG(C) tfζ extends to an irreducible character η ofT, then we have

Irr(Γ I C) = {θη \ θ G Irr(T/#)} and

ϊvτ(G I C) = {(θηf I θ G Ίir(T/H)}.
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Theorem 2.4. With the above notation, each one of the following conditions im-

plies that ζ is extendable to an irreducible character of T:

(1) (Chapter 3, Theorem 5.11 in [7]) T/H is cyclic.

(2) ζ is of degree 1, and T = S ix H, where S is a certain group.

Lemma 2.5. If G/H is cyclic then the following hold.

(1) In the restriction of irreducible characters of G to H> the multiplicity of each

irreducible constituent is 1.

(2) Two irreducible characters of G either have the same restrictions to H, or have

restrictions without common irreducible constituents.

(3) For ζ G Irr(tf), χ G Irr(G | C), H * have \bτ(H \ χ)\ = | G | / | # | | I r r ( G | C)|.

Proof. Let T = TG(ζ). Note that T/H is also cyclic.

(1) Irr(T/H) has only characters of degree 1. By Theorems 2.4(1) and 2.3, c in

Theorem 2.2 is 1.

(2) It is clear from (1) and Theorem 2.2.

(3) By Theorem 2.3, we have |Irr(G \ ζ)\ = |Irr(Γ/tf) | = |Γ/ίf|, and by Theorem

2.2, we obtain |Irr(i/ | χ ) | = \G/T\. Thus the equality holds. D

2.4. p-blocks. Let G be a finite group, Gp> the set of elements of G whose or-

ders are prime to p, and Cl{Gp>) the set of conjugate classes of G contained in Gp>.

For C G Cl(Gp>), let C be the sum of all elements of C in the group algebra of G

over C, and d(C) the defect of C, i.e., d{C) = v(\CG(x)\) for x G C. For a p-block

B of G, let d(B) be the defect of B. For χ G Irr(G) and C G Cl(Gp<), we define

ωx[C) by

ωx{C) = \C\χ(x)/χ(l)

with x G C. Let p be the valuation ideal of v, i.e., p is the set of elements in the field

such that the values of v on them are positive.

Theorem 2.6 (Chapter 3, Theorem 6.28 in [7]). Assume that χt χf G Irr(G)

belong to p-blocks of the same defect d. Then x and χι belong to the same p-block

if and only if

ωx(C)=ωx'(C) (mod p)

for any C G Cl(Gp>) with d(C) = d.

Theorem 2.7 (Chapter 3, Theorem 6.29 in [7]). Let B be a p-block of G and

let x G Irr(G) belong to B. Then the following three conditions are equivalent to each

other.
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(1) d(B) = 0.
(2) «,(*(!)) = u(\G\).
(3) The number of irreducible characters belonging to B is 1.

Therefore the number of p-blocks of defect 0 is the number of characters satisfy-
ing the condition (2) above.

3. A parametrization of irreducible characters of Lh(n,q)

In this section, we treat Irr(L^). We remark that the center Z(Lh) of Lh is iso-
morphic to £/gcd(g-i,nfc) In particular, Z(GL) ~ i*\.

3.1. A parametrization of Irr(GL) and lrr(Lh). Green [3] showed in 1955
how an irreducible complex character of GL is given by a partition-valued function
\:Q -*V which satisfies

(3-D
g€G

In this subsection, we identify the set of all such functions with Irr(GL). An account
of how such a function determines an irreducible character may be found in Section 3
in [4] and Chapter IV in [6], too.

We explain properties of characters of GL which we need in this paper. We de-
note by deg(λ) the degree of a character λ. Let λ' : Q -ϊ V be the function such that

λf(g) is the partition conjugate to λ(g) for all g G Q. We denote by ξ((φ)) the prod-

uct of all elements of (φ) G Q, i.e. ξ((φ)) = ^ndl where d = deg((ψ)). It is clear

that ξ((xP)) e Fx.

Theorem 3.1. Let λ : Q -ϊV be an irreducible character of GL.

(1) (p.444 in [3], (6.7) in IV of [6]) i/(deg(λ)) = e Σ ^ d e g ^ n ' C λ ' ( < ? ) ) .

(2) (Example 2 in IV of [6], Theorem 5.4 in [5]) The restriction of λ to Z(GL) is

a multiple of Ylg

Let a e Fι and (φ) G Q. We define the parallel translation τ α : Q -» Q as

τa(φ) — (cxφ). Moreover, we define an action of a G F\ on Irr(GL) as follows. For

any irreducible character λ : Q -> V of GL, the character λα is defined by λ α ((?/>)) =

λ(τα(</>)) - X((aφ)) for any (φ) G Q.

Theorem 3.2 (Proposition 5.2 in [5]). Let λ, χ G Irr(GL). Then λ and χ have

the same restrictions to Lh if and only if λ α = χ for some a G U(

For any irreducible character λ : Q -> V of GL, we denote by λoo the
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orbit of Irr(GL) containing λ. Let Irr(Lh | λoo) denote Irr(Lh | λ). (This notation is

well defined by virtue of Theorem 3.2.)

Theorem 3.3.

(1) iττ(Lh) = Όx^ I r r(£/ι I λoo) (disjoint), where this union is over all

orbits in Irr(GL). Moreover, for each λ E Irr(GL), we have

| I r r (L Λ I λoo Q 1

Λ|λooΓ

(2) For λ E Irr(GL), the fallowings hold.

(i) For any φ E lrτ(Lh | λ^) ,

deg(g)n'(X'(g)).

(ii) The restriction of each character in lτr(Lh | λoo) to Z(Lh) is a multiple

of

IL

Proof. (1) Since GL/Lh is a cyclic group, the first half is clear from Lemma

2.5(2).

Therefore, for λ E Irr(GL) and ζ E Irr(L^ | λ), we have Irr(GL | ζ) = X^. So

we have the latter half by Lemma 2.5(3).

(2)(i) By Theorem 2.2 and Lemma 2.5(1), for ζ E lrr(Lh \ λoo),

deg(λ) = |Γσ L(C)\GL|deg(C).

Here, \TGL(()\GL\ divides \Lh\GL\ = (q - l)/h which is prime to p. So the p-part

of deg(ζ) equals that of deg(λ). From Theorem 3.1(1), we have (i).

(ii) The irreducible constituent of a restriction of each character in Irr(L/ι | λoo)

to Z(Lh) equals the irreducible constituent of X\z{Lh) By Z(Lh) ~ ^gcd(g-i,n/ι)»

Lemma 2.1 and Theorem 3.1(2), (ii) holds. D

By using the above, we can count the number of characters of L^.

3.2. A parametrization of Irr(L^) by polynomials. In order to count irre-

ducible characters effectively, we parametrize Irr(GL) and iτr(Lh) by polynomials

over GF(q).
Fix an isomorphism from K to K. Then, as is seen in 2.1, we have the bijec-

tion from T to Q. Therefore elements in Irr(GL) are parametrized by partition-valued
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functions λ : T -» V which satisfy

(3.2) Σ|λ(/)|deg(/) = n.

We denote polynomials in T by / i ,/ 2 , . Let λ'(/;) = ( j m ^ ' ) ) where m(i,j)

is a non negative integer. For λ : T -»• 'P with (3.2), we define the sequence of poly-

nomials

(π/r(iil),Π/
^ i i

r ( < 2)

Then it is easy to see that this gives a bijection from the set of partition-valued func-

tions with (3.2) to the set of sequences (/ι1?Λ,2>* •) of monic polynomials over GF(q)

which satisfy the following.

(1) The constant term of each hi does not equal to 0, and

(2) Σjjdeg{hj) = n, i.e., μ = (jdee(fc;)) is a partition of n.

From now on, we identify the set of such sequences with Irr(GL).

Let g € Q correspond to an irreducible monic polynomial f(x) — xd + b\xd~ι +

• + bd over GF(q) such that bd Φ 0, and let a G F\ correspond to p E Fi. As in

2.1, we regard an irreducible polynomial as the σ-orbit consisting of its roots in K.

Because τa(g) is the σ-orbit obtained by multiplying all elements of the σ-orbit g by

a, it corresponds to the σ-orbit obtained by multiplying all roots of / by p, i.e., we

have

(3.4) rp(f(x)) =xd + pbιX

d-1 + p2b2x
d~2 + + pdbd.

We apply this notation when f(x) is reducible, too. If p is a primitive m-th root of

unity, then

(3.5) f(x) = τp(f(x)) & bk = 0 if rot*.

In particular, if this condition holds, then we have m | d because bd φ 0.

Let λ = (fti,Λ2, ) £ Irr(GL) and put h{{x) = xdi + 6 i , i ^ " 1 + • - + bitdi. Note

that bi^i Φ 0 for any i. The action of a on λ corresponds to the action of p in such

a way that

(3.6) λ ' = ( τ p - i ( M , V i ( M , )

If p is a primitive m-th root of 1, then

(3.7) X = χp&bitj=0 if rat .7-

In particular, if p stabilizes λ, then ra | gcd(deg(fti),deg(/ι2), •)•
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By our identification, λoo equals the U(q-ι)/h~orbit of Irr(GL) containing λ.

We restate Theorems 3.2 and 3.3 by using the above notation.

Corollary 3.4.

0 ) λ, x £ Irr(GL) have the same restrictions to Lh if and only if Xp = χ for some

P e C/(g-i)/Λ.

(2) Lrr(LΛ) = U λ o o

 ι*<Lh | λoo) {disjoint),
where this union is over all U(q-i)/h-orbits in Irr(GL). Moreover we have

\hi(Lh I λoo q 1

1 Alλool

(3) For λ = (Ai, A2, •) G Irr(GX) with hi{x) = z d i 4- ft*,^*"1 4- 4- biydi

bid. φ 0, ίA^ following hold.

(i) Fί?r α«y φ G IΓΓ(LΛ | λoo),

. ( o ) d e β(fy) = en'(μ)i

where μ is the partition (jde&(hi)) of n.

(ii) The restriction of each character in lττ(Lh | λoo) to Z(Lh) is a multiple

of the irreducible character of Ugcd(q-i,nh) corresponding to

.Ί(g-l)/gcd(g-l,n/i)

Proof. (1) and (2) are clear from Theorems 3.2 and 3.3.

(3) Let us regard λ as a function from T to V. We denote polynomials in T by

/i>/2> We write X'(fi) = (jm^^) where m(i,j) is a non negative integer. Then

hj = ΠifΓ{i'J) and degίΛ,-) = Σi^&(fi)m(ί,j).

(i) By Theorem 3.3(2)(i), the p-part of the degree of each character in lrτ(Lh\\oo)

equals

(ii) If g e Q corresponds to / € T, then £(#) corresponds to the product of all
roots of / , i.e., ( - l ) d e g ( / ) / (0 ) . We remark that (jd eβ(Λ;)) is a partition of n. Then

the irreducible constituent of the restriction of λ to Z(Lh) corresponds to

TT {
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TT TT |(__l)deg(/i)m(t,j)j f/Q\m(iJ)jj(g-l)/gcd(g-l,n/ι)

3.3. p-blocks of Lh(n,q). By Theorem 4 of [2], a defect group of any p-block

of Li = SL(n, q) is a Sylow p-subgroup or trivial subgroup. The same argument as

for GL in the last paragraph of Section 4 in [2] yields that the same is true for Lh

Therefore the defect d(B) of the block B of Lh equals to 0 or ι/(\Lh\) = en(n-1)/2.

In the later case, we say that B is of maximal defect. By Theorem 2.7, any p-block of

defect 0 has a character the p-part of whose degree equals that of \Lh\, i.e. p e n ( n - 1 ) / 2 .

On the other hand, characters in any p-block of the maximal defect have p-parts of

degree less than pen(n-i)/2#

Lemma 3.5. The number of blocks of Lh of defect 0 is h. Moreover, for a non-

negative integer k and any block B of Lh of defect 0, we have

[ 1, if k = en(n - l)/2;
mp{k,Lh,B) = {' ; . '

I 0, otherwise.

Proof. The latter half is clear by Theorem 2.7.

Let λα = (1,1, , 1, x-a) e Irr(GL) for a G Fλ. By Theorem 2.7 and Corollary

(n—1) times

3.4(3)(i), the set of p-blocks of defect 0 corresponds bijectively to

{C € Iτv(Lh) I */(<(!)) = H\Lh\) = en(n - l)/2}

= U α e F l

 I r r ^ I A.)
= I ) Irr(Lh I ( λ j ^ ) (disjoint)

where the last union is over all C/(g_i)//ι-orbit consisting of characters λα. Because

λα is stabilized only by 1, Kλ^od = (q — l)/h. Therefore, the number of f/(g_i)/^-

orbit consisting of characters λα is h, and \lrr(Lh \ (λα)oo)| = 1 by Corollary 3.4(2).

Therefore the number of blocks of defect 0 is h. D

For characters belonging to p-blocks of maximal defect, we can determine their

distribution to p-blocks by looking at the values at C"s for all C G Cl((Lh)p')
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with CLH(X)(X £ C) containing a Sylow p-subgroup of Lh- This is possible be-

cause of Theorem 2.6. Since an element of Lh satisfying this condition is in the

center Z(Lh) of Lh, it is enough to see the character values on Z{Lh). Moreover

Z{Lh) ~ ί/gcd(g-i,n/ι) is a cyclic group whose order is prime to p. So, it is enough

to look at their actual values, not those modulo p. Therefore we have the following.

Lemma 3.6. Let ζ, ζ' G Iττ(Lh) belong to p-blocks of non-zero defect. Then ζ

and ζ' belong to the same block if and only if ωζ(x) = ωζ>(x) for all x G Z(Lh)>

By this lemma, we can determine distribution of characters to p-blocks of Lh of

maximal defect by looking at the irreducible constituent of their restriction to Z(Lh)>

Therefore p-blocks of maximal defect are parametrized by the element of Z(Lh) Be-

cause Z(Lh) ~ t/gcd(g-i,n/i) - fgcd(g-i,nh)> p-blocks of Lh of maximal defect are

parametrized by the element of {7gcd(g-i,n/ι) The number of blocks of Lh of maxi-

mal defect is gcd((# — l),nh).

We fix an isomorphism Z(Lh) ^ t̂ gcd(g-i,nΛ)> a n d identify them via the iso-
morphism. We denote by Ba the p-block of Lh of maximal defect corresponding to

β € Ugcd{q-l,nh)'

In particular, the principal block is Bι. Moreover, £?i is the set of characters

in blocks of non-zero defect of Lh such that restrictions of those to Z(Lh) equal

to multiples of the trivial character. So these characters are regarded as characters of

Lh/Z(Lh) = PLh> Therefore, we can identify B\ with the only p-block Bo of maxi-

mal defect of PLh On the other hand, by Corollary 3.4 and the proof of Lemma 3.5,

the number of p-blocks of defect zero of PLh is gcd(g — 1, n)(q - l)/gcd(# — 1, nh).

Let λ = (fti,/i2, # •) € Irr(GL) and let α; be the constant term of h{. All charac-

ters in lττ{Lh\\oo) have the same restrictions to Z(Lh). So, all constituents belong to

the same p-block. By Corollary 3.4(3), characters in Iπ^Lfclλoo) belong to Ba if and

only if

/ α _ Λ . , _ 4(«-l)/gcd(g-l,«Λ)

(3.o)

Lemma 3.7 (Lemma 2.5 in [8]). Let aι (1 < ί < δ) be positive integers, A =

gcd(αχ, α 2, , as), and a G Fλ. Then

where β(A,a) is the number of solutions in F\ to the equation xA = α, i.e.,

β{A,a) = < .
^ 0, otherwise.



MCKAY NUMBERS 187

Let a be in J/gcd(g-i,n/ι) and β = (α'1, α^2, , α^4) be a partition. By the above
lemma, we have

(3.9)\{(xux2,.-.,xs)eFf I ((-l)nxa

ι

1xa

2

2---xa

s

s){q-1)/ecd{q-1'nh)=a}\

= \{(Xl,X2, •••,Xs)£Ff\ { ( ( - l ) ' ^ ) " 1 ( ( - I ) 1 ' * , ) 0 ' }(ϊ-D/gcd(,-l,nh) = α } |

in Λ\S-X

4. The McKay numbers of L^

For a partition μ = (a1^, CL£ , -, aι

δ

δ) of n, a be in t/gcd^-i^), and a pos-

itive integer 5, we denote by Irr(GL, μ, α, 5) the set of irreducible characters λ —

{hi,h2, - - •) of GL satisfying the following.

(1) The partition (jd eβ(Λ;)) equals μ,

(2) IrrtLfc | λ) C Ba, and

(3) λ is stabilized by 5-th roots of 1 in U(q-ιyh, but is not stabilized by s'-th roots

of 1 for any s' > s with 5 | s', i.e., the restriction of λ to Lh has s irreducible

constituents.

Note that by (3.6) and (3.7) Irr(GL,μ, α, 5) is closed under the action of U(q-i)/h>

We denote by Irr(GL,μ, a) the set of irreducible characters λ of GL satisfying

(1) and (2) of the above, i.e.,

Irr(GL,μ, α) = |̂ J Irr(GL, μ, α, s) (disjoint).
s\{q-l)/h

And we denote by Irr(GL, μ, α, 5) the set of irreducible characters λ of GL satisfying

(1),(2) above and the following.

(4) λ is stabilized by 5-th roots of 1 in U(q-ιyh. (Thus λ is stabilized by 5;-th roots

of 1 for any 5' > 5 with 5 | s'.)

This means that

Irr(GL, μ, α, 5) = ( J Irr(LΛ,μ,α,5')
B\S'

Moreover, we put

Lτ(L/i,μ,α,β) = {ζ e Ίiτ(Lh) | ζ G Iτr(LΛ |χ), χ G Irr(GL,μ,α,5)},

IrriLfc,^^) = {C G Irr(Lfc) | C G Irr(Lfc|χ), χ G Irr(GL,μ,α)},

m(μ,α,5) = |Irr(LΛ,μ,α,β)|, and

m(μ,a) = \Irr(Lh, μ,a)\.
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For an integer t > 1, we define U(t) by

where r runs over all prime numbers that divide t. For example, for any positive in-

tegers ί, j , Π(2*) = 3/4, 11(3*) = 8/9, Π(2i3J') = 24/36, etc. For convenience, we

put Π(l) = 1.

At first, we show the following lemma. For a divisor s of Λ(μ), we put

Note that if λ = (fti, h2,- •) G Irr(GL) is stabilized by s-th roots of 1 in

then s divides gcd((q — 1)/Λ, deg(/ii), deg(Λ2), •)•

Lemma 4.1.

(2) Let gcd(Λ(μ),(<7 — l)//ι) = pϊ 1 !^ 2 "".Pjb* ^ e ^ prime decomposition of

gcd(Λ(μ),(ςr — 1)/Λ), s be a divisor of gcd(Λ(μ), (ςf — 1)/Λ) wίίA rAβ prime

decomposition s = pSιPs

2

2 ' "Pkk> and set crfl < i < k) as follow. We put C{ = 0

// 5̂  = Γj and C{ = 1 if S{ < r». Γλe/i

m(μ,a,s) = hs2

Γ<i<k

Proof. (1) If (/ii,/i2? * *) € Irr((?L,μ,α) is stabilized by 5-th roots of 1 in

U(q-i)/h> then we may write

lj/s-1

(4.1) h α . ( x ) = x l ' +

for all j by (3.7). Moreover, because this character belongs to Ba, by Corollary

3.4(3)(ii) we have

(4.2) ( ( - i Γ & t o ^ o 6 ? t Ό ) ( g " 1 ) / β c d ( g " l f Λ Λ ) = α

If z 7̂  0, then the possible of bjj is any element in GF{q), and the number of all

possible of the set of bj$ is determined by (3.9). Thus
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(2) The above number includes characters stabilized by s'-th roots of 1 for some

s < s' with s I s'. Thus

\lτΐ{GL,μ,a,s)\

= Σ (-^^-+

Each C/(g_i)/^-orbit in Iτr(GL,μ,a,s) has (g — l)//i5 elements. So each orbit gives

s characters of Lh by Corollary 3.4(2). Consequently, all characters in Irr(GL, μ, α, 5)

give

irreducible characters of Lh •

Theorem 4.2. For a partition μ = (a1^, α^2, , aι

δ

δ) of n and a G £^gcd(g-i,njψ

m(μ,a) =
t|gcd(Λ(μ),(,-l)/h)

Proof. We obtain m(μ,a) by summing m{μ,a,s) for all 5 dividing gcd(Λ(μ),

(q-l)/h), i.e., for all (si, , s^) (0 < 5̂  < r;). Hence we may write by the previous

lemma,

for some et. If t = p^ - - -pl

k

k, then et is in fact, obtained as follows.

et=

Ki<k
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where ĉ  = 0 if U = 0, and c[ = 1 if U > 0. Therefore,

Consequently, we have the statement of the theorem. •

Note that each character ζ in Irr(L/ ι,μ,α) satisfies i/(ζ(l)) — en'(μ). Therefore,

we have the following theorem.

Theorem 4.3. For 0 < k < n(n - l)/2,

mp(ek,Lh(n,q),Ba) = >Γ m(μ,a),

where the sum is taken over all partitions μ of n such that n'(μ) = k. And if i φ ek

for any k with 0 < k < n(n — l)/2, then mp(ek, L^(n, q), Ba) = 0.

Recall that B$ is the unique p-block of maximal defect of PL^. Because we can

identify B\ with Bo, by Lemmas 3.7, 4.1, and Theorem 4.2, we have the following.

Corollary 4.4. For 0 < k < n(n - l)/2,

mp(ek, PLh(n, q),B0) = ^ ra(μ, 1)

Σ
t|gcd(A(μ),(g-l)Λ)

where the first sum is the same as in Theorem 4.3. And if i φ ek for any k with

0 < k < n(n - 1)1% then mp(ek,PLh{n,q),Bo) = 0.

5. The Alperin-McKay conjecture for Lh

In this section, we show the following theorem, i.e., we prove the Alperin-McKay

conjecture for Lh- The notations are the same as in the previous sections.

Theorem 5.1. For a Sylow p-subgroup P of Lh, let ba be the p-block of N =

Nιh (P) corresponding to the p-block Ba of maximal defect of Lh- Then we have

Proof. We classify irreducible characters of Lh and JV respectively by sequences

i = ( 5 o , *i, *2, - " 9 *fc) of integers Si such that 0 = s0 < si < s2 < < sk = n for

some k < n.



MCKAY NUMBERS 191

By Corollary 3.4, the degree of ζ G Irr(L/ι) is not divisible by p if and only if ζ

is in lτr(Lh\λoo) for some λ = (h(x), 1,1, •) G Irr(GL) where h(x) is a polynomial

of degree n. For given i = (s0, «i, * , Sfc)> we consider characters (Λ(x), 1,1, •) G

Irr(GL) with

Σ
n - 1 . ( di ^ 0, if i = Sj for some 0 < j < k — 1;

αjX1, where <
i = 0 [ di — 0, otherwise.

Thus the number of characters of this type is (g — l) f c . By (3.7), an element of

U(q-i)/h stabilizes characters of this type if and only if it is a gcd($i - s0, , Sk —

Sfc_i, (q-l)/h)-th roots of 1. By Corollary 3.4(2) the number of characters in

given by L is

(•-

k ιgcd si -so,--,8k - 5 f c _ i , — — h{q-l)

By (3.8) the above characters belong to a p-block Ba(a G ί/gCd(9-i,n/ι)) if a n ^ on^y if

α(g-i)/gcd(g-i,nΛ) = β N o t e t h a t for a n y fl € [/gcd(gl n / ι ) m e number of solutions α0

in Uq-ι to this equation is (q — l)/gcd(q— l,nh). Since this number does not depend

on α, all Ba's have the same number of characters of this type given by i.

On the other hand, a Sylow p-subgroup P of Lh is conjugate to the subgroup of

upper triangle matrices all of whose diagonal entries are 1. Thus we may assume that

N is the subgroup of upper triangle matrices in Lh

But the degree of a character χ of N is not divisible by p if and only if the ker-

nel of x contains the commutator subgroup P' of P. Therefore we may consider such

characters as those of M = N/P1.

Let Q — P/P' and let D be the set of elements in N/P' corresponding to di-

agonal matrices in N. Then we have M = D x Q. We denote an element a in D

by (αi,α 2 , ,α n ) where α; G F\ and αiα 2 α n G t/fr, in such a way that the

product of elements in D is the component-wise product. We denote an element b in

Q by (&i,&2j >δn-i) where b{ G GF(q), and the product of elements in Q is the

component-wise sum. Thus the action a on b is given by

ba = a~ιba = (αj"16iα2, α ^ , α^δn-i

Since /) and Q are Abelian groups, every irreducible character of these groups is

of degree 1, and we fix an isomorphism from D (resp. Q) to the group of characters

of D (resp. Q).

We construct characters of M by using Theorems 2.3 and 2.4.

For the above sequence L = (so>" *>$&)» we consider b = (&i,&2> * * *,&n_i) G



192 H. SUKIZAKI

Irr(<2) such that

( bi = 0, if i = Sj for some 1 < j < k - 1;

bi φ 0, otherwise.

The number of such characters is (q— l)n~k. Then, for a — (αi, α 2, , α n ) € Irr(D),
ba = b if and only if α s > +i = αβj.+2 = = αβj.+1 (0 < j < k — 1). And since

α G Irr(£>), it is necessary that a8

s\-s°as

sl~
Sl - α ^ " ^ " 1 G C4 By Lemma 3.7, the

order of the stabilizer of b in D is

(9 -I)*"1 £/*(">, c)

^ gcd(m,g-l)
c£^gcd(mfι,g-l)/gcd(m,q-l)

= (q-l)k-1gcd(mh,q-l)

where m = gcd(si— so,S2~5i, ,5^—5fc_i). Since the order of JD is /ι(^—I) 7 1 " 1 , the

number of elements contained in each orbit is (q—l)n~fc/gcd(m, (q—l)/h). Hence the

number of orbits in the set of irreducible characters given by i is gcd(ra, (q — l)//ι).

From Theorems 2.3 and 2.4, the number of characters χ of M such that the restriction

of x to Q is a sum of certain irreducible characters all of which have the type given

by i is

- s o , $ 2 -
— 1 \

The distribution of irreducible characters of AT to p-blocks of maximal defect can

be seen by comparing the irreducible constituent of the restriction to the center Z(M)

of M. Note that Z{N) = Z(M). Recall that the same is true for Lh. See Lemma 3.6.

We fix an irreducible character b of Q given by t, and consider the distribution of

the characters in Irr(M | b) to p-blocks. The center Z(M) of M is contained in the

stabilizer T of b in D and on the other hand we have Q Π Z(M) = {1}. Thus, from

Theorem 2.3, for an irreducible character \ in Irr(M | b), there exists an extension b

of b to T and an irreducible character η of T such that χ = (bη)M. So, in order to

look at the restriction of χ to Z(M), we may consider that of η to Z(M). Since T

is Abelian, by Theorems 2.3, 2.4, the characters in Irr(M | b) are distributed into p-

blocks in such a way that all blocks of M of maximal defect have the same numbers

of characters in Irr(M | b). Since the above argument can be applied for any character

b of Q given by ί, all p-blocks of M of maximal defect have the same numbers of

characters given by i.
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Let Ba and ba be the same as in the statement of Theorem 5.1. For a fixed t, the

above argument shows that the numbers of characters of Lh given by i belonging to

Ba and that of TV given by i belonging to ba are equal. Since i — (s 0, «i, * ' ,Sk) is

arbitrary, we have

mp(0,Lh,Ba) = mp(0,N,ba). D

We identify B\ with Bo, and in the same way as we identify b± with the p-block

60 of NpLh(P). Therefore, we have the following.

Corollary 5.2. For a Sylow p-subgroup P of Lh/Z(Lh)> let b0 be the p-block of

N = NLh/z(Lh)(P) corresponding to the p-block Bo of maximal defect of Lh/Z(Lh).

Then we have
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