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1. Introduction

We consider the Schrodinger equation with time-dependent electric field

(1.1) idtu(t,x)=H(t)u{t,x) on II = L2{RU) (i/> 1).

Here H(t) is called Stark Hamiltonian of the form

H(t) = ~A-E(t) x + V(x)

with electric field E(t) — E + e(t). E is a nonzero constant vector in R" and the

perturbation e(t) —> 0 as \t\ —ϊ oo. V(x) is a multiplicative operator of a real val-

ued function decaying as \x\ —> oo. We also denote H(t) — V as Ho(t). As is well-

known, H0(t) is essentially self-adjoint on CQ°(M) for each ί G l . (See [15].) In this

paper we assume V is smooth and short range, (i.e. There exists e > 0 such that

V(x) = O d ^ l " 1 / 2 " 6 ) as \x\ -> oo.) H(t) is also self-adjoint on HI since V is rela-

tively bounded with respect to Ho(t). With some suitable conditions on V(x) and e(t),

H(t) generates a unique unitary propagator {ί7(ί,5)}_ o o < ί ) < s < o o such that U(t,s) is a

solution of (1.1). We give the description of it later in detail. We also denote the u-

nitary propagator generated by H0(t) as {t/ 0 (M)} If Φ) = 0, U(t,s) = e " ^ * - ' ^

where H = -(1/2)Δ - E x + F(x).

Since F(x) is decaying as |x| -» oo, one expects the following. For any φ G HI,

there exists φ±, ψ± G HI such that

(1.2) \\Uo(t,s)φ-U(t,s)φ±\\-^0 as ί -> dboo.

(1.3) \\U(t,s)φ-Uo(t,s)ψ±\\-^0 as ί -> ±oo.

In other words, any solution of the free equation approaches to that of the perturbed

equation (1.1) as t -» ±oo, and the similar fact holds by exchanging the free Hamilto-

nian H0(t) and the perturbed Hamiltonian H(t). Since Uo(t,s) and U(t,s) are unitary,

the above formulas (1.2) and (1.3) mean the existence of the following strong limits.
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(1.4) W±(s)=s- lim U(t,s)*U0(t,s),
£->±oo

(1.5) W±(s)=s- lim U0(t,sYU(t,s).
t—>±oo

We say the wave operator W(s) is complete if the inverse wave operator W±(s) in

(1.5) exists. This agrees with the usual definition of the asymptotic completeness for

the case of time-independent perturbation.

Let us recall some known results about the asymptotic completeness of Stark

Hamiltonians. Researches for Schrodinger operators with electric fields have been

made mainly for D.C. and A.C. Stark effects. Asymptotic completeness for A.C. S-

tark Hamiltonian, in which case E(t)-x = (cosί)xi, was first proved by Howland and

Yajima in [9] and [17]. In these papers they prove the asymptotic completeness in the

following way. Since H(t) is periodic in time, the unitary propagator satisfies

U(t + 2π,s + 2π) = U(t,s) for all ί , s G l .

So they define a semi-group on L 2 (T;L 2 (E I / )) (T = E/2πZ) by

(U(σ)φ)(t) = U(t,t-σ)φ(t-σ),

(U0(σ)φ)(t) = U0(t,t-σ)φ{t-σ) for φ(t) e L2(Ί L2(RU)).

We can easily see that U(σ) and Uo(σ) are generated by the self-adjoint operators

K = -i(d/dt) + H(t) and Ko = K - V on L 2(T;R I /). They prove the asymptotic

completeness for H{i) by reducing it to that for K and Ko. These results were ex-

tended to the 3-body case by Nakamura [13]. The asymptotic completeness of modi-

fied wave operator for long-range potentials, which decay slowly |x| ->• oo, was proved

by Kitada-Yajima [10]. Recently the asymptotic completeness for E(t) = E + (cost)μ

is proved by M0ller [11] (μ is small enough compared with the main field E).

As for D.C. Stark Hamiltonian, in which case E(t) = E, the asymptotic com-

pleteness for long-range many-particle systems was proved by Adachi and Tamura in

[2] and [3]. In these papers they show the propagation estimates, which describes the

decay of the solution e~ιtHφ for some direction as t ->• oo. They prove it by using

the commutator technique of E. Mourre [12]. It is based on the the following form in-

equality appearing in Appendix B in [8], For all λ G E and e > 0, there exist δ > 0

such that

(1.6) f(H)i[H,A]f(H)>(\E\-e)f(H)2 for all / G Cg°([λ - ί,λ + <S]).

Here A is a self-adjoint operator, which is equal to (E/\E\) (—ίV). A is called a

conjugate operator. With this positivity of the form, the propagation estimates is shown

in the following way. For example suppose V(x) is smooth and short range. Then we

have



ASYMPTOTIC COMPLETENESS FOR HAMILTONIANS 65

-itHf(H)φ
?

with characteristic function χ and φ G L 2 ' ^ 6 0 ) / 2 ^ ) . Here L ^ R " ) is a Hubert

space with weight (x)p. With this estimate we can see that V(x)e~ttHφ G Lι(Rt) So

the existence and the asymptotic completeness of the wave operator is easily obtained

by use of the following expression, which is called Cook's method.

(1.7)
ΛtHo-itHi _

φ =• φ — \ >V(x)e-ιθίiφdθ

The aim of this paper is to show the asymptotic completeness for the Schrodinger

operators with time-dependent electric field, which tends to non zero constant vector

as t ->• oo. To do so we modify the commutator method and show some propagation

estimates for the constant electric fields to the Schrodinger operator of the form (1.1)

allowing e(t) to be nonperiodic but small as t -> oo. Combining Cook's method and

these results, we prove the existence and the asymptotic completeness of wave oper-

ators. We consider two cases. The first one is that the directional derivative of V(x)

along E is relatively small for the main field \E\. The second case is that this condi-

tion is not satisfied, but a stronger decay in t is assumed for the perturbation e(t).

Thorough this paper, we assume V(x) is smooth and short-range,

i.e. V(x) G C°°(RU) and there exists δ0 > 1/2 such that

(1.8) \d%V(x)\ < )-δ°-W for all a

where <•) = (1 + | I 2 ) 1 / 2 .

Let us state more precisely the assumption and results. Either of the following two

assumptions are supposed on V(x) and e(t).

ASSUMPTION 1.1. We assume that

(1.9) \E\> s u p —

and that there exist c(t) G C 2(R) and η0 > 0 satisfying

(1.10) \c(t)\ = O(t~ηo) as t -> oo,

(1.11) c(t)=e(t)

With this Assumption we write

(1.12) b(t) = -c(t),
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(1.13) a{t) = -\ [ {\c(θ)\2 - 2E c(θ)}dθ.
* Jo

ASSUMPΉON 1.2. e(t) is a continuous integrable function on R+.

defined by

(1.14) - / e(θ)dθ.
h

satisfies \b(t)\ - O(t~u°) as t -* oo for some ti0 > 5/2.

Under this Assumption we put

/

OO 1 /.OO

6(fl)dβ, a(t) = -J {\b(θ)\2-2E c(θ)}dθ.
Let us add some words related to the above assumptions. If the directional deriva-

tive of V(x) is relatively small for the main field E, Mourre's inequality holds with-

out localization, i.e. There exists C > 0 and i[H(t),A(t)] > C holds for sufficiently

large t. We assume the decay order of e(t) in Assumption 1.1 in this case. If the di-

rectional derivative of V(x) is not small enough, we can not neglect the derivative of

f(H(t)) with respect to t. It is closely related with the decay of the perturbation e(t)

as t -> oo. So we need stronger condition for the decay of the perturbation e(t), in

which case we assume Assumption 1.2. In each of these Assumptions, H(t) is essen-

tially self-adjoint on D(\x\)ΠH2(Ru). And we can construct unique unitary propagator

satisfying the following properties. (See [18].)

For all t,t',seR,

(1.16) U(t,t) = /, U(t,s)U(s,t') =

(1.17) Jt

We also denote the unitary propagator associated with Ho{t) as Uo(t, s). With

these unitary operators we define the wave operators in the same way as in (1.4) and

(1.5). Our main result is the following.

Theorem 1.3. Suppose Assumption 1.1 or 1.2 holds. Then the operators W+(s)

and W+(s) exist for all s e t

REMARK 1.4. Theorem 1.3 holds as t —> — oo, if we replace oo in Assumption

1.1 and 1.2 by -oo.
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2. Translated Hamiltonians

To show the main theorem, we have to treat the time-dependent part 'e(t) x\

which is not bounded. For this purpose we introduce another Hamiltonian H(t), which

is obtained by translating H(t) in both x and p spaces. In Sections 3 and 4, we apply

the commutator method for H(t) and prove the propagation estimates for the propa-

gator associated with H(t) instead of H(t). The existence of the wave operators for

H(t) and H0(t) is obtained by showing it for translated Hamiltonians.

DEFINITION 2.1.

(2.1) H(t) = AA-E.X + V(X- c(t)).

We denote Ho = H(t) - V(x - c(t)).

We can also construct unique unitary propagators U(t,s) and Uo(t,s), generated

by H(t) and Ho. We remark that U(t,s) and U(t,s) (U0(t,s) and U0(t,s)) are relat-

ed through the following relation. It is based on Άvron-Herbst formula' with a slight

modification. (For example, see [4].)

(Avron-Herbst formula)

(2.2) U(t,s)=τ(t)U(t,s)τ*(s),

where

(2.3) τ(t) = exp(-ία(ί))exp(-i6(ί) x)exp(ic(t) p), p = - i V x .

We show the propagation estimates for U(t,s) and U0(t,s) instead of U(t,s) and

Uo(t,s). Once we prove them, the estimates for U(t,s) and Uo(t,s) can be easily ob-

tained by using the fact that g(x)e~tpc^ = e~tpc^g(x — c(t)) holds for an operator

of multiplication by a function g(x). Before going to the propagation estimates by use

of the commutator method, let us recall the well-known formula of functional calculus

in [7].

Let / € C°°(M) be a function such that for some raoel

(2.4) \f{k){t)\<Ck(l + \t\)m°-k, vifc€NU{0}.

Then we can construct an almost analytic extension f(z) of f(t) satisfying

(2.5) f(t) = f(t), t € E,

(2.6) \d-J\ < C V I I m z H z Γ 0 - 1 - " , viV G N,

(2.7) supp/(z) C {z; |Imz| < 1 + |Rez|}.
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We remark that supp/ is compact in C if / G C£°(R) (See Appendix in [5]).

Further, if (2.4) holds with ra0 < 0 we can rewrite a function of a self-adjoint operator

A in the following integral

(2.8) f(A) = - L / d-zf(z)(z - A)~ιdz Λ dz.

With this form, we can compute the commutator of an operator P and g(A) in the

following way.

For operators P and Q, we define acpQ(P) = P. For m G N, we define

adrq{P) = [adQ~1(P),Q] inductively. Now we take Q as the resolvent of A. Then

we have

(2.9) acΓA(P)(z - A)'1 = (z - A)-ιadn

A(P) + (z - A)'1acT/1(P)(z - A)'1

by using the resolvent equation. With these results, we have the following Lemma.

Lemma 2.2. Let A and P be linear operators on EL Suppose A is self-adjoint

and relatively bounded with respect to P. Suppose that the form ad^^P) extends to

a bounded operator for 1 < m < n. Then for any g G C°°(E) satisfying (2.4) with

mo < n, we have

ΐ^ q(mHA) 1 Γ
(2.10) Pg{A) = V j-^-αdχ(P) + — / θsg(z)Rr

n A P(z)dz Λ dz,
^ - ^ 771: 2?Γί Jin ' '

m=0 ^

where R; i Λ > P(z) = (z - A)~nad'χ(P)(z - A)-\ and

™~^ ( I) 7 7 1 l f
(2.11) g{A)P - I ad™(P)-—J—g{τn>(A) -f —^ / 9 ^ ( 2 ) E /

n Λ P(^)oίz Λd^,
m = 0

j

where ^l

niA,p(z) = (z ~ A) 1ad1\(P)(A — z) n and g(z) denotes an almost analytic
extension of g(x).

We introduce smeared cut off functions, which are needed to write down the prop-

agation estimate. For α, b G 1, we call F> α (t), F<b(t) G C°°(E) smeared cut off

functions if they satisfy for some δ > 0

F>a(t) = 1 for t > a + δ and F>a(t) = 0 for t < a - δ,

F<b(t) = 1 for t < b - δ and F<b(t) = 0 for t > b + δ,

For simplicity's sake, in the following we write F(t > a), F(t < b) instead of F>a(t),

F<b(t).
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3. Propagation estimates I

As we have mentioned in Section 1, Mourre's inequality plays important role in

showing the propagation estimate. The aim of this section is to prove Theorem 3.6

and finally to show the main theorem under Assumption 1.1. We rewrite the condition

(1.9) as follows.

(3.1) \E\ - sup ω W ( z ) > 0 with ω= —
χeRu \E\

We denote the left hand side of the above inequality by EQ. Next we define the con-

jugate operator Ao(t) as follows. Especially we denote ^o(O) as AQ.

(3.2) Ao(t) = ω-p- Eot where p = -iVx

For a time-dependent self-adjoint operator A(t), we denote Heisenberg derivative

dtA(t) + i[H(t),A(t)] as DA(t) with dtA(t) = (d/dt)A(t). From (3.1) we have

DA0(t) > 0 in the form sense. We show the propagation estimate by use of the com-

mutator method, which is based on the formula of Lemma 2.2. Before that we have to

show that the propagator U(t,s) leaves D(A0) invariant since the conjugate operator

Ao(t) is not bounded.

Lemma 3.1. We denote the set of bounded operators in Έ. as 95 (H). Let s G l

and h G Cg°(R) and 0 < δ < 2 be given. Then

(i) For 1 < n < 4, the form ad\,tΛh(H(t))) is extended to a bounded operator

on M. Moreover {H(t)+i)adn

Ao{t){h(H{t))) and adn

Ao{t)(h(H{i)))(H{t) + ϊ) are

continuous 95 (H) -valued functions oft which are uniformly bounded in t > 0.

(ii) (A0)
δU(t, s)h(H(s))(A0)-δ is a continuous 95 (H) -valued function oft

(iii) (-Ao{t))δF((Ao(t)/t) < -e)(A0)-δ is a <B(M)-valued continuous function of

t

Proof. It is easily seen that adn

A ,tJH(t)) is bounded for n > 1. So we use the

boundness of these operators in the formula of functional calculus which appeared in

Lemma 2.2. (i) is easily obtained by use of (2.8). To prove (ii), by an interpolation we

have only to prove the case δ — 2. By a straight forward computation we rewrite the

commutator.

A2

oU(t,s)h(H(s))(AoΓ2

= U(t,s)A2

oh(H(s)){Ao)-2 - 2ad\oφ{t,s))A0h{H{s))(A0)-2

+ ad2

Ao(U(t,s))h(H(s)){Ao)-2.

So the boundness is obtained if we show adk

A()φ{t,s)) 6 *B(H) for k = 1, 2. We
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rewrite αcίJio(ί/(ί,s)) in the following way

adι

Mφ{t,8)) = -U(t,s){U(s,t)A0U(t,s) - Ao}

= - f U(t,θ)i[H(θ),A0]U(θ,s)dθ.
J S

Since [H(Θ),AO] is bounded, we can easily see that adι

Ao(U(t,s)) E Q3(H). As for

the double commutator, we use the expression

ad\oψ{t,s))

= ~i Σ f adχφ{t^adχ+\H{θ))adχψ{θ,s))dθ.
αi+c*2+<*3=l s

With this form, we can see that ad2

AQφ(t,s)) is bounded. Therefore (ii) for δ = 2

follows from (i). To prove (iii) we have only to show that | | (—Λ o ) 2 (^o)~ 2 | | is locally

bounded in t. However this is obvious. D

Secondly we introduce a set of functions Sβ,a,e °f those functions gpiOtj€(x,t) (E
#/?,α,e> which are obtained by smoothly cutting off the part x > -et of a function

DEFINITION 3.2. Given /?, a > 0 and e > 0, we denote by $p,a,e
 m e s e t °f func-

tion g of the form g(x,t) = gpi(Xje(x,t) = —t~l3{—x)aχ{xjt) defined for (x,t) E

R x R-i-, where χ G C°°(R) and satisfies the following properties:

χ(x) = 1 for x < —2c, χ(x) =0 for x > -e.

~rχ{χ) ^ 0 and aχ(x) -f x—χ(x) = χ{x)2 for some
dx dx

χ€C°°(R), with χ>0.

From Lemma 3.1 we can see that {-gβ^ε(Ao(t),t))^2U(t,s)h(H(s))(Ao)~a/2

is a bounded operator for 0 < a < 4. Further the following Lemma shows that it

is bounded uniformly in t. We remark that Corollary 3.4, which is easily obtained by

using Lemma 3.3, is closely related with the propagation estimate.

Lemma 3.3. Let β0, e > 0, 0 < a0 < 4, and h G CQ°(R) be given. Then

ll(-w,«
= 0(1) as t -» oo



ASYMPTOTIC COMPLETENESS FOR HAMILΊΌNIANS 71

for (/J,α) - (O,l),...,(O,α{,),(A),αo) K = max{m G N|m < αo}) / / α 0 < 1,
(3.3) holds for (β,a) = (A),α0).

Corollary 3.4. Under the same conditions in Lemma 3.3, we /ιαve the following

result: Let e > 0 and 0 < θ < 1 be given. Then

ll(-Λ,α(l-*), e(4)^

for (/?, α) = (0,1), . . . , (0, α{,), (#>-, α 0 ) (= (A), α 0 ) */ «o < 1).

Corollary 3.4 easily follows from Lemma 3.3 and the following inequality.

(3.5) -*~*(e*)βV«(i-*),2c(M) < -9βtaΛ*>*)'

Once we prove Lemma 3.3, we have the propagation estimate with respect to p,

which corresponds to the momentum of the solution. With this estimate we have the

propagation estimate with respect to x. And finally we have Theorem 1.3 by using

Cook's method.

For simplicity, we denote the square of the left hand side of (3.3) as G^ ? α ? €(ί). In

the following Lemma, we prove the integrability of -(d/dt)Gβ,a,e(t) by using induc-

tion on a.

Proof of Lemma 3.3. We set ζ(t) = U(t, s)h{H(s)){A0)~a/2φ with φ G M. We

denote the inner product ( , ) H = ( , •) and (ζ(t),Pζ(t)) as (P)t for an operator P.

First we use the formula of functional calculus and decompose —(d/dt)Gβi(Xi€(t) as
follows.

(3.6) ~ G β,aΛ*) = (h)t + (h)t
at

(3.7) M

(3.8)

We compute the commutator appeared in the second line by use of Lemma 2.2. Then

we can rewrite it as follows.

(3.9) h =
m = l

(3.10) +
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with g(mHx,t) = 9?g{x,t).

As for 72 we rewrite g(Ao(t),t) by using integral representation (2.8):

(3.11) h = (βg} (Ao{t),t)+9{1HAo(t),t)dtAo(t).

Here dtA0(t) is the derivative of A0(t) with respect to t, which is equal to — Eo.

We combine Iχ and /2 by using the Heisenberg derivative DA0(t).

/ l + / 2 = TjTί _
(3.12) \°τ ' m=i

From Definition 3.2, we have ( ^ ( 1 ) ( ^ ^ ) ) 1 / 2 G C°° and ((d/dt)g)(x,t) > 0. We de-

note (g^ixit))1/2 as gh(x,t). We proceed to compute the sum in (3.12). We use

(2.11) again to decompose g^1\Aϋ(t),t)ad]io^(DAo(t)) into E2,E3,E4 that are giv-

en below. As for the rest of the sum

m=2

we commute g(m\Ao(t),t) and ad™Q,tJDA0(t)) and get the terms 2?5, i£6 given be-

low.

At last we have

(3.13) ~-τββ OL e(t) = {Eλ)t -h . . . + {E7)t

at '

where

(3.14) Ek = (J-t9yAo(t),t),

(3.15) E2 = gh(Ao(t),t)DAo(t)gh(Ao(t),t),

(3.16) £ 3 =9h(A0(t),t)
ml

m=l

(3.

(3.

(3.

17)

18)

19)

E5

= 9h(-

3

= ]Γ
m = 2

X

)(*),*) ί ^ τ / ^ f c ( z ,

mi=0
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3

(3.20) E6 =
m=2

(3-21) X {^^efJmWrf5-mfAo(t),DAo(oWd2f Λ ί β } '

(3.22) E7 = — / dΈg{z,t)Rr

4Ao{t)ή{t)(z)dzΛdz,

with

km(x,t) = ^(-x)-^

{Eχ)t and (E2)t do not decay as t ->• oo, but it is negligible since they are positive

in the form sense. We note that DA0(t) is positive by virtue of (3.1). To show (3.3),

we have only to show the integrability of (Es)t,..., (E7)t and that whose integrations

are dominated from above by | |0 | | 2 .

We show the integrability by induction on α 0 . Suppose 0 < a0 < 1 and (/?,α) =

(/?o,αo) Then we can easily see that

With this estimate and the fact that \dsg(z,t)\ < C(zlt)ao~%\\mz/t\ht~l3o~1, we have

(E4)u (E6)t, (E7)t =

Each term appearing above is integrable. We have

(3.23) | G / J o . α o , e ( ί ) < C t - Λ ' -

which implies Gβ0tOIOte(t) = O(l)\\φ\\2 since G/?0)O0)£(t) is non-negative. So we obtain

(3.24) \\(-9βo,coAMt), t))1/2ζ(t)\\ =

under the restriction 0 < α 0 < l

Next we show the integrability under the condition 1 < a0 < 2. In this case

9β0 α0 €(Ao(t),t) is not bounded in t > 0. To show the integrability we derive the
following estimate at first.

(3.25) \\(-goΛAMt),t))^2U(t,s)h(H(smAo)-1/2Um = 0(1).
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To show it we put βo = 4/5, αo = 1 into (3.24). Then we have

Applying the inequality (3.5) to the above estimate, we can sharpen this estimate com-

pared with (3.24). We have

We put this estimate into (E3)t,..., (Eγ)t with (βo,cto) — (0,1). Then we obtain

(3.25). Again we put the estimate (3.25) into (E3)t,..., (E7)t.

At last we have

for 1 < α 0 < 2 and β0 > 0.

So we also have the integrability under the restriction 1 < a0 < 2. For larger a0,

we obtain the integrability by repeating these arguments. (See Theorem 2.4 in [16].)

We have proved Lemma 3.3. D

By virtue of Corollary 3.4 we have the following Lemma.

Lemma 3.5. For all e > 0 and 0 < u < 2,

(3.26) \F(^- < E0-e)ύ(t,s)h(H(s))(x)-u/2\\ = O(ΓU).
II V ι / II«8(H)

Proof. By the same argument as in the proof of Lemma 3.3 we obtain

(3.27) | | (-^o,ao,e(AoW 5 0) 1 / 2 ^(^5)M^(5))(^o>- a o / 2 | b(H) = 0(1).

We remark that (A0)~u can be replaced by (x)~ u / 2 , due to the fact that h(H(s))p2

(x)~λ G 93(11). In addition we rewrite α o /2 as u. Combining the above estimate and

Corollary 3.4, we have (3.26). D

With this Lemma, we have the following theorem, so-called minimal acceleration

estimate.

Theorem 3.6. There exists σ > 0 such that for all 0 < u < 2

(3.28) F[^<σ)ϋ(t,8)h(H(s)){x)-^ = O(t~L) as t -* oo,
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with L = min{u, 3/2,1 + η0}.

Proof. We set ξ{t) = F((\x\/t2) < σ)U{t,s)h{H{s)){x)-u'2φ. Then

> (ξ(t),(ω-p)4F (^ψ- > -e) ξ(t))

We use the decomposition F( > —c) — 1 - F( < —e) to see that

\\(ω p)2ξ(t)\\2 > (Eo - e)Ψ\\ξ(t)\\2 ~

We put the estimate (3.26) of Lemma 3.5 into this inequality. Using the commu-

tator estimate \\[F((A0(t)/t) < -e),F((\x\/t2) < σ ) ] | | Φ ( M ) = 0{t~% we have

(3.29) Wiω pfmf > (Eo ~ e)Ψ\\ξ(t)f - C(E0 - e)*{t*~*u + t}\\φ\\\

On the other hand, we use the inequality (l/2)(ω-p)2 < H(t) + E-x-V(x-c(t))

to obtain

(3.30) ||(ω p)2ξ(t)\\ < 2\\H(t)ξ(t)\\ + 2\\(E • x)ξ(t)\\ + C\\φ\\.

We have

since | | [^ ( ί ) ,F(( | x | / ί 2 ) < σ)]||«8(H) is bounded uniformly in t, and

(33l)H{t)U(t, s) - U(t, s)H(s) = - U(t, θ)c(θ) VV(x - c(θ))U(θ, s)dθ

J s

Then it follows from (3.30) and (3.31) that

(3.32) ||(u, p)2m\\ < Ctι-^\\φ\\ + Cσt2\\ξ(t)\\ + C\\φ\\.

Combining (3.29), (3.32) and Assumption 1.1, we have

(3.33) {(Eo - e)4 - Cσ 2} | |£(*)| | 2 < C(t~2-2^ + t~2u -f r 3 ) | | ^ | | 2 .

We thus obtain Theorem 3.6, by taking σ > 0 sufficiently small. D
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4. Propagation estimates II

In Section 3 we have given the propagation estimate under the condition that the

directional derivative of V(x) is small compared with the main field \E\. In this sec-

tion we give the estimate without this assumption for V. Instead we assume Assump-

tion 1.2. The form inequality DAo(t) > 0 does not hold since EQ is negative. But we

can see that the following inequality

(4.1) f(H(t))i[H(t), A]f(H(t)) > (\E\ - e)f(H(t))2

holds for t ^> 1 if we take support of / suitably. Before showing it, we note the rela-

tion between H(t) and the time-independent Hamiltonian H. By an elementary calcu-

lation we can see that

H(t) = e~ic{t)'p{H - E c(t))eic{t)p.

This implies that

(4.2) f(H(t))=e-ic^-pfτ(H)eic^'p for all / G CO°°(1R),

where/Γ(.) = /( -£? c(ί)).
Combining this relation and (1.6), we have the following lemma.

Lemma 4.1. Let λ G 1 and e > 0 be given. Then there exists δ\ > 0 having

the following property. For every real valued function f G ̂ ^ ( [ λ — <Sχ, λ + δι]), there

exists To > 0 such that

(4.3) f{H(t))i[H(t),A]f(H(t)) > (\E\ - e)f(H(t))2 for t > ΓOj

with A — ω p.

Proof. We take δ > 0 as in (1.6) and / <E Q°([λ - 5/2, λ + δ/2]). Then fτ e

Co°([λ- J,λ + δ]) and fτ(H) satisfies (1.6) for sufficiently large t since E-c(t) -> 0

as t -¥ oo. So we use the relation (4.2) to obtain (4.3). D

With this inequality we give maximal and minimal acceleration estimates under

Assumption 1.2. To do so we define some conjugate operators.

DEFINITION 4.2.

(4.4)

(4.5)

A

A

l(*)

2(ί)

= ω p - E\t,

= υt-{x)1'2.
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Using Lemma 4.1 we can see that f{H(t))DAj(t)f(H{t)) > 0 if we choose

Eι < \E\ and v sufficiently large. We denote (p) by A\, and — A2(0) as A2. For these

operators we have the following lemma, which implies that U(t,s) leaves D(Aj) in-

variant.

Lemma 4.3. Let 0 < δ < 2, and h E Cg°(R) be given. Then the following

properties hold for j = 1, 2.

(i) For 1 < n < 4 the form adn

A ,tJh(H(t))) extends to a bounded operator on

EL Moreover (H{t) + 0 ^ . ( 4 ) ( M ^ W ) ) a n d ^dn

Aj{t){h{H{t))){H{t) + t) are
continuous *&(§§)-valued uniformly bounded functions of t.

(ii) Ajδf{H{t))U{t,s)h{H(s))Aj-δ is a <B(U)-valued continuous function oft

(iii) (-Aj(t))δF((A(t)/t) < -e)Aj~δ is a continuous <B(E)-valued function oft

(iv) (d/dt)(h(H(t))) exists in 05(H) /σr 1 < n < 3 a/iJ the form adn

A.{t)({d/di)h

(H(t))) extends to a bounded operator on EL

Proof. For A(t) — A\{t) the proof is almost the same as that of Lemma 3.1.

We have only to give the proof for A(t) = A2(t). (i) and (iii) are easily obtained by

the same argument of the proof in Lemma 3.1. (iv) is obtained by using the formula

(2.8).

To prove (ii) we show that Alf(H{t))U(t, s)h(H(s))A^2 € 05(H). By using
commutators, we rewrite it as

f(H(t))O(t,s)h(H(s)) - 2ad\2(f{H{t))U{t,s)h{H{s)))A^

+ad2
A2(f(H(t))U(t,s)h(H(s)))A;2.

So it is sufficient to show

adk

M(f(H(t))U(t,s)h(H(s)))Aϊk e ®(H) (k = 1,2).

For the case k = 1 we rewrite the commutator as follows.

If 777,2 — 0, the boundness is obtained from (i). For the term 7712 = 1 we rewrite it as

f{H{t))ad\2{U{t, s))h{H{s))A^

f ft Ί

l j U(t,θ)adι

A2(H(θ))U(θ,s)dθ\h(H(s))A21.
(4.7)
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We can see that ad1

A2(f(H{t))U{t,s)h(H(s)))A^1 is bounded since

and (p)U{t,s)(p)~1 G Q3(H) (See Theorem 1 in [14].). So we have shown that

φ 1 G Q3(H). This implies the boundness of the single commutator

As for the case k = 2, we have

ad%(f(H(t))U(t,s)h(H(s)))Aϊ2

= Σ Cmum2,m3ad^

Since we have proved the boundness of the single commutator, we have only to

show the boundness of the term m2 — 2. To see that we rewrite the double commuta-

tor as follows.

(4.8) ad2

Mφ{t,s))

I ad% (U(t, S))αd'i2

+1 (H{θ))a<iχ2 (U(t, s))dθ.
I J S

If /2 = 1, the boundness can be easily seen, since ad2

Λ2(H(θ)) is a bound-

ed operator. For the term Z2 = 0 we obtain the boundness from the fact that

(p)ad1

λ2(U(θ))(p)-1 and {p)h(H(s))A2l G <B(H). So we have shown the boundness

of f(H(t))ad2

A{t)(U(t,s))h(H(s))A22, which implies the assertion (ii). D

From Lemma 4.3 we obtain (-tf/wίAίW,*)) 1 7 2f(H{t))U(t,s)h{H{s))A^a / 2

is bounded for β > 0 and 0 < a < 4. What remains to be shown is that it is bound-

ed uniformly in t as we have done in Section 3. To see this we prove the following

lemma which is closely related with the propagation estimate under Assumption 1.2.

Lemma 4.4. Suppose h G C£°(R), β0, e > 0, and f G C^°(E) satisfies (4.3).

(i) Let 0 < αo < min{uo,3} be given. Then

| | ( ^ , , ) ( ( ) ) (
(4.9)

= 0(1) as t ->• oo,

for (β,a) = (0,l),...,(0,a'0),(β0,a0) (for (β,a) = (βo,ao) if a0 < 1).

(ii) Let 0 < α 0 < 3 fee given. Then

\\{gβ,QΛ2{)
(4.10)

= 0(1) as ί -+OO,
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for (β,a) = (0,1), . . . , (0,α{,), (A),α0) (= (A>,βo) «/ <*o < 1).

By using (3.5) one can prove the following

Corollary 4.5. Under the same conditions as in Lemma 4.4, we have the follow-

ing result: Let e > 0 and 0 < θ < 1 be given.

/or (/?, α) = (0,1), . . . , (0, α£), (A), α 0 ) (= (A), «o) '/ «o < 1)

Proof of Lemma 4.4. We also denote the square of the left hand side of (4.9)

as GβiOCj€(t). Similarly to Lemma 3.3 we prove this Lemma by investigating the in-
tegrability of -(d/dt)Gβ^e{t). We write ζ(t) = f(H(t))U(t,s)h(H(s))A-a/2φ and

ξ(t) = U(t,s)h{ίϊ{s))A-^2φ with φ e H. We write (ζ{t),Pζ(t)) as (p)t. Further

we denote (ζ(t),Pζ(t)) by ({p))t for an operator P. Then

~ G A β , ( ( ί ) = (Ji>t

- (ζ(t),i[H(t)9g(A(t)9t)]ζ(t))

g(A(t),t)f(H(t))ζ(t

where Sftz = (l/2)(z -f- z) for 2? G C.

As we have stated in Section 1 we cannot neglect the derivative (d/dt)f(H(t)).

We take / 2 G CQ°(M) which is identically equal to 1 on the support of the function

/. (We denote it as / C /2.) Further we choose fx G Co°(R) such that f2 C /1. By

virtue of (2.10) and the fact that ζ(ί) = fι(ίϊ(t))ζ(t), we can rewrite h as follows.

m=l

f 4 4 ^ 1 ^ Λ dz.

We use (2.8) and rewrite (d/dt)f(H(t)) by computing the derivative of the resolvent.

Then

h = -5^7 / ft/W(^ ~ H(t)Γlc(t) W(s - c(t))(z - H{t))-ιdz A dz
2m Jc
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xgβ,a,t(A(t),t)f(H(t)).

Applying (2.8) again, we see that

= (§-tg)
m = l

- A{t))-ιdz A dz.

Denoting dtA(t) + i[fi(H(t))H(t),A(t)] by DιA{t), we sum h and J3 as follows.

h+h= (^fl

3

m=l

- A{t))-ιdz Λ dz,

with gW = g(m\A(t),t). We compute the term g^(A(t),t)DιA(t) appearing in
the second line. We sandwich gW(A(t),t)DiA(t) by f(H(t)) and rewrite Io =
f(H{t))g^(A(t),t)D1A(t)f{H{t)) by using the commutator. Then we have

Jo = f{H(t))ghMH(t))DiA(t)MH(t))9hf(H(t))

+f(H(t))gh(I - /2(Jί(t)))JΛΛ(t)/2(JΪ(t))ί«J(ff(t))

+f(H(t))gh[gh,DιA(t)f2(H{t)))f(H(t)).

We remark that f(H(t))gh(I - f2(H{t))) is equal to f(H(t))[f2(H(t)),gh] and
MH(t))DιA(t)f2(H(t)) = h{H{t))DA{t)f2(H{t)) since /2 c /i We compute
these commutators by use of Lemma 2.2, and

Jo = f(H(t))ghf2(H(t))DA(t)f2(H(t))ghf(H(t))
3

m=l

<zg~h(z,t)(z ~ A(t))~4

x ad4

A(t)(f2(H(t)))(z - A{t))~ιdz Λ dz^D1A(t)f2(H(t))ghf(H(t))

+f(H(t))gh
ml
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x(z- A(t))~4dz Λ dz\f(H(t)).

We show the uniform boundness of GβiOCi€(t) for 0 < a < 1 and for larger a by
induction. To do this method, we cannot neglect the term g(™\A(t),t)ad™7tUDιA{t))

in /i -h/3. So we also compute the commutator of g(mϊ(A(t),t) and D\A(i). Finally

we have the following expressions.

(412) -jt{\\(-9β,aΛΛ(t)M/2f(H(t))U(t,s)h(H(s))A-^2φ\\2}

Here

Eι =

E2 = ghf2(H(t))DA(t)f2(H(t))gh,
3

E3 = ^(m!)- 1 f f i m ) α^ ( t ) (/ 2 (F(ί)))βiA(ί)/ 2 (F(ί))5 f t ,
m=l

#4 = Γ-Γ / d2gh(z,t)(z - A(t))-4ad4

A(t)(f2(H(t)))(z - A(t))~ιdz Adz

771=1 m"

E6 = ^gh [_ d-zg~h{z, t){z - A(ί))-1α4 ( t )( JDi^(ί)/2(H(ί)))(z - A ^ d z A dz,

E7 =

3 3-m C_11mi

771=2 7711=0

3

= Σ3m(A{t),t)km{A{t),t)
m = 2

x—T / dzfm(z,t)(z - A{t)) 1ad4

A(!?(Hm)(A(t) - z)m 4dz Adz,

E9 = ±, I d-zg(z,t)(z - Λ(t))-4α^ ( t )(£>iA(t))(z - Λ ( ί ) ) - 1 ^ Adz,

E10 = ~ j d-J(z)(z - H(t))^c(t) • W ( * - c(t))(z - H{t))~ιdz A dz
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xgβta,€(A(t),t)f(H(t)),

where

km(χ,t) = ^ ( - * )

Here the terms E 7 and £ 8 are obtained in the following way. We rewrite </m)(x,£) =

jm(^^)krn(x,t)jrn(x,t) and compute the commutators of Hm and them. Since

Gβ,a,e(t) is non-negative, it remains to show that each term in (4.12) is either inte-

grable with respect to t or non-negative.

Suppose 0 < α 0 < 1 and (β,a) = (/?o,c*o) By the same argument of Section

3, we can see that each of (Es)t,..., {Eg)t is integrable with respect to t. Now we

show the integrability of the remaining term {Eιo)t.

For A(t) = Aι(t), (E10)t = O(t-β°-U0+1) from Assumption 1.2. As for the case

A(t) = A2(t), we obtain (E10)t = O(t-β°-u°-2). It is due to the facts

< C|Imz|3,

For larger a$ we prove this Lemma by using induction on OLQ. SO we obtain Lemma

4.4. D

Finally we give propagation estimates under Assumption 1.2. It is obtained by the

same argument as in Lemma 3.5. We choose the conjugate operator A{i) = Aι(t).

From the inequality (4.9) we have

<E!-e) U(t,s)h(H(s)){x)-^2\\ = O(ΓU)

for 0 < u < min{ί/0/2,3/2}.

By the same argument as in the proof of Theorem 3.6, we have the minimal ac-

celeration estimate under Assumption 1.2

Theorem 4.6. Suppose the conditions in Lemma 4.4 are satisfied. Let 0 < u <

min{uo/2,3/2} be given. Then there exists σ > 0 such that

(4.13) \\F f M < σ) f(H(t))U(t,8)h(H(8))(x)-u'4 = O(ΓL) as f -> ex)
\\ \ t / II

where L = min{u, 3/2}.
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We also have the following estimate under Assumption 1.2, which is called max-

imal acceleration estimate.

Theorem 4.7. There exists sufficiently large number M > 0 such that for all 0 <

u < 3/2,

(4.14) \F f M > M\ f(H(t))U(t,s)h(H(s))(x)-u/2
= O(ΓU) as t -» oo.

Proof. We recall the fact that p{x)~ιl2f{H(t)) G <B(H). We apply Lemma 4.4

with the conjugate operator A2(t). Then we have f(H(t))DA2{t)f(H(t)) > 0 holds

for v > 1. So we can see that Theorem 4.7 holds by use of Lemma 4.4 and Corollary

4.5. D

Proof of Theorem 1.3

For both cases of Assumption 1.1 and Assumption 1.2, we apply Cook's method

to show the existence of the strong limit of Uo(t,s)*U(t,s) and that of W+(s) and

W+(s). At first we assume that Assumption 1.1 holds. In the same way as in (1.7)

we rewrite Uo(t,s)*U(t,s)φ as follows.

= ψ-i ί U*{s,θ)V{x - c(θ))U(θ,s)φdθ.
Js

Here we choose φ = h{H(t))(x)-u^2φ with φ € M, h G Cg°(R), and u > 1. To
see the existence of s - lim Uo(t,s)*U(t,s), we have only to show the integrability

t—>oo

of \\V(x - c(θ))U(θ,s)φ\\ with respect to θ G R+. We remark that it is sufficient to

show the integrability when φ = h(H(s))(x)~uφ with φ G H and h G Cg°(R).

From Assumption 1.1 we have |c(ί)| — o(t) as ί —> oo. We split y (x — c(£)) into

F(x-c(ί))F(( |a : | / ί 2 ) < σ) + V{x-c(t))F{(\x\/t2) > σ). Combining Theorem 3.6 and

this decomposition, we have \\V(x - c{θ))U{θ, s)φ\\ G L 1 (d0,R+). This implies the

existence of s— lim Uo(t,s)*U(t,s) and that of W+(s). We also obtain the existence
t—> o o

of W+(s) in the same way.

Suppose Assumption 1.2 holds. In a similar way to the above arguement we can

easily see the existence of s - lim U0(t,s)*f(H(t))U(t,s) for each / G CS°(R).
t—»oo

To show the existence of s — lim Uo(t,s)*U(t,s), we define a bounded operator as
t—)-oo

follows. Let M > 1 be given. We take p G Cg°([-l,l]) such that p(x) = 1 for

x G [-1/2,1/2]. We denote ρ(x/M) as P M ( # ) and

J s

±
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We remark that

^-pM{H{θ)) ^CAf-^cWl

which follows from the fact that an almost analytic extension of PM(%) satisfies

Z
- 3

Imz
2

In the same way as in (4.7) we have

U0(t, s)*(I - P2M(H(t))U(t, s)PM(H(s)))

= U0(t, β) U(t, s){P2M(H(s)) - U(s, t)p2M(H(t))U(t, s)}pM(H(s))

= U0(t,s)*ϋ(t,s){-PM(s)+ Γϋ(s,θ)^-p2M(H(θ))U(θ,s)dϋ)pM(H(s)).
{ Jt dυ J

By an elementary calculus we have

U0(t, 8)*ϋ(t, 8){I + PM(s)}pM(H(s))

= U0(t,sYpM{H{t))U(t,s)pM{H{s))+o{l).

This proves the existence of the strong limit s — lim^oo Uo(t, s)*U(t, s){I -f

PM(S)}PM(H(S)) for each M > 1. Since {/ + PM(s)}pM(H(s))φ -> φ for each

φ e Ή. as M -> oo, we can also see the existence of s — lirrit-yoo Uo(t,s)*U(t,s).
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