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Introduction

Let f : X — Y be a morphism of analytic spaces. In this paper any analytic
space is always assumed to be reduced unless otherwise stated. In [20] we discussed
the torsion freeness of higher direct images of canonical sheaves tensorized with
Nakano semi-positive vector bundle under the situation that X is non-singular and f
is a proper surjective Kahler morphism. In this case the coherency of the higher di-
rect image sheaves is guaranteed by Grauert’s direct image theorem (cf. [6]). However
not much is known about not only coherency but also torsion freeness of higher direct
image sheaves by non-proper morphisms except a few special cases (cf. [3], [5], [13],
[15], [16], [17]). In this article we study torsion freeness and vanishing theorems of
higher direct image sheaves by a certain non-proper morphism.

Let f: X — Y be as above. A smooth function & : X — [a,b), —co <a <b<
+00, on X is called a relative exhaustion function if f: {¢ < ¢} = Y is proper for
every ¢ € (a,b). For a positive integer ¢, f : X — Y is said to be strongly q convex
if there exist a relative exhaustion function @ : X — [a,b) and d € (a,b) such that &
is strongly ¢ convex in the sense of Andreotti-Grauert,[1] on {& > d}. The following
coherency theorem for strongly ¢ convex morphisms is known (cf. [15], § IV, (IV.8)
Théorém).

Theorem. Let f : X — Y be a strongly q convex morphism of analytic spa-
ces provided with a relative exhaustion function ®. Let F be a coherent analytic sheaf
on X and let v be an integer with v > q. Then R" f.F is a coherent analytic sheaf
on Y and the canonical homomorphism R"f, : H"(X(S),F) — I'(S,R"f.F) is
a topological isomorphism for any relatively compact Stein open subset S of Y and
X(S) := f~Y(S). In particular, H" (X (S),F) has a structure of separated topologi-
cal vector space.

In order to discuss the torsion freeness of higher direct image sheaves by f we
impose the hyper convexity induced by [7] on & and show the following theorem.
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Theorem 1. Let f: X — Y be a strongly q convex surjective morphism of an-
alytic spaces of pure dimension provided with a relative exhaustion function ® and let
E be a holomorphic vector bundle on X. Suppose
(i) X is non-singular of pure dimension n and is provided with a Kdhler metric wx

such that ® is weakly hyper p convex relative to wx on {® > e} with e € (a,b);
i.e., the sum of any p eigen values of the Levi form of ® relative to wx is non-
negative at any point of {® > e}, and
(ii) FE is Nakano semi-positive on X (cf. Definition 1.4).
Then for any r > max{p,q} the sheaf homomorphism L™ : R°f.QY "(E) —
R" f. Q% (E) induced by the r-times exterior product by wx is surjective and the
Hodge star operator relative to wyx Yyields a splitting sheaf homomorphism §"
R f.Q%(E) = R°f.Q% "(E) with L™ 06" = id. In particular, R" f.Q% (E) is torsion
free and vanishes if T > q. := max{n — m,max{p,q}} with m := dimc Y. Further-
more R fiOx(E*) =0 if s <n — q, — dimc Y, where R®f, denotes the direct image
with proper supports and E* is the dual of E.

Theorem 1 can be shown by determining the structure of H" (X (S), Q% (E)) as
an O(S)-torsion free module, for any relatively compact Stein open subset S of Y,
which follows from the weak hyper p convexity of & and the separability of coho-
mology group guaranteed by Theorem (cf. §2, Theorem 2.1). This can be done by an
L?—theory for the & operator with —Neumann condition on bounded domains with
smooth boundary, which does not depend on the existence of complete Kéihler metrics
on X (S). This is a difference of method from the one used in [20]. As a corollary
we obtain the following vanishing theorem which is the relative version of Grauert-
Riemenschneider’s vanishing theorem for strongly hyper g convex Kéhler manifolds
(cf. [51, [7], [12] and [18]).

Theorem 2. Let f: X — Y be a surjective morphism of analytic spaces of pure
dimension provided with a relative exhaustion function ® : X — [a,b) and let E be a
holomorphic vector bundle on X. Suppose
(i) X is non-singular of pure dimension n and is provided with a Kdhler metric
wx such that @ is strongly hyper q convex relative to wx on {$ > e} with
e € (a,b) ; ie., the sum of any p eigen values of the Levi form of ® relative to
wx Is positive at any point of {® > e}, and

(ii)) FE is Nakano semi-positive on X.

Then R fQ%(E) = 0ifr > ¢, and R°*fiOx(E*) = 0if s < n—q— dimcY.

Especially R" f.Q% =0 ifr > q, and R°fiOx =0 if s <n —q—dimcY.
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1. An L2 estimate for the & operator with —Neumann condition
on Kihler manifolds

Let M be a complex manifold of dimension n provided with a Kéhler metric wps
and let E be a holomorphic vector bundle on M provided with a smooth hermitian
metric h along the fibres of E. The curvature form @, relative to h is defined by
O, = 0(h~'6h) € C*'(M,Hom(E, E)).

Let X be a bounded domain with smooth boundary 8.X; i.e., the closure X of X
is compact and there exists a smooth function ¥ defined on a neighborhood of X such
that X = {¥ < 0} and d¥ # 0 on 0X. We set X, := {¥ < t} and 80X, := {¥ =t}
for sufficiently small ¢ € (—1,1). X; is also a bounded domain with smooth boundary
80Xy, and clearly Xg = X and 0Xy = 0X.

From now on we fix this situation and use the formulations established in [20], §
1. Let { , ), denote the pointwise inner product of E-valued differential forms relative
to wp and h. Let (, )n. (resp. [, ]n:) denote the inner product for E-valued dif-
ferential forms defined by the integral of ( , ), on X, (resp. 0X;, which is a smooth
and compact real hyper surface of M).

The following formula is a variant of [19], §4, Proposition 1 (also cf. [20], §1,
Proposition 1.11).

Proposition 1.1. Let ¢ be a real-valued smooth function on a neighborhood of
X and set n:= eY. If |t| is sufficiently small, then the following holds:

%[\/ﬁe(gsp)*u]i,t = [n\/—_le(aé![/)Au, ulpe + (n\/——le(@h + 35«/))Au,u)h,t

+ V(@ — e(0y))ully , — IV + e(@¥))ulli .
= IlVdnully . — 2Re[ndnu, (%) uln,e

for any uw € C™"(M, E) with r > 1.

Proof.  Similarly to the proof of [20], §1, Proposition 1.11, if u € C™"(M, E)
and [t| is sufficiently small, then we obtain the following by integration by parts:

(%) lvndulli ¢ + llvndnulli ¢ — llv/adull; .
= (nV—1e(On + 80Y)Au, u)n e — |lv/ne(@y)ulls , + |lv/7e(0v)*ull3 ;
— 2Re{(ne(0v)u, Ou)n ¢ + (ne(0v)*u, u)n .}
~ [n9nu, e(8F)*ulns + [ne(OF)* Ou,uls ¢ + [ne(0F)Fu, ul ¢
+ [7e(Dy)u, e(0)uln,s — [ne(Dy)*u, e(3%)*un,q.

On the other hand, by integration by parts we obtain the following:

(Oe(8%)*u, MUpt = (ne(5W)*u,19hu)h,t
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— (ne(0%)"u,e(0Y) u)n¢ + [v/1e(0F) ulj -

Substituting the formula [20], §1, (1.9) to the left hand side of the above equality and
differentiating in ¢, we obtain the following:

d _ — _ _
a[\/ﬁe(asp)*u]i’t = [n\/—_le(aasp)Au,u]h,t — [ne(0¥)*u, Inuln,t — [ne(0¥)Iu, uln,¢
— [ne(0®)*Bu,uln s + [Ne(OF)*u,e(0Y) uln ¢
By the formula [20], §1, (1.4), if u € C™"(M, E), then we have the following:

(%) (e(Op) u, e(0P) u)p = (e(dp)u, e(OP)u)n + (e(O¥)*u,e(dp)*u)n-

By substituting the above two equalities to (*) we can obtain the desired equality.
O

Lemma 1.2 (cf. [11], §1.4 and [18], Fact 2.7). Let {\;} be the eigen-values of
a smooth (1,1) differential form @ on M relative to wys with ,\1 < XA <L < A
(which are continuous functions on M ); ie., O(z) = Z Aj(z)dz? A dzJ with
wx(z) = V=137, dz NdZ’, at £ € M. Then if v(z) = EUAMB dz4~ N dzZBr €
C™" (M, E) with r > 1, the following holds:

(V=1e(@)Av,0)p(z) = > (Z,\j(x))w,,n,BJ%L.

|An|=n,|B.|=r ‘j€B;
In particular setting 6, := 3% _, \j with r > 1 the following holds

(V—1e(@)Av,v)p > 6,.(v,v)y if vE C™" (M, E).

As a consequence we can obtain the following L2-estimate.

Proposition 1.3. Suppose the defining function ¥ of X is weakly hyper p-convex
relative to wy; on a neighborhood of X and v is a smooth function on X. Then the
following holds:

(nV—1e(0 + 88¢) Au, u)n,x + |lv/n(D + e(89)*)ull; x
< VA8 + e(@¥)ull2 x + VAdhully x

for any u € Dom(8) N Dom(¥,) C L™" (X, E) with r > p and n := €Y.

Proof.  Since ¢ and its derivatives are bounded on X, and C™"(X,E) N
Dom(d),) := {u € C™"(X,E);e(0%)*u = 0 on 8X} is dense in Dom(J) NDom(¥})
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relative to the graph norm |[v||x,x + ||0v||n,x + ||9nv|n,x (cf. [8], Chap 1), we have
only to show the above estimate for the forms contained in C™" (X, E) N Dom(d4).
By Lemma 1.2 and the weak hyper r-convexity of ¥, if u € C™"(X,E), then
(v/—1e(00%)Au, u)y is non-negative on X . Hence the desired estimate follows from
Proposition 1.1 immediately in view of the boundary condition e(0%)*u = 0 on 0X.

O

DeriniTioN 1.4, (E, h) is said to be Nakano semi-positive if the curvature form
O}, relative to h is a positive semi-definite quadratic form on each fibre of EQ T'M,
where T'M is the holomorphic tangent bundle of M.

In line bundle case the Nakano semi-positivity coincides with the semi-positivity
in the sense of Kodaira. The following lemma is used in the next section.

Lemma 1.5 (cf. [11], § 1.4). Suppose (E,h) is Nakano semi-positive on M.
Then there exists a non-negative continuous functior. €, on M such that

(V=1e(On)Au, u), > e, (u,u)s

for any u € C™"(X,E) withr > 1.

2. A criterion for the separability for cohomology groups of canonical
sheaves on a certain non-compact Kiahler manifold

In this section we show the following theorem.

Theorem 2.1. Let X be a complex manifold of dimension n provided with a
Kiihler metric wx and let (E,h) be a holomorphic vector bundle on X. Suppose
(1)  There exist non-negative smooth functions ® and p on X such that
(1) @ is weakly hyper p convex relative to wx on {® > 0} and ¢ is plurisub-
harmonic on X,
(2) V¥ := &+ ¢ is an exhaustion function of X; i.e, X, := {¥ < c} is rela-
tively compact for any ¢ with 0 < ¢ < supy ¥ < 400, and
(ii)) (E,h) is Nakano semi-positive on X.
Then for any r > p, the space of E-valued harmonic (n,r) forms H™"(X,E,¥) de-
fined by

HM"(X,E,¥) :={u € C™"(X,E);0u=9,u =0 and e(0¥)*u =0 on X}

represents H" (X, Q% (E)) if and only if H™(X,Q% (E)) has a structure of separated
topological vector space.

We need the following propositions to show Theorem 2.1.
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Proposition 2.2. For any non-critical value ¢ > 0 of ¥ and r > p if u €
Dom(8) N Dom(d,) C Ly"(X., E) satisfies Ou = 9pu = 0, then u satisfies the fol-
lowing:

(vV-1e(@p)Au,u)p, =0, (V- 1e(00%)Au, u), =0, (v/—1e(8dp)Au,u), =0,

e(8¢) u=0, ¢dp)*u=0 and Ju=0 on X..

Proof. Since ¥ is weakly hyper p convex relative to wx on the whole space X
in view of the plurisubharmonicity of ¢, setting ¥ = 0 in Proposition 1.3 we obtain
the first and sixth equations by Lemma 1.5. By setting ¢ = & in Proposition 1.3 the
second and fourth ones can be derived from Lemma 1.2 and the equality (%) used in
the proof of Proposition 1.1. The third and fifth ones can be obtained similarly. O

Proposition 2.3. For any r > p let H™" (X, E,¥) be the space of E-valued har-
monic forms defined in Theorem 2.1. Then the following assertions hold:

(i) Assume u € C™"(X,E) satisfies €(0%)*u = 0 on X. Then du = Ypu = 0 if
and only if Yu = 0 and /=1(e(Oy + 00W) Au,u), =0 on X

(i) If u € H"(X,E,¥), then (/—1e(00e¥)Au,u), = 0 on X for any smooth
plurisubharmonic function ¢ on X. In particular H™" (X, E,¥) does not de-
pend on the choice of .

(iii) H™"(X, E,V¥) is a torsion free O(X)-module and the Hodge star operator x
relative to wx yields an injective O(X)-homomorphism from H™" (X, E,®) to
(X, %7 (E).

(iv) The canonical homomorphism " : H™"(X,E,¥) — H"(X,Q%(E)) induced
by Dolbeault’s isomorphism theorem is injective ( this property depends on nei-
ther the curvature condition of E nor the Kdhler property of wx and depends
only on the condition e(0%)*u =0 ).

Since Proposition 2.3 can be shown similarly to [20], §4, Theorem 4.3 in view of
Proposition 1.1, the details is left to the reader.

Proof of Theorem 2.1.  We first show the necessity of Theorem. If the canon-
ical homomorphism " : H™"(X,E,¥) — H"(X,Q%(E)) induced by Dolbeault’s
isomorphism theorem yields an isomorphism, then any d-closed form v € C™" (X, E)
has the following decomposition:

) v=u+0w for ueH"(X,E,¥) and we C™ }(X,E)

Suppose the above v is contained in the closure of dC™ (X, E) relative to the
Fréchet-Schwartz topology. Then there exists a sequence of smooth forms {wy}r>1 €
C™™~Y(X, E) such that Qw; converges strongly to v in L2?-sense on every compact
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subset of X. Hence for any non-critical value ¢ of ¥, by integration by parts on X,
we obtain

(u,u)p = (v — 0w, u)p = (v,u)p = lim (Qwk,u)p = lim (wg,9pu)p =0
k—o00 k— o0

Here we note that every boundary integral on 90X, = {¥ = ¢} arising from integration
by parts vanishes in view of the equation e(0¥)*u = 0. Therefore u = 0 on X and
s0 v = Ow. This implies that 0C™"~1(X, E) is closed and so the cohomology group
is Hausdorff.

The sufficiency of Theorem is shown as follows. In view of Proposition 2.3, (iv)
we have only to show that any O-closed form v € C™"(X,E) admits the decom-
position (§) under the Hausdorff property of H"(X,Q%(F)). From now on we fix
an increasing sequence {ci}r>1 of non-critical values of ¥ such that limy_,oo ck =
supx ¥. Setting X := X, let N;""(0) (resp. N;""(d)) be the null space of §
(resp. ¥3) in Dom() (resp. Dom(¥s)) C Ly (Xy, E). N;""(0) is decomposed as
follows:

N[ (8) = Hy""(E) @D[Range(d)] for Hp"(E) = N () N N"" (9n)
Hence setting vy := v|x,, Uk is decomposed as follows:
v = ug + v with ux € H""(E) and v} € [Range(d)]

‘Applying Proposition 2.2 to Xy, it follows that H;""(E) C H™(Xy,E,¥) and
ulx, € H"(E) if u € H"(E) and | > k > 1 (cf. [4], Chap. 1). In particular
ug+1 = ux and vp; = vy on X for any k > 1. Setting u := uy and v* := vy
on X; for any k¥ > 1 we obtain v = u + v* and u € H™"(X, E,¥). Since ¥ is
an exhaustion function of X, we can take a smooth strictly increasing function A :
[0,sup &) — [0, +00) such that v and u € Ly" (X, E, he *¥)). Setting g := he™*(¥),
u satisfies du = 9,u =0 in LY (X, E,g) by 9, = 9, + X' (¥)e(0%)*, which implies
v* € [Range(d)] C L3 (X, E,g). Therefore there exists w € C™" (X, E) with
v* = Ow by the Hausdorff property of H"(X,Q%(E)) by [20], Proposition 4.6. Fi-
nally we have obtained the decomposition (f). (I

Setting & = 0 in Theorem 2.1 we obtain the following theorem.

Theorem 2.4. Let X be a weakly 1-complete manifold of dimension n; i.e., X
admits a smooth plurisubharmonic exhaustion function Y. Suppose X admits a Kahler
metric wx and E is a Nakano semi-positive vector bundle on X. Then for any v > 1,
H™" (X, E,¥) represents H™ (X, Q% (E)) if and only if H" (X, Q% (E)) has a struc-
ture of separated topological vector space.

RemARk 2.5. If X is holomorphically convex, then the sufficiency of Theorem
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2.1 has already shown in [20], Theorem 5.2. On the other hand it is interesting that
there exists a class of weakly 1-complete Kihler manifolds X being not holomorphi-
cally convex whose canonical line bundle is flat and H"(X,Ox) is either Hausdorff
or not (cf. [9], [10], [21])

3. Proof of Theorems 1 and 2

Let the situation be the same as in Theorem 1 stated in the introduction. We fix
the Kidhler metric wx and the metric h of E satisfying the hypothesis respectively. By
composing an arbitrarily smooth convex increasing function with & we may assume
that (1) @ > 0 on X, and (2) & is strongly g-convex and weakly hyper p-convex on
{® > 0} relative to wx. We take a Stein open covering {Va,Ta,Sa,Cd(“)}aeA of Y
such that 7, is an isomorphism from V, to a subvariety S, C (C%), (21, ..., z4())
for any a € A. Setting @, := (7% o f)*(Zj(z"l) |27]2), ¥y :=  + @o and X (Vy) =
f~1(Vy), each pair {X(V,),¥,} satisfies the condition of Theorem 2.1, (i).

For any r > max{p,q}, by the theorem stated in the introduction and Theorem
2.1, the homomorphism ™ : H™"(X(Vy), E,¥,) = H"(X(Va), 2% (E)) induces an
isomorphims as an O(V,)-module. Furthermore for any Stein open subset W C V,,
provided with an strictly plurisubharmonic exhaustion function 1y, we claim that the
restriction homomorphism ry, w : H™"(X(Va), E, %) — H™(f~1(W),E, & +
f*Yw) can be well-defined and commutes with the restriction homomorphism of co-
homology group. By the surjectivity of f, for any o there exists an open dense sub-
set U, C V, such that U, is non-singular and f : f~1(U,) — U, is smooth.
By Proposition 2.3, (ii) and § 1, (1.4) in [20], u € H™"(X(Va), E,¥,) satisfies
the equation: /—1(e(00¢a)Au,u)y = E?(:i) le(@(r* o f)*z7)*u|2 = 0 on X (Va)
for any a. Hence d(7* o f)*29 A u = 0 on X(V,) for any j and a, where * is
the star operator relative to wy. This implies that (1) H™"(X(V,),E,¥,) = 0 if
r > max{n — m,max{p,q}} with m = dimcY, (2) any point z € U, admit-
s a neighborhood V, C U, and a non-vanishing holomorphic m form 6, on V, so
that *u can be divided by f*§, on f~1(V,) for any u € H™"(X(V,),E,¥,) if
max{p,q} < r < n—m. Hence u € H™"(X(V,), E,¥,) satisfies e(d(f*¢Yw))*u =0
on X(W) ;ie., ulxw) € H*"(X(W), E,® + f*w), which implies our claim.

Denoting the sheafification of the data {H™"(X(V,),E,¥,),rv, w} with the
restriction homomorphism ry,_ w : H™"(X(V,),E,¥,) — H™" (f'(W),E,® +
f*Yw),W C V, by ROf,H™"(E,®), we obtain a sheaf isomorphism "
R fH™"(E,®) = R"f.Q%(E) of Oy-module. Furthermore for any relatively com-
pact Stein open subset S provided with a smooth strictly plurisubharmonic exhaustion
function g clearly the canonical homomorphism from H™"(f~1(S),E,® + f*is)
to I'(S,R°f,H™"(E,®)) is an isomorphism. By Proposition 2.3, (iii), the operator
* induces a sheaf homomorphism ¢ : RUf,H™"(E,®) — R°f.Q% "(E) with
L" oo" = id because L" o ¥ = ¢(n,r)id, ¢(n,q) # 0 € C, on (n,r) forms. Final-
ly 6" := 0" o (\")7! : R™f.Q%(E) —» RCf.Q% "(E) is the desired splitting sheaf
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homomorphism. The vanishing theorems follow from the above observation and the d-
uality theorem by Ramis and Ruget (cf. [13] and also [3]). This completes the proof
of Theorem 1.

To show Theorem 2 we have only to show H™"(f1(S),E,® + f*ys) = 0 for
any Stein open subset (S,1g) of Y because f: X — Y is a strongly ¢ convex mor-
phism. By the strong hyper ¢ convexity of &, this follows from Lemma 1.2 and Propo-
sition 2.2 (cf. [2], [14]). This completes the proof of Theorem 2.
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