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Introduction

Let / : X —y Y be a morphism of analytic spaces. In this paper any analytic

space is always assumed to be reduced unless otherwise stated. In [20] we discussed

the torsion freeness of higher direct images of canonical sheaves tensorized with

Nakano semi-positive vector bundle under the situation that X is non-singular and /

is a proper surjective Kahler morphism. In this case the coherency of the higher di-

rect image sheaves is guaranteed by Grauert's direct image theorem (cf. [6]). However

not much is known about not only coherency but also torsion freeness of higher direct

image sheaves by non-proper morphisms except a few special cases (cf. [3], [5], [13],

[15], [16], [17]). In this article we study torsion freeness and vanishing theorems of

higher direct image sheaves by a certain non-proper morphism.

Let / : X —> Y be as above. A smooth function Φ : X —> [a, b), — oo < a < b <

H-oo, on X is called a relative exhaustion function if / : {Φ < c} —> Y is proper for

every c E (o, 6). For a positive integer q, f : X —» Y is said to be strongly q convex

if there exist a relative exhaustion function Φ : X -> [α, b) and d G (α, b) such that Φ

is strongly q convex in the sense of Andreotti-Grauert,[l] on {Φ > d}. The following

coherency theorem for strongly q convex morphisms is known (cf. [15], § IV, (IV.8)

Theorem).

Theorem. Let f : X -)• Y be a strongly q convex morphism of analytic spa-

ces provided with a relative exhaustion function Φ. Let T be a coherent analytic sheaf

on X and let r be an integer with r > q. Then Rrf*T is a coherent analytic sheaf

on Y and the canonical homomorphism Rr/* : Hr(X(S),T) -> Γ(S,Rrf*F) is

a topological isomorphism for any relatively compact Stein open subset S of Y and

X(S) := f~ι{S). In particular, i / r (X(5),J Γ ) has a structure of separated topologi-

cal vector space.

In order to discuss the torsion freeness of higher direct image sheaves by / we

impose the hyper convexity induced by [7] on Φ and show the following theorem.
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Theorem 1. Let f : X -> Y be a strongly q convex surjective morphism of an-

alytic spaces of pure dimension provided with a relative exhaustion function Φ and let

E be a holomorphic vector bundle on X. Suppose

(i) X is non-singular of pure dimension n and is provided with a Kάhler metric ωx

such that Φ is weakly hyper p convex relative to ωx on {Φ > e} with e £ (α, 6);

i.e., the sum of any p eigen values of the Levi form of Φ relative to ωx is non-

negative at any point of {Φ > e}, and

(ii) E is Nakano semi-positive on X (cf Definition 1.4).

Then for any r > max{p, q} the sheaf homomorphism Cr : R°/*Ω^~r (E) —>

Rrf^ίl^(E) induced by the r-times exterior product by ωx is surjective and the

Hodge star operator relative to ωx yields a splitting sheaf homomorphism δr :

Rrf*Ωχ{E) -> R°f*Ωχ~r(E) w i t h £r°δr = i d l n Particular, Rrf*Ωχ(E) is torsion

free and vanishes if r > q* := max{n — ra,max{p, q}} with m := dime Y. Further-

more Rsf\Oχ(E*) = 0 if s < n — q* — dime Y, where R* f\ denotes the direct image

with proper supports and E* is the dual of E.

Theorem 1 can be shown by determining the structure of Hr(X(S), Ω^{E)) as

an O(S) -torsion free module, for any relatively compact Stein open subset S of Y,

which follows from the weak hyper p convexity of Φ and the separability of coho-

mology group guaranteed by Theorem (cf. §2, Theorem 2.1). This can be done by an

L2 -theory for the 3 operator with 9-Neumann condition on bounded domains with

smooth boundary, which does not depend on the existence of complete Kahler metrics

on X(S). This is a difference of method from the one used in [20]. As a corollary

we obtain the following vanishing theorem which is the relative version of Grauert-

Riemenschneider's vanishing theorem for strongly hyper q convex Kahler manifolds

(cf. [5], [7], [12] and [18]).

Theorem 2. Let f : X -» V be a surjective morphism of analytic spaces of pure

dimension provided with a relative exhaustion function Φ : X —ϊ [a,b) and let E be a

holomorphic vector bundle on X. Suppose

(i) X is non-singular of pure dimension n and is provided with a Kahler metric

ωx such that Φ is strongly hyper q convex relative to ωx on {Φ > e) with

e G (α, b) i.e., the sum of any p eigen values of the Levi form of Φ relative to

ωx is positive at any point of {Φ > e}, and

(ii) E is Nakano semi-positive on X.

Then Rrf*Ωχ(E) = 0 if r > q, and R8fχOχ(E*) = 0ifs<n-q- dimcY.

Especially Rr f*Vln

x = 0 if r > qf and Rsf\Oχ =0ifs<n-q- d im c Y.
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1. An L2 estimate for the d operator with d—Neumann condition

on Kahler manifolds

Let M be a complex manifold of dimension n provided with a Kahler metric UUM

and let E be a holomorphic vector bundle on M provided with a smooth hermitian

metric h along the fibres of E. The curvature form Θh relative to h is defined by

Θh := 8{h-ιdh) G Cl'\M,Yiom{E,E)). _

Let X be a bounded domain with smooth boundary dX; i.e., the closure X of X

is compact and there exists a smooth function Ψ defined on a neighborhood of X such

that X = {Ψ < 0} and dΨ φ 0 on <9X. We set Xt := {Ψ < t} and dXt := {Ψ = ί}

for sufficiently small t G (—1,1). Xt is also a bounded domain with smooth boundary

dXu and clearly Xo = X and dX0 = 9X.

From now on we fix this situation and use the formulations established in [20], §

1. Let ( , )h denote the pointwise inner product of E-valued differential forms relative

to UM and ft. Let ( , )/ι?ί (resp. [ , ]^?ί) denote the inner product for i£-valued dif-

ferential forms defined by the integral of ( , )/ι on Xt (resp. dXt, which is a smooth

and compact real hyper surface of M).

The following formula is a variant of [19], §4, Proposition 1 (also cf. [20], §1,

Proposition 1.11).

Proposition 1.1. Let ψ be a real-valued smooth function on a neighborhood of

X and set η := e^. If \t\ is sufficiently small, then the following holds:

) > l | 2

M - \\y/η(d + e{dφ))u\\2

htt

/ l , t ~ 2Rφΰhu,e(dΨ)*u]h,t

for any u G Cn ' r(M, E) with r > 1.

Proof. Similarly to the proof of [20], §1, Proposition 1.11, if u G Cn>r(M,E)

and |£| is sufficiently small, then we obtain the following by integration by parts:

(*) \\Vvdu\\lt + \\Vηϋhu\\ltt - \WvM\lt
= (ηs/=Ίe(θh+ddψ)λu,u)h,t - ||v^e(aV>H|2M + HV^WΓw||2M

- 2Re{(ηe(dψ)u,du)h,t + (ηe(dψ)*u,ϋu)h,t}

- [ηϋhu,e(dΨ)*u]h,t + [ηe(BΨ)*du,u]h,t + [ηe(dΨ)ΰu,u]htt

+ [ηe(8ψ)u,e(d<P)u]h,t - [ηe(dψ)*u,e(dΦ)*u]h,t.

On the other hand, by integration by parts we obtain the following:

,t = (ηe(dΦ)*u,ϋhu)h,t
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Substituting the formula [20], §1, (1.9) to the left hand side of the above equality and

differentiating in t, we obtain the following:

[V<dΨy]l [/^i(daΨ)Au,u]h1t - [ηe(dΨ)*u,ΰhu]htt -

- [ηe(dΨ)*du,u]htt + [ηe(dΦ)*u,e(dti>)*u]htt.

By the formula [20], §1, (1.4), if u G C n ' r ( M , £ ) , then we have the following:

(**) (e(dφ)*u,e(dψyu)h = (e(dφ)u,e(dΨ)u)h + B

By substituting the above two equalities to (*) we can obtain the desired equality.

D

Lemma 1.2 (cf. [11], §1.4 and [18], Fact 2.7). Let {Xj} be the eigen-values of

a smooth (1,1) differential form Θ on M relative to UJM with λi < λ2 <,.. .,< λ n

{which are continuous functions on M ); i.e., θ(x) = Σ™=ιλj(x)dzj Λ dzj with

ωχ(x) = y/^ΪΣij=i d z i Λ dz>, at x G M. Then if v{x) = ΣvAn,BrdzΛ» Λ dzB- G

C n ' r ( M , E ) with r > 1, the following holds:

(V=ϊe(θ)Λυ,υ)h(x) = ^ ί ]Γ λ^x)) \vAn,Br\
2

h.
| Λ | = n | B | = r ^jeB '|Λn |=n,|Br |=r

In particular setting 8r := Σ^f=i ^j with r > 1 the following holds

δr(v,v)h ίfυe Cn ' r(M, E).

As a consequence we can obtain the following L2 -estimate.

Proposition 1.3. Suppose the defining function Ψ of X is weakly hyper p-convex

relative to UM on a neighborhood of dX and ψ is a smooth function on X. Then the

following holds:

θ + θdψ)Au, u)h,x 4- \\y/η[ϋ + e(dψ)*)u\\lx

for any u G Dom(9) Π Dom(tJ f c) C L n ' r ( X , E) with r>p and η := eΦ.

Proof. Since ψ and its derivatives are bounded on X , and Cn'r(X,E) Π

Dom(t?Λ) : = {u G Cn>r(X,E);e(dΨ)*u = 0 on ΘX} is dense in D o m ( 0 ) n D o m ( i ? Λ )
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relative to the graph norm \\v\\h,χ + ||9v|U,x + ||#/iv|U,x (cf. [8], Chap 1), we have

only to show the above estimate for the forms contained in Cn'r(X,E) Π Ώom(ΰh)>

By Lemma 1.2 and the weak hyper r-convexity of Ψ, if u G Cn 'Γ(X,2£), then

{\f—Te(ddΨ)Au, u)h is non-negative on dX. Hence the desired estimate follows from

Proposition 1.1 immediately in view of the boundary condition e(dΨ)*u = 0 on dX.

D

DEFINITION 1.4. (E, h) is said to be Nakano semi-positive if the curvature form

Θh relative to h is a positive semi-definite quadratic form on each fibre of E ® TM,

where TM is the holomorphic tangent bundle of M.

In line bundle case the Nakano semi-positivity coincides with the semi-positivity

in the sense of Kodaira. The following lemma is used in the next section.

Lemma 1.5 (cf. [11], § 1.4). Suppose (E,h) is Nakano semi-positive on M.

Then there exists a non-negative continuous function εr on M such that

Θh)Xu,u)h >εr{u,u)h

for any u e Cn ' r(X, E) with r > 1.

2. A criterion for the separability for cohomology groups of canonical

sheaves on a certain non-compact Kahler manifold

In this section we show the following theorem.

Theorem 2.1. Let X be a complex manifold of dimension n provided with a

Kahler metric ωx and let (E, h) be a holomorphic vector bundle on X. Suppose

(i) There exist non-negative smooth functions Φ and φ on X such that

(1) Φ is weakly hyper p convex relative to ωx on {Φ > 0} and φ is plurisub-

harmonic on X,

(2) Ψ :— Φ + φ is an exhaustion function of X; i.e., Xc := {Ψ < c} is rela-

tively compact for any c with 0 < c < supx Ψ < +oo, and

(ii) (E, h) is Nakano semi-positive on X.

Then for any r > p, the space of E-valued harmonic (n,r) forms Ήn'r(X,E^) de-

fined by

Hn'r(X,E,Ψ) := {u e Cn>r(X,E);du = ϋhu = 0 and e(dΦ)*u = 0 on X}

represents Hr(X,Ω%(E)) if and only if Hr(X,Ω%(E)) has a structure of separated

topological vector space.

We need the following propositions to show Theorem 2.1.
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Proposition 2.2. For any non-critical value c > 0 of Ψ and r > p if u G

Dom(<9) Π Dom(tffc) C LY{XC,E) satisfies du = ϋhu = 0, then u satisfies the fol-

lowing:

u,u)h = 0, (y/=ϊe(ddΦ)Au,u)h = 0, ( ^ T e ( ^ ) Λ u , ^ ) ^ = 0,

)*u Ξ 0, e(<9y?)*u = 0 am/ tfu = 0 wi Xc.

Proof. Since Ψ is weakly hyper p convex relative to ωx on the whole space X

in view of the plurisubharmonicity of φ, setting ψ = 0 in Proposition 1.3 we obtain

the first and sixth equations by Lemma 1.5. By setting ψ = Φ in Proposition 1.3 the

second and fourth ones can be derived from Lemma 1.2 and the equality (**) used in

the proof of Proposition 1.1. The third and fifth ones can be obtained similarly. D

Proposition 2.3. For any r >p let Hn>r(X, E, Φ) be the space of E-valued har-

monic forms defined in Theorem 2.1. Then the following assertions hold:

(i) Assume u G Cn'r{X,E) satisfies e(dΨ)*u = 0 on X. Then du = ϋhu = 0 if

and only if ϋu = 0 and V cT(e(0/ l + ddΨ)Λu, u)h = 0 on X

(ii) Ifue Un>r{X,E,$)y then (y/^ϊe(dde^)Au,u)h = 0 on X for any smooth

plurisubharmonic function φ on X. In particular Hn'r(X,E,Φ) does not de-

pend on the choice of ψ.

(iii) T-Ln'r(X,E,\P) is a torsion free O(X)-module and the Hodge star operator *

relative to ωx yields an injective O{X)-homomorphism from Ή,n'r(X,E,Φ) to

Γ(X,Ωn

x~
r(E)).

(iv) The canonical homomorphism ιv : Ήn'r{X,E,φ) —> Hr(X,Ω%(E)) induced

by Dolbeault's isomorphism theorem is injective ( this property depends on nei-

ther the curvature condition of E nor the Kdhler property of ωx and depends

only on the condition e(ΘΨ)*u — 0 ).

Since Proposition 2.3 can be shown similarly to [20], §4, Theorem 4.3 in view of

Proposition 1.1, the details is left to the reader.

Proof of Theorem 2.1. We first show the necessity of Theorem. If the canon-

ical homomorphism ιr : Hn'r(X,E,Ψ) —> Hr(X,Q%(E)) induced by Dolbeault's

isomorphism theorem yields an isomorphism, then any <9-closed form v G C n ' r (X, E)

has the following decomposition:

(It) υ = u + dw for ueΉn'r(X,E,Ψ) and w G Cn'r~ι{X,E)

Suppose the above υ is contained in the closure of dCn>r~1(X, E) relative to the

Frechet-Schwartz topology. Then there exists a sequence of smooth forms {wk}k>ι €
Cn ' r~1(X, E) such that dwk converges strongly to υ in L2-sense on every compact



TORSION FRKENESS THEOREMS FOR HIGHER DIRECT IMAGES 23

subset of X. Hence for any non-critical value c of Ψ, by integration by parts on Xc

we obtain

(u,u)h = (v -5w,u)h = (υ,u)h= lim (dwk,u)h= lim (wk,ϋhu)h - 0
k—>oo «—) oo

Here we note that every boundary integral on dXc = {# = c} arising from integration

by parts vanishes in view of the equation t(dΨ)*u = 0. Therefore it = 0 on X and

so v = <9κ;. This implies that 9C n ' r ~ 1 (X, f7) is closed and so the cohomology group

is Hausdorff.

The sufficiency of Theorem is shown as follows. In view of Proposition 2.3, (iv)

we have only to show that any δ-closed form v G Cn'r(X,E) admits the decom-

position (f|) under the Hausdorff property of Hr(X, Ω'χ(E)). From now on we fix

an increasing sequence {ck}k>i of non-critical values of Ψ such that l im^oo ck —

s u p x # . Setting Xk := XCfc,~let N^r{8) (resp. N£rψh)) be the null space of 8

(resp. ΰh) in Dom(<9) (resp. Dom(tfΛ)) C L^r(Xk,E). N^r(d) is decomposed as

follows:

[Range(a)] for H^T{E) := N^'r(B) Π K

Hence setting vk := v\χk, vk is decomposed as follows:

υk = uk -h uj; with wfc G H%r(E) and vj G [Range(9)]

Applying Proposition 2.2 to X*., it follows that H%'r(E) C nn'q(Xk,E,Ψ) and

Hx* G H

k'
r(E) i f ^ € H^r(E) and / > jk > 1 (cf. [4], Chap. 1). In particular

ΐ/fc_i_i = Ufc and v^+ 1 = vj! on X^ for any A: > 1. Setting u := uk and v* := v^

on Xk for any A: > 1 we obtain υ — u + v* and u G Ή.n'r{X,E,Ψ). Since # is

an exhaustion function of X, we can take a smooth strictly increasing function λ :

[0,sup#) -> [0,-hoo) such that υ and u G L2' r (X,^,/ie~ A W). Setting ^ := he~^ψ\

u satisfies 9w = ΰgu = 0 in L^r(X,E,g) by ^ = i?Λ + A'(#)e(<9#)*, which implies

v* G [Range(<9)] C L^r(X,E,g). Therefore there exists w G C ^ " 1 ^ ^ ) w i t h

v* = dw by the Hausdorff property of i / r ( X , Ω £ ( £ ) ) by [20], Proposition 4.6. Fi-

nally we have obtained the decomposition (0). D

Setting Φ = 0 in Theorem 2.1 we obtain the following theorem.

Theorem 2.4. Let X be a weakly 1-complete manifold of dimension n\ i.e., X

admits a smooth plurisubharmonic exhaustion function Ψ. Suppose X admits a Kάhler

metric u)χ and E is a Nakano semi-positive vector bundle on X. Then for any r > 1,

Hn^r{X,E,Ψ) represents Hr(X,Ω%(E)) if and only if Hr(X, Ω%(E)) has a struc-

ture of separated topological vector space.

REMARK 2.5. If X is holomorphically convex, then the sufficiency of Theorem
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2.1 has already shown in [20], Theorem 5.2. On the other hand it is interesting that

there exists a class of weakly 1-complete Kahler manifolds X being not holomorphi-

cally convex whose canonical line bundle is flat and Hr(X, Oχ) is either Hausdorff

or not (cf. [9], [10], [21])

3. Proof of Theorems 1 and 2

Let the situation be the same as in Theorem 1 stated in the introduction. We fix

the Kahler metric ωx and the metric h of E satisfying the hypothesis respectively. By

composing an arbitrarily smooth convex increasing function with Φ we may assume

that (1) Φ > 0 on X, and (2) Φ is strongly g-convex and weakly hyper p-convex on

{Φ > 0} relative to ωx. We take a Stein open covering {VΓ

α,/τα,S'α,C£ί(α)}αGj4 of Y

such that τa is an isomorphism from Va to a subvariety SQ C (Cd(<a\ (z1, ...,zd^))

for any a € A. Setting φa := ( r α o f)*{Σ,?=i \zJ?)> φ« '-= Φ + Ψ<* a n d X(Y<*) ~

Z " 1 ^ ) , each pair {X(Va),\Pa} satisfies the condition of Theorem 2.1, (i).

For any r > max{p, q}, by the theorem stated in the introduction and Theorem

2.1, the homomorphism tr : Hn>r(X(Va),E,Ψa) -> Hr(X(Va),Ω%(E)) induces an

isomoφhims as an O(Va)-module. Furthermore for any Stein open subset W C Va

provided with an strictly plurisubharmonic exhaustion function ψw, we claim that the

restriction homomorphism rVaiW : Hn>r(X(Va),E,Ψa) -> Ή.n>r(f-ι{W),E,Φ +

f*ψw) can be well-defined and commutes with the restriction homomorphism of co-

homology group. By the surjectivity of /, for any a there exists an open dense sub-

set Ua C Va such that Ua is non-singular and / : / - 1 ( ί 7 α ) —> Ua is smooth.

By Proposition 2.3, (ii) and § 1, (1.4) in [20], u E Ήn'r{X{Va),E,Ψa) satisfies

the equation: y/-ί(e(ddφa)Au,u)h = Σ?°i \<d(τC* ° fY^Y^il = ° o n X(V«)
for any a. Hence d(ra o f)*z3; Λ *u = 0 on ^(V^) for any j and α, where * is

the star operator relative to ωx. This implies that (1) Ήn>r(X(Va),E,Ψa) = 0 if

r > max{n - m, max{p, q}} with m = d i m c ^ , (2) any point x G Ua admit-

s a neighborhood Vx C Ua and a non-vanishing holomorphic m form 0X on Vx so

that *u can be divided by f*θx on f~ι{Vx) for any u G Ή n ' r (X(V α ),E,!f r

α ) if

max{p,g} <r <n-m. Hence w G 7 / ^ ( ^ ( 1 ^ ) , £7, !?α) satisfies e(d(f*ψw)Yu = 0

on X(Py) i.e., u\X(W) G Ήn ' r(X(VF),£;,Φ + f*ψw), which implies our claim.

Denoting the sheafification of the data {Hn>r(X(Va),E,\Pa),rVa,w} w i t h t h e

restriction homomorphism rVaiW : Hn>r(X(Va),E,Va) -> ^ ^ ( / - H W ^ ) , ^ , * +

/ * ^ t y ) , ^ C F α by R°f^nn'r(E,Φ), we obtain a sheaf isomorphism ιr :

Rof*Ή,n>r{E,Φ) -> Rrf^^{E) of Oy-module. Furthermore for any relatively com-

pact Stein open subset S provided with a smooth strictly plurisubharmonic exhaustion

function ψs clearly the canonical homomorphism from Ήn>r(f~1(S),E,Φ + f*ψs)

to Γ{S,R°f*Ήn'r(E,Φ)) is an isomorphism. By Proposition 2.3, (iii), the operator

* induces a sheaf homomorphism σr : R°f*Un'r{E,Φ) -> R°f*Ωχ~r(E) w i t h

Cr o σr — id because 2/ o * — c(n,r)id, c(n,q) / 0 G C, on (ro,r) forms. Final-

ly ^ : = σ ^ o ( ^ ) - χ : Rrf*VLn

χ(E) -> R°f^~r(E) is the desired splitting sheaf
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homomorphism. The vanishing theorems follow from the above observation and the d-

uality theorem by Ramis and Ruget (cf. [13] and also [3]). This completes the proof

of Theorem 1.

To show Theorem 2 we have only to show /Hn'r{f~1{S),E,Φ + f*φs) = 0 for

any Stein open subset (S,ψs) of Y because / : X —> Y is a strongly q convex mor-

phism. By the strong hyper q convexity of Φ, this follows from Lemma 1.2 and Propo-

sition 2.2 (cf. [2], [14]). This completes the proof of Theorem 2.
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