NOTE ON COMPLEX K-GROUPS OF COMPACT LIE GROUPS WITH FUNDAMENTAL GROUP OF PRIME ORDER

Haruo MINAMI

(Received April 9, 1997)

1. Let G be a compact connected simply-connected Lie group and Γ a central subgroup of prime order p. Held and Suter [1] and Hodgkin [3] present two kinds of methods which can be used to determine the structure of $K^{*}(G / \Gamma)$, where K denotes the complex K-functor.

The purpose of this note is to describe a simple method for the computation of $K^{*}(G / \Gamma)$, which uses equivariant complex K-theory. Special cases of this method have been applied for calculating, e.g., $K^{*}\left(P E_{6}\right)$ in [5] and $K^{*}(P S p(n))$ in [6]. We shall also use the structure theorem on $K^{*}(G)$ [2] and in addition that on $K^{*}\left(L^{n}(p)\right)$ [4], where $L^{n}(p)$ denotes the lens space. As a result we can get the structure of $K^{*}(G / \Gamma)$ as an algebra. Using the notations explained later our result can be stated as follows.

Theorem ([1], [3]). Let G, Γ and p be as above. Then

$$
K^{*}(G / \Gamma)=\Lambda_{R}\left(\beta\left(\zeta_{2}\right), \cdots, \beta\left(\zeta_{r}\right), \beta\left(\rho_{r+1}\right), \cdots, \beta\left(\rho_{\ell}\right), \beta(\kappa)\right) /((V-1) \beta(\kappa))
$$

where $\ell=\operatorname{rank} G$ and $R=\mathbf{Z}[V] /\left(p^{s}(V-1), \cdots, p^{s}(V-1)^{p-1}, V^{p}-1,(V-\right.$ $\left.1)^{s(p-1)+1}\right)$.

The rest of this note is devoted to our proof of the theorem together with the explanation of the symbols for the generators.
2. Let $\rho_{1}, \cdots, \rho_{\ell}$ be the fundamental irreducible representations of G with $\ell=$ $\operatorname{rank} G$. Let V denote the canonical non-trivial complex one-dimensional representation of Γ. And let V^{k} denote the k-fold tensor product of V and $q V^{k}$ the direct sum of q copies of V^{k}. Since G admits at least one faithful representation, all the ρ_{i} 's are not trivial on Γ. So by Schur's lemma we may assume that the restrictions of the first $\rho_{1}, \cdots, \rho_{r}$ to Γ can be written as

$$
\rho_{i} \mid \Gamma=p^{s_{i}} n_{i} V^{k_{i}}
$$

with $1 \leq k_{i} \leq p-1,\left(p, n_{i}\right)=1$ and $s_{1} \leq s_{i}$ for all i and the rest are trivial on Γ.

Set $s=s_{1}$ and denote by V itself the line bundle $G \times{ }_{\Gamma} V \rightarrow G / \Gamma$. Then the order of $V-1$ in $\tilde{K}(G / \Gamma)$ is a power of p since V is induced from the canonical line bundle over a certain lens space $L^{m}(p)$. So using ρ_{1} we see that $p^{s}(V-1)=0$ in $\tilde{K}(G / \Gamma)$, so that there exists a stable isomorphism

$$
\begin{equation*}
C: G \times p^{s} V \cong G \times \mathbf{C}^{p^{s}} \tag{2.1}
\end{equation*}
$$

of Γ-vector bundles over G.
Let $B(q V)$ and $S(q V)$ be the unit ball and sphere in $q V$ respectively and let $\Sigma^{q V}=B(q V) / S(q V)$ in which the pinched $S(q V)$ serves as base point. Let $L^{m}(p)=$ $S((m+1) V) / \Gamma$ as usual and write again V for the line bundle $S((m+1) V) \times{ }_{\Gamma} V \rightarrow$ $L^{m}(p)$. Set $m=t(p-1)+r$ with $0 \leq r<p-1$. By [4] we then have

$$
\begin{equation*}
\tilde{K}\left(L^{m}(p)\right)=\mathbf{Z}_{p^{t+1}}\left\{V-1, \cdots,(V-1)^{r}\right\} \oplus \mathbf{Z}_{p^{t}}\left\{(V-1)^{r+1}, \cdots,(V-1)^{p-1}\right\} \tag{2.2}
\end{equation*}
$$

And its ring structure is given by the relations $V^{p}=1$ and $(V-1)^{m+1}=0$.
Let K_{Γ} denote the equivariant complex K-functor associated with Γ. Then for a free Γ-space X we have a canonical isomorphism $K_{\Gamma}(X) \cong K(X / \Gamma)$ which will be identified below. Let us put $n=s(p-1)$. Then by (2.2) we see that $p^{s}(V-1)=0$ in $\tilde{K}\left(L^{n}(p)\right)$ and hence we have a stable isomorphism

$$
T: S((n+1) V) \times \mathbf{C}^{p^{s}} \cong S((n+1) V) \times p^{s} V
$$

of Γ-vector bundles over $S((n+1) V)$. This gives rise to an element τ of $\tilde{K}_{\Gamma}\left(\Sigma^{(n+1) V}\right)$ in a canonical manner such that its restriction to the origin of $B((n+1) V)$ is $p^{s}(1-V)$ in $R(\Gamma)$, the complex representation ring of Γ.

Consider the exact sequence for the pair $(B((n+1) V), S((n+1) V))$ in K_{Γ}-theory together with (2.2) when $m=n$. Then it is seen that τ equals the Thom element of $\tilde{K}_{\Gamma}\left(\Sigma^{(n+1) V}\right)$ up to a multiple of unit of $R(\Gamma)$. The discussion proceeds by viewing this unit as 1 for brevity. Consider the exact sequence for the cofibration

$$
S((n+1) V) \times G \xrightarrow{i} B((n+1) V) \times G \xrightarrow{j} \Sigma^{(n+1) V} \wedge G_{+}
$$

where G_{+}denotes the disjoint union of G and a single point + which is taken to be the base point of G_{+}. Then $j^{*}: \tilde{K}_{\Gamma}^{*}\left(\Sigma^{(n+1) V} \wedge G_{+}\right) \rightarrow K_{\Gamma}(B((n+1) V) \times G)=$ $K^{*}(G / \Gamma)$ becomes a zero map because $j^{*}(\tau)=p^{s}(1-V)=0$ by (2.1). Hence we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow K^{*}(G / \Gamma) \xrightarrow{I} K_{\Gamma}^{*}(S((n+1) V) \times G) \xrightarrow{\delta} K^{*}(G / \Gamma) \rightarrow 0 \tag{2.3}
\end{equation*}
$$

under the identification of the Thom isomorphism $K^{*}(G / \Gamma) \cong \tilde{K}_{\Gamma}^{*}\left(\Sigma^{(n+1) V} \wedge G_{+}\right)$. So what we next have to do is to determine the structure of the middle group of (2.3).
3. We now consider the generators of two groups of (2.3). Let X be a compact free Γ-space. Write V for the line bundle $X \times_{\Gamma} V \rightarrow X / \Gamma$ as in $\S 2$. Moreover let $f: X \rightarrow G L(n, \mathbf{C})$ be a Γ-map where $G L(n, \mathbf{C})$ is the general linear group with the trivial Γ-action. Then such a map defines a unique element of $K_{\Gamma}^{-1}(X)$, denoted by $\beta(f)$, as follows. The assignment $(x, v) \mapsto(x, f(x) v)$ with $x \in X, v \in \mathbf{C}^{n}$ yields an isomorphism $\theta: X \times \mathbf{C}^{n} \cong X \times \mathbf{C}^{n}$ of Γ-vector bundles over X. We get a Γ-vector bundle over the reduced suspension $S\left(X_{+}\right)$of X_{+}by clutching two n-dimensional product vector bundles over separate cones of X by θ. The reduced vector bundle of this is just $\beta(f)$.

Obviously ρ_{i} gives rise to $\beta\left(\rho_{i}\right) \in K^{-1}(G / \Gamma)$ for $r+1 \leq i \leq \ell$ and $\rho_{i} \circ \pi$ does $\beta\left(\rho_{i} \circ \pi\right) \in K_{\Gamma}^{-1}(S((n+1) V) \times G)$, denoted by the same symbol $\beta\left(\rho_{i}\right)$ for brevity, where π denotes the projection $S((n+1) V) \times G \rightarrow G$.

Define $\bar{\rho}_{i}: S((n+1) V) \times G \rightarrow G L\left(d_{i}, \mathbf{C}\right)$ with $d_{i}=$ degree ρ_{i} for $1 \leq i \leq r$ by $\bar{\rho}_{i}(x, g)(v)=\pi\left(\left(p^{s_{i}-s} n_{i} T\right)^{-k_{i}}\left(x, \rho_{i}(g) v\right)\right)$ with $x \in S((n+1) V), g \in G, v \in \mathbf{C}^{d_{i}}$. Here $q T$ denotes the direct sum of q copies of T and π the projection of $S((n+$ 1) $V) \times W$ to the second factor. Then $\bar{\rho}_{i}$ becomes a Γ-map, so that this gives rise to $\beta\left(\bar{\rho}_{i}\right)$ of $K_{\Gamma}^{-1}(S((n+1) V) \times G)$. Furthermore let us put $f(x, g)(v)=\pi\left(T^{p}(x, v)\right)$ with $x \in S((n+1) V), g \in G, v \in \mathbf{C}^{p^{s}}$ and write ν for $\beta(f)$ which $f: S((n+1) V) \times$ $G \rightarrow G L\left(p^{s}, \mathbf{C}\right)$ defines. Then by definition and by making use of (2.1) we have the following.

$$
\begin{align*}
& I\left(\beta\left(\rho_{i}\right)\right)=\beta\left(\rho_{i}\right)(r+1 \leq i \leq \ell), \delta(\nu)=1+V+\cdots+V^{p-1}, \tag{3.1}\\
& \delta\left(\beta\left(\bar{\rho}_{i}\right)\right)=-n_{i}\left(1+V+\cdots+V^{k_{i}-1}\right)(1 \leq i \leq r)
\end{align*}
$$

From (3.1) and the fact that $\left(p, k_{1}\right)=1,\left(p, n_{1}\right)=1$ it follows that there exist two polynomials $a(X), b(X) \in \mathbf{Z}[X]$ such that if we put

$$
\gamma=a(V) \beta\left(\bar{\rho}_{1}\right)+b(V) \nu \in K_{\Gamma}^{-1}(S((n+1) V) \times G)
$$

then

$$
\begin{equation*}
\delta(\gamma)=1 \tag{3.2}
\end{equation*}
$$

By (3.1) and (3.2) we see that there exist more elements $\beta\left(\zeta_{i}\right)(2 \leq i \leq r)$ and $\beta(\kappa)$ of $K^{-1}(G / \Gamma)$ such that

$$
\begin{align*}
I\left(\beta\left(\zeta_{i}\right)\right) & =\beta\left(\bar{\rho}_{i}\right)+n_{i}\left(1+V+\cdots+V^{k_{i}-1}\right) \gamma \quad(2 \leq i \leq r) \tag{3.3}\\
I(\beta(\kappa)) & =\left(1+V+\cdots+V^{p-1}\right) \beta\left(\bar{\rho}_{1}\right)+n_{1} k_{1} \nu .
\end{align*}
$$

4. Let $1 \leq k \leq n+1$. Denote by the same symbol the images of $\beta\left(\bar{\rho}_{i}\right)$'s and $\beta\left(\rho_{j}\right)$'s of $K_{\Gamma}^{-1}(S((n+1) V) \times G)$ by $(i \times 1)^{*}: K_{\Gamma}^{-1}(S((n+1) V) \times G) \rightarrow K_{\Gamma}^{-1}(S(k V) \times$
$G)$ where i denotes an inclusion $S(k V) \subset S((n+1) V)$. And write ν for the image of the Thom element of $K^{-1}\left(S^{2 k-1}\right) \cong \mathbf{Z}$ by the transfer $K^{-1}\left(S^{2 k-1}\right) \rightarrow K_{\Gamma}^{-1}(S(k V))$.

Let $k-1=t(p-1)+r$ with $0 \leq r<p-1$ and set

$$
\begin{aligned}
R_{k}=\mathbf{Z}[V] /\left(p^{t+1}(V-1), \cdots,\right. & p^{t+1}(V-1)^{r} \\
& \left.p^{t}(V-1)^{r+1}, \cdots, p^{t}(V-1)^{p-1}, V^{p}-1,(V-1)^{k}\right)
\end{aligned}
$$

We will show that

$$
\begin{equation*}
K_{\Gamma}^{*}(S(k V) \times G)=\Lambda_{R_{k}}\left(\nu, \beta\left(\bar{\rho}_{1}\right), \cdots, \beta\left(\bar{\rho}_{r}\right), \beta\left(\rho_{r+1}\right), \cdots, \beta\left(\rho_{\ell}\right)\right) /((V-1) \nu) \tag{4.1}
\end{equation*}
$$

by induction on k.
Choose a circle subgroup S^{1} of G which contains Γ and view this S^{1} as $S(V)$. Then using the multiplication $S(V) \times G \rightarrow G$ yields a homeomorphism $S(V) \times_{\Gamma} G \approx$ $S^{1} \times G$ and so we have $K_{\Gamma}^{*}(S(V) \times G) \cong K^{*}\left(S^{1} \times G\right)$. According to [2] $K^{*}(G)=$ $\Lambda\left(\beta\left(\rho_{1}\right), \cdots, \beta\left(\rho_{\ell}\right)\right)$. From this and the definition of $\beta\left(\bar{\rho}_{i}\right)$'s and $\beta\left(\rho_{j}\right)$'s it can be easily checked that $K_{\Gamma}^{*}(S(V) \times G)=\Lambda\left(\nu, \beta\left(\bar{\rho}_{1}\right), \cdots, \beta\left(\bar{\rho}_{r}\right), \beta\left(\rho_{r+1}\right), \cdots, \beta\left(\rho_{\ell}\right)\right)$.

Next consider the exact sequence for the pair $(S((k+1) V) \times G, S(V) \times G)$ in K_{Γ}-theory. Because of $S((k+1) V) / S(V) \approx \Sigma^{V} \wedge S(k V)_{+}$we then obtain an exact sequence

$$
\begin{aligned}
& \cdots \rightarrow K_{\Gamma}^{*}(S(V) \times G) \xrightarrow{\delta} K_{\Gamma}^{*}(S(k V) \times G) \\
& \xrightarrow{J} K_{\Gamma}^{*}(S((k+1) V) \times G) \xrightarrow{I} K_{\Gamma}^{*}(S(V) \times G) \rightarrow \cdots
\end{aligned}
$$

under the identification of the Thom isomorphism $K_{\Gamma}^{*}(S(k V) \times G) \cong \tilde{K}_{\Gamma}^{*}\left(\Sigma^{V} \wedge\right.$ $\left.(S(k V) \times G)_{+}\right)$. And we see that there hold the equalities $J(1)=1-V, J(\nu)=\nu$ and $\delta(\nu)=1+V+\cdots+V^{p-1}$. By making use of these formulas we can proceed with the induction on k and we have (4.1) consequently.

Proof of Theorem. We have $\delta\left(\nu \beta\left(\bar{\rho}_{1}\right)\right)=\beta(\kappa)$ in addition to (3.1), (3.2) and (3.3). Using these formulas the theorem follows immediately from (4.1) when $k=n+$ 1 and the exactness of (2.3).

References

[1] R.P. Held and U. Suter: On the unitary K-theory of compact Lie groups with finite fundamental group, Quart. J. Math. Oxford, (2) 24 (1973), 343-356.
[2] L. Hodgkin: On the K-theory of Lie groups, Topology, 6 (1967), 1-36.
[3] L. Hodgkin: The equivariant Künneth theorem in K-theory, Lecture Notes in Math. 496 (1975), 1-101.
[4] T. Kambe: The structure of K_{Λ}-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
[5] H. Minami: On the K-theory of $P E_{6}$, Osaka J. Math. 32 (1995), 1113-1130.
[6] H. Minami: On the K-theory of the projective symplectic groups, Publ. RIMS, Kyoto Univ. 31 (1995), 1045-1063.

Department of Mathematics Nara University of Education Takabatake, Nara 630-8528, Japan

