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Throughout this note, rings are associative rings with identity and modules are u-
nitary modules. Sometimes, we use the notation 4X (resp. X 4) to signify that the
module X considered is a left (resp. right) A-module. For each pair of subsets X and
M of aring A, we set £x(M) = {a € X|aM =0} and rp(X) = {a € M|Xa = 0}.

Following Baba and Oshiro [1], we call a pair (eA, Af) of a right ideal eA and
a left ideal Af in a ring A an i-pair if (a) e and f are local idempotents; (b) eA 4
and 4Af have essential socles; and (c) soc(eA4) = fA/fJ and soc(4Af) = Ae/ Je,
where J is the Jacobson radical of A.

Generalizing a result of Fuller [3], Baba and Oshiro [1] showed that for a local
idempotent e in a semiprimary ring A, eAy4 is injective if and only if there exists a
local idempotent f in A such that (eA, Af) is an ¢-pair in A and raf(lea(M)) =M
for every submodule M of Afsay, and that for an i-pair (eA, Af) in a semiprimary
ring A the following are equivalent: (1) .4.eA is artinian; (2) Affas is artinian; and
(3) both eA4 and 4Af are injective.

Our aim is to extend the results mentioned above to perfect rings. Following Hara-
da [4], we call a module L4 M -simple-injective if for any submodule N of M4 every
6: N4y — L, with Imé simple can be extended to some ¢ : M4 — L4. For a local
idempotent e in a left perfect ring A, we will show that eA,4 is A-simple-injective if
and only if there exists a local idempotent f in A such that (eA, Af) is an i-pair in
A and r45(€ea(M)) = M for every submodule M of Affay, and that eA,4 is injec-
tive if it is A-simple-injective and has finite Loewy length. We will show also that for
an i-pair (e4, Af) in a left perfect ring A the following are equivalent: (1) .4.€A is
artinian; (2) Afsay is artinian; and (3) both eA4 and 4 Af are injective.

1. Localization and injective objects

Let A and B be abelian categories, F': A — B and G : B — A covariant functors,
and €:14 — GF and ¢ : FG — 15 homomorphisms of functors, where 14 : 4 — A
and 1 : B — B are identity functors. We assume the conditions: (a) ér o Fe = idp;
(b) Géd oeg =idg; (c) F is exact; and (d) ¢ is an isomorphism.

Remark 1. (1) By the conditions (a) and (b), for each pair of X € Ob(A) and
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M € Ob(B) we have a natural isomorphism
0x.n : Homp(FX, M) - Homs(X,GM),8+— GBoex

with 0x ! (a) = dpr 0 Fa for a € Hom4(X,GM). Namely, G is a right adjoint of
F. In particular, G is left exact.

(2) By the conditions (a), (b) and (d), G : B — A is fully faithful.

(3) By the conditions (a) and (d), Fe : F — FGF is an isomorphism with
Fe 1= OF.

(4) By the conditions (b) and (d), e¢ : G — GFG is an isomorphism with
EG—1 = G9.

Though the following lemmas are well known and more or less obvious, we in-
clude proofs for completeness.

Lemma 1.1. Let X € Ob(A) be simple with FX # 0. Then FX € Ob(B) is
simple.

Proof. Let 3 : FX — M be a nonzero morphism in B. We claim # monic.
Note that 3 = §pr 0 F(GBoex). Thus GBoex : X - GM is nonzero and monic, so
is B=0m0o F(GBoex). ]

Lemma 1.2. Let p : Y — X be an essential monomorphism in A with ey
monic. Then Fu : FY — FX is an essential monomorphism in B.

Proof. Let §:FX — M be a morphism in B with 3 o Fu monic. We claim 3
monic. Since (GBoex)opu=GBoGFuoey = G(Bo Fu)oey is monic, GBoex
is monic and so is 8 = 0y 0o F(GBoex). O

Lemma 1.3. Let X € Ob(A) be injective with ex monic. Then ex : X —
GFX is an isomorphism and FX € Ob(B) is injective.

Proof. Since Fex is an isomorphism, F(Cokex) = CokFex = 0 and
Hom 4(Cokex,GFX) = Homp(F(Cokex), FX) = 0. Thus, since ex : X - GFX
is a split monomorphism, Cokex = 0. Hence for each M € Ob(B) we have a natural
isomorphism

N : Homp(M, FX) = Hom4(GM,X),8— ex ! o GB.

Let v: N - M be a monomorphism in B. Since Gv is monic, Hom 4(Gv, X) is epic
and so is Hompg(v, FX) = nny~! o Hom 4(Gv, X) o npr. d

REMARK 2. (1) An object M € Ob(B) is injective if and only if so is GM €
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Ob(A).

(2) The canonical monomorphism Imex — GFX is an essential monomor-
phism for every X € Ob(A) with FX # 0.

(3) If v: N = M is an essential monomorphism in B, so is Gv: GN — GM.

(4) For X € Ob(A) with ex monic, a monomorphism g : Y — X in A is an
essential monomorphism if and only if so is Fu: FY —» FX.

2. Injective pairs

Throughout the rest of this note, A stands for a ring with Jacobson radical J. For
an i-pair (eA, Af) in A, we denote by Ay(eA, Af) the lattice of submodules X of
eac€A with Lo4(ra7(X)) = X and by A,(eA, Af) the lattice of submodules M of
AffAf with TAf(eeA(M)) =M.

ReMARk 3. Let (eA, Af) be an i-pair in A. Let X be a submodule of .4.eA.
Then X745(X) = 0 implies X C fea(ras(X)) and thus ra5(Lea(ras(X))) C
TAf(X). Also, eeA(T'Af(X))’I‘Af(X) = 0 implies ’I‘Af(X) C rAf(éeA(rAf(X))). Thus
raf(X) € Aq(eA, Af). Similarly, £.4(M) € Ag(eA, Af) for every submodule M of
Afsag. It follows that 4,(eA, Af) is anti-isomorphic to A,.(eA, Af).

The following lemmas have been established in [5], [3], [1], [8], [6] and so on.
However, for the benefit of the reader, we provide direct proofs.

Lemma 2.1. Let e, f € A be idempotents and assume L.o(Af) = 0 =
raf(eA). Then the following hold.
(1) For a two-sided ideal I of A, eI =0 if and only if If =0.
(2) Lea(I) = Lea(If) for every right ideal I of A.
() ras(I) =rag(el) for every left ideal I of A.

Proof. (1) Assume el =0. Then eAIf =elf =0 and If C raz(eA) =0. By
symmetry, I f = 0 implies el = 0.

(2) Since If C I, £ea(I) C Lea(If). For any = € Loa(If), since zIAf =
:I:If =0,zI C feA(Af) =0and z € ZeA(I). Thus ZCA(If) C éeA(I).

(3) Similar to (2). O]

Lemma 2.2. Let (eA, Af) be an i-pair in A. Then the following hold.

(1) Lea(Af) =0=ra5(eA).
(2) eAfray and ca.eAf have simple essential socles and soc(eAs)f = soc(eAfsay)

= 50C(cAc€Af) = e(soc(4Af)).

Proof. (1) For any 0 # z € eA, since soc(eds) C zA, 0 # soc(eds)f C
zAf and x & L. a(Af). Thus L. 4(Af) = 0. Similarly r4¢(eA) = 0.
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(2) Since by Lemma 1.1 soc(eA)fras and cgce(soc(4Af)) are simple, and s-
ince by Lemma 1.2 soc(eda)fray C eAfsay and cgce(soc(4Af)) C caceAf are
essential extensions, the assertion follows. O

Lemma 2.3. Let (eA, Af) be an i-pair in A. Then for any n > 1 eJ™ =0 if
and only if J"f =0, so that eAs and s Af have the same Loewy length.

Proof. By Lemmas 2.2(1) and 2.1(1). O

Lemma 24. Let (eA,Af) be an i-pair in A. Let N, M be submodules of
Afsag with N C M and M/N simple. Assume N € A,(eA, Af). Then the following
hold.

(1) caclea(N)/Lea(M) is simple.
2) M€ A.(eA, Af).

Proof. (1) Let a € M with a ¢ N. Then M = N + afAf. Also, since
M # N = raf(lea(N)), ea(M) C Lea(N) with Leg(N)/lea(M) # 0. Since
0#La(N)M =£L.a(N)afAf and Lea(N)afJf =0, bea(N)afAf =soc(eAfray).
Thus by Lemma 2.2(2) £.a(N)a = soc(caceAf) and, since £.a(M)a = 0,
eAeeeA(N)/eeA (M) = SOC(eAeeAf)'

(2) Since Lea(M) C Lea(N) C caceA with Lea(M) € Ai(ed,Af) and
Lea(N)/Lea(M) simple, we can apply the part (1) to conclude that
TAf(lea(M))/Tas(ea(N)) is simple. Thus 745 (lea(N)) = N C M Craf(lea(M))
with both TAf(eeA(M))/TAf(feA(N)) and M/N simple, so that M = T‘Af(éeA(M)).

0

Lemma 2.5. Let (eA, Af) be an i-pair in A. Then M € A.(eA, Af) for every
submodule M of Afsay of finite composition length.

Proof. Lemma 2.4(2) together with Lemma 2.2(1) enables us to make use of
induction on the composition length. l

Lemma 2.6. Let (eA, Af) be an i-pair in A. Then .aceA and Afsaz have the
same composition length.

Proof. By symmetry, we may assume Af;a¢ has finite composition length. Let
0=MyCM; C---C M, = Af be a composition series of Affas. Put X; =
Lea(M;) for 0 < i < n. Since by Lemma 2.5 M; € A,.(eA, Af) for all 0 <7 <, by
Lemmas 2.4(1) and 2.2(1) we have a composition series 0 = X, C --- C X; C Xp =
eA of .4c€A. U
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Lemma 2.7. Let (eA, Af) be an i-pair in A. Then the following are equivalen-
1.
(1) eAn is A-simple-injective.
(2) Lea(M) = Lep(N) implies N = M for submodules N, M of Afsas with N C
M.
(3) M € A.(eA,Af) for every submodule M of Afsay.

Proof. (1) = (2). Let N, M be submodules of Affay with N C M and
M/N # 0. Since (MA/NA)f = M/N # 0, there exist submodules K, I of MA4
such that NA C K C I and I/K = fA/fJ. Let u : I4 — A4 denote the in-
clusion. Since we have 8 : Iy — eAy with Im@ = soc(eAs) and Kerd = K,
there exists ¢ : Ag — eAs with ¢ op = 6. Then ¢(1)I = ¢(I) = 0(I) # 0
and (1)K = ¢(K) = 0(K) = 0. Thus ¢(1) € £oa(K) and ¢(1) & L.o(I). Since
ZeA(M) = ZCA(MA) C feA(I) C feA(K) C feA(NA) = ZeA(N), feA(I) # eeA(K)
implies €4 (M) # Lea(N).

(2) = (3). Let M be a submodule of Afssas and put L = r45(lca(M)). Then
M C L and &,A(L) = éeA(TAf(ZeA(M))) = ZeA(M). Thus M = L.

(3) = (1). Let I be a nonzero right ideal and u : I4 — A4 the inclusion.
Let 0 : Iy —» eAs with Im@ = soc(eAs) and put K = Ker6. Then by Lem-
ma 1.1 If/Kfray = (I/K)fsay is simple, s0 is caelea(K f)/Lea(If) by Lemma
2.4(1). Let a € If with a € K f. Then, since £.4(K f)a # 0 and lea(If)a = 0,
edelea(K f)a is simple. Thus by Lemma 2.2(2) £.a(Kf)a = soc(eAa)f, so that
0(a) = 0(af) = 8(a)f = ba with b € L. o(Kf). Define ¢ : A4 — eAs by 1 — b.
Then, since by Lemmas 2.2(1) and 2.1(2) b € £.4(K), and since I = K + aA, we
have ¢ o pu = 6. U

Lemma 2.8. Let (eA, Af) be an i-pair in A. Assume eA, is injective. Then
the canonical homomorphism .sceAs — cacHomgar(Af,eAf)a, a = (b — abd), is
an isomorphism and eAfs a5 is injective.

Proof. By Lemmas 2.2(1) and 1.3. O

3. Injective pairs in perfect rings

In this section, we extend results of Baba and Oshiro [1] to left perfect rings.
We refer to [2] for perfect rings. We abbreviate the ascending (resp. descending) chain
condition as the ACC (resp. DCC).

ReMARKk 4. (1) Let (eA,Af) be an i-pair in A. Then, since Aq(eA,Af) is
anti-isomorphic to A,.(eA, Af), Ai(eA, Af) satisfies the ACC (resp. DCC) if and on-
ly if A.(eA, Af) satisfies the DCC (resp. ACC).

(2) Let e € A be an idempotent. Then, since .4.eAe appears as a direct sum-
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mand in .4c.€A, c4ceA is artinian if and only if it has finite composition length.
(3) Every module L4 with soc(La) = 0 is A-simple-injective.

Lemma 3.1 (cf. [1, Proposition 5]). Let (eA,Af) be an i-pair in A. Assume
A, (eA, Af) satisfies the ACC and fAf is a left perfect ring. Then Afsay is artinian
and M € A,(eA, Af) for every submodule M of Affay.

Proof. It follows by Lemma 2.5 that there exists a maximal element M in the
set of submodules of Afsays of finite composition length. We claim M = Aff45. Oth-
erwise, there exists a submodule L of Affay with M C L and L/M simple, a con-
tradiction. Thus Aff4s has finite composition length and again by Lemma 2.5 the last
assertion follows. U

Proposition 3.2. Let (eA, Af) be an i-pair in a left perfect ring A. Then the
following are equivalent.
(1) caceA is artinian.
(2) Ai(eA, Af) satisfies both the ACC and the DCC.
(3) Ai(eA, Af) satisfies the ACC.

Proof. The implications (1) = (2) = (3) are obvious.

(3) = (1). Since the ascending chain £.4(Af) C Loa(Jf) C Lea(J?f) C ---
in Aq(eA, Af) terminates, lea(J"f) = Lea(J™T1f) for some n > 0. We claim
L.a(J"f) = eA. Suppose otherwise. Then there exists a submodule M of eAa
with Les(J”f) C M and M/l.4(J"f) simple. Since MJ C Lea(J™f), MJ"Ff
C lea(J7f)J"f = 0and M C Lea(J"Tf) = Lea(J™f), a contradiction. Thus
Lea(J™f) = eA and by Lemma 2.2(1) J*f C rag(lea(J™f)) = 0. Then by Lemma
2.3 eJ™ =0 and eAe is a semiprimary ring. Thus by Lemma 3.1 .4.eA is artinian.

O

Lemma 33. Let e € A be a local idempotent. Assume eAp is A-simple-
injective and has nonzero socle. Then soc(eA4) is simple.

Proof. Let S be a simple submodule of soc(eA4)4. We claim S = soc(ed,).
Suppose otherwise. Let 7 : soc(eA4) — Sa be a projection and p : soc(eA4) — eAaq,
v :S4 — eAy inclusions. There exists ¢ : eAq — eAs with ¢ o p = v o 7. Since
7 is not monic, ¢ is not an isomorphism. Thus ¢(e) € eJe and (e — ¢(e)) is a unit
in edAe. For any = € S, since ¢(e)z = ¢(z) = n(z) = z, (e — ¢#(e))z = 0 and thus
x = 0, a contradiction. O

Lemma 3.4 (cf. [1, Proposition 2]). Let A be a semiperfect ring and e € A a
local idempotent. Assume eA s is A-simple-injective and has finite Loewy length. Then
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eA, is injective.

Proof. Let I be a nonzero right ideal and p : I4 — A4 the inclusion. Let
0 :14 — eAs. We make use of induction on the Loewy length of 6(I) to show the
existence of ¢ : Ag = eAq with = gpop. Let n = min{k > 0|6(I)J* = 0}. We may
assume n > 0. Since eA4 has nonzero socle, by Lemma 3.3 soc(eA,) is simple and
soc(edq) = (I)J™~1 = §(IJ™1). Let p; and 6, denote the restrictions of x and
6 to IJ" !, respectively. Then Im6#; = soc(eA4) and there exists ¢ : Ag — eAy
with ¢; oy = 6;. Since (6 — ¢y opu)(I)J"~! = 0, by induction hypothesis there exists
¢2: Aa — eAs with goopu =6 — ¢ op. Then 6 = (¢ + ¢2) o p. O

Lemma 3.5 (cf. [1, Proposition 4]). Let A be a semiperfect ring and e € A
a local idempotent. Assume eAy is A-simple-injective and has essential socle. Then
there exists a local idempotent f € A such that (eA, Af) is an i-pair in A.

Proof. By Lemma 3.3 S4 = soc(eA4) is simple. Let f € A be a local idem-
potent with Sf # 0. We claim that (eA, Af) is an i-pair in A. Let 0 # a € Sf. It
suffices to show a € Ab for all 0 £ b€ Af. Let 0# b€ Af. Define a: fAs — aAa
by = az and 3 : fAy — bA4 by = — bx. Since Ker3 = rsa(b) C fJ =
rsa(a) = Kera, we have 6 : bAy = adq =Sy witha =000 Let p: Sy — eAy,
v:bAg — A4 be inclusions. Then there exists ¢ : Ay — eAs with gov = po6 and

a = a(f) = 0(B(f)) = 0(b) = $(b) = $(1)b € Ab. 0

Theorem 3.6 (cf. [1, Theorem 1]). Let A be a left perfect ring and e € A a
local idempotent. Then the following are equivalent.
(1) eAn is A-simple-injective.
(2) There exists a local idempotent f € A such that (eA, Af) is an i-pair in A and
M € A.(eA, Af) for every submodule M of Afsas.

Proof. By Lemmas 3.5 and 2.7. O

Theorem 3.7 (cf. [1, Theorem 2]). Let (eA, Af) be an i-pair in a left perfect
ring A. Then the following are equivalent.
(1) cac€A is artinian.
(2) Afsay is artinian.
(3) Both eAs and AAf are injective.

Proof. (1) & (2). By Lemma 2.6.

(2) = (3). By Lemmas 2.6, 2.5 and 2.7 both eA4 and 4Af are A-simple-
injective. Also, by Lemma 2.3 both eA4 and 4Af have finite Loewy length. Thus by
Lemma 3.4 both eA4 and 4Af are injective.
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(3) = (1). By Lemma 2.8 the canonical homomorphism
eAc€Aq = cacHomysr(Af,eAf)a

is an isomorphism and eAffqys is injective. Similarly, the canonical homomorphis-
m gAfsay — sHomea.(eA,eAf)sas is an isomorphism and .4.eAf is injective.
It follows that .4.eAfsas defines a Morita duality. Thus by [7, Theorem 3] eAe is
left artinian and .4.eA has finite Loewy length. Since the canonical homomorphism
eae€A = cacHomggs(Homeac(eA,eAf),eAf) is an isomorphism, it follows by [7,
Lemma 13] that .4.eA has finite composition length. O

ReMArRk 5. In Theorem 3.7 the assumption that A is left perfect cannot be re-
placed by a weaker condition that A is semiperfect (see [7, Example 1]).
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