ON A PROBLEM OF NAGATA RELATED TO ZARISKI'S PROBLEM*

Tetsushi OGOMA

(Received January 10, 1997)

1. Introduction

Related to the problem proposed by Zariski[6] if the intersection $A \bigcap L$ of a normal affine ring A over a field k and a function field L over k is again an affine ring over k (we always understand that L is a subfield of a field containing A), Nagata obtained a characterization[3, Proposition 1], aiming at the affirmative answer, that the intersection $A \bigcap L$ of a normal affine ring A over a Dedekind domain k^{\prime} (merely stated ground ring) and a function field L over k^{\prime} is exactly an ideal transform of a normal affine ring over k^{\prime}.

We recall that A is an affine ring over B if A is an integral domain containing B as a subring and is finitely generated over B and that L is a function field over B if L is the field of quotients of an affine ring over B.

Making use of this result, Rees constructed a counter example to Zariski's problem with an algebro-geometric consideration [5].

Recently, Nagata showed the following result[4, Theorem 2.1, 2.2], in view of the fact that the answer to Zariski's problem was negative and for generalizing the original results, where the derived normal ring of an integral domain A means the integral closure of A in its field of quotients.

Theorem 1.1 (Nagata). Let B be a noetherian domain with the property *). Then the following on a ring R over B are equivalent.

1) The ring R has a form $\widetilde{A} \bigcap L$ with the derived normal ring \tilde{A} of an affine ring A over B and a function field L over B.
2) The ring R is the I-transform of the derived normal ring \widetilde{C} of an affine ring C over B with an ideal I of \widetilde{C}.

The property $*$) on B is the following,
*) For every divisorial valuation ring D over B, the intersection $D \bigcap K$ of D

[^0]and the field of quotients K of B is again a divisorial valuation ring over B unless D contains K.

Here we say that D is a divisorial valuation ring over B if D is a localization $D=\widetilde{C}_{\mathfrak{p}}$ of the derived normal ring \widetilde{C} of an affine ring C over B by a height one prime ideal \mathfrak{p} of \widetilde{C}.

In the proof of the theorem, the assumption $*$) is necessary only to show 2) under the condition 1) and Nagata left the following problem[4, Question 1].

Problem 1.2. What is the class of noetherian integral domains for which the condition $*$) holds?

The purpose of this note is to show that every noetherian domain has this property.

All rings are assumed to be commutative with identity. Notation and terminology in [1] and [4] are used freely.

In particular, a ring with a unique maximal ideal is called qusi-local and we say A is a unibranched local domain if A is a noetherian domain with its derived normal ring being quasi-local.

2. Main result

Lemma 2.1. Let (A, \mathfrak{m}) be a unibranched local domain with $\operatorname{dim} A \geq 2$. Then for any minimal prime P of the completion \hat{A} of A, we have $\operatorname{dim} \hat{A} / P \geq 2$.

Proof. The derived normal ring \widetilde{A} of A is quasi-local with $\operatorname{depth} \widetilde{A} \geq 2$ in the sence that A has a regular sequence of length two on \widetilde{A}. Really, if not and assuming by induction hypothyesis depth $\widetilde{A}_{Q} \geq 2$ for any non-maximal prime ideal Q of $\widetilde{\widetilde{A}}$ such that ht $Q \geq 2$, we see easily that there exist elements a, b in \widetilde{A} such that the radical of $a \widetilde{A}: b \widetilde{A}$ is the maximal ideal of \widetilde{A}. Then we see $a / b \notin \widetilde{A}$ and that a / b is integral over A, a contradiction.

On the other hand, $C=\widetilde{A} \bigotimes_{A} \hat{A}$ is qusi-local with depth $C \geq 2$ because C is expressed as an inductive limit of local rings.

Now for a minimal prime P of \hat{A}, since we have $P \bigcap A=0, P$ corresponds to a prime ideal P^{\prime} of $K \bigotimes_{A} \hat{A}$ for the field of quotients K of A. So take a decomposition $0=I^{\prime} \bigcap J^{\prime}$ in the noetherian ring $K \bigotimes_{A} \hat{A}$ where I^{\prime} is the primary component belonging to P^{\prime} and J^{\prime} is the intersection of the ones belonging to primes other than P^{\prime}.

Put $I=I^{\prime} \bigcap C$ and $J=J^{\prime} \bigcap C$. Then we have a decomposition $0=I \bigcap J$ in C and an exact sequence of \hat{A}-modules

$$
0 \rightarrow C \longrightarrow C / I \bigoplus C / J \longrightarrow C /(I+J) \rightarrow 0
$$

If $\operatorname{dim} \hat{A} / P=1$, then since P is a minimal prime and $P \nsupseteq J$ we have $\operatorname{dim} C /(I+$ $J)=0$ and $\operatorname{Ext}_{\hat{A}}^{1}(A / \mathfrak{m}, C) \neq 0$, which means depth $C=1$, a contradiction.

Proposition 2.2. Let (A, \mathfrak{m}) be a unibranched local domain with $\operatorname{dim} A \geq 2$ and let C be an affine ring over A. Then for any height one prime ideal P of C lying over \mathfrak{m}, we have

$$
{\operatorname{tr} \cdot \operatorname{deg}_{\kappa(\mathfrak{m})} \kappa(P)>\operatorname{tr} \cdot \operatorname{deg}_{K} L}^{L}
$$

where $\kappa(P)$ and $\kappa(\mathfrak{m})$ are the residue fields at P and \mathfrak{m}, L and K are the fields of quotients of C and A respectively.

Proof. For the completion \hat{A} of A, we see that $P^{\prime}=P\left(\hat{A} \bigotimes_{A} C\right)$ is a height one prime ideal of $\hat{A} \bigotimes_{A} C$ by [1, Theorem 15.1] because $\left(\hat{A} \bigotimes_{A} C\right) / P^{\prime}=$ $\hat{A} / \mathfrak{m} \hat{A} \otimes_{A} C / P=C / P$ is an integral domain and $C \rightarrow \hat{A} \otimes_{A} C$ is a flat morhism. So take a minimal prime Q^{\prime} of $\hat{A} \bigotimes_{A} C$ contained in P^{\prime} such that ht $P^{\prime} / Q^{\prime}=1$.

Put $\mathfrak{q}=Q^{\prime} \cap \hat{A}$, then \mathfrak{q} is a minimal prime of \hat{A}. Really, since we have $Q^{\prime} \cap C=0, Q^{\prime}$ and \mathfrak{q} correspond to prime ideals of $\hat{A} \otimes_{A} L$ and $\hat{A} \otimes_{A} K$ respectively. Applying the going down theorem [1, Theorem 9.5] to the flat morphism $\hat{A} \bigotimes_{A} K \rightarrow \hat{A} \bigotimes_{A} L$, the assumption that \mathfrak{q} is not minimal leads us to a contradiction that Q^{\prime} is non-minimal.

Thus we have $\operatorname{dim} \hat{A} / \mathfrak{q} \geq 2$ by Lemma 2.1.
Now the complete local domain \hat{A} / \mathfrak{q} is universally catenary by [1, Theorem 31.6] and we can apply dimension formula[1, Theorem 15.6] for $\hat{A} / \mathfrak{q} \rightarrow$ $(\hat{A} \otimes C) / Q^{\prime}$, we have

$$
\text { ht } P^{\prime} / Q^{\prime}=\operatorname{dim} \hat{A} / \mathfrak{q}+\operatorname{tr} \cdot \operatorname{deg}_{\kappa(\mathfrak{q})} \kappa\left(Q^{\prime}\right)-\operatorname{tr} \cdot \operatorname{deg}_{\kappa(\mathfrak{m})} \kappa(P)
$$

Now since Q^{\prime} corresponds to a minimal prime of $(\hat{A} / \mathfrak{q}) \bigotimes_{A} L$, we have

$$
\operatorname{tr} \cdot \operatorname{deg}_{\kappa(\mathfrak{q})} \kappa\left(Q^{\prime}\right)={\operatorname{tr} \cdot \operatorname{deg}_{K} L}
$$

Thus we have

$$
\operatorname{tr}^{2} \cdot \operatorname{deg}_{\kappa(\mathfrak{m})} \kappa(P)=\operatorname{tr} \cdot \operatorname{deg}_{K} L+\operatorname{dim} \hat{A} / \mathfrak{q}-1>\operatorname{tr} \cdot \operatorname{deg}_{K} L
$$

Theorem 2.3. For any divisorial valuation ring D over a noetherian domain B, the intersection $D \bigcap K$ with the field of quotients K of B is again a divisorial valuation ring over B unless D contains K.

Proof. We may assume that D does not contain K. Let \mathfrak{n} be the maximal ideal of D. Adding some elements of $D \bigcap K$, we have an affine ring A over B such that
$(D \bigcap K) /(\mathfrak{n} \bigcap K)$ is algebraic over A / \mathfrak{m} with $\mathfrak{m}=A \bigcap \mathfrak{n}$. Adding more elements if necessary, we may assume the localization A_{m} is a unibranched local domain by [2, Theorem(33.10)].

If we can prove that $\operatorname{dim} A_{\mathrm{m}}=1$, then we see that $D \bigcap K$ is the derived normal ring of $A_{\mathfrak{m}}$ and we finish the proof of Theorem 2.3.

So suppose, on the contrary, that $\operatorname{dim} A_{\mathrm{m}} \geq 2$. Since D is divisorial over B, we have an affine ring C over A such that $D=\widetilde{C}_{\widetilde{P}}$ where \widetilde{C} is the derived normal ring of C and \widetilde{P} is a height one prime ideal of \widetilde{C}. Adding some elements of \widetilde{C} if necessary, we may assume C_{P} is a unibranched local domain with $P=\mathfrak{n} \bigcap C$ by [2, Theorem(33.10)]. Then we have ht $P=1$ and $P \bigcap A=\mathfrak{n} \bigcap A=\mathfrak{m}$.

On the other hand, D is divisorial over $D \bigcap K$ because so is D over B, and since the dimension formula holds between discrete valuation rings $D \bigcap K$ and D by [1, Theorem 15.6], we have

$$
\operatorname{tr} \cdot \operatorname{deg}_{K} L=\operatorname{tr} \cdot \operatorname{deg}_{\left(D \bigcap_{K) /(\mathfrak{n}} \bigcap_{K)}\right.} D / \mathfrak{n}
$$

with the field of quotients L of D.
Apply Proposition 2.2 and we have
where the last inequality holds because $(D \bigcap K) /(\mathfrak{n} \bigcap K)$ is algebraic over $\kappa(\mathfrak{m})$, a contradiction.

Now Theorem 1.1 can be restated.
Corollary 2.4 (Nagata). A ring R over a noetherian domain B has the form $\widetilde{A} \cap L$ with the derived normal ring \widetilde{A} of an affine ring A over B and with a function field L over B if and only if R is the I-transform of the derived normal ring \widetilde{C} of an affine ring C over B for an ideal I of \widetilde{C}.

References

[1] H. Matsumura: Commutative ring theory, Cambridge University Press 1986.
[2] M. Nagata: Local rings, John Wiley, New York 1962. Reprinted Krieger, Huntington, N.Y. 1975.
[3] M. Nagata: A treaties on the 14th problem of Hilbert, Mem. Coll. Sci. Univ. Kyoto Ser. A, Math. 30 (1956), 57-70.
[4] M. Nagata: On Zariski's problem concerning the 14th problem of Hilbert, Osaka J. Math. 33 (1996), 997-1002.
[5] D. Rees: On a problem of Zariski, Illinois J. Math. 2 (1958), 145-149.
[6] O. Zariski: Interprétations algébrico-géométrique de quatorziéme probléme de Hilbert, Bull. Sci. Math. 78 (1954), 155-168.

Department of Mathematics
Faculty of Science
Kochi University
Kochi, 780 Japan

[^0]: *This work is partially supported by the Grant-in-Aid for Scientific Research (C) 08640047 from the Ministry of Education.

