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0. Introduction

Let G be a finite group, p a prime and B a p-block of G. In [4] Dade conjectured
that the number of ordinary irreducible characters of B with a fixed defect can be
expressed as an alternating sum of the numbers of ordinary irreducible characters of
related defects in related blocks B’ of certain local p-subgroups of G. This (ordinary)
conjecture has been proved by Olsson and Uno for the symmetric groups when p is
odd. In this paper, we prove the (ordinary) conjecture for the symmetric groups G
when p = 2.

In Section 1 we state the ordinary conjecture and fix some notation. In Section
2 we reduce the family of radical 2-chains R(G) to a G-invariant subfamily QR(G).
In Section 3 we first give several more reductions, and then prove the conjecture for
p = 2 using results of Olsson and Uno [6].

1. Dade’s ordinary conjecture

Throughout this paper we shall follow the notation of Dade [4]. Let C be a
p-subgroup chain of a finite group G,

(1.1) C:Ph<P<: <P,

Then w = |C| is called the length of C,

(1.2) N(C) = Ng(C) = Ng(Fo) N Ng(P1) N---N Ng(Py)
is called the normalizer of C in G, and

(1.3) Cr:P< P < <Py, 0<k<w

is called the k-th initial p-subchain of C. In addition, C is called a radical p-chain
if it satisfies the following two conditions:

(a) Po=0,(G) and (b) P, =Oy(N(Ck)) foralll1 <k <w.
Thus Py and Py /Py are radical subgroups of N(Cy) and N(C})/ Py, respectively
for 0 < k < w — 1, where a p-subgroup R of G is radical if R = O,(Ng(R)). Let
R = R(G) be the set of all radical p-chains of G.
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Given C € R, B a p-block of G and u a non-negative integer, let k(N(C), B, u)
be the number of characters of the set

(1.4) Irr(N(C),B,u) = {¢ € Irr(N(C)) : B(3))° = B, and d(¢)) = u},

where B(%) is the block of N(C) containing ¢ and d(v) is the p-defect of ¢ (see
[4, (5.5)] for the definition). Then the following is Dade’s ordinary conjecture, [4,
Conjecture 6.3].

Dade’s ordinary conjecture. If O,(G) = 1 and B is a p-block of G with
defect d(B) > 0, and if u is a non-negative integer, then

(1.5) > (-1)I€IK(N(C), B,u) =0,

CER/G

where R /G is a set of representatives for the G-orbits in R.

2. The first reduction

In this section we shall first define a G-invariant subfamily QR of radical 2-
chains of a symmetric group and then reduce Dade’s conjecture to the family QR.
In the rest of the paper we always suppose p = 2.

We shall also follow the notation of Alperin and Fong [1]. Given a positive
integer n, we denote by S(n) = S(V') the symmetric group of degree n acting on the
set V of cardinality n. For each non-negative integer c, let A. denote the elementary
abelian group of order 2¢ represented by its regular permutation representation.
Thus A, is embedded uniquely up to conjugacy as a transitive subgroup of S(2°¢),
CS(2C)(AC) = Ac, and

Ns(Qc)(Ac) ~ AC A GL(C, 2)

For a sequence ¢ = (c1,¢q,...,ce) of non-negative integers, let |c| =c1 + ...+ ¢
and let A. be the wreath product A, 1 4., 1...1A.,. Then A, is embedded uniquely
up to conjugacy as a transitive subgroup of S(2/°). Moreover,

Ns(ziel)(Ae) = Ns(ze1)(Ae,) ® Nggrerny (Aer)

2.1
1) Ns(2|c|)(Ac)/Ac ~ GL(C1,2) X GL(CQ, 2) X ... X GL(C(,Q),

where ¢’ = (cz,. .., ce) and Ng(ze1)(Ac,) ® Ngpier1)(Aer) is the tensor product of the
normalizers Ng(ze1)(Ac,) and Ngyierj)(Ace). Suppose R is a radical 2-subgroup of
G. By Alperin and Fong [1, (2A)], there exists a corresponding decomposition

V=VUViU-- UV,

(2.2)
R=ROXR1X--~XRt
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such that Rg = (1y,) and each R; for ¢ > 1 is conjugate to some A. in S(V;). Let
A(R) be the subgroup generated by all normal abelian subgroups of R, and let
B(R) = Car)([A(R), A(R)]), where [ A(R), A(R)] is the commutator subgroup of
A(R). Then B(R) is a characteristic subgroup of R and Ng(R) < Ng(B(R)). By
[2, 2A)],

(A)? e #lor e #1,
(D)™ ifer=c =1,

B(Ac) = {

where Dg = A; ! A; is a dihedral group of order 8 and w = (c3, ..., cp).

Let U = {A.:¢c = (1,¢c9,¢c3...,¢0),c0 > 2}, W' ={A. :c= (1,1,c3...,¢0)}
and * = {A.:c=(0)orc=(1,1,...,1)}. A 2-subgroup R with a decomposition
(2.2) is radical in G if and only if mg(P) # 2,4 for all P € ¥*, where mg(P) is
the multiplicity of the components P in R.

Let Sy be a Sylow 2-subgroup of Ng(4)(Aqg). Then S; = A; and S, = Dg. Let
A(l) = {A1 ZAQ}, A(d) = {Sd VA1, Sql Az, Sql Ay 2141} for d > 2,

At=[JAd) and A=AQ)UA(Q).
d>1

Suppose R is a radical subgroup of G with a decomposition (2.2). Then mg(Dg) &
{2,4}, mgr(A;) # 2 and mp(Ds 1 A;) # 2. So B(R) = [['_, B(R;) is non-radical
in G if and only if mpgr)(A1) = 4 or mp(g)(Ds) € {2,4}, which is equivalent to
(a) mp(A11A2) =1but mg(P) =0 for P € U\{A; 1 Az}, or
(b) For X € A(2), mp(X) =1 but mg(P) =0 for all P € ¥'\{X}.
If B(R) is radical, then define K (R) = B(R). Suppose B(R) is non-radical. Define
A1 VA X [1g, 24,04, B(R)) if only case (a) occurs,
K(R) = X x[Ig,2x B(R;) if only case (b) occurs,
A1 0 As X X X [1R, 24,04, x B(R;) if both cases (a) and (b) occur.

Thus K(R) < R, K(R) is a radical subgroup of G and
Ng(R) < Ne(K(R)) < Na(B(R)).

In addition, if two radical subgroups R and W are G-conjugate, then K(R) and
K (W) are G-conjugate, since B(R) and B(W) are G-conjugate. We also need the
following lemma to define the chains in QR.

(2A). Given integerd > 1, let G = S(2¢) = S(V) and N = N(Ay) = Ng(Aq).
(a) There exists a bijection between the classes of radical subgroups R of N and
the compositions ¢ = (cy,ca, -+, ce) of d such that

Nn(R)/R ~ GL(¢1,2) x GL(¢g,2) X -+ x GL(¢y, 2).
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In particular, the subset [V, R| of V consisting of all points moved by R is V
itself.

(b) Let R be a radical subgroup of N and Q a radical subgroup of Nn(R). Then
Q is radical in N and Ny (Q) < Ny(R).

Proof. (a) Since R isradical in N, Ay < R and R/A4 is a radical subgroup
of N/A; ~ GL(d,2). Since Ny(R)/Aq ~ Ny/a,(R/Aa), it follows by Borel-Tits
theorem [3] that R/A, is the unipotent radical of a parabolic subgroup of N/A4.
The classes of parabolic subgroups of GL(d,2) are labelled by compositions of d,
and so (a) follows easily.

(b) Suppose Q is a radical subgroup of Ny(R). Then R < @, and the proof of
(b) is also straightforward by applying the Borel-Tits theorem to Ny(R)/Aq. ]

REMARK.  Follow the notation of (2A). Then R is radical in G if and only
if R = Ay except when d = 2 and ¢; = ¢ = 1, in which case either R = A4 or
R = Ds. Indeed, we may suppose d > 2. Since Ay < R, it follows that R acts
transitively on V, and R = A, for some sequence w = (wi,...,wy) of positive
integers with |[w| = d. Note that A; < A(R). If w; > 2, then each A(R)-orbitin V
has 21 elements, so that d = w;. If w; = 1, then each A(R)-orbit in V is contained
in some A; ! Ay,-orbit, so that w = (1,w3) and d = 1 + we. But |R/A4] = 2¥2 and
|[A1 2 Ay,| = 227+%2, 50 2¥2 = d = wy + 1 and wy = 0 or 1. Thus wp = 1 and
R = Ds.

The radical subgroup R of Ng(;4)(A4) determined by the composition c in (2A)
(a) will be denoted by Q. if R is not a radical subgroup of S(2¢). This holds in
particular if d > 3. We set B(Q.) = A4. Now we can define the family QR.

Let QR = QR(G) be the G-invariant subfamily of R consisting of radical
2-chains

(2.3) C:1<P <--<P,

such that P, = K(P;) and each P; has a decomposition H;i:l Q;; with Q;; €
At U {A4,Qc, Ds} for all i,5. Let M be the complement R\QR of QR in R, so
that

R=QR|(JM  (disjoint).

In the following we shall show that Dade’s conjecture can be reduced to the family
OR. First of all, we consider the structure of the subgroup P;. By definition, P» is

a radical subgroup of Ng(Py).
Let D be a radical subgroup of G such that D = K(D). Then

2.4) V=vtuv* and D= D" x D*,
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where Dt = [[yca(X)®* with ax € {0,1}, D* = (Ds)™2 x [[450(Aa)™, V* =
[V,D*] and V* = V\V*. Let Ux be the underlying set of X € A% such that
UX = [Ux,X], and NX = NS(UX)(X)~ Then

N(D) = Ne(D) = N(D)* x N(D)*,

where N(D)* = [[xca(Nx)** and N(D)* = DgiS(mjy) x[1 450 Ns(2e) (Aa)1S(ma).
If X = A;1A,, then Nx = A11S(4) and it has exactly two radical subgroups, Ay 1 1)
and A; 1 A2 up to conjugacy. Similarly, if X = Dg As, then Nx = Dg!S(4) and it
has exactly two radical subgroups, A(;1,1,1) and Dg? A2 up to conjugacy.

(2B). Let D be a subgroup of G = S(V') with a decomposition (2.2) such that
D = B(D) and |V,D|] = V. In addition, let R be a radical subgroup of N = N(R).
Suppose D = D(1) = (A;)™, D(2) = (A3)™ or D(2)' = (Dg)™2. Then R is radical
in G and K(R) is radical in N. If L = Ny(K(R)), then

(A1) 1S(t1) x (Ds) 1S(t5) x [Txen(Nx)P if D=D(1),
L = { Ns(1)(A2) 1S(t2) x (Dg) 1S(t5) x [Ixeny(Nx)?* if D =D(2),
(Ds) 18(t3) % T xea(e)(Nx)?> if D=D(2),
where t1,t2 and t, are some non-negative integers and Bx = 0,1. Moreover,
Nn(R) < L.

Proof.  Suppose D = D(1), so that N = A; ! S(m;). It follows by
[5, Proposition 4.7] or [6, Proposition 2.3 and the Remark 2.5] that R = [~ R;,
where R; = A; { R, with R, = A,. Thus R; € VU ¥’ and B(R) = (4,)® x (Dg)?
for some integers o, 3 > 0. Since R/D = [[;~, R} is radical in S(m,), it follows
that mp/p(Ac) € {2,4}, and hence mgr(Ac) € {2,4} for all Ac € U*. Thus R
and then K(R) are radical in G, B(R) = (A;)"* x (Dg)* with t; + 2t, = m; and
N(B(R)) = (A1) 1S(t1) x Dg 1 S(t5). Since N(K(R)) < N(B(R)) < N, K(R) is
radical in N. If B(R) is radical in G, then K(R) = B(R) and N(K(R)) = N(B(R)).
Suppose B(R) is non-radical in G. Then

A1lA XY =R ift1=4andt'2€{2,4},
K(R)={ (A" xY if ¢ ¢ {2,4} and t}, € {2,4},
A LAy x (Dg)tz if t; = 4 and t}, & {2,4}

for some Y € A(2). Thus Ny(K(R)) is given by (2B). Since N(R) < N(K(R)), it
follows that

Ny(R)=N(R)NN < N(K(R)) "N = Ny(K(R)) = L.
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Suppose D = D(2), so that N = Ng4)(A2) 1 S(m2). Since Ay and Dg are the
only radical subgroups (up to conjugacy) in Ng(4)(Az), it follows that R = [];~; R;,
where R; = Ay L R, or Dg ! R, with R, = A,. Let B(R) = (A3)™ x (Dg)%, R(2) =
[I; R: and R(2)" =[], R;, where i and j run over the indices such that R; = A2 R;
and R; = Dgl R}, respectively. Then R(2)’ /(A2)?> is radical in GL(2,2) ! S(t}),
since R/D is radical in GL(2,2) ! S(mz). Thus mR(2),/(D8),«2(Ac) ¢ {2,4}, and
hence mp) (Ac) € {2,4} for each A, € ¥*. It follows that R is radical in G. If
B(R) is non-radical in G, then t, € {2,4} and so R = R(2) xY for some Y € A(2),
and K (R) = (A2)* x Y. Since N(B(R)) = Ng(4)(A2)1S(t2) x (Ds) 1S(t5) < N, it
follows that N(K(R)) is given as (2B) and K(R) is radical in N. A proof similar
to above shows that Ny(R) < L.

Suppose D = D(2)’, so that N = Dg ! S(m}). A proof similar to above shows
that each component of R is an element of ¥’ and mg(Ac) & {2,4} for all A. € ¥*.
It follows that R is radical in G and B(R) = D. If m}, ¢ {2,4}, then K(R) = B(R).
If m}, =2 or 4, then K(R) = R € A(2). This proves (2B). U]

Given sequences ¢ = (cy,...,c¢) and z = (z1,...,2,) of non-negative integers,
let Q. be the wreath product X { A, in S(2/¢/*12l), where X = A; or Q¢. If X =
Ae, then Q. = Aw and Ns(2|w|)(Qc,z)/Qc,z is given by (2.1) with some obvious
modifications, where w = (c1,- -+, ¢g, 21, -+, 2y). Suppose Q¢ = X 1 A, with X =
Q.. Let d = |c| and M the underlying set of X. Then we may suppose A4 < X
and [M,X ]| =M. Let X1, Xo, -, X5z be copies of X, and let U}, Us, -+, Uyz be
disjoint underlying sets of X1, Xo, -+, Xgz;. Then U = U; UUy U - - - U U,z can be
taken as the underlying set of X ! 4., and (]_[2 § Xi;) ¥ A, = XA, Let W; be a
normal subgroup of X; isomorphic to Ag. Then [U;, W;| =U; and W = H2| | Wi is
a normal abelian subgroup of X14,, so that W < A(Q.,z). If A is a normal abelian
subgroup of X, then (A)2'z‘ is a normal abelian subgroup of Q. ,. It follows that
(A)2|z| < A(Qc,z) and ]—[?l:l A(X;) < A(Qc,z)- Since Q. is nonabelian, it follows by
[2, (2A)] that each normal abelian subgroup of Q. , is a subgroup of Hf:ll X;. Thus

A(Qe) < TT20) A(X), s0 that A(Qe) = [Ty A(X;) and Uy, Uy, -+ -, Uy are the
orbits ofA(Qc,z) in U Smce Ns(2|c|+|,;)(Qc7z) normalizes A(Qc z), Ns(2|c.+|=|)(Qc,z)
permutes Uy, Us, - - -, Uy among themselves, so that

(2.5) Nsaiei+izl) (Qe U Az) = Ng(a1e1)(Qc) ® Ng(aiz1)(Az).

In particular, Ng(gici+1z1)(Qc,z) normalizes the subgroup Hf: X; = (Qc)zlz' of Qe z-
We claim that

(2.6) NNS(2|6|+IZI)(W) (Qc’z) = NNs(zlcl)(AICI)(QC) ® NS(QI")(AZ)’

where W = ]_[l 1 WZ is a normal abelian subgroup of Q. , such that each W; is a
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normal subgroup of X; isomorphic to Aj|. Indeed, let
N = NNS<2|C|+|z|)(W)(Qc,Z)) H= NNS(2|c|)(A|c|)(QC) ® NS(2"')(AZ)~

If g € N, then g normalizes Q¢ z, so that by (2.5) g = diag {g1,92, ", 9ozl } T,
where g; € Ns)(Qc) and o € Ng(a121)(Az). Since W; < X; and g normalizes
W, it follows that g; normalizes W; and g € H. Conversely, if g € H, then g =
diag {91,92," ", gai= }0, Where 0 € Ngy121)(Az) and g; € Ny (41)(Qc)- Thus
g normalizes Q. , and g € N, so that H = N.

Let R = X ! A, be a subgroup of S(2/I*!2l) where X = A; or Q.. If R =
Ac 1 Ay, then set QB(R) = B(R); If R = Q¢ Aw, then set QB(R) = (Qc)?™' and
B(R) = (A))*™". By (2.5)

s(zlely

Ns(zt¢|+|z!)(Qc,z) < Ns(zlcl+|zl> (QB(Qc,z))'

(2C). Let G = S(n) = S(V), and let Q decompose as (2.2) with Q = B(Q)
or Q = K(Q). Suppose R a radical subgroup of N(Q). Then there exists a
corresponding decomposition

V=MyUM U---UM,,

2.7
R=RyxR; x---XR,

such that Ry = (1p,) and R; = Qc . < S(M;) fori > 1.

Proof. By (2B) and the remark before (2B), we may suppose Q = [] ;5 3(A4q)™¢
and

N =N(Q) = [ Nsi2e)(Aa) 1S(ma).
d>3

By [6, Lemma (2.2)], R = [];53 Ra, where Ry is a radical subgroup of Ng(g4)(Aa)?
S(myg) for all d > 3. By induction, we may suppose N acts transitively on V, so
that Q = (A4)™¢. Thus R = Zy X Z3 X --- X Z, and each Z; = XY for some
subgroup Y = A, of S(mg) and a radical subgroup X of Ng¢)(Aq). By (2A)
(a), X € {Aq4,Qc}, where c is a composition of d. So Z; = Q. and this proves
(2C). O

Suppose R has a decomposition (2.7). Define QB(R) = Ry x [[;_, QB(R;) and
B(R) = Ro x [[;_, B(Ry).

(2D). Let R be a subgroup of G = S(n) = S(V) such that R decom-
poses as (2.7). Given sequences ¢ = (ci,ca,-*,¢ce), z = (21,22, ",24), and
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w = (wi,wg, -, Wwy) of positive integers, let M(c) = U;M;, R(c) = [[; R;,
M(w,z) = U;M;, and R(w,z) =[], R;, where i and j run over the indices such
that R; = A; and R; = Qw ! A, respectively. Then

N(R) = Ng(R) = S(Mp) x HNS(M(C))(R(C)) X HNS(M(w,z))(R(W’ z)).

Moreover,

Ns(m(e)) (R(c)) = Ngar.)(Ac) 1S(te),
Ns(p(w,z)) (M(W,2)) = Ng(ar, ) (Qw 1 Az) 1S(tw,2),

where M. and M, , are the underlying sets of A. and Qw ! A,, respectively, and t.,
tw.z are the numbers of components A. and Qw A, in R(c) and R(w, z), respectively.
In particular, if D = QB(R), then N(R) < N(D).

Proof. Let D; = QB(R;), so that D = Ry x [[;_, D;, where v is given by the
decomposition (2.7). If M is an R-orbit with |M| > 2, then M = M; for some i > 1
and R, ={g€ R:gy =y forall y € V\M;}. Thus N(R) acts as a permutation
group on the set of pairs (M;, R;). Suppose a component R; is conjugate to a -
component R;, where 1 < 4,5 < v. Then |M;| = |M,|, so that S(M,) is conjugate
to S(Mj) in G. If R; = Ac, then R; is radical in S(M;), so is R; in S(M;). Thus
R; = Ac for some sequence ¢’ of non-negative integers. Since | M;| = |M;|, it follows
that |c| = |c¢/| and so ¢ = ¢’ as shown in the proof of [, (2B)]. In particular, D;
is conjugate to D;. If R; = Qv ! A4, then by the remark of (2A), R; is non-radical
in S(M;), so is R; in S(M;). Thus R; = Qw’ ! A, for some sequences w’ and z’ of
non-negative integers. Moreover, D; = (Qw)z'z‘ and D; = (sz)2'2/|.

As shown in the proof of (2.5), an A(R;)-orbit of M; has 2%l elements and
it is a underlying set of a factor Q. of D;. Since A(R;) is conjugate to A(R;),
it follows that |w| = |w’|, so that |z| = |Z/|. Moreover, R; induces a permutation
group A, on the set of A(R;)-orbits and R; induces a permutation group A, on
the set of A(R;)-orbits. Thus z =z’ by [1, (2B)]. Let W = Hi':l W), be a normal
subgroup of D; such that Wy ~ Aj,. Then W is a normal abelian subgroup of
R; and the underlying set Uy of Wy is an A(R;)-orbit of M;. Suppose o € N(R)
such that o(M;) = M; and RY = R;. Then S(M;)? = S(M;) and A(R;)° = A(R;).
Thus W€ is a normal abelian subgroup of R, so that W¢ < A(R;). The image
of an A(R;)-orbit of M; is an A(R;)-orbit of M;. In particular, each o(Uy) is an
A(R;)-orbit and it is the underlying set of a factor of D;. Thus W7 = i:ll Liisa
normal subgroup of R; such that Ly >~ A}y|. So o induces an isomorphism between
NNS(Mi)(W)(Ri)/Ri and NNS(Mj)(Wa)(Rj)/Rj' By (26),

NNS(Mi)(W)(Ri)/Ri ~ Ny (A|w|)(Qw)/Qw X NS(ZIZI)(Az)/Az

s(zlwl)
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NNS(MJ.)(WG)(RJ‘)/RJ‘ ~ Ny

s(2lw

1 (Arw) (@w)/Qwr X Ns(aix1) (Az)/ Az

It follows that w = w’ as |[w'| = |w]|. In particular, D; is conjugate to D;. The
remaining assertions of (2D) now follows easily. ]

Suppose R = [[;_, R; is a subgroup of G with a decomposition (2.7). We define
QK (R) = [[@B(R:) x [ R;»
i J

where i runs over the indices such that either R; € At or R; = Sg1 Ac € AT but

mqop(r)(Sa) € {2,4}, and j runs over the indices such that R; = Sg! A. € AT

and mgp(r)(Sa) € {2,4}. If R and W are subgroups given by (2C) and they are

G-conjugate, then QK (R) and QK (W) are also G-conjugate. Since P, is radical in

N(Py), it follows that P, = QK (P;). Next, we study the structure of P; for ¢ > 3.
Let G =S(n) = S(V) and let

(2.8) H= [T (Vx)** x [T N, y1er, (4 (Xe) 1S (Ee)
XeAa+t ceN

be a subgroup of G, where Nx = Ng(y,)(X), ax and t. are non-negative integers,
Xe € {A|,Qc, Ds} and Q = Q(H) = {w),Ws,..., W} is a subset of sequences w;
of non-negative integers. (It may happen that w; = w; for ¢ # j). In addition, let
HY =J]yca+ (Nx)*X, He = NNs(zlcr)(AlcO(X‘:) 1S(tc) and H* =[] cq He-

(2E). Suppose W is a radical subgroup of H. Then W = W+ x W* such that
Wt =Tlyea+ YA and W* = [Ieco We, where Y and W, are radical subgroups
of Nx and H., respectively and By is a non-negative integer.

(a) Each W, has a decomposition (2.7), and if |c| € {0,1,2}, then W, is a radical
subgroup of S(2!°I*t). Thus W has a deomposition (2.7).

(b) LetQKu(W)= W7 xT]icj=0,1,2 K(We) X [1 53 QK (We), where c runs over
Q. In addition, let Q = QKy (W) and L = Ny (Q). Then Q is radical in H and
Ny (W) < Ng(Q). In particular, O2(H) < Q and QK (Q) = Q. Moreover,
L=L*% x L* such that L™ = [[yca+ (Ny)®" and

L* = H NNg(leI)(A|w|)(YW) { S(tW)7
weQ(L)

where Yo € {Ajw|,Qw,Ds}, and by and t. are non-negative integers. In
particular, L has a decomposition (2.8).

(c) LetR be a radical subgroup of L = Ny(Q). If QKL (R) = Q, then R is radical
in H and Ng(R) = NL(R).
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Proof.  The decomposition of W follows by [6, Lemma 2.2]. We now prove
(a) and (b). If Y is a radical subgroup of Nx and X € A(d) for some d > 1, then
Nx =X or S318(4),s0 Y € {X,S50 A1 1 A1} € A% Thus W+ = [y cas (V)P
for some integers By. If |c| € {0,1,2}, then by (2B), W, is radical in S(2/¢/*%), so
that K (W,) is a radical subgroup of both S(2/°/**) and H,. In particular, W, has
a decomposition (2.2). The normalizer Ngy_(K(W,)) is given by [1, (2B)] or (2B).

Suppose d = |c| > 3. Then W, = W; x ... x W,, such that W; = Z, ! A,,
where Z,, is a radical subgroup of NNS(2|c|)(A|c|)(XC)‘ By (2A) (b), Zw € {Xc, Qw}
with |w| = |c|, and so W, has a decomposition (2.7) and Q = QK (W,) is well-
defined. By induction, we may suppose 2 = {c} and d = |c|. Thus W = W, and
H = H.. Suppose mgpw)(Sa) € {2,4}. Since W is radical in H, it follows that
mw Sd {2 4} If mQB(W)(Sd) = 2, then mw(Sd LA ) =1.1If mQB(W)(Sd) =4,
then my (E) =1 for one E € {Sq1 Az, Sat A1 1 A1 }. It follows that

Ne@ = I 0207 x T N g, (Aw) (Zw) 1S (tw),

ZeA(d)

where ty is an integer and vz = 0,1. If Z, is not a Sylow 2-subgroup of
Ns(2|w|)(A|w|), then Z,, is not a self-normalizer. If Z,, is a Sylow 2-subgroup of
Ng(aiwly(Ajw)), then ty & {2,4}. It follows that Q = Oz(Ng(Q)) and so Q is radical
in H. The rest of the proof of (b) is straightforward.

(c) In the notation above, @ = [[yca+ Y?" X [[eeq @(c), where Y and
Q(c) are radical subgroups of Nx and H,, respectively. In addition, Q(c) =
[1zea+(2)% x [1,,(Zw)™ for some vz = 0,1. Since R is radical in L, it fol-
lows that R = [[5(E)® x []. Rc, where E and R, are radical subgroups of Ny
and Lo = Ng_(Q(c)), respectively. But QK (R) = Q, so E =Y and eg = By. By
induction, we may suppose Q = {c} and Q = Q(c)

If |c] =0, then H = S(tc), Q@ = QT x Q* with Q = K(Q) and R is given by
(2C), where Q* = [],ca Z7% with vz = 0,1 and Q* = (Dg)™ x [[50(Aa)™
Thus L = LT x L* and R = R" x R*, where Lt = [[,cA(Nz)"?, L* = Dg
S(mg) X [Iy450 Ns(2¢)(Aa) 1S(ma), R* = [[gea(E)°F and R* = Rj x [] 450 Ra- So
E is a radical subgroup of Nz, R} is a radical subgroup of Dg1S(m}) and Ry is a
radical subgroup of Ng(gay(Aq) 1 S(mq). Since QK (R) = Q, it follows that E = Z
and eg = vz, so that Rt = Q*. By (2B), Ry and R}, are radical in S(2¢t™d) and
S(22t™2), respectively, where d = 1, 2. By definition,

Q=QKL(R)=Q" xK(Ry) x [[ K(Ra)x []QK(R).

d=0,1,2 d>3

Thus Ry = (Ao)™, K(Ry) = (A1)™, K(R}) = (Dg)™, K(Ry) = (A2)™, and
m;,my & {2,4}, since Q is radical in H. By definition, K(R)) = B(R}) and
K(Ry) = B(Ry) for d = 1,2. Similarly, since QK (R;) = (Aq)™¢, it follows that
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Ry has a decomposition (2.2) and QK(Ry) = QB(Ry) = B(Rg) for d > 3. If
vz = 1 for some Z € A, then Z = A; 1 Ay or Z € A(2). In the former case
mp(@)(A1) = 4, since Q@ = QK (Q) = K(Q). So m; =0 and R, = 1. In the latter
cases mp(q)(Ds) € {2,4}, so that mj = 0 and Rj = 1. In particular, mg-(Z) = 0.
Since R is radical in L, it follows that R is radical in G and QK (R) = K(R) = Q.
Thus Ng(R) < Ny(Q) = L and Nr(R) = Ng(R).

If |c| = 1, then H = A;1S(¢:) and Q = Q" x Q*, where QT = [[zca(2)?
with vz = 0,1 and Q* = (A1)"* x (Dg)*. If |c| = 2, then H = Ng(4)(Xc) ¢ S(tc)
and Q = Z7% x Q*, where Z € A(2), vz = 0,1 and Q* = (A3)" x (Dg)* or (Dg)'2
according as X¢ = Ap or Dg. The same proof as above shows that K(R) = Q,
Ny (R) = Np(R) and R is radical in H.

If lef = d > 3, then H = Ny_ , (a,)(Xc) 1S(tc) and Q = Q* x Q*, where
Q" = Ilzea()(2)7% with vz = 0,1 and Q* = [],(Zw)™ with Zy = Aq or
Qw- It is clear that tw = mg(Zw) and |w| = d. Thus L = LT x L* and R =
R* x R*, where L = [ cp@(N2)"%, L* =[], NNg za)(42)(Zw) U S(tw), and
R* and R* are radical in Lt and L*, respectively. Since QK1 (R) = Q, it follows
that Rt = Q*. Let R* = [[, Rw, Where Ry, is a radical subgroup of L,, =
Ny g (42) (Zor) 1 S(tw). Then QK1 (R) = R* x [],, QK (Rw), 50 that QK (Ry,) =
QB(Ry) = (Zw)'. In particular, each component of R, has the form Zy 1 4,.
Thus QKL(R) = Rt x QB(R*). If mg+(Z) # 0, then Z = S41 A, for some
A, and mQB(Q)(Sd) = mQB(Z)(Sd) S {2,4}, since QKH(Q) = QK(Q) = Q. So
mq+(Sqg) = 0 and Zy, # Sq. It follows that QK (R) = QK(R) = Q, so that
N(R) < N(Q). Thus Ng(R) = N.(R) and R is radical in H. ]

REmARk.  In the notation of (2E), suppose Ox(H) = [[xca+(X)*X x
[Tecq(Xc)=. Then Nx, ax, He and t. are determined uniquely by H. In par-
ticular, QK g (R) is independent of the choice of decompositions of H. Indeed, the
underlying set U of H. and Ux are H-orbits of V, and Nx = {g € H : gy =
y forally e V\Ux} and Hc. ={g€ H:gy =y forall y € V\U}. Thus H; and
Ny are determined by H. In addition, X = O3(Nx) € AT, (X¢)te = Oz(He) € AT
and ax = mo,u)(X). So they are determined by H. This proves the remark.

If C € QR is the chain given by (2.3), then either w = 0 or P; = QKn(c,_,)(F;)
for all 1 < ¢ < w. We also need the following lemma.

(2F). Let G = S(n) = S(V) and let C € QR be the chain given by (2.3)
with w > 1. In addition, let R be a radical subgroup of N(C). Then R has a
decomposition (2.7). If D = QK n(c)(R), then D is radical in N(C), P, 1 D, and
Nn(c)(R) £ Nn(c)(D). In addition, if P, # D and

C': Ph<P <---<P,<D,
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then C' € QR, R is radical in N(C’), and Nyc(R) = Nn(c)(R). If P, = D,
then R is radical in N(Cy_1) and Ny(c,_,)(R) = Nn(c)(R).

Proof.  Since P; is radical in G and QKg(P) = K(P,) = Py, it follows
that N(C;) = N(P;) has a decomposition (2.8) and P, is radical in N(C;) with
QKN (c,)(P2) = P2. By (2E) (b), N(C2) = Ny(c,)(P2) has a decomposition (2.8)
and by induction, N(C) has a decomposition (2.8). Thus R decomposes as (2.7)
and D = QKn(c)(R) is well-defined. By (2E) (b) again, D is radical in N(C)
and moreover, Ny c)(R) < Ny(cy(D). Thus Ny(c)(R) < N(C’) and Ny(c)(R) =
Nn(c(R). If P, = D, then apply (2E) (¢) to H = N(Cyp-1) and Q = P,,. Thus R
is radical in N(Cy_1) and Ny(c,_,)(R) = Nn(c)(R). This proves (2F). O

We can now prove the main result of this section.

(2G). LetG = S(n) =S(V) with O2(G) = {1y}, and let B be a positive defect
2-block of G and u an integer. Then

Z (_1)'C|k(N(C)7B?u)= Z (_1)10|k(N(C)’Bau)

CER/G CeQR/G
where QR /G is a set of representatives for the G-orbits in QR.

Proof. It suffices to show that

(2.9) > (—1)“K(N(C), B,u) =0,
CEM/G

where M = R\QR. Suppose C € M is given by (1.1). Then Cy € QR and
C = Cy ¢ QR, so that there must be some minimal m = m(C) € {0,1,...,w — 1}
such that C,, € QR and C,41 € QR. Since P,y is radical in N(Cm), Ppy1 hasa
decomposition (2.7). We can apply (2F) to Cp,. If D = QK (c,,)(Pm+1), then D #
Ppy1, D is radical in N(Cyr,) and Ny(c,.)(Pm+1) < Ny(c,.)(D), so that P, < D.
Moreover, if P, = D, then P, is radical in N(Cy,_1) and Ny(c,,_,)(Pm+1) =
NN(C’m)(P'm+1)- Define

© 1<P<...<Pph_1<Ppy1<...<P, if P,, = D,
(%) :
1<P<...<PpL<D<P,1<...<P, if P, <D.

Then ¢(C) € M and N(C) = N(p(C)). Moreover, p(p(C)) = C and |p(C)| =
|C| £ 1. Thus ¢ is a bijection from M to itself. This implies (2.9). U
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3. More reductions and the proof of the conjecture

In this section we shall follow the notation of Sections 1 and 2. Let QR°
be the G-invariant subfamily of QR consisting of chains C given by (2.3) such that
mp,(S41Dg) = 0 for all d > 1 except when d = 1, in which case if mp, (4;1Dg) # 0,
then (A,)? is a component of some P, for k < i, and [V, (A3)?] = [V, Dg1 A, ] and
(A2)? 9 Dg1 Ay = Ay 1 Dg. If QR' = QR\QR, then

QR =QR°UQR'  (disjoint).

We shall first reduce Dade’s conjecture to the family QR°.

Fix integer d > 1. Let X € {S41 A2,Sq41Ds}, and let X x Q be a subgroup of
G = S(n) = S(V) with a decomposition (2.7). If Ux = [V, X ] and Uy = V\Uyx,
then V = UxUUg. Suppose C(0) € QR is a fixed radical chain with |C(0)| = s. Let
QR(C(0), X x Q) be the subfamily of QR consisting of all chains C given by (2.3)
such that its s-th subchain Cj is C(0) and its (s+1)-st subgroup Ps; is X X Q up to
conjugacy in G. Since X € At and N(C,,) has a decomposition (2.8), it follows
that N(Cs41) = Nx x N(s + 1), where Nx = Ng(y,)(X) and N(s+ 1) < S(Ug).
Let P, be the t-th subgroup of C with ¢t > s+ 1. Then P, = Y (¢) x Z(t), where
Y () € {X, SatA114; } and Z(t) < N(s+1). Note that QR(C(0), Sq1Ds xQ) C QR
whenever d > 2.

Let M = M(C(0), Sq1 A2 x Q) be the subset of QR(C(0), Sq1 A2 x Q) consisting
of all chains C such that Y (t) = S41Dsg, that is, P; = Sq1Dg x Z(t) (up to conjugacy)
for some ¢ > s + 2. In particular, M(C(0),Sq1 Az x Q) C QR! and

OR! = U  8(C0),S:14: x Q) (disjoint),
C(0),541A2xQ

where S(C(0), Sa142 X Q) = M(C(0), Sa1 A2 x Q)U(QR(C(0), S41Ds x Q)N QRY),
C(0) runs over QR° and S41 Az x Q runs over subgroup of G with a decomposition
2.7).

For C € M, denote by m = m(C) the smallest integer such that P,, = S41 Dg X
Z(m), so that Q < Z(m). Let My and M be the subsets of M consisting of all
chains C such that Z(m) = Q and Z(m) # Q, respectively.

(3A). In the notation above, suppose S = S(C(0),Sq1 Az X Q). Then

(3.1 > (-)ICk(N(C),Bu) =0

Cces/G

for all 2-blocks B and integers u > 0.

Proof. Set X = S41A,. Suppose C € M is given by (2.3). Then m = m(C) >
s+2and P,_; =X xZ(m—1). So Z(m —1) < Z(m) and N(C;) = Nx x N(t)
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for s+ 1 <t <m — 1. In particular, Z(m — 1) is a radical subgroup of N(m — 2)
and moreover, if m = s+ 2, then Q = Z(m — 1) < Z(m). Define a map ¢ such that

1<P<...<Pp o<P,<...<P, if Z(m—1)=Z(m),
e(C): S 1<P <...<Pp_
<XxZm)<P,<...<P, if Z(m—1)< Z(m).

Then ¢(C) € M4, N(C) = N(¢(C)), ¢(p(C)) = C and |¢(C)| = |C| £ 1. Thus

Y (-)9K(N(C), B,u) = 0.
Ce(My)/G

Suppose C € My is given by (2.3). Since X and Sy Dg are the only two radical
subgroups of Nx = S;1S(4) up to conjugacy containing (Sz)*%, it follows that
m(C) = s+ 2, that is, Ps4 5 = Sg1 Dg X Q. Thus

g(C):1 <P <...<Ps<Pyy2<...< P,

is a chain of QR(C(0),S41 Dg x Q)N QR' and N(C) = N(g(C)). Conversely,
suppose

C':'1<P{<...<P,<P, ,<..<P,
is a chain of QR(C(0), S41 Ds x Q) N QR, then P, , = S;1Dg x Q and
h(C"):1< P/ <...<P,<XxQ<P_,<...<P,

is a chain of M. It is clear that g(h(C")) = C’, h(g9(C)) = C and |g(C)| = |C| — 1.
Thus

> (—1)IC1K(N(C), B,u) = 0.

CE(MoU(QR(C(0),S41Dg xQ)NQRY))/G
This proves (3A). (]

It follows by (3A) that Dade’s conjecture can be reduced to the family QR°.
Let Z = (A1)™ be a radical subgroup of S(2™*) = S(Uz), and W # Z a radical
subgroup of Nz = Ng(,)(Z) such that K(W) = W. As shown in the proof of (2B)

Wed= {DBZAQ x Ai ZAQ,Dg L As X (Al)tl,Al L As X (Dg)tZ, (Al)tl X (Dg)tz},

where t; & {2,4}. If W = A, 1 Ay x (Ds)'2, then ty # 0, since Z is radical in S(Uyz).
Similarly, if W = (A4;)% x (Dg)* and t, = 0, then t, # 1. Thus Nygw, 2) (W) =



DADE’s CONJECTURE 431

Ns(v,)(W). Let QR®(C(0), Zx Q) = QR(C(0), Zx Q)NQRY, and let M(C(0), Z x
Q, W) be the subset of QR%(C(0), Z x Q) consisting of chians C given by (2.3) such
that P,, = W x Z(m) (up to conjugacy) for some m > s+ 2 and P; = Z x Z(t) for
s+ 1<t <m, where QR(C(0),Z x Q) is defined as in (3A) and Z(t) < S(Ug).

(3B). In the notation above, let S = M(C(0), Z x Q, W)U QR°(C(0), W x Q),
where W € ®. Then (3.1) holds for S.

Proof. Replacing X = S; 1 A2 by Z, S;! Dg by W and some obvious
modifications in the proof of (3A), we have (3B). O

Let QR™ be the complement of ¢ gy z.w,o(M(C(0), Z x Q, W) U QR?(C(0),
W x Q)) in QR®, where C(0) runs over QR°, Z = (A;)™ with m; & {2,4}, W
runs over @, and Q runs over subgroups of S(Ug) with a decomposition (2.7). It
follows by (3A) and (3B) that

> (-D)KN(E),Bu) = Y (-D)I°K(N(C),B,u).

CEQR/G CEQR*/G

Let D = P, be the first non-trivial subgroup of C € QR*'. Then D = K (D) and
D = D% x D* decomposes as (2.4). Now

A ={A11 A2, D31 A1, Dgt As, Dg ! Ds}.

By (3A), mp(Dsg!Dg) = 0. Since Dl A, € &, it follows by (3B) that mp(DglAs) = 0.
Similarly, mp(Ds) = 0,1 and mg(A; 1 A2) = 0,1. If mp(Ds ! A1) # 0, then D is
not the first non-trivial subgroup of any chain in QR®. Suppose mp(A; 1 A3) # 0.
Since A; ! Ay x (Dg)'2 € ® for t > 1, it follows by (3B) that mp(Ds) = 0. But
K(D) = D, so mpp)(A1) = 4 and mp(p+)(A1) = 0. Similarly, if mp(Dg) # 0,
then mp(A; 1 A2) = mp(A;) =0. Thus

(3.2) D=D(0) x X x [[ D(d),
d>2

where D(d) = (Aqg)™ for d # 1 and X < S(2™) such that

Dg if my = 2,
X = AIZAQ ifm1=4,
(Al)ml lf my € {2,4}

For simplicity, we denote by D(1) the subgroup X. Thus N(D) = [[;50 N(D)d
such that N(D)q = Ng(24y(Aa) 1 S(ma).
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Suppose Q = P; is the second subgroup of C. Then Q is a radical subgroup of
N(D), so that Q = [[;5,Qa, Where Qg is a radical subgroup of N(D)4. Thus Qo
is of form (3.2). It follows by (3B) that @, = D(1). In general, if W = P, is the i-th
subgroup of C fori > 1, then W = [[,5, Wq with Wi = D(1) and Wy < N (D)4 for
all d > 1. By (3B) again, if mW(Dng;) # 0, then there is some 1 < k <7 —1 such
that (A2)* is a component of Py, [V, (A2)*] = [V, (Dg)1A2] and (Az)* < (Dg) 1 As.

Let A’ = {Dg, A1 1 A3} and let

(33) P= ] x) x [J(A9™,
d=0

Xean'

be a subgroup of G, where ax and mg are non-negative integers. Set Pt =
[Ixea (X)** and P* = [];_,(Aq)™. Let Ux be the underlying set of X € A’
such that Ux = [Ux, X ], and Nx = Ngy,)(X).

Suppose C € QR™ is given by (2.3). Denote by Cy(C) the fixed-point set
Cv(P,) of the final subgroup P,, of C. Let £ = {(C) be the largest integer such that
Py has a decomposition (3.3), and let QR+(P) be the subset of QR ™ consisting of
all chains C given by (2.3) such that P, = P. Then

OR* = U QR (P) (disjoint),
P
where P runs over subgroups of G with a decomposition (3.3). Thus

s hq
(34) N(Cp)=S(V(0) x [[ Vx)**x]] <II Ng (20 (Aa)? S(Ad,j)),

Xen d=1 \j=1

where (Ag1,.-.,Ad,h,) is a partition of mg and V(0) = Cy(P).

Fix partitions A\q = (Ag1,-.-,Adh,) of mg, and set A = (Ay,...,As). Let
QR™ (P, )\) be the subset of QR™(P) consisting of all chains C such that N(C,) is
given by (3.4). Then

OQR*(P)=|JOR"(P,))  (disjoint),
A

where A runs over all s-tuple partitions A\g of my.

Suppose W is a G-conjugate of P. Then W9 = P for some g € G, and
C9 € QRT(P) for each C € QR'(W). Thus a set of representatives for the N(P)-
conjugacy classes of QR'(P) can be regarded as a set of representatives for the
G-conjugacy classes of the G-orbit containing QR (P). It is clear that QR'(P)
and QR (P, \) both are N(P)-invariant.

Let QR/(P,\) = {C € QR*(P,)\) : Cy(C) = Cy(P)}, and let QR"(P,\) be
the complement of QR'(P,\) in QR (P, \).
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(3C). In the notation above,

> (—DIIK(N(C), Byu) = 0
CeQR"(P,A)/N(P)

for all 2-blocks B and integers u > 0.

Proof. LetC:1< P, <...< P, =P < Pyy1 <...< P, be a chain of
M = QR"(P,\). Then Cy(P,) # Cy(P). Let m = m(C) be the smallest integer
such that Cy (P,,) # Cv(P)=V(0). Then £+ 1 <m < w.

Let V(+) = [V,P] and P(+) = Pt x [[;5:(Aa)™, where P* is defined
after (3.3). Then P = P(0) x P(4+) and N(P) = S(V(0)) x N(P)(+), where
P(0) = (v (o)) and N(P)(+) = Ns(v (s (P(+)). Thus N(Crur) = S(V(0)) x
N(Cpm-1)(+), where N(Cp,—1)(+) < S(V(+)). So W = P, decomposes as
W = Wy x W, where W, is a radical subgroup of S(V(0)) and W < S(V(+)).
In particular, Wy is a non-trivial subgroup with a decomposition (3.3). By defini-
tion, P, has no decompositions as that of (3.3), so that mw, (Z) # 0 for some
Z € {Qc,Sa1 A1,Sa1 A2}, where d > 2 and c is a sequence of positive integers. Let
D = (lyo)) x W4 and R = Pp,_;. Then D < P,,, R = R(0) x R(+) < D, and
D is radical in N(Cy,—1), where R(0) = (ly(p)) and R(+) = O2(N(Cp—1)(+)).
If R(+) = W4, then m > ¢+ 2 and P,, = Wy x W, is radical in N(C,,_»). Let
©(C) € QR™ such that

©): 1<P<...<Ppo<P,<...<P, if P,_1 =D,
LA 1<P<...<Ppn1<D<P,<...<P, ifPn_1<D.

Then ¢(C) € M, N(C) = N(p(C)), |e(C)| = |C| £1 and ¢(p(C)) = C. Thus ¢ is
a permutation of M and preserves N (P)-classes in M. This implies (3C). ]

Let QR (P, \) be the subset of QR'(P, \) consisting of all the chains whose final
subgroup is P. For any C(0) € QR (P, \) with length |C(0)| = ¢, let QR'(C(0), \)
denote the subset of QR'(P, \) consisting of all the chains C such that C, = C(0).
Thus

QR/(P,\) = U QR'(C(0),A)  (disjoint).
C(0)EQR/,(P,\)

In addition, two chains C(0) and C(0)’ of QR (P,\) are N(P)-conjugate if and
only if QR'(C(0), ) and QR'(C(0)’, ) are N(P)-conjugate.
Now we can prove the main result of this paper.

(3D). Dade’s ordinary conjecture holds for any positive defect 2-block of the
symmetric groups S(n) with O2(S(n)) = 1.
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Proof. (1) First of all, we show that if mp(Ag4) # 0 for some d > 2, then

> (-1)I€1k(N(C), B,u) =0

CeQR'(C(0),A)/N(C(0))

for all 2-blocks B and integers u > 0.
Let K =TI, H;’il GL(d, 2)*¢7 and let R(K) be the set of all radical 2-chains
of K. In addition, let S = S(C(0), ) be the set of all chains

C:1<P<...<P=P<Py1<...<P,

of G such that Cy = C(0) and C/P : Py/P < P41 /P < ... < P, /P is a chain of
R(K). The map ¢ : S(C(0),\) — R(K) given by ¢(C) = C/P is a bijection (see
[6, (5.7))).

The same proof as that after (5.7) of [6] shows that

> (DKNE©),Bw =0,
CeS(C(0),2)/N(C(0))

It suffices to show that there exists a bijective map 1 from QR'(C(0), ) to S(C(0), \)
such that N(C) = N(¢(C)).

Let C be a chain of QR'(C(0),\) given by (2.3) and let N; = N(C;) for
0 <¢ < w. If D= P, is the t-th subgroup of C, then

(3.5) D =D(0) x D(1) x [] [(Sat A1) x (Sa1 A2)** x D(d)],

d>2

such that D(0) = (4o)™°, D(1) = (Ds)™ x (A1142)P* x(A1)"* and D(d) = [] (Xc)™
with |c| = d, where X € {A4,S2 = Ds, Qc}, and «;, 8;,t; and t. are non-negative
integers. Let

(3.6) $(D) = D(0) x D(1) x [ [(Sa)*** x (Sa)** x D(d)] .

d>2

Equivalently, if D = [], D; such that D; € A" or D; € {Aq4, Ds,Qc}, then ¥(D) =
[1, @B(Dy) x (A11 A2)P, where 81 = mp(A11A2) and k runs over the indices such
that Dy % A; ! As. Define

P(O): 1 <Pp(Pr) <p(P) < ... <9(Py).
Then 9(C) = ¥(C); for 1 <t < w. We shall show that ¥(C) € S and ¢ is a

bijection satisfying N(C) = N(¢(C)). If ag = B4 =0 for d > 2, then ¥»(D) = D. In
particular, ¢(P;) = Py, ¥(C)¢ = Cy = C(0) and Ng(C;) = Ng(¢¥(Cy)) for1 <t < L.
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Suppose ¥(C;) € S for some ¢t > £. Then N; is of the form (2.8), and moreover, if
V(0) = Cy(P,) = Cy(P), then

(37) Ne=S(V(0)) x Ne(1) x [ [(Sa2 A1) x (S415(4))% x Ny(d)]

d>2

where N;(1) = (Dg)®* x (A1 1S(4))%* x A;1S(t;) and

Ny(d) = H N (A) (Xe) 1S (te)-
le|=d

Since P,y is radical subgroup of N; and C € QR'(C(0), \), it follows that

Pipy = D(0) x D(1) x J] [(Sat A1)™ x (Sqt A2) x W(d)],
d>2

where W (d) = []|;|=q We such that W, is radical in Hc = NNs(gd)(Ad)(Xc) US(te).
As shown in the proof of (2E) (¢c) W, = [],, (Yw)™ x (Z)7%, where the w’s are
sequences of positive integers such that |w| = |c| = d, Z € {Sq ! A1,Sq0 Az},
Yo € {A4,Ds,Qw} and vz = 0,1. Moreover, X, < Yy and (Z)72 = S31 A4; or
S41 Ay according as mgpw.)(Sa) = 2 or 4. So QB(We) = [[,, (Yw)™ X (Sq)M=
and (X.)' < QB(W,), where n = 2 or 4 according as (Z)?%? = Sj1 A, or Sq1A,. In
particular, Ny_(W.) = Ny (QB(W.)), and QB(W.)/(Aa)* = [1, (Yw/Ag)™ X
(Sa/Aq)™Z is a radical subgroup of GL(d,2)%. By definition,

$(Pip1) = D(0) x D(1) x [ [(Sa)** x (Sa)*** x QB(W (d))] ,
d>2

so that Ny, (¥(Pi+1)) = Nig1. By (3.6), ¥(P;) < ¢(Ps+1) and ¢(Py41)/ P is a radical
subgroup of K. Thus ¢(Cty1)/P € R(K), and by induction, ¥(C)/P € R(K),
so that ¥(C) € S. Since N; = N(C;) = N((C);) for t > 1, it follows that
P, = O3(N(¢(C)4)), so that C is determined uniquely by (C). Thus ¢ is a bijection
if and only if it is onto.

Let C’:1< P{ <...< P] beachian in S, and let C be the chain of length w
such that its ¢-th non-trivial subgroup P; is O2(N(C})). Since C, = C(0) is radical,
it follows that C;, = C(0), and so ¥ (C;) = Cy for 0 < t < £. Suppose (C;) = C}
and C; € QR'(C(0), \) for some £ <t < w. Then Ny = N(C;) = N(C}) is given by
(3.7). Since C; is a radical chain and P, = O5({Vy), it follows that P; = D is given
by (3.5) and P} = (D) is given by (3.6). Since P/ I P/, < Ny and P/, /P is
radical in K, it follows that

Pl,; = D(0) x D(1) x [T [(S0)*** x (Sa)*** x T(d)]

d>2

such that T'(d) = [] ;=4 Tc, Where Tc/(Aqg)* is a radical subgroup of GL(d,2).
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By (2A) (b), Te = [, (Ya)™>, where |w| = |c| = d and Yi, € {A4, Ds, Qw}. Thus

Ny (Te) = HNNs(zd)(Ad)(YW) 1 S(mw).

Since Yy, is self-normalizing if and only if Yy, = S, it follows that Oz (N, (Te)) =
T. except when mr, (Sq) € {2,4}, in which case Oz(Nu, (T¢c)) = [y, 25, (Yw)™ X
Z, where Z = S; 01 A; or Syl Ay according as mr, (Sq) = 2 or 4. Thus
Y(02(Npu, (Te))) = Te and ¢(Pi41) = P{,,. By induction, ¥(C) = C’ and ¢ is
onto. Thus ) is a bijection.

(2) In order to complete the proof, it suffices to consider chains C € QR'(P, \)
such that

(3.8) P = (Ag)™ x (Dg)® x (A1 2 A2)? x (4))™,

where «, (3, mg and m; are non-negative integers. It follows by (3B) and (3C) that P
is the final subgroup for each chain C € QR'(P, )). Let QR*(G) = Up ,QR'(P, \),
where P runs over subgroups of form (3.8) and A runs over partitions of m;. It
suffices to show that

(3.9) Y. (—)9KWN(C),B,u) =0
CeQR*(G)/G

for all positive defect 2-blocks B and integers u > 0.
Now each subgroup of a chain C € QR*(G) is of the form (3.8). Let ¢(P) =
(Ag)™ x (A1) x (A1)* x (A1)™ and let

$(C):1<¢(P1) < P(P,) <... < ¢(Pu)

for chain C € QR*(G) given by (2.3). In addition, let S(G) = {#(C) : C €
QR*(G)}. A proof similar to that of (1) above shows that ¢ is a bijection between
QR*(G) and S(G), and N(C) = N(¢(C)).

The same proof as that of [6, Proposition (6.1)] shows that

Y. (DK(N(C),B,u) =0,

CesS(G)/G
which implies (3.9). This completes the proof. O
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