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1. Introduction

M.S.Baouendi and C.Goulaouic([1]) considered a Fuchsian partial differential
operator with weight m — k

k
P=t"07 + > bpo()t* o4 Y gm0l (4, 2)0] 02,

=1 Jt+lal<m,j<m

where m is a positive integer, k is a non-negative integer, b,,_;(z) are holomorphic
functions in a neighborhood of z = 0 € C™", and ¢;(t,x) are holomorphic func-
tions in a neighborhood of (t,z) = (0,0) € C x C™. In the category of holomorphic
functions, they showed the unique solvability of the characteristic Cauchy problem

(CP) { ‘ PU,:f(.’B,t),
Biulico = 43(2) (=010, w(P)=1) (w(P)=m—k).

under the condition

(A) cP)0;\) #0 for A€ w(P)+ N :={w(P),w(P)+1,...},

where CP)(z;0) := (AN)m + Sry bm—1(€)(AN)m_t With (X); := [[Za(A = 1). If the
condition (A) is not satisfied, then the Cauchy problem does not necessarily have a
holomorphic solution for every holomorphic Cauchy data. They also gave a similar
result in the category of functions that are of C* class in ¢t and holomorphic in z.

The polynomial C(F)(z; \) of A is called the indicial polynomial of P, and a root
of CP)(z; \) = 0 is called a characteristic index of P at z. A characteristic index A
is said to be exceptional, if A € w(P)+ N. The case when (A) is not satisfied, that is,
when some characteristic indices at x = 0 are exceptional, is called the exceptional
case.
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H. Tahara ([5],[6] etc.) considered the characteristic Cauchy problems for Fuch-
sian hAyperbolic equations in the category of C> functions on real domains under
the same condition (A). The author ([3]) considered a class of operators wider than
that of Fuchsian operators, and showed the unique solvability of the characteris-
tic Cauchy problems in the category of functions that are of C* class in ¢ and
holomorphic in z, under the same condition (A) for a similarly defined C(¥)(z; \).

In this article, we consider the exceptional case for a class of operators wider
than that of Fuchsian operators, and construct asymptotic solutions. For Fuchsian
operators, we can easily get “exact” solutions from these asymptotic solutions, using
already known results.

In Section 2, we give the statement of the main theorems. After giving some
preliminary propositions in Section 3, we prove the main theorems in Section 4.

NOTATIONS.
(i)  The set of all integers (resp. nonnegative integers) is denoted by Z (resp. IN).
Putl+ N:={j€Z:j>1}forle Z.
(i1)) The real part of a complex number z is denoted by Rez, and the imaginary
part is denoted by Imz.
(iii) Put 9 := to,.
(iv) For a domain Q in C", we denote by O(f2) the set of all holomorphic functions
on 2.
(v) For a complete locally convex topological vector space F, put
CHa([0,T);E) == Mo, B —ofro<i<n
flat([ ) ]’ ) = f(t)e ([ ’ ]’ ) m t—O_ or0<)<
(N € N),
Cliat (0, T); E) := C™H([0, T}; E)

= {f(t) € C°((0,T}; E) : tf € C°([0, T}; E)}.

(vi) R(C*) denotes the universal covering of C* := C'\ {0}.

(vii) For a commutative ring R, the ring of polynomials in A with the coefficients
belonging to R is denoted by R[\]. The degree of F' € R[)] is denoted by
deg, F'. Also, the ring of formal power series of ¢t with the coefficients belong-
ing to R is denoted by R([t]].

2. Statement of Main Result

Let 2 be a bounded domain in C™ that contains the origin 0. Consider a linear
partial differential operator

2.1) P= Y aalt,2)0{07,  amo(t,z)=t"

Jtlelsm
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of order m > 1, where k € N. Let T' > 0 and assume that
aj,a € CF([0,T0O(Q) ( + e <m).

Let 7(j, ) be the vanishing order of a;, on the initial surface X' := {(0,z) :
z € 2}, that is

2.2) r(j, ) :=sup{r € N :t "a;, € C*([0,T];0(Q))}.

DEerINITION 2.1. (1) Putw(j, @) := j—r(j, @), which is considered as a weight
of each differential monomial a;,(t,x)3]82. Put w(P) := max; i |o|<m w(J, @),
which is called the weight of P.

(2) Put bjq(z) := {aja(t,x)t 7TV} _ . Especially, we write b;(z) = b;o(z).

In this article, we assume the following two conditions.

(Bl)  bja(z)=0 if a#0.
(B2) w(P)>0.

DEFINITION 2.2. Put
(2.3) P (z;X) := > bi(x)(N); € O(Q)A.
j=0

This is a polynomial in A, and is called the indicial polynomial of P. A root of
CP)(x;\) = 0 is called a characteristic index of P at x. A characteristic index X is
said to be exceptional, if A € w(P) + N. Note that if j < w(P) then b;(z) =0, and
hence CP)(z;\) =0 for A\=0,1,...,w(P) — 1.

We also assume the following “non-degeneracy” condition for C(F).
(B3)  bg(0) # 0, where d :=max{j : b;(z) # 0 on Q} = deg, C(P).

For example, Fuchsian partial differential operators satisfy the assumptions (B1)—
(B3) with w(P) =m — k, d = m, and b,,(xz) = 1. The operators considered in [3]
and [4] also satisfy these three assumptions.

As for formal solutions when the condition (A) is satisfied, it is easy to prove
the following.

Proposition 2.3.  Assume the conditions (B1)—(B3). For a subdomain Qg of
including 0, the following two conditions are equivalent.
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(@) CP)Nz;\)#00nQy for Aew(P)+ N.

(b) For every f(z,t) € O(Q)|[[t] and every g;(z) € O(Q) (0 < j < w(P)-1),
there exists a unique formal solution u(t,z) € O(Q)|([t]] of the characteristic
Cauchy problem

Pu = f(z,t),
(CP) { ! |
atult=0 = g](x) (J=071’7W(P)—1)

REMARK 2.4. The condition (a) may look like a collection of infinite number
of conditions. If (A) is satisfied, however, then we can always take g for which the
condition (a) holds, since C(¥) (x; \) is a polynomial of A\ whose top order coefficient
does not vanish at z = 0.

In order to consider the exceptional case, we assume the following condition
on CP)(z; \), which means that the exceptional characteristic indices at = 0 can
be extended holomorphically as characteristic roots.

(E) CP)(z;0) = fI(A = Xi(z)) - DB (z; 0),

j=1

where r € N and
a) N eOo), N0 ewP)+N (1<Lj<r),
b) DWP)(0,)) # 0 for every A € w(P) + N.
In [2], the author considered the restricted case when A; are all constants. In
this restricted case, we can give a formal solution u of (CP) in the form

w(P)—1

oo T
u= Y %f)ti + 3 1PN " () (log 1),
j=0 J: j=0 1=0

uj; € O() (0<50<1< 7).

In general case, we can not expect to have a formal solution of this form. We shall
give formal solutions in a more complicated form.

In order to see what kind of functions we need, let us consider the simplest
example.

EXAMPLE 2.5. P :=td; — A(z), where A(z) € O(Q2) and A\(0) = p € N. Note
that CP)(z; \) = A — A(z). By freezing x, we can easily solve the equation Pu = tP
in R(C*) :
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et
u = )‘(5'3) —Pp
(logt)t? 4+ Ct*®  (if A(z) = p),

tP + C,tA®@)  (if M) # p),

where C, is an arbitrary constant that may depend on z. This is not a good
representation since we want solutions that is holomorphic with respect to z. A
good one is

tA@)-p _ 1
u = Az)—p
(logt)tP  + C(w)t’\(x) (if AM(z) = p),

t? + C(z)tM®  (if Mz) # p),

where C(z) € O(R) is arbitrary.
This example suggests that we need a family of functions such as

(=) 1

(2.4) u(t,z) = u(z) i ple) #0 )

logt if plx)=0
where p € O(Q). Thus, we give the following definitions.

DEFINITION 2.6. (1) Define FU)(zy, .. ., z;;t) inductively as follows.

2oL 20 > (1
z p
(2.5) F(l)(zl;t) = 21 ! = E (logt) zf—l,

!
logt (21 =0) =1 P

F(j+l)(z17 e 7zj+l;t)

F(j)(zl,...,zj_l,zj+1;t) —F(j)(Zl,...,Zj_l,Zj;t)
(26) = Zj41 — Zj
8sz(j)(z1,‘..,zj;t) (Zj+1 =Zj)

logt)P 1 kj+1 .
= Z (log ) Z P ez G=21).

ki+...+kjr1=p—j—1

(zj41 # 25)

Also put FO(:;¢) := 1.
It is easy to see that F9)(zy,...,2;;t) is holomorphic on C7 x R(C*) and
symmetric in (z1,...,2;) € C?. Further, FU)(0,...,0;t) = (1/j!)(logt)’, and if
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0, z1,..., z; are all distinct, then
) J
F(J)(zl,...,zj;t)=co(zl,...,zj)+Zci(z1,...,zj)tz"
=1
for some rational functions c;(21,...,2;) (¢ = 0,1,...,5) of (z1,...,2;). The

function u given by (2.4) can be written as F()(u(z);¢).
(2) For pi(z), ..., pr(z) € O(Q) and h € N, put

h
fg(]h)[ul, el s = {v(t,x) = Z Z o1 (2) FO (s, (), . . ., pi, (x);1)

1=0 I=(iy,...it)

115’51S~-~Sil§7‘7vl($)eo(ﬂ)}>

fs()oo)[ul,...,ur] :

G félh)[ll'lv e 1“7‘] C O(Q X R(Cx))

Note that Ff(zo) (1, - -, ur] = O(Q) (constant functions with respect to t). Further, if
h <k, then F3 [u1, .., pr] C FS (a, .., o] If () =0 (1 < j < 7), then

FMp,...,00 = FPo] = @o )(log t)"
h
{ Zvl z)(logt)t 1 v, € O(Q)}
=0

By the following proposition, a formal series of the form
oo
Yo tPvyt2), wplt,x) € Fo [ )

can be considered as an asymptotic series that is an extension of a formal power
: oo
series )" tPup(z), vp(z) € O(Q).

Proposition 2.7. Ifs > 0 andRey(z)+s>00nQ (1 <1 <r), then for every
g(t,z) € ]—'ng)[pl, cooy i), every (j,a) € N™tL, and every compact subset K of ,
there holds

sup |t 8%g(t,z)| — 0 (t — 0).
z€K

This convergence is considered in an arbitrary finite sector of t € R(C™).
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This proposition follows easily from Proposition 3.5 and 3.6 in the next section.
By this proposition, we get the following corollary.

Corollary 2.8. IfRey(z)+1>00nQ (1 <1 <), then for every g(t,z) €
]-}(zw)[ul, ..., lr] and every p € N, there holds tPg(t,z) € Cﬂat([O T]; O()).

Now, the following is one of the two main theorems of this article.

Theorem 2.9. Assume the conditions (B1)—(B3) and (E). Put p;(z) := A\j(z) —
Xi(0) (7 =1,2,...,7), and put po(z) = 0. Take a subdomain Q of Q including 0
and satisfying the following three conditions.

(a) 'D(P)(m;pj(x) +q) #0 on Qg foreveryqge w(P)+ N and j =0,1,2,...,r
(b) Ifj#1, then pj(x) —w(x) & Z \ {0} on Qo.
() Rew(z)+1>00n0 (1<I<T).

Then, for every f =3 22, fi(x)t! € O(Qo)[[t] and every g; € O(Q) (0 < j <

w(P) — 1), there exists a formal solution of the Cauchy problem (CP) in the form

w(P)—-1

2.7) Z g’ t3+Zt“’ J+Py (¢, 1),

p=0

where v, € f((27(‘)+mp Np1,. .., ur). In other words, for every N € N, there holds

w(P)—1
P Z g’ )y -I-Zt“’(P Py, (t, z) fo )t/ € CN,, ([0, T); O()).

p=0

If \; are all constants in addition, then we can take v, € ]-}(1? [0] for every
p € N, that is vy(t,x) = > |_o vp.u(x)(logt)!, where v,; € O(Q0) (p>0;0<1<7).

REMARK 2.10. (1) We can always take € satisfying (a)—(c), since p;(0) =0
(1 < j < r) and since DF) is a polynomial of A whose top order coefficient does
not vanish at z = 0.
(2) The condition (c) is needed for B'u 9j(z) = o(1) (t — 0). The condition (c)
and Corollary 2.8 implies that t*(P)*Py, ¢ C}”I(I: P[0, T); O(0)) (p € N).

ExampLE 2.11. Consider P = t9; — t0, — x — t. There exists a solution

T —1 ¢
i —t
ued Tae (MeEY)

logt (ifx = —t)

= FW(t + z;t)

of Pu = 1. This solution can be rewritten as
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o9)
u= Zt”F(p“)(w, .o,z t),

p=0
which is a solution in the form (2.7) with w(P) = 0 and vp(t,z) =
F®+D(z ... x;t). As a matter of fact, for every constant a,

u= Zt”{(l +az)FPH) (z, .. x;t) —l—aF(”)(rc,...,a:;t)}
p=0

is also a formal solution in the form (2.7). Thus, the formal solution in Theorem
2.9 is not unique in general.

Finally, we consider exact solutions.

Theorem 2.12. In addition to the assumptions of Theorem 2.9, assume that
there exist Ty > 0 and a domain Qf of C™ including 0 for which the following
well-posedness of the flat Cauchy problem holds.

(F) For every f € C37,,([0,T]; O()), there exists a unique u €
C512:([0, To]; O(9)) such that Pu = f on [0,To] x Q.

Then, for every f € C*([0,T];0(2)) and every g; € O(Q) 0 < j < w(P) —1),
there exists an exact solution u € C*P)=1([0, Ty]; O(Qh)) of (CP) whose asymptotic
expansion is the formal solution given in Theorem 2.9, in the sense that for every
N € N, there holds

w(P)-1
u(t,z) — Z gﬂ tJ+Zt‘” Prtey,(t,a) | € o ([0, To); O(2)).-
p=0

Note that the Fuchsian operators and the operators considered in [3] satisfy the
condition (F).

We can also consider another version of the existence of exact solutions by
considering a sector Sp(T) := {t € R(C*) : |t| < T,|argt| < 6} instead of (0,T).
We, however, omit the detail.

REMARK 2.13.  We can obtain similar theorems for C°°(U) instead of O(£2). We
omit the detail since the proof is almost the same. Note that Fuchsian hyperbolic
operators considered by H.Tahara satisfy the assumption corresponding to (F) in
the case of C°°(U) and hence we can also obtain exact solutions.
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3. Preliminaries

In this section, we study some basic properties of the functions F9)(zy,..., z;;t)
and of the function spaces }"S(zh) (K1 oy for)

We write z[j] := (z1,...,2;), which are considered as variables of C7, and write
alj] == (a1,...,a;) € NI.

The following lemma is trivial by the definition and the symmetry.

Lemma 3.1.
0. (FW (5} 1) = FUTD ([, ¢), (1 <1<3)
By a repeated use of this lemma, we can easily show the following.

Proposition 3.2.

O (FD (2[j);)) = gt FUHUID (2[5), o) @2[j]; 1),

where a[j]! == oq!... o4, |afj]| ;= a1+ ... + o, and
aq aj
. R R —
aljl®z[j] == (Z1,. .-, 215 -3 %4, - 05 25)-

The following proposition gives the principal meaning of F()(z[j]; ).

Proposition 3.3.

(9 = 2jors1) ... (9 = ) FOLl; ) = FUD ([ —rlit) (G 27> 1),

Proof. We have

; . 1 _ .
ﬁF(J)(Z[J];t) = Zﬁp(log t)P~1 Z zfl kaJ

j ki+...+kj=p—j

1 - 1 k;
=2 poylesty™ X ad

p2J ki4...+kj=p—j
1 ks
— p k
= Z H(logt) Z EAS
p>j—1"" kit..4+kj=p—j+1

Further, we have

ky kj _ k1 ki1
E 2tz = g 27tz

k1+...+kj=P—j+1 k1+.‘.+kj_1=p—j+1
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+( Z Zfl...Z;j>Zj,
Ky ki =p—j
where the last term is 0 if p = j — 1. Hence, 9F W) (z[j];t) = FU~V(z[j — 1];¢) +
zjFU(z[j];t), that is,

(3.1) (9 — ) FO) (2[j];) = FU=D (2] — 1];2).

Note that this holds also for 7 = 1. By an iterative use of this formula, we can get
the desired result. O

Proposition 3.4. Let A(z;\) € O(Q)[A, j € N, and y(z) € O(Q) (1 <1 <j).
Put po(z) = 0. ‘
(1) There exist Agj)(m) €e0O) (I=1,...,7) such that

Az 9)FD (py (), . .., pj ()i t) = Az i (2)) FO (py (), . . ., pj ()3 1)

J ] )
+ Z Az(J)(x)F(J_l)(Ml(w), s pj(T)5t).

=1
(175 =0, then A(z;9)F© (1) = Aw; 0)FO) () = A(;0).)

If1 > deg, A, then we can take A;j)(ac) =0.
2) If A(z;w(z)) #0 on Q (0 <1< j), then the equation

A(z;9)u = FO (uy(x), ..., pi(x);t)

has a solution u of the form

u = ZU[(Q?)F(]_[) (,ul (z)y ey /J'J—l(m)v t)7

=0

where u;(z) € O(Q).

Proof. (1) We give a proof by the induction on deg, A. If degy, A = 0, the
conclusion is trivial.
Assume that the conclusion is valid up to degy A = m — 1 (m > 1). Let

degy A = m. We can write as A(z;\) = A(z; \)A + B(z), where degy A = m — 1.
Hence, by (3.1) we have

A(z; 0)F9D (g (), ..., pj ()3 1)
= g(“’; ﬂ){ﬂj(w)F(j)(M(w)» oo mg(T)5t) + F(j—l)(ﬂl(x)y ooy mg—1(T); t)}
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+ B(z)FY (uy (), . .., pj(z); 1)
- w(m){ﬁ(w; i @) FO (s (2), ..y (2): 1)

n Z A"gj)(x)F(J'—l)(ul(g:), coo pj—i(); t)}

=1
+ A@s pia @)FU (@), sy (2);0)

j—1
+ 3 ATV @)D (g (@), -« o1 i(@); )
=1

+ B(z)F9 (uy(z), ..., uj(z); t)
= A(w'uj(w))F(j)(ul( )5+ ()3 )

+ZA(J F(J l) Nl( ) ...,ll;j—l(m);t)7

where ij), Z;jﬁl) € O(Q) and Al(j)(x) = uj(x)gl(j)(x) + 81 Az py_1 () +
ATV (z) (AY(z) = 0). If I > degy A — 1, then A (z) = A" V() = 0 by
the induction hypothesis. Hence, if [ > deg, A(> 1) then Al(j)(:c) =0.

(2) We give a proof by the induction on j. If j = 0, then (1/A(x;0))F©)(-;t) =
1/A(z;0) is a solution of A(z;9)u = FO(;;t) = 1.

Assume that the conclusion is valid up to j — 1. By (1), we have

A(z; ﬂ)(mp(j)(ul(x)’ oo 5 ()5 t))
= F9(uy(z),...,pi(z);t) + ZBl(f)F(j"l)(ul(m),---Mj—l(z)?t),
=1
where B; € O(Q) (1 <1 < j). Since we can solve
A(z;9)or = Bi(x)FU™ (g (@), ..., pya(e)it)  (1<1< )

by the induction hypothesis, we can get the desired solution w. U
Proposition 2.7 is a simple corollary of the following two propositions.

Proposition 3.5. Let s > 0 and put Q[j] :== {z[j] € C? : Rezi +s >0 (1 <
1 < j)}. For every compact subset K [j] of Qs[j], there holds

sup [t°*FY(z[j];1)] — 0 (t — 0).
z[j]€K[j]

This convergence is considered in an arbitrary finite sector of t € R(C™).
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Proof. Let j = 1. We can write as

1
F(l)(zl;t):/ t*17 log tdo,
0

and there exists € > 0 such that Re(z;0 + s) > € for z; € KJ[1] and o € [0,1].
If t = |t|e® and |] < M, then [t1oF¢| < [t[Re(:ots)eMiIm(z=iota)l and |logt| =
|log |t| + 28] < |log|t|| + M. Hence, we have

sup [t*FD (z138)] < Cltf“(log t] + M) 0 (t — 0).
z1 €EK[1]

Assume that the conclusion is valid up to j. By Cauchy’s integral formula, we
have

sup |0, {t*FY(z[j];t)}| =0 (t—0)
z[j]€K[j]

for every compact subset K[j] of Q,[j]. Hence, from

1
F(J+1)(z[j +1};t) = / 8Z{F(J)(Z[j - I]aZ;t)}[z=2j+1o+Z'(1—a)d0’
0 J

we have
sup  [*FOMV([j+1)58)| — 0 (¢t —0)
z[j+1]€K[j+1]
for every compact subset K[j + 1] of Q,[j + 1]. U

Proposition 3.6. Let py,...,u € O(Q) and let h € N.
(1) Ifg(t,z) € fézh)[ul,...,m], then

9g(t,z) € F[mr, - -, ha).
Q) Ifg(t,z) € FPlu,. .., u.] and v(z) € O(), then
v(@)g(t, ) € [, -, e,
(3) Ifg(t,z) € FPua, ..., o], then
Bs,9(t,z) € F§ V.. m] (1<i <),

If u1(z),...,ur(x) are all constants, in addition, then
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a.’tig(t?w) efg()h)[ﬂl,---,ur] (1 SZSn)

Proof. (1) follows from Proposition 3.4 (1). (2) follows from the definition.
(3) follows from Lemma 3.1 and the definition. J

Now, we consider the key equation
(32) Cz;d)v = g(t, z),
where C(z; \) € O(Q)[A] and g € F [, ..., v

Proposition 3.7. Let uy,...,ur € O(Q) and v’ € N. Put po(z) = 0. Assume
that C(x; ) can be decomposed as

’
T

Ca;A) = [T(A = pi(@)) - Dl V),

=1

where
@ {1, gwt C{l,...,r}
(b) D(z;A) € O(Q)[A],
(©) D(z;u(z))#00nQ (0<I<T).
Then, for h € N and for every g(t,x) € ]—'g‘) (1, - -, pr), there exists a solution

v(t,z) € ]-}(IHTI)[M, ..., lir] of the equation (3.2).

Proof. By Proposition 3.4 (2), we have a solution w € féh)[ul,...,ur]
of D(z;9)w = g(t,z). By Proposition 3.3, we also have a solution v €

h+r’
]:((z+ )[:u'la""/-l'r] of

’
r

H(ﬂ — ;i (2))v = w(t, z). U

=1
By a repeated use of Proposition 3.7, we prove Theorem 2.9 in the next section.

4. Proof of Main Theorems
In this section, we prove Theorems 2.9 and 2.12.
Proof of Theorem 2.9. Put G(t,z) := Z;’gg)_l(gj(z)/j!)tj and u = G(t,z) +

t(P)7. If we put f := f—P(G) and P(u) := P(t*(P)q), then the equation Pu = f
is equivalent to Pu = f. The operator P = P o t“(P) is an operator of the form
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(2.1) with w(P) = 0, and P satisfies the conditions (B1)—(B3). Further, CP)(z; \) =
CP)(z; \+w(P)), and hence P satisfies the condition (E). Assumptions (a)—(c) also
hold for P. Thus, without loss of generality, we may assume that w(P) = 0.

By the condition (B1l), we can expand P formally with respect to ¢ as

P= C(P)(:c; 9) + ZtlBl(w, 0z39),
=1

where Bi(z,8,;9) = 2 itlal<m by jo(2)0207 with by ; o(z) € O(S2). By Proposition
3.6, we have

g(t,z) € fgg) 41, por] = Bi(z,0,;9)g(t,z) € ]_-((2};+m) (L1, - -y pir)-

Substituting f = 3°° P fp(z) and u = 307 tPuy(t,z) into Pu = f, we get
infinite number of equations

P
(R), CP) (239 + p)up(t, ) = fo(z) — ZB[(IL‘, O0z; 0 +p —Dvp_y(t, x)
=1

(p=0,1,...). (Note that 9(tPv) = tP(J + p)v.)

Forp € N, put rp, := #{j € {1,...,r} : X;(0) = p}, where #A denotes the
cardinal of a set A, and put R, := > 1_, . Note that R, < r for every p € N.

First, consider the equation (R)q. We have fy(z) € O(Qp) = .7-}(2(;) (1. e
We can apply Proposition 3.7 on Qg to C(z;\) := CP)(x; \), by taking 7' := 7,
considering ji,...,j as those j that satisfy \;(0) = 0, and putting D(z; \) :=
[T, 020 (X = wi(2) — X;(0)) -DP)(z; \). Hence, we can get a solution vy(t, ) €
FG s, e of (R)o.

Next, assume that v,(t,z) € fé’:ﬁmp) [t1,...,ur] are solutions of (R), (0 <
p < q—1). We have

q
fq(z) — Z Bi(z,05;9 + q — l)vg—i(t,x) € ff(zfq_l+m(q_l)+m)[u1, ooy )
=1

We can apply Proposition 3.7 on Qg to C(z; \) := CP)(z; X + q), by taking ' :=r,,
considering ji,...,j,» as those j that satisfy A\;(0) = ¢, and putting D(z;\) :=
ITj5; 020 (X = B3(2) = X;(0) +q) - DP)(z; A + q). Hence, we can get a solution
ve(t, ) € f((l}:q_l+m(q_1)+m+"’)[u1,. -y itr) Of (R)g.

Thus, we get a formal solution u = Y777 [ tPv,(t,z) of Pu = f, where v, €

R r

]_-S%Op"'mP)[pll, oo )IJ'T'] - fg§20+mp)[ulv ) 7.“'7‘]-

If A\, are all constants, then p;(z) =0 (0 < j <r), and we have

g(t,x) € FP[0] = Bix, 9 9)g(t, ) € F 0]
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by the last comment in Proposition 3.6 (3). Hence, we can take v, € }}(;:”)[O] C

.7-}(2? [0] in the argument above. Since ]-}(22) [0] = ®]_,O()(logt)! as is stated in
Definition 2.6, we get the desired results. U

Proof of Theorem 2.12. We have only to construct v € C«(F)=1([0, T}; O(y))
such that f — Pv € C%,,([0,T]; O()) and that the asymptotic expansion of v is
the formal solution given in Theorem 2.9. In fact, if we can construct such v, then by
the assumption (F), we can take w € C%,,([0, To]; O(€%)) such that Pw = f — Pv.
Thus, we get the desired exact solution u := v + w of (CP).

Take 3(t) € C*[0,00) such that 9(t) = 1 for [0,1/2] and ¥(t) = O for
[1,00). For a formal series u = Z;’i}g)"l(gj(a:)/j!)tj + gt PPy, (¢ ) =
oo wi(t, z)t! given in Theorem 2.9, we consider

4.2) v = Zul(t,x)tlzp(t/el)
1=0

for suitably chosen ¢, > 0. Note that u; € .7:5(]?) [41,- -, ir] and that uithep(t/€;) €
C};alt([o, T);0(9)) (I € N) by Corollary 2.8. Take an increasing sequence {Up, }nen
of subdomains of €2 such that K,, := U,, are compact subsets of Q¢ and U,U,, = Q.
Put ||w||, := sup,ck, |w(z)|. For every p, | and n, the function tP**0Pu(t,z) is
bounded on (0,T] x K,, by Proposition 2.7 and the condition (c) in Theorem
2.9. Since for every h and g, there holds supy<,<r [t"0f{t(t/€)}| < Ceh~7 with
some constant C independent of e, we can easily show that for every [ and k with
0 < k <1 —1, there exists a constant Cj; such that

sup [|0F (wi(t, )t'p(t/e)) |l < Crre™F1  for every € > 0.
0<t<T

Hence, for every [ > 2, we can take ¢, > 0 such that

-2 . l 1 l
(4.3) kzzo e, 11of (wi(t, Yt (t/e))|) < (5) ‘
Put
= o0
oy = Yt @)tlt/a), rv = Y w(t@)tu(t/a) (N2 w(P)+1).
- I=N+1

By the estimate (4.3), ry converges in Cﬁ;l([O,T];O(UNH)) for every N. By the
construction of u; in the proof of Theorem 2.9, there holds

f=Puy € O} ([0, T 0(0)).
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Hence, v = vy + rn satisfies

ve CPITY[0, T 0(Un1)),  f—PveCpy” D710, T);0(Un 1))
for every N. Thus, we get

v e P[0, T]; O(R)),  f— Pv € C3,,([0,T]; O()). 0
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