THE FIRST EIGENVALUE OF P-MANIFOLDS

AKHIL RANJAN and G. SANTHANAM

(Received August 22, 1996)

1. Introduction

Let (M,g) be a compact Riemannian manifold, Δ the Laplacian of (M,g) and $\operatorname{Spec}(M,g):=\{0=\lambda_0<\lambda_1<\lambda_2<\cdots\}$ the spectrum of Δ of (M,g).

It is an important problem in geometry to find lower bounds for the eigenvalues of Δ of (M,q) in terms of the given geometric data and characterize those Riemannian manifolds (M, q) for which these lower bounds are attained. Lichnerowicz proved in [8] that if (M,g) is a complete Riemannian manifold of dimension $n \geq 2$ with Ricci curvature $Ric_M \geq l$, where l is a positive constant, then the first eigenvalue λ_1 satisfies the inequality $\lambda_1 \geq n/(n-1)l$. Later Obata proved in [9] that equality is attained only for the round sphere of radius $\sqrt{(n-1)/l}$. Antonio Ros studied this problem for P-manifolds. Let us recall that a manifold (M, g) is called a P-manifold, if all the geodesics of (M,g) are periodic. It is well known that these geodesics admit a minimum common period. By normalising the metric we may assume that the period is 2π and call the manifold (M,g) a $P_{2\pi}$ -manifold (See [2] for a detailed study of P-manifolds). Antonio Ros proved in [12] that if(M,g) is a $P_{2\pi}$ -manifold of dimension $n \geq 2$ with Ricci curvature $\mathrm{Ric}_M \geq l$, then the first eigenvalue λ_1 satisfies the inequality $\lambda_1 \geq (1/3)(2l+n+2)$ and equality is attained iff for any first eigenfunction f we have that $f(\gamma_u(t)) = A_u \cos t + B_u \sin t + C_u$ for $u \in UM$. He further remarked that in view of Obata's theorem, this should happen only for a small class of manifolds.

In this paper we substantiate his claim by proving

Theorem 1. Let (M,g) be a $P_{2\pi}$ -manifold of dimension $n \geq 2$ with Ricci curvature $\operatorname{Ric}_M \geq l$ and $\lambda_1 = (1/3)(2l+n+2)$. Then

- 1. (a) $\lambda_1 = (k(m+1))/2 = \lambda_1(\overline{M})$ and $l = \operatorname{Ric}_{\overline{M}}$ where \overline{M} is a simply connected compact rank-1 symmetric space (CROSS) of dimension n = km with sectional curvature $1/4 \leq K_{\overline{M}} \leq 1$ and k = 1, 2, 4, 8 or n is the degree of the generator of $H^*(M, \mathbb{Q}) = H^*(\overline{M}, \mathbb{Q})$ and $H^*(\widetilde{M}, \mathbb{Z}_2) = H^*(\overline{M}, \mathbb{Z}_2)$ where \widetilde{M} is the universal cover of M.
 - (b) If $k \geq 4$ then M is simply connected and the integral cohomology ring of M is same as that of \overline{M} .

- (c) If k=2 then either M is simply connected or M is non-orientable and it has a two sheeted simply connected cover \widetilde{M} . Moreover $H^*(\widetilde{M},\mathbb{Z})=H^*(\overline{M},\mathbb{Z})$.
- 2. If k = 1 then $(\widetilde{M}, \widetilde{g})$ is isometric to S^n with constant sectional curvature 1/4.
- 3. If k = n then (M, g) is isometric to S^n with constant sectional curvature 1 (Lichnerowicz-Obata theorem).
- 4. If k = 2, 4 or 8 and if there is a first eigenfunction f without saddle points then the universal cover $(\widetilde{M}, \widetilde{g})$ of (M, g) is isometric to \overline{M} of dimension km.

REMARKS.

- 1. In 1c) it should be noted that, if $(1/2) \dim M$ is even then M is forced to be simply connected (See Lemma 2.12 and Proposition 2.16).
- 2. In CROSSes there are first eigenfunctions admitting saddle points. For instance on \mathbb{CP}^n , consider the function defined by

$$f([z_0, z_1, \dots, z_n]) = \frac{a_0 |z_0|^2 + a_1 |z_1|^2 + \dots + a_n |z_n|^2}{|z_0|^2 + |z_1|^2 + \dots + |z_n|^2}$$

in homogeneous co-ordinates. This function has as many critical values as there are distinct a_i 's; if there are p distinct a_i 's and each a_i occurs m_i times then the number of eigenvalues of hessian of the function f on each critical submanifold is p and the multiplicity of the i-th eigenvalue is $2m_i$. In this example, we get a first eigenfunction without saddle points, only if these a_i 's take exactly two values as i runs from 0 to n.

In fact a generic first eigenfunction is a Morse function.

The main step in the proof of Theorem 1 is the following

Theorem 2. Let (M,g) be a $P_{2\pi}$ -manifold of dimension $n \geq 2$ and λ be an eigenvalue of Δ with an eigenfunction f such that $f(\gamma_u(t)) = A_u \cos t + B_u \sin t + C_u$ for $u \in UM$. Then $\lambda = (k(m+1))/2 = \lambda_1(\overline{M})$ where \overline{M} is as in Theorem 1.

REMARK. That the behaviour of f is strikingly similar to that in the model CROSSes is also borne out by the auxiliary results proved in this paper.

We refer to [2] and [6] for definitions, basic tools and results used in this paper.

2. Preliminaries

In this section we study the topology of critical sets of the function f of the form $f(\gamma_u(t)) = A_u \cos t + B_u \sin t + C_u$ for $u \in UM$ on a $P_{2\pi}$ -manifold (M, g).

Definition. Let (M,g) be a complete Riemannian manifold. A subset $B\subseteq M$

is called *totally a-convex* if for any pair of points $a_1, a_2 \in B$ and any geodesic $\gamma: [0, r] \to M$ with $\gamma(0) = a_1, \gamma(r) = a_2$ and r < a, we have $\gamma([0, r]) \subseteq B$ (See [7]).

Theorem 3. Let (M,g) be a $P_{2\pi}$ -manifold and $f \in C^{\infty}(M)$ be such that $f(\gamma_u(t)) = A_u \cos t + B_u \sin t + C_u$ for $u \in UM$. Then

- 1. For each critical value α of the function f, the set $D_{\alpha} := \{x \in M : f(x) = \alpha \text{ and } \nabla f(x) = 0\}$ is a totally 2π -convex, totally geodesic submanifold of (M,g) without boundary.
- 2. $d(D_{\alpha}, D_{\beta}) = \pi \text{ for } \alpha \neq \beta$.
- 3. The function f has only finitely many critical values.

2.1. Proof of Theorem 3

Let $x \in M$. Then $f(\gamma_u(t)) = A_u \cos t + B_u \sin t + C_u$ for every $u \in U_x M$, the unit sphere in $T_x M$. If x is a critical point of the function f, then, since $\nabla f(x) = 0$, we have that

$$B_{u} = \frac{d}{dt} \Big|_{t=0} f(\gamma_{u}(t))$$
$$= \langle \nabla f(x), \gamma'_{u}(0) \rangle$$
$$= 0$$

Therefore if x is a critical point of the function f, then $f(\gamma_u(t)) = A_u \cos t + C_u$ for every $u \in U_x M$.

To prove Theorem 3(1) we will first prove some lemmas.

Lemma 2.1. Let $x \in D_{\alpha}$, u a unit vector at x and γ_u the corresponding geodesic. If J_v is a normal Jacobi field along γ_u such that $J_v(0) = 0$ and $J'_v(0) = v$, then $(J_v f)(\gamma_u(t)) = -2\langle \nabla^2 f(u), v \rangle(\cos t - 1)$.

Proof. Without loss of generality we may assume that v is a unit vector orthogonal to u. Let $u_{\theta} := \cos \theta u + \sin \theta v$ in $U_x M$. Then $f(\gamma_{u_{\theta}}(t)) = A_{u_{\theta}}(\cos t - 1) + \alpha$, where

$$A_{u_{\theta}} = -\langle \nabla^2 f(u_{\theta}), u_{\theta} \rangle$$

= $-\cos^2 \theta A_u - \sin^2 \theta A_v - 2\sin \theta \cos \theta \langle \nabla^2 f(u), v \rangle$

Hence

$$(J_v f)(\gamma_u(t)) = \frac{\partial}{\partial \theta} \bigg|_{\theta=0} f(\gamma_{u_\theta}(t))$$
$$= \frac{\partial}{\partial \theta} \bigg|_{\theta=0} [A_{u_\theta}(\cos t - 1) + \alpha]$$

$$= -2\langle \nabla^2 f(u), v \rangle (\cos t - 1)$$

Corollary 2.2. If u is an eigenvector of $\nabla^2 f$ in Lemma 2.1, then ∇f is tangential to γ_u for all t.

Proof. As v is orthogonal to u in Lemma 2.1, if $-\nabla^2 f(u) = \mu u$, then $(J_v f)(\gamma_u(t)) = 0$ for all t.

Since for almost all t, $J_v(t)$ can be made any vector normal to $\gamma'_u(t)$, $\nabla f(\gamma_u(t))$ can have no component normal to $\gamma'_u(t)$.

Remark. This Corollary shows that, for $x \in D_{\alpha}$, if μ is an eigenvalue of $-\nabla^2 f(x)$ and E_{μ} is the corresponding eigensubspace, then for every $u \in S_{\mu}$, the unit sphere in E_{μ} , the geodesics γ_u 's are integral curves of $-\nabla f/||\nabla f||$. As a consequence, it follows from Proposition 1 of [11] that ∇f is an eigenvector of $\nabla^2 f$ along such geodesics.

Corollary 2.3. In Corollary 2.2 above, $\gamma_u(\pi)$ is necessarily a critical point of the function f and $\gamma'_u(\pi)$ is an eigenvector of $-\nabla^2 f$ at $\gamma_u(\pi)$.

Proof. If $-\nabla^2 f(u) = \mu u$, then, since ∇f is tangential to γ_u , we see that $\nabla f(\gamma_u(t)) = \langle \nabla f(\gamma_u(t)), \gamma_u'(t) \rangle \gamma_u'(t)$. Therefore

$$\nabla f(\gamma_u(t)) = \frac{\partial}{\partial t} f(\gamma_u(t)) \gamma'_u(t)$$
$$= \frac{\partial}{\partial t} [\mu(\cos t - 1) + \alpha] \gamma'_u(t)$$
$$= -\mu \sin t \gamma'_u(t)$$

Hence $\nabla f(\gamma_u(\pi)) = 0$.

Also $\lim_{t\to\pi}(\nabla f(\gamma_u(t)))/(t-\pi)=\nabla^2 f(\gamma_u'(\pi))$ by L'Hopitâl's Rule. At the same time

$$\lim_{t \to \pi} \frac{\nabla f(\gamma_u(t))}{t - \pi} = \lim_{t \to \pi} \frac{-\mu \sin t \gamma_u'(t)}{t - \pi}$$
$$= \mu \gamma_u'(\pi)$$

Hence $\nabla^2 f(\gamma_u'(\pi)) = \mu \gamma_u'(\pi)$.

We will now come to the

Proof of Theorem 3(1). Let $x, y \in D_{\alpha}$ and γ_u be a geodesic joining x and y such that $\gamma_u(0) = x$ and $\gamma_u(r) = y$ for some $r \in \mathbb{R}^+$. Since $f(x) = f(y) = \alpha$ and

 $f(\gamma_u(t)) = A_u \cos t + C_u$, we have that $A_u + C_u = A_u \cos r + C_u$. Hence $A_u = 0$ if $r < 2\pi$. This shows that $f(\gamma_u(t)) = \alpha$ for all $t \in [0, r]$.

We will now show that $\gamma_u([0,r]) \subseteq D_{\alpha}$.

Let $v\perp u$ in U_xM . Then we know from Lemma 2.1 that $(J_vf)(\gamma_u(t))=-2\langle \nabla^2 f(u),v\rangle(\cos t-1)$. Since $\gamma_u(r)=y$, for $0< r<2\pi$, is a critical point of the function f, we see that $(J_vf)(\gamma_u(r))=0$. This proves that $\langle \nabla^2 f(u),v\rangle=0$ for all $v\perp u$. Hence u is an eigenvector of $-\nabla^2 f$ with eigenvalue μ (say). Then $f(\gamma_u(t))=\mu(\cos t-1)+\alpha$. However $f(\gamma_u(t))=\alpha$. Hence $\mu=0$. Now by Corollary 2.2 and the proof of Corollary 2.3, we know that $\nabla f(\gamma_u(t))=-\mu\sin t\gamma_u'(t)=0$. This shows that $\gamma_u(t)$ is a critical point of f for all t. Therefore $\gamma_u(t)\subseteq D_\alpha$ for all t. Hence D_α is totally 2π -convex. We know from theory of convex sets that D_α is a topological manifold with boundary ∂D_α (possibly empty) and $\mathrm{Int}(D_\alpha)$, the interior of D_α , is non-empty, smooth and totally geodesic. Here $\mathrm{Int}(D_\alpha)$ is not the topological interior as a subset of M but the interior of the manifold D_α (See [6]).

It remains to show that $\partial D_{\alpha} = \emptyset$

Now let $p \in \partial D_{\alpha}$ and $q \in \operatorname{Int}(D_{\alpha})$. Then the geodesic segment joining p and q has complementary segment of length less than 2π (as all geodesics are periodic of common period 2π). Hence whole of geodesic is actually contained inside D_{α} and hence there are no boundary points.

Proof of Theorem 3(2). Let α and β be two critical values of the function f such that $\alpha \neq \beta$. Let $x \in D_{\alpha}$ and $y \in D_{\beta}$ with $d(x,y) = t_0$ for some $t_0 \in \mathbb{R}^+$ and γ_u be a geodesic segment such that $\gamma_u(0) = x$ and $\gamma_u(t_0) = y$. Then $f(\gamma_u(t)) = A_u \cos t + C_u$ and

$$-A_u \sin t_0 = \frac{d}{dt} \Big|_{t=t_0} f(\gamma_u(t))$$
$$= \langle \nabla f(y), \gamma'_u(t_0) \rangle$$
$$= 0$$

This can happen only if $t_0 = \pi$. This proves that $d(D_\alpha, D_\beta) = \pi$ for $\alpha \neq \beta$.

Proof of Theorem 3(3). It is obvious as the critical submanifolds are constant distance apart. \Box

2.2. In this subsection we will find out the eigenvalues of $\nabla^2 f$ on various D_{α} 's and determine the topology of these D_{α} 's.

Since the function f has only finitely many critical values, we denote these critical values by $\max(f) = \alpha_1, \ \alpha_2, \ \cdots, \ \alpha_p = \min(f)$ and we denote by D_i the critical submanifold $\{x \in M : f(x) = \alpha_i \text{ and } \nabla f(x) = 0\}$.

Let $x_0 \in D_{\max} = \{x \in M : f(x) = \max(f)\}$. Then $-\nabla^2 f(x_0)$ is positive semi-definite for each $x \in D_{\max}$. Therefore we can write the distinct eigenvalues of

 $-\nabla^2 f(x_0)$ as $\mu_p > \mu_{p-1} > \cdots > \mu_2 > \mu_1 = 0$ for some $p \in \{1, 2, \cdots, n\}$. p and μ_i 's may apriori depend on x_0 .

For each i, we denote by E_{μ_i} , the μ_i -eigensubspace of $-\nabla^2 f(x_0)$, by S_{μ_i} the unit sphere in E_{μ_i} and by $S_{\mu_i}(0,r)$ the sphere of radius r centred at origin in E_{μ_i} . Let $u \in S_{\mu_i}$. Then $\max(f) = A_u + C_u$ and $\mu_i = -\nabla^2 f(u,u) = A_u$. Therefore A_u and hence $C_u = \max(f) - A_u$ are constants on S_{μ_i} . Now we define $S(\mu_i,r) := \exp_x(S_{\mu_i}(0,r))$, the exponential image of the sphere $S_{\mu_i}(0,r)$ of radius r. Since $u \in S_{\mu_i}$, it follows from Corollary 2.2 that ∇f is tangential to γ_u for all t and hence $\nabla f(\gamma_u(t)) = -\mu_i \sin t\partial_t$ where ∂_t is the radial vector field $\partial/\partial t$. From this we conclude that $\nabla f(y) = 0$ for $y \in D_i(x_0) := S_{\mu_i}(0,\pi)$.

We will now show that $D_i(x_0) = D_i := \{y \in M : f(y) = \max(f) - 2\mu_i \text{ and } \nabla f(y) = 0\}.$

It follows from Corollary 2.3 that $D_i(x_0) \subseteq D_i$. To show that $D_i \subseteq D_i(x_0)$ we start with a Lemma which is a sort of converse to Lemma 2.1.

Lemma 2.4. Let γ_u be a geodesic such that $\gamma_u(0)$ and $\gamma_u(\pi)$ are critical points of the function f. Then both $\gamma_u'(0)$ and $\gamma_u'(\pi)$ are eigenvectors of $\nabla^2 f$.

Proof. Let J_v be the Jacobi field along γ_u such that $J_v(0)=0$ and $J_v'(0)=v$ for $v\perp u$. We know from Lemma 2.1 that $(J_vf)(\gamma_u(t))=-2\langle \nabla^2 f(u),v\rangle(\cos t-1)$. Since $\gamma_u(\pi)$ is a critical point of the function f, at $t=\pi$, $(J_vf)(\gamma_u(\pi))=0$. This forces $\langle \nabla^2 f(u),v\rangle=0$. i.e., $\nabla^2 f$ has u as an eigenvector.

Similarly arguing from the other side we see that $\gamma'_u(\pi)$ is also an eigenvector of $\nabla^2 f$ at $\gamma_u(\pi)$.

Corollary 2.5. If $y \in D_{\alpha}$ and $\beta \neq \alpha$ is another critical value of the function f, then for each $z \in D_{\beta}$ and each geodesic γ joining y and z, $\gamma'(0)$ is in the same eigenspace of $-\nabla^2 f$ at y. Moreover, the eigenvalue is independent of the points y and z.

Proof. If $u = \gamma'(0)$ then $A_u = -\langle \nabla^2 f(u), u \rangle$, and $f(\gamma(t)) = A_u(\cos t - 1) + \alpha$ and so $\beta = -2A_u + \alpha$. Therefore $-A_u = (\beta - \alpha)/2$.

Since it follows from Lemma 2.4 that u is necessarily an eigenvector of $-\nabla^2 f$, the eigenvalue is $(\alpha - \beta)/2$ which is independent of y and z.

This proves that $D_i \subseteq D_i(x_0)$ and hence $D_i = D_i(x_0)$. As a consequence of the Corollary 2.5 above we prove the following

Lemma 2.6. The spectrum of $-\nabla^2 f$ is constant along D_{max} .

Proof. Let $x_0 \in D_{\text{max}}$. Then for each eigenvalue μ_i , we have the submanifold

 $D_i(x_0) = \exp_{x_0}(S_{\mu_i}(0,\pi))$. Also it follows from Lemma 2.4 that, for every $x \in D_{\max}$, the set of unit vectors $\{u \in U_x M : \gamma_u(0) = x \text{ and } \gamma_u(\pi) \in D_i(x_0)\}$ is the unit sphere of the eigenspace of $\nabla^2 f$ with eigenvalue μ_i . This implies that

- 1. The number of distinct eigenvalues of $-\nabla^2 f$ on D_{max} and hence on all the critical submanifolds is constant.
- 2. Each eigenvalue μ_i is constant on D_{max} .

REMARK. This Lemma 2.6 verifies that each critical submanifold D_{α} is non-degenerate in the sense of R. Bott.

Now, since μ_i are the only eigenvalues of $-\nabla^2 f$ on D_{\max} it follows from Corollary 2.5 and Lemma 2.6 above that any critical submanifold D_{α} coincides with one of the D_i 's. Hence the only critical values of the function f are $\max(f) - 2\mu_i$ where μ_i 's are the eigenvalues of $-\nabla^2 f$ on D_{\max} and the eigenvalues of $-\nabla^2 f$ on D_i are $\{\mu_{ij} := \mu_j - \mu_i, 1 \le j \le p\}$. Thus we have proved the following

Corollary 2.7.

- 1. For each critical value $\alpha \neq \max(f)$, the critical submanifold D_{α} coincides with D_i for some i where $2 \leq i \leq p$.
- 2. The only critical values of the function f are $\max(f) 2\mu_i$ where μ_i 's are the eigenvalues of $-\nabla^2 f$ on D_{\max} for $1 \le i \le p$. Moreover the eigenvalues of $-\nabla^2 f$ on D_i are $\{\mu_{ij} := \mu_j \mu_i, 1 \le j \le p\}$.

We will now prove the following

Lemma 2.8. Let $x \in D_{\alpha}$, $u \in S_{\mu}(x)$ and $v \in S_{\mu'}(x)$ where $\mu \neq \mu'$ and $S_{\mu}(x)$ be the unit sphere in the eigenspace of $\nabla^2 f(x)$ with eigenvalue μ . Let J_v , as before, denote the Jacobi field along γ_u such that $J_v(0) = 0$ and $J'_v(0) = v$. Then $\langle \nabla^2 f(J_v(\pi)), J_v(\pi) \rangle = -4(\mu' - \mu)$.

Moreover, if $v' \in S_{\mu''}(x)$ such that $\mu'' \neq \mu'$ and v' is orthogonal to u, then $\langle \nabla^2 f(J_v(\pi)), J'_v(\pi) \rangle = 0$.

Proof. By Corollary 2.1 and Corollary 2.3, $\gamma_u(\pi)$ is a critical point of the function f. Hence $\nabla^2 f$ at $\gamma_u(\pi)$ can be identified with the matrix of second partial derivative at this point. Therefore $\langle \nabla^2 f(J_v(\pi)), J_v(\pi) \rangle = -2(\partial^2/\partial\theta^2)|_{\theta=0}$ A_{u_θ} where $u_\theta = \cos\theta u + \sin\theta v$ and $A_{u_\theta} = -\langle \nabla^2 f(u_\theta), u_\theta \rangle$. In our situation

$$-A_{u_{\theta}} = \langle \nabla^2 f(u_{\theta}), u_{\theta} \rangle$$
$$= \cos^2 \theta \mu + \sin^2 \theta \mu'$$

Hence $-(\partial^2/\partial\theta^2)|_{\theta=0}$ $A_{u_\theta}=-2(\mu'-\mu)$ and $\langle \nabla^2 f(J_v(\pi)),J_v(\pi)\rangle=-4(\mu'-\mu)$. Similarly considering the two parameter variation defined by $u_{\theta,\phi}:=\cos\theta u+$

 $\sin \theta (\cos \phi v + \sin \phi v')$ we have that

$$A_{u_{\theta,\phi}} = -\langle \nabla^2 f(u_{\theta,\phi}), u_{\theta,\phi} \rangle$$

= $-(\mu \cos^2 \theta + \sin^2 \theta (\cos^2 \phi \mu' + \sin^2 \phi \mu''))$

and

$$\langle \nabla^2 f(J_v(\pi)), J_{v'}(\pi) \rangle = -2 \left. \frac{\partial}{\partial \theta} \frac{\partial}{\partial \phi} \right|_{\theta = \phi = 0} A_{u_{\theta, \phi}}$$
$$= 0 \qquad \Box$$

Corollary 2.9. Let $x \in D_{\alpha}$, $0 \neq v \perp u$, $u \in S_{\mu}(x)$ and J_v be the Jacobi field along γ_u such that $J_v(0) = 0$ and $J'_v(0) = v$. If $J_v(\pi) = 0$, then $v \in S_{\mu}(x)$.

Proof. Let $v=\sum_{\nu}v_{\nu}$ be the decomposition into eigenvectors. Then $J_v(\pi)=\sum_{\nu}J_{v_{\nu}}(\pi)=0$. In particular $\langle \nabla^2 f(J_v(\pi)),J_{v_{\nu}}(\pi)\rangle=0$ for each eigenvalue v_{ν} . By the Lemma 2.8 above this gives $4(\mu-\nu)\parallel v_{\nu}\parallel^2=0$. Therefore $v_{\nu}=0$ whenever $\mu\neq\nu$.

Corollary 2.10. For $x \in D_{\alpha}$ and for any non-zero eigenvalue μ of $-\nabla^2 f(x)$, the map $\exp_x : S_{\mu}(0,\pi) \to D_{\mu}(x) = D_{\alpha-2\mu}$ is a fibration with (k-1)-dimensional fibres and hence the multiplicity of μ is divisible by k where k-1 is the index of geodesics γ of length 2π in (M,g).

Proof. For each $u \in S_{\mu}(x)$, the geodesic γ_u has index k-1 on $[0,2\pi)$ and its segments $[0,\pi]$ and $[\pi,2\pi]$ are both minimizing. Hence all the conjugate points to $\gamma_u(0)$ are concentrated at π . By the Corollary 2.9 above the Jacobi fields must come from $v \in S_{\mu}(x)$. This proves the first part of the Corollary.

By Corollary 2.3, as u runs over $S_{\mu}(x)$, the unit vectors $\gamma'_{u}(\pi)$ exhaust all the eigenvectors of $\nabla^{2} f$ with eigenvalue $-\mu$ sitting along $D_{\alpha-2\mu}$. Hence the multiplicity of μ is divisible by k.

Remark. Since dim M is divisible by k, even for $\mu=0$, the multiplicity is divisible by k.

We will now study these fibrations.

Let $x\in D_{\alpha}$ and μ a non-zero eigenvalue of $-\nabla^2 f(x)$ on D_{α} . Then we have seen in Corollary 2.10 that $\exp_x:S_{\mu}(0,\pi)\to D_{\alpha-2\mu}$ is a constant rank map and the rank of \exp_x is $\dim E_{\mu}-k$. If k=1, then $\exp_x:S_{\mu}(0,\pi)\to D_{\alpha-2\mu}$ is a covering. If $k\geq 2$, then either

F1. k-1=1, 3, or 7 in which case the connected components of the fibres are homotopy spheres $\sum_{k=1}^{k-1}$ and k-1=7 occurs only when $S_{\mu}=S^{15}$ (see [4])

or

F2. $k-1 \neq 1$, 3 and 7 in which case the fibration has to be trivial.

When F2 holds we have the following

Proposition 2.11. Let $x \in D_{\alpha}$ and the fibration $\exp_x : S_{\mu}(0, \pi) \to D_{\alpha-2\mu}$ be such that $k-1 \neq 1, 3$ and 7. Then

- 1. the fibration is trivial for all critical values α ,
- 2. the function f does not have saddle points and
- 3. M is homeomorphic to S^n .

Proof. If the fibration $\exp_x: S_\mu(0,\pi) \to D_{\alpha-2\mu}$ is non-trivial for some critical value α and some non-zero eigenvalue μ of $-\nabla^2 f$ on D_α , then from [4] it follows that the connected components of the fibres are homotopy spheres \sum^{k-1} , k-1=1, 3, or 7. Hence by our assumption the fibration has to be trivial for all critical values α of the function f. This also shows that all critical submanifolds are singleton.

Since the geodesics from D_{α} to D_{\min} for $\alpha > \min(f)$ must necessarily be in the direction of negative eigenvalues of $\nabla^2 f$, the local minimum i.e., index = 0, must necessarily be unique.

Now starting with D_{\min} we attach the discs of radius π from each eigenspace at every level. Since these discs are simply connected and the boundary, being the sphere of dimension greater than or equal to 2 is simply connected, by Van Kampen's Theorem, we get a simply connected space at every stage. Hence M is simply connected. Further from our construction, it is clear that M is also an integral cohomology CROSS and the degree of generator of $H^*(M,\mathbb{Z})$ is k where $k \neq 2$, 4 and 8.

Now it is a result in cohomology theory that in this case k=n, the dimension of M (See [2]). Hence there are only two critical submanifolds D_{\max} and D_{\min} and they are singletons.

This proves that the function f does not have saddle points and from our construction it is clear that M is homeomorphic to S^n .

REMARK. By case (3) of Theorem 1 (to be proved later), we have isometry with S^n .

Now we come to case F1. First we start with the following

Lemma 2.12.

- 1. Either all D_{α} 's are simply connected integral cohomology CROSSes, or
- 2. all D_{α} 's are non-orientable and $\pi_1(D_{\alpha}) \simeq \mathbb{Z}_2$.

Proof. Let D_{α} and D_{β} be two distinct critical submanifolds. Then, we know from corollaries 2.5 and 2.10 that $\exp_x: S_{(\alpha-\beta)/2}(0,\pi) \to D_{\beta}$ is a fibration for $x \in D_{\alpha}$ and $\exp_y: S_{(\beta-\alpha)/2}(0,\pi) \to D_{\alpha}$ is a fibration for $y \in D_{\beta}$. If the number of connected components in each fibre is r for the fibration $\exp_x: S_{(\alpha-\beta)/2}(0,\pi) \to D_{\beta}$, then by symmetry we see that for the fibration $\exp_y: S_{(\beta-\alpha)/2}(0,\pi) \to D_{\alpha}$ also the number of connected components in each fibre is r. Therefore $\#\pi_1(D_{\alpha}) = \#\pi_1(D_{\beta})$ and we have shown that

- 1. either all D_{α} 's are simply connected, or
- 2. all D_{α} 's are non-simply connected and they all have fundamental groups of same cardinality.

We will now show that when $\pi_1(D_\alpha)$ is non-trivial all D_α 's are non-orientable and $\pi_1(D_\alpha) \simeq \mathbb{Z}_2$.

Since $\exp_x: S_{(\alpha-\beta)/2}(0,\pi) \to D_\beta$ is of constant rank, we have a foliation $\mathcal{F}_{\alpha\beta}$ of $S_{(\alpha-\beta)/2}(0,\pi)$ given by the family of (k-1)-planes $\ker(d\exp_x)_u$ for $u \in S_{(\alpha-\beta)/2}(0,\pi)$. For each point $u \in S_{(\alpha-\beta)/2}(0,\pi)$, the leaf through u is the connected component through u in the fibre $\exp_x^{-1}(\exp_x(u))$. Let $\mathcal{L}_{\alpha\beta}$ be the leaf space of this foliation and $\Pi_{\alpha\beta}: S_{(\alpha-\beta)/2}(0,\pi) \to \mathcal{L}_{\alpha\beta}$ the natural projection. Then $S_{(\alpha-\beta)/2}(0,\pi)$ is a (k-1)-sphere bundle over $\mathcal{L}_{\alpha\beta}$ and the map $\mathcal{L}_{\alpha\beta} \to D_\beta$ is a covering [2]. Since $\Pi_{\alpha\beta}: S_{(\alpha-\beta)/2}(0,\pi) \to \mathcal{L}_{\alpha\beta}$ is a sphere bundle, it follows that $\mathcal{L}_{\alpha\beta}$ is a simply connected integral cohomology CROSS. If we now show that a simply connected integral cohomology CROSSes can have only non-orientable 2-sheeted quotients, then we will be through.

Let Y be a simply connected integral cohomology CROSS. If G is a nontrivial finite group acting fixed point freely on Y, then a simple application of Lefschetz's fixed point Theorem tells us that $G \simeq \mathbb{Z}_2$. Again a simple application of Lefschetz's fixed point Theorem tells us that any \mathbb{Z}_2 action on Y has a fixed point if $H^*(Y,\mathbb{Z}) = H^*(\mathbb{C}a\mathbb{P}^2,\mathbb{Z})$. In other cases it follows from [3] that

- 1. if $H^*(Y,\mathbb{Z}) = H^*(\mathbb{QP}^h,\mathbb{Z})$, then any \mathbb{Z}_2 -action on Y must have a fixed point, and
- 2. if $H^*(Y,\mathbb{Z}) = H^*(\mathbb{CP}^h,\mathbb{Z})$ then a fixed point free action of \mathbb{Z}_2 is possible only when h is odd and in this case the quotient is not orientable.

Thus we have proved that

- 1. if k-1=1 then exactly one of the following holds true :
 - (a) For each α , D_{α} is a simply connected integral cohomology CROSS and the degree of the generator of $H^*(D_{\alpha}, \mathbb{Z})$ is 2, or
 - (b) For each α , D_{α} is non-orientable, $\pi_1(D_{\alpha}) \simeq \mathbb{Z}_2$ and $(1/2) \dim D_{\alpha}$ is odd.
- 2. if k-1=3 or 7, then each D_{α} is a simply connected integral cohomolgy CROSS and the degree of the generator of $H^*(D_{\alpha}, \mathbb{Z})$ is k.

For each $\alpha \neq \beta$, we denote by $D_{\alpha}*D_{\beta}$, the submanifold obtained by attaching the disc bundles of $E_{(\alpha-\beta)/2}$ and $E_{(\beta-\alpha)/2}$ along the boundary set. Then we have the following

Lemma 2.13. Each D_{α} is orientable iff $D_{\alpha}*D_{\beta}$ is orientable. Further if D_{α} is not orientable then $\pi_1(D_{\alpha})$ is isomorphic to $\pi_1(D_{\alpha}*D_{\beta})$.

Proof. Let us assume that each D_{α} is orientable. We saw in the Lemma 2.12 that D_{α} is orienable iff D_{α} is simply connected.

Now, $D_{\alpha}*D_{\beta}$ is obtained by attaching the disc bundles of $E_{(\alpha-\beta)/2}$ and $E_{(\beta-\alpha)/2}$ along the boundary set. These disc bundles are simply connected and the boundary set being S^{rk-1} bundles over D_{α} 's with $r \geq 1$ and $k \geq 2$, is connected. Hence by Van Kampen's Theorem $D_{\alpha}*D_{\beta}$ is simply connected. This proves that if each D_{α} is orientable then $D_{\alpha}*D_{\beta}$ is orientable.

Let us now assume that each D_{α} is non-orientable and we will show that $D_{\alpha}*D_{\beta}$ is non-orientable and $\pi_1(D_{\alpha})$ is isomorphic to $\pi_1(D_{\alpha}*D_{\beta})$.

For each critical value α , we denote by D_{α} , the simply connected two sheeted cover of D_{α} . Then by the arguments above, it follows that $\widetilde{D_{\alpha}}*\widetilde{D_{\beta}}$ (constructed in an obvious way) is a simply connected integral cohomology CROSS covering $D_{\alpha}*D_{\beta}$. This proves that $D_{\alpha}*D_{\beta}$ is non-orientable and $\pi_1(D_{\alpha}*D_{\beta}) \simeq \mathbb{Z}_2$.

From the inclusion $i: D_{\alpha} \to D_{\alpha} * D_{\beta}$, we have the natural map $i_*: \pi_1(D_{\alpha}) \to \pi_1(D_{\alpha} * D_{\beta})$. We will be through if this map is non-trivial.

Let γ be a non-trivial geodesic loop in D_{α} . Let $\widetilde{\gamma}$ be the lift of γ in D_{α} . Now, if $i_*(\gamma)$ is trivial in $\pi_1(D_{\alpha}*D_{\beta})$, then its lift $i_*(\gamma)$ is a closed geodesic loop in $\widetilde{D}_{\alpha}*\widetilde{D}_{\beta}$ which is contained in \widetilde{D}_{α} . But $\widetilde{\gamma}=i_*(\gamma)$. This implies that $\widetilde{\gamma}$ is a closed geodesic loop in \widetilde{D}_{α} . Therefore γ must be homotopically trivial, a contradiction. Hence $i_*(\gamma)$ is non-trivial in $\pi_1(D_{\alpha}*D_{\beta})$ and this proves that $\pi_1(D_{\alpha})$ is isomorphic to $\pi_1(D_{\alpha}*D_{\beta})$.

Next we prove the following

Lemma 2.14. For each α , the normal bundle $N_M(D_\alpha)$ of D_α is orientable along D_α .

Proof. If D_{α} is orientable then it is simply connected and hence the normal bundle $N_M(D_{\alpha})$ of D_{α} is orientable along D_{α} .

We will now assume that D_{α} is not orientable. It suffices to show that for each critical value $\beta \neq \alpha$, the subbundle $E_{(\alpha-\beta)/2}$ of the normal bundle $N_M(D_{\alpha})$ is orientable along D_{α} .

For a vector bundle E over D_{α} , we denote by $\Lambda^{\text{top}}(E)$, the top exterior line bundle of E over D_{α} .

We know that

$$\begin{split} \Lambda^{\text{top}}(T(D_{\alpha} * D_{\beta}) \mid_{D_{\alpha}}) &= \Lambda^{\text{top}}(TD_{\alpha} \oplus E_{\frac{\alpha - \beta}{2}}) \\ &= \Lambda^{\text{top}}(TD_{\alpha}) \otimes \Lambda^{\text{top}}(E_{\frac{\alpha - \beta}{2}}) \end{split}$$

Hence from the properties of the Stiefel-Whitney classes, it follows that $w_1(\Lambda^{\mathrm{top}}(T(D_\alpha*D_\beta)\mid_{D_\alpha}))=w_1(\Lambda^{\mathrm{top}}(TD_\alpha))+w_1(\Lambda^{\mathrm{top}}(E_{(\alpha-\beta)/2}))$ in $H^1(D_\alpha,\mathbb{Z}_2)$; here $w_1(*)$ denotes the first Stiefel-Whitney class.

Since $i_*: \pi_1(D_\alpha) \to \pi_1(D_\alpha*D_\beta)$ is an isomorphism, the natural map $i^*: H^1(D_\alpha*D_\beta,\mathbb{Z}_2) \to H^1(D_\alpha,\mathbb{Z}_2)$ is also an isomorphism. Under this isomorphism $w_1(\Lambda^{\mathrm{top}}T(D_\alpha*D_\beta)) \mapsto w_1(\Lambda^{\mathrm{top}}TD_\alpha) + w_1(\Lambda^{\mathrm{top}}E_{(\alpha-\beta)/2})$. Since $D_\alpha*D_\beta$ is non-orientable, $w_1(T(D_\alpha*D_\beta))$ is the unique non-zero element in $H^1(D_\alpha*D_\beta,\mathbb{Z}_2)$ and hence its image $w_1(\Lambda^{\mathrm{top}}TD_\alpha) + w_1(\Lambda^{\mathrm{top}}E_{(\alpha-\beta)/2})$ is the non-zero element in $H^1(D_\alpha,\mathbb{Z}_2)$. This implies that $w_1(\Lambda^{\mathrm{top}}E_{(\alpha-\beta)/2}) = 0$ in $H^1(D_\alpha,\mathbb{Z}_2)$ and hence the normal bundle $N_M(D_\alpha)$ of D_α is orientable along D_α .

Now we are in a position to prove the following

Proposition 2.15. The following statements are equivalent

- 1. *M* is orientable.
- 2. D_{α} 's are orientable.
- 3. D_{α} 's are simply connected.
- 4. M is simply connected.

Proof. The proof of the claims that $4 \Rightarrow 1 \Rightarrow 2 \Rightarrow 3$ is obvious.

We will now come to the proof of $3 \Rightarrow 4$.

We again remark here that the local minimum i.e., index=0 is unique (See proposition 2.11). Hence starting with D_{\min} which is simply connected, we attach disc bundles at every level along the boundary set. These disc bundles are simply connected and the boundary set being the S^{rk-1} bundle, for $r \ge 1$ and $k \ge 2$, over D_{α} is connected. Hence by Van Kampen's Theorem, we get a simply connected space at every stage. This implies that M is simply connected.

Similar statement can also be made when M is not orientable. We state this as

Proposition 2.16. The following statements are equivalent

- 1. *M* is not orientable.
- 2. *M* is not simply connected and $\pi_1(M)$ is isomorphic to \mathbb{Z}_2 .
- 3. D_{α} 's are not simply connected and $\pi_1(D_{\alpha})$ is isomorphic to \mathbb{Z}_2 .
- 4. D_{α} 's are not orientable.

Proof. If M is not orientable, then we take the orientable two sheeted cover

 $(\widetilde{M},\widetilde{g})$ of (M,g). Then $(\widetilde{M},\widetilde{g})$ is also a $P_{2\pi}$ -manifold. For otherwise the common index of geodesics of length 4π in $(\widetilde{M},\widetilde{g})$ will be 2k+n-1>n+1, a contradiction. Now the rest of the proof goes through by appealing to proposition 2.15.

3. Proof of Theorem 2

Let λ be an eigenvalue of Δ with an eigenfunction f such that $f(\gamma_u(t)) = A_u \cos t + B_u \sin t + C_u$ for $u \in UM$. We know from Theorem 3 that the function has only finitely many critical values say $\{\alpha_i : 1 \leq i \leq p\}$. Let $D_{\max} = D_1, D_2, \cdots, D_p = D_{\min}$ be the critical submanifolds of the function f with critical values α_i .

Let $\mu_p > \mu_{p-1} > \cdots > \mu_2 > \mu_1 = 0$ be the eigenvalues of $-\nabla^2 f$ on D_{\max} . We saw in Corollary 2.10 that for each $x \in D_{\max}$, the map $\exp_x|_{S_{\mu_j}(0,\pi)}: S_{\mu_j}(0,\pi) \to D_j$ is a fibration with fibres of dimension k-1. Therefore we can write $\dim E_{\mu_j} = kr_j$ for some non-negative integer $r_j \in \{1, 2, \cdots, n\}$. Hence $\dim D_j = k(r_j - 1)$.

We also know from Corollary 2.7 that the eigenvalues of $-\nabla^2 f$ on D_i are $\{\mu_{ij}: \mu_j - \mu_i, 1 \leq j \leq p\}$ and from Corollary 2.10 that $\exp|_{S_{\mu_{ij}}(0,\pi)}: S_{\mu_{ij}}(0,\pi) \to D_j$ is a fibration for $j \neq i$. In particular $\exp: S_{-\mu_i}(0,\pi) \to D_{\max}$ is a fibration. Hence $\dim E_{\mu_{ij}} = \dim E_{\mu_j} = kr_j$ and $\dim E_{-\mu_i} = \dim D_{\max} + k = k(r_1 + 1)$.

Now we will compute Δf along D_i 's.

Since f is an eigenfunction of Δ with eigenvalue λ , for each $x \in D_{\max}$

$$\lambda \max(f) = \Delta f(x)$$

$$= Tr(-\nabla^2 f(x))$$

$$= k \sum_{i=1}^p r_i \mu_i$$

and for each $y \in D_j$

$$\lambda \alpha_i = \Delta f(y)$$

But we know that $\alpha_j = \max(f) - 2\mu_j$. Therefore

$$\begin{split} \lambda(\max(f) - 2\mu_j) &= k(r_1 + 1)(\mu_1 - \mu_j) + k \sum_{i \ge 2} r_i(\mu_i - \mu_j) \\ &= -k\mu_j + k \sum_{i=1}^p r_i(\mu_i - \mu_j) \\ &= -k\mu_j + k \sum_i r_i\mu_i - k\mu_j \sum_i r_i \\ &= -k(1 + \sum_i r_i)\mu_j + \lambda \max(f) \end{split}$$

This proves that

$$\lambda = \frac{k(m+1)}{2}$$

where $m = \sum_{i} r_i$.

We know from Bott-Samelson Theorem for P-manifolds that $H^*(M,\mathbb{Q})$ has exactly one generator (See [1], [2]). From Lemma 2.12 and the discussion towards the end of its proof, it follows that the degree of the generator is k. Therefore $\lambda = k(m+1)/2 = \lambda_1(\overline{M})$ where \overline{M} is a CROSS of dimension km with sectional curvarture $1/4 \le K_{\overline{M}} \le 1$ and $H^*(M,\mathbb{Q}) = H^*(\overline{M},\mathbb{Q})$.

4. Proof of Theorem 1

By hypothesis $\operatorname{Ric}_M \ge l$ and $\lambda_1 = (1/3)(2l+n+2)$. Hence for any first eigenfunction f we have that $f(\gamma_u(t)) = A_u \cos t + B_u \sin t + C_u$ for $u \in UM$ (See [12]).

Proof of 1a. It follows from Theorem 2 that $\lambda_1=(k(m+1))/2$. Since λ_1 is also equal to (1/3)(2l+n+2), we get that $l=(k(m-1))/4+(k-1)=\mathrm{Ric}_{\overline{M}}$. Again from the proof of Theorem 2 it follows that $H^*(M,\mathbb{Q})=H^*(\overline{M},\mathbb{Q})$ and also that $H^*(\widetilde{M},\mathbb{Z}_2)=H^*(\overline{M},\mathbb{Z}_2)$.

Proof of 1b. Since $k \ge 4$, it follows from Lemma 2.12 that all D_{α} 's are simply connected and from proposition 2.15 shows that M is simply connected.

Since each D_{α} is a simply connected integral cohomology CROSS and we are attaching only rk-dimensional cells at each level along D_{α} 's, we see that M is also an integral cohomology CROSS and the degree of the generator of $H^*(M,\mathbb{Z})$ is k.

REMARK. If the integral cohomology ring of M is same as that of the cohomology projective plane then the function can have at most three critical submanifolds D_{\max} and D_{\min} and one saddle. If there are three critical submanifolds then all of them are points; if there are only two critical submanifolds D_{\max} and D_{\min} again one of them is a point.

Proof of 1c. Since k=2, it follows from Lemma 2.12 and propositons 2.15 and 2.16 that, M is either simply connected or it has orientable 2-sheeted simply connected cover. That the integral cohomology ring of \widetilde{M} is same as that of \overline{M} follows from the proof of Theorem 1b). This completes the proof of Theorem 1c).

Proof of 2. Let $(\widetilde{M}, \widetilde{g})$ be the universal cover of (M, g) and $\Pi : \widetilde{M} \to M$ the covering map. Since k = 1, we have that $\mathrm{Ric}_M = (n-1)/4$. Therefore $\mathrm{Ric}_{\widetilde{M}} = (n-1)/4$.

 $\mathrm{Ric}_M=(n-1)/4$. Now by Bonnet-Myers' Theorem it follows that $\mathrm{diam}(\widetilde{M},\widetilde{g})\leq 2\pi$. We will now show that $\mathrm{diam}(\widetilde{M},\widetilde{g})\geq 2\pi$. Then it will follow from the rigidity of Bonnet-Myers' Theorem [6] or Cheng's maximal diameter Theorem [5] that $(\widetilde{M},\widetilde{g})$ is isometric to S^n with constant sectional curvature 1/4.

Since (M,g) is a $P_{2\pi}$ -manifold it follows that $(\widetilde{M},\widetilde{g})$ is a $P_{4\pi}$ manifold (See [2]). If γ is a geodesic between two critical submanifolds then the index of $\gamma|_{[0,2\pi)}=0$. Since the index of geodesics of length 2π in (M,g) is constant, we see that all such geodesics must have index 0. Hence $\gamma(2\pi)$ is conjugate $\gamma(0)$ with full multiplicity n-1, for any geodesic γ in (M,g). This implies that, in $(\widetilde{M},\widetilde{g})$ also, we must have that $\widetilde{\gamma}(2\pi)$ is conjugate to $\widetilde{\gamma}(0)$ with full multiplicity n-1 for any geodesic $\widetilde{\gamma}$ and no more conjugate points in between. This proves that every point in $(\widetilde{M},\widetilde{g})$ has conjugate locus at constant distance 2π . Therefore for every $x\in \widetilde{M}$ and $u\in T_x\widetilde{M}$ a unit vector $d(\exp_x)_{tu}:T_x\widetilde{M}\to T_{\gamma_u(t)}\widetilde{M}$ is non-singular for $0\le t<2\pi$ and $d(\exp_x)_{2\pi u}(v)$ for all $v\perp u$. This implies that \exp_x is a local diffeomorphism on the open ball $B(0,2\pi)$ of radius 2π centred at origin in $T_x\widetilde{M}$ and $\exp_x(S(0,2\pi))$ is singleton. Hence $\exp_x:D(0,2\pi)/S(0,2\pi)\to \widetilde{M}$ is a covering. Here $D(0,2\pi)$ is the disc of radius 2π and $S(0,2\pi)$ is the sphere of radius 2π both centred at origin in $T_x\widetilde{M}$. This implies that \widetilde{M} is diffeomorphic to S^n . Since $\exp_x:D(0,2\pi)/S(0,2\pi)\to \widetilde{M}$ is a diffeomorphism the cut points to x can not occur before 2π . This implies that $\dim(\widetilde{M},\widetilde{g})\geq 2\pi$. Hence $(\widetilde{M},\widetilde{g})$ is isometric to S^n with constant sectional curvature.

REMARKS.

- 1. If dim M is even then (M,g) is isometric to \mathbb{RP}^n with constant sectional curvature 1/4. If dim M is odd only even order lens spaces can occur. i.e., $\pi_1(M)$ is of even order. In this case $\pi_1(M)$ acts linearly on S^n , leaving invariant, at least as many great spheres as the number of critical levels of the function f.
- 2. We can in fact show that any $P_{2\pi}$ -metric g on \mathbb{RP}^n is standard. We give a proof below.
 - Let (\mathbb{RP}^n,g) be a $P_{2\pi}$ -manifold. Then its universal cover (S^n,\widetilde{g}) is a $P_{4\pi}$ -manifold. We also know that the index of geodesics of length 2π in \mathbb{RP}^n is constant and the same is true about the geodesics of length 4π . In (\mathbb{RP}^n,g) for any geodesic γ , the point $\gamma(2\pi)$ is conjugate to $\gamma(0)$ with full multiplicity n-1. Hence $\widetilde{\gamma}$, the lift of γ , will have $\widetilde{\gamma}(2\pi)$ conjugate to $\widetilde{\gamma}(0)$ with full multiplicity n-1 and hence no more conjugate points can occur in between. Hence for all geodesics $\widetilde{\gamma}$ in S^n , the point $\widetilde{\gamma}(2\pi)$ is conjugate to $\widetilde{\gamma}(0)$ with full multiplicity n-1. This implies that for any point $x\in S^n$, the cojugate locus occurs at constant distance 2π . From the proof above we can deduce that the injectivity radius at any point is a constant equal to 2π . This means that (S^n,\widetilde{g}) is a Blaschke manfold. Now from Blaschke conjecture for spheres [2], it follows

that (S^n, \tilde{g}) is isometric to S^n with constant sectional curvature 1/4. Hence (\mathbb{RP}^n, g) is ismoetric to the standard \mathbb{RP}^n with constant sectional curvature 1/4.

Proof of 3. Since $\lambda_1 = n$, this case is nothing but Obata's Theorem.

4.1. Proof of Theorem 1(4)

First we assume that M is simply connected and that $\max(f)$ and $\min(f)$ are the only critical values of the function f. Hence D_{\max} and D_{\min} are the only critical submanifolds of the function f in (M,g). Therefore $-\nabla^2 f$ has only two eigenvalues on D_{\max} . By normalizing the function f, we may assume that these two eigenvalues are 1 and 0. Hence we can write $f(\gamma_u(t)) = \cos t + C$ for $u \in UD_{\max}^{\perp}$, the unit normal bundle of D_{\max} , and the tubular hypersurfaces around D_{\max} are level sets of the function f.

Now we get bounds for $\nabla^2 f(u, u)$ for every $u \in UM$.

Let S(t) be the tubular hypersurface of radius t around D_{\max} . Then $f(x) = \cos t + C$ for $x \in S(t)$ and $f(\gamma_u(t)) = A_u \cos t + B_u \sin t + C_u$ for $u \in U_x M$. Then $\gamma_u(0) \in S(t)$ and $\gamma_u(\pi) \in S(t_1)$ for some t_1 such that $0 \le t_1 \le \pi$. Since $A_u + C_u = \cos t + C$ and $-A_u + C_u = \cos t_1 + C$, we have that $A_u = (1/2)(\cos t - \cos t_1)$. Therefore

$$-\nabla^2 f(u, u) = A_u$$
$$= \frac{1}{2}(\cos t - \cos t_1)$$

and we get that

$$\frac{1-\cos t}{2} \geq \nabla^2 f(u,u) \geq -\frac{1+\cos t}{2}$$

Having got these bounds for $\nabla^2 f$, we define two eigensubbundles of $\nabla^2 f$

$$E_{\frac{1-\cos t}{2}} := \{ E \in T_x M : x \in S(t) \text{ and } \nabla^2 f(E) = \frac{1-\cos t}{2} E \}$$

$$E_{-\frac{1+\cos t}{2}} := \{ E \in T_x M : x \in S(t) \text{ and } \nabla^2 f(E) = -\frac{1+\cos t}{2} E \}$$

Then we have the following

Lemma 4.1.

1. The eigensubbundles $E_{(1-\cos t)/2}$ and $E_{-(1+\cos t)/2}$ of $\nabla^2 f$ are parallel along the trajectories of ∇f . More over $\dim E_{(1-\cos t)/2} + \dim E_{-(1+\cos t)/2} = k(m-1)$.

2. $E_{(1-\cos t)/2}$ and $E_{-(1+\cos t)/2}$ are eigensubbundles of $R(., \nabla f)\nabla f$ with eigenvalue $(1/4)||\nabla f||^2$.

Proof. Let $x \in D_{\max}$ and γ be a geodesic starting at x such that $\gamma'(0) \in UD_{\max}^{\perp}$. Let J be a Jacobi field along γ describing the variation of the geodesic γ such that $J(0) \in TD_{\max}$ and $J(\pi) = 0$. We normalise J such that $||J'(\pi)|| = 1$. Then, since J is a Jacobi field, $[J, \gamma'(t)] = 0$ along the geodesic γ . Further, since $\gamma'(t) = -\nabla f/||\nabla f||$, we note that $J(||\nabla f||) = 0$. Hence

$$\begin{split} -\langle J', J \rangle &= \frac{1}{||\nabla f||} \langle \nabla_J \nabla f, J \rangle \\ &\leq \frac{||J||^2}{||\nabla f||} \frac{1 - \cos t}{2} \\ &\frac{\langle J', J \rangle}{||J||^2} \geq -\frac{1}{2} \frac{\sin \frac{t}{2}}{\cos \frac{t}{2}} \end{split}$$

The function $||J||^2/\cos^2(t/2)$ is smooth and non-vanishing on \mathbb{R} . Hence we can take the positive square root $||J||/|\cos(t/2)|$ of $||J||^2/\cos^2(t/2)$ which is again smooth. The function $\cos(t/2)$ is positive on $(-\pi,\pi)$. Therefore from the last step of the above equation it follows that

$$\frac{d}{dt}\log\left(\frac{||J||}{\cos\frac{t}{2}}\right) \ge 0$$

on $(-\pi,\pi)$. Now since (M,g) is a $P_{2\pi}$ -manifold, we have that $J(t)=J(t+2\pi)$. Hence $||J||/\cos(t/2)|_{t=-\pi}=||J||/\cos(t/2)|_{t=\pi}=2$. This proves that $||J||/\cos(t/2)|_{t=\pi}=2$ for $t\in [-\pi,\pi]$ and equality must hold everywhere in the above inequalities. This proves that J is an eigenvectorfield of $\nabla^2 f$ with eigenvalue $(1-\cos t)/2$. Since $||J||=2\cos(t/2)$, we can write $J(t)=2\cos(t/2)E(t)$ where $E(t)\in E_{(1-\cos t)/2}$ is a unit vector field along γ . Since J is a Jacobi field along γ

$$J' = \nabla_J \gamma'$$

$$= \frac{1}{||\nabla f||} \nabla_J \nabla f$$

$$= \frac{1 - \cos t}{2} \frac{1}{||\nabla f||} J$$

$$= \frac{1 - \cos t}{2} \frac{1}{||\nabla f||} 2 \cos \frac{t}{2} E.$$

On the other hand $J'=-\sin(t/2)E+\cos(t/2)E'$. This shows that E' is along the direction of the vector field E. Since E is a unit vector field along γ , $E'\perp E$. Therefore E'=0 along γ . Thus we have shown that any Jacobi field J along γ

with $J(0) \in TD_{\max}$ and $J(\pi) = 0$ is of the form $J(t) = 2\cos(t/2)E(t)$, where $E(t) \in E_{(1-\cos t)/2}$ and E(t) is parallel along γ . On the other hand it follows from Lemma 2.8 that every element of $E_{(1-\cos t)/2}$ can be expressed as a Jacobi field J(t) described above. This proves that $E_{(1-\cos t)/2}$ is parallel along the trajectories of ∇f .

Now by a similar argument we can show that the eigensubbundle $E_{-(1+\cos t)/2}$ is also parallel along the trajectories of ∇f by using the inequality that $\nabla^2 f(u,u) \le -(1+\cos t)/2$. (For a proof see also [11]).

Now we set out to prove the second part of Lemma 4.1. Let $E \in E_{(1-\cos t)/2}$ be a unit vector at t=0 and J be a Jacobi field describing the variation of a normal geodesic γ starting D_{\max} , such that J(0)=2E. Then from what we have seen above $J(t)=2\cos(t/2)E(t)$; E(t) parallel along γ . Therefore

$$R(J, \gamma')\gamma' = -J''$$
$$= \frac{1}{4}J$$

and this proves that $E_{(1-\cos t)/2}$ is eigensubbundle of $R(.,\nabla f)\nabla f$ with eigenvalue $(1/4)||\nabla f||^2$ along the trajectories of ∇f . The same arguments will prove that $E_{-(1+\cos t)/2}$ is also an eigensubbundle of $R(.,\nabla f)\nabla f$ with eigenvalue $(1/4)||\nabla f||^2$.

It follows from Lemma 2.8 that both the subbundles are of constant dimension at any point in M and also that $\dim E_{(1-\cos t)/2}=ka$ and $\dim E_{-(1+\cos t)/2}=k(m-a-1)$ where $\dim D_{\max}=ka$ and $\dim D_{\min}=k(m-a-1)$. This proves that $\dim E_{(1-\cos t)/2}+\dim E_{-(1+\cos t)/2}=k(m-1)$.

Let $E_{-\cos t} := (E_{(1-\cos t)/2} \oplus E_{-(1+\cos t)/2})^{\perp}$ be the orthogonal complement of $E_{(1-\cos t)/2} \oplus E_{-(1+\cos t)/2}$ in TM. Then we have the following

Lemma 4.2. $E_{-\cos t}$ is an eigensubbundle of

- 1. $\nabla^2 f$ with eigenvalue $-\cos t$
- 2. $R(.,\nabla f)\nabla f$ with eigenvalue $||\nabla f||^2$

Proof. First we note that $\dim(E_{(1-\cos t)/2} \oplus E_{-(1+\cos t)/2}) = k(m-1)$. Therefore the dimension of $E_{-\cos t}$ is k. Let us choose an orthonormal basis $E_1 = \nabla f/||\nabla f||$, E_2 , E_3 , \cdots , E_k of $E_{-\cos t}$, E_{k+1} , E_{k+2} , \cdots , $E_{k(a+1)}$ of $E_{(1-\cos t)/2}$ and $E_{k(a+1)+1}$, E_{ka+2} , \cdots , E_{km} of $E_{-(1+\cos t)/2}$. Then

$$\sum_{i=2}^{k} \langle R(E_i, \nabla f) \nabla f, E_i \rangle = \operatorname{Ric}_M(\nabla f, \nabla f) - \sum_{j=k+1}^{km} \langle R(E_j, \nabla f) \nabla f, E_j \rangle$$

$$= \left[\frac{k(m-1)}{4} + (k-1) \right] ||\nabla f||^2 - \frac{k(m-1)}{4} ||\nabla f||^2$$

$$= (k-1)||\nabla f||^2$$

Now, for $2 \le i \le k$, we define the vector fields $W_i(t) = \sin t E_i(t)$, where each E_i is a parallel vector field along γ such that $E_i(0) = E_i$. Then Index Lemma shows that

$$0 \leq I(W_i, W_i) = \int_0^{\pi} (\langle W_i', W_i' \rangle - \langle R(W_i, \gamma') \gamma', W_i \rangle)$$

Therefore

$$0 \le \sum_{i=2}^{k} I(W_i, W_i)$$

$$= \sum_{i=2}^{k} \int_0^{\pi} \cos^2 t \langle E_i, E_i \rangle - \sin^2 t K(E_i, \gamma')$$

$$= (k-1) \int_0^{\pi} (\cos^2 t - \sin^2 t)$$

$$= 0$$

Hence $W_i(t) = \sin t E_i(t)$ are Jacobi fields along γ for $2 \le i \le k$. Now it can be easily verified that $E_{-\cos t}$ is an eigensubbundle of $\nabla^2 f$ with eigenvalue $-\cos t$ and also an eigensubbundle of $R(\cdot, \gamma')\gamma'$ with eigenvalue 1.

An intersting Remark. When k=2, we don't need the condition on Ric_M to show that $E_{-\cos t}$ is an eigensubbundle of $\nabla^2 f$ with eigenvalue $-\cos t$ and also an eigensubbundle of $R(.,\gamma')\gamma'$ with eigenvalue 1. We give the proof below.

Let μ_1 and μ_2 be the eigenvalues of $\nabla^2 f|_{E_{-\cos t}}$. Then for $x \in D_{\max}$

$$\Delta f(x) = \frac{k(m+1)}{2} f(x)$$
$$= \frac{k(m+1)}{2} (1+C)$$

Therefore

$$\begin{split} \frac{k(m+1)}{2}(1+C) &= Tr(-\nabla^2 f(x)) \\ &= -Tr(\nabla^2 f(x)\mid_{E_{-\frac{1+\cos t}{2}}}) - Tr(\nabla^2 f(x)\mid_{E_{-\cos t}}) \\ &= k(m-a) \end{split}$$

Hence C = m - (2a + 1)/m + 1.

Now let $p \in M$. Then $f(p) = \cos t + C$ for some t and

$$\frac{k(m+1)}{2} \left[\cos t + C\right] = Tr(-\nabla^2 f(p))$$

$$= -\mu_1 - \mu_2 - Tr(\nabla^2 f(p) \mid_{E_{-\frac{1+\cos t}{2}}})$$

$$-Tr(\nabla^2 f(p) \mid_{E_{\frac{1-\cos t}{2}}})$$

$$= \cos t - \mu_2 - ka\left(\frac{1-\cos t}{2}\right)$$

$$+k(m-(a+1))\left(\frac{1+\cos t}{2}\right)$$

Hence by substituting the value m - (2a + 1)/m + 1 for C we get that $\mu_2 = -\cos t$.

An important consequence of Lemma 4.1 is that, for each $x \in D_{\max}$, the map $\exp_x : S(0,\pi) \to D_{\min}$ and for each $y \in D_{\min}$, the map $\exp_y : S(0,\pi) \to D_{\max}$ are great sphere fibrations; here $S(0,\pi)$ denotes the normal sphere of radius π at the corresponding points. Now we state the following

Lemma 4.3. For every $x \in D_{\text{max}}$, the map

$$\exp_x: S(0,\pi) \to D_{\min}$$

and for every $x \in D_{\min}$, the map

$$\exp_x: S(0,\pi) \to D_{\max}$$

are congruent to Hopf fibrations.

Proof of Theorem 1(4). Let us fix a $\mathbb{P}^a(k) \subseteq \mathbb{P}^m(k)$. We denote by TD_{\max}^{\perp} , the normal bundle of D_{\max} and by $(T\mathbb{P}^a(k))^{\perp}$, the normal bundle of $\mathbb{P}^a(k)$ in $\mathbb{P}^m(k)$. Since the map $\exp_x: S(0,\pi) \to D_{\min}$ is congruent to Hopf fibration for each $x \in D_{\max}$ there is a fibre preserving isometry $I: TD_{\max}^{\perp} \to (T\mathbb{P}^a(k))^{\perp}$. Using this isometry we define a map

$$\Phi: M \setminus D_{\min} \to \mathbb{P}^m(k)$$

as follows: For every $q \in M \setminus D_{\min}$ there is a unique $x \in D_{\max}$ and a unique geodesic segement joining x and q and we define $\Phi(q) := \exp \circ I \circ \exp_x^{-1}(q)$. This map carries the geodesics orthogonal to D_{\max} to geodesics orthogonal to $\mathbb{P}^a(k)$ and matches the tubular hypersurfaces around D_{\max} . To complete the proof we only have to show that $d\Phi$ preserves the length of the Jacobi fields along these normal geodesics. This follows from [11]. This finishes the proof when M is simply connected.

We will now come to the case when M is not simply connected.

If M is not simply connected, then from our earlier analysis we conclude that the universal cover $(\widetilde{M}, \widetilde{g})$ of (M, g) is isometric to \mathbb{CP}^{2d-1} with its standard metric

of sectional curvature $1/4 \le K_{\mathbb{CP}^{2d-1}} \le 1$. This completes the proof of Theorem 1(4).

CONCLUDING REMARKS

1. If k=2 and M is not simply connected then we have seen that (M,g) is a quotient of \mathbb{CP}^{2d-1} by a fixed point free involutive isometry. For the existence of such a map consider

$$\phi: \mathbb{CP}^{2d-1} \to \mathbb{CP}^{2d-1}$$

defined by

$$\phi([z_1, z_2, \dots, z_{2d}]) = [\overline{z}_2, -\overline{z}_1, \dots, \overline{z}_{2d}, -\overline{z}_{2d-1}]$$

in homogeneous co-ordinates. Then ϕ is a fixed point free involutive isometry of \mathbb{CP}^{2d-1} .

For example, consider the eigenfunction

$$f: \mathbb{CP}^{2d-1} \to \mathbb{CP}^{2d-1}$$

defined by

$$f([z_1, z_2, \dots, z_{2d}]) = \frac{a_0(|z_1|^2 + |z_2|^2) + a_1(|z_3|^2 + \dots + |z_{2d}|^2)}{|z_1|^2 + |z_2|^2 + \dots + |z_{2d}|^2}$$

For $a_0 \neq a_1$, f goes down to $M = \mathbb{CP}^{2d-1}/\mathbb{Z}_2$ to give a first eigenfunction without saddle points.

2. Theorem 1(4) has been used to give an intrinsic proof of Lichnerowicz conjecture on harmonic manifolds by the first author (See [13] for a proof using *Nice imbeddings*). The details will appear in *An Intrinsic Approach to Lichnerowicz Conjecture* [10].

ACKNOWLEDGEMENTS. The authors wish to thank the referee for pointing out some gaps in the first version of the paper.

References

- [1] L.B. Bergery: Quelques exemples de variétés Riemannienes oú toutes les geodesiques issues d'un point sont fermées et de même longueur, suivis de quelques résultats sur leur topologie, Ann. Inst. Fourier., 27(1) (1977), 231-249.
- [2] A.L. Besse: Manifolds all of whose geodesics are closed, A Series of Modern Surveys in Mathematics, Springer-Verlag, New York, 93 1978.

- [3] G.E. Bredon: Introduction to compact transformation groups, Academic Press, Inc, London, 1972.
- [4] W. Browder: Higher torsion in H-spaces, Trans. Amer. Math. Soc. 108 (1963), 353-375.
- [5] S.Y. Cheng: Eigenvalue comparison theorems and geometric applications, Math. Z. 143 (1975), 289-297.
- [6] J. Cheeger and D. Ebin: Comparison Theorems in Riemannian Geometry, North Holland, 1975.
- [7] D. Gromoll and K. Grove: A Generalisation of Berger's Rigidity theorem for positively curved manifolds, Ann. Scient.Éc. Norm. Sup. 4 série, 20 (1987), 227–239.
- [8] A. Lichnerowicz: Géométrie des groupes de transformation, Paris, Dunod, 1958.
- [9] M. Obata: Certain conditions for a Riemannian manifold to be isometric to a sphere, Journal of Mathematical Society of Japan, 14 (1962), 333–340.
- [10] A. Ranjan: An Intrinsic Approach to Lichnerowicz Conjecture, Preprint, 1996.
- [11] A. Ranjan and G. Santhanam: A Generalisation of Obata's theorem, To appear in Journal of Geometric Analysis.
- [12] A. Ros: Eigenvalue Inequalities for Minimal Submanifolds and P-manifolds, Math. Z. 187 (1984), 393-404.
- [13] Z.I. Szabo: The Lichnerowicz conjecture on harmonic manifolds, Jour. Diff. Geom. 31 (1990), 1-28.

A. Ranjan
Department of Mathematics
Indian Institute of Technology
Mumbai-400 076, India
e-mail: aranjan@math.iitb.ernet.in

G. Santhanam School of Mathematics Tata Institute of Fundamental Research Mumbai-400 005, India e-mail: santhana@math.tifr.res.in