KÄHLER C-SPACES AND \boldsymbol{k}-SYMMETRIC SPACES

Koлı TOJO

(Received June 7, 1995)

0. Introduction

Let (M, J, g) be a compact, simply connected homogeneous Kählerian manifold (we call the space a Kähler C-space). In [10] we have proved that there is a positive integer n such that the n-th covariant derivative of (1,0)-type of the curvature tensor of (M, J, g) is identically zero (we call the least integer with above property the degree of $(M, J, g))$. It is clear that a compact Hermitian symmetric space is characterized as a Kähler C-space with degree one. Moreover we classified the spaces with degree $n(n \leq 3)$.

In this paper we shall prove explicitly that every Kähler C-space has a k symmetric structure (see also Burstall and Rawnsley [1], p. 52 and Pasiencier [9], Lemma 4.3). In [2] Gray showed that each Riemannian 3-symmetric space is a homogeneous almost Hermitian manifold with the canonical almost complex structure. He also proved that a Riemannian 3 -symmetric space with the canonical almost complex structure is Kählerian if and only if it is a Hermitian symmetric space. In this paper we also show that the degree of a Kähler C-space equals three if and only if it is a compact Kähler manifold with a 3 -symmetric structure which is not isometric to a Hermitian symmetric space (Theorem 2.4).

It is known that a Riemannian manifold (M, g) with a k-symmetric structure is homogeneous, that is, (M, g) has an expression $(M, g)=G / K$. For an irreducible Riemannian symmetric space the expression as a symmetric pair is unique as is wellknown. In section 3 we shall show an analogous theorem on symmetric pair hold for a compact simply connected irreducible Riemannian 3-symmetric space which is not isometric to a Riemannian symmetric space (Theorem 3.6).

1. Preliminaries

In this section we recall notions and (some) properties of k-symmetric spaces $(k \in \mathbb{N})$ and Kähler C-spaces.

Let (M, g) be a Riemannian manifold. For $x \in M$, an isometry of (M, g) with an isolated fixed point x is called a symmetry of (M, g) at x. Assume that (M, g) admits at least one symmetry at each point, and let $\left\{s_{x}: x \in M\right\}$ be the set of symmetries. Then it is known that (M, g) is a Riemannian homogeneous space.

Moreover, if we denote by $\operatorname{Cl}\left(\left\{s_{x}\right\}\right)$ the closure of the group generated by the set $\left\{s_{x}: x \in M\right\}$ in the isometry group $I(M, g)$ of (M, g), then $\mathrm{Cl}\left(\left\{s_{x}\right\}\right)$ acts transitively on (M, g). (cf. Kowalski [7].).

Again, suppose that (M, g) admits a set $\left\{s_{x}: x \in M\right\}$ of symmetries. We call $\left\{s_{x}: x \in M\right\}$ a Riemannian k-symmetric structure on (M, g) if for $x, y \in M$

$$
\begin{align*}
& s_{x} \circ s_{y}=s_{z} \circ s_{x}, \quad\left(z=s_{x}(y)\right), \tag{1.1}\\
& \left(s_{x}\right)^{k}=\mathrm{id}, \quad\left(s_{x}\right)^{l} \neq \mathrm{id}, \quad(l<k) .
\end{align*}
$$

We note that $\left\{s_{x}: x \in M\right\}$ depends only on s_{p} for a fixed $p \in M$. Furthermore (M, g) with a Riemannian k-symmetric structure is said to be a Riemannian k-symmetric space.

Let (M, g) be a Riemannian homogeneous space, i.e., there exits a group G of isometries of (M, g) such that $M=G / H$ (H is a closed subgroup of G). Let $\pi: G \rightarrow G / H$ be the canonical projection and put $o=\pi(H)$. For an automorphism σ of G let G^{σ} be the fixed point set and $\left(G^{\sigma}\right)_{0}$ the identity component of G^{σ}, respectively. Then the following is known (cf. [7]).

Proposition 1.1. Suppose that there exists an automorphism σ of G such that
(i) $\left(G^{\sigma}\right)_{0} \subset H \subset G^{\sigma}$,
(ii) $\sigma^{k}=1$ and $\sigma^{l} \neq 1$ for any $l<k$,
(iii) let s be the transformation of M defined by $\pi \circ \sigma=s \circ \pi$. Then s preserves the metric at o.
Then $\left\{s_{x}=g \circ s \circ g^{-1}: x=g \cdot o \in M\right\}$ defines a Riemannian k-symmetric structure on (M, g).

Next, we construct Kähler C-spaces. (for example, see Itoh [5] and Matsushima [8])

A compact simply connected homogeneous space with an invariant complex structure is called a C-space. Moreover, a C-space with an invariant Kähler metric is called a Kähler C-space. Let G be a compact Lie group and K a centralizer of a toral subgroup of G. Then G / K admits a G-invariant Kähler structure. Conversely, every Kähler C-space can be obtained in this way.

In the following we describe an irreducible Kähler C-space in terms of a root syetem.

Let G be a compact simple Lie group and K a centralizer of a toral subgroup of $G . \mathfrak{g}$ and \mathfrak{k} denote the Lie algebras of G and K, respectively. $\mathfrak{g}_{\mathbb{C}}$ and $\mathfrak{k}_{\mathbb{C}}$ denote the complexification of \mathfrak{g} and \mathfrak{k}. Then \mathfrak{k} contains a maximal abelian subalgebra \mathfrak{h} of \mathfrak{g}. Let Δ and Δ_{0} denote the set of nonzero roots of $\mathfrak{g}_{\mathbb{C}}$ and $\mathfrak{k}_{\mathbb{C}}$, respectively, with respect to $\mathfrak{h}_{\mathbb{C}}$. We choose fundamental root systems Π_{0} of Δ_{0} and Π of Δ for some lexicographic ordering of Δ so that $\Pi_{0} \subset \Pi$. Set $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$. For Π_{0} and Π we denote the positive root sets by $\Delta_{0}{ }^{+}$and Δ^{+}, respectively. Then $\Delta_{0}{ }^{+} \subset \Delta^{+}$.

Since the Killing form B of $\mathfrak{g}_{\mathbb{C}}$ is non-degenerate, we can define $H_{\alpha} \in \mathfrak{h}_{\mathbb{C}}$ ($\alpha \in \Delta$) by

$$
B\left(H, H_{\alpha}\right)=\alpha(H) \quad\left(H \in \mathfrak{h}_{\mathbb{C}}\right) .
$$

We choose root vectors $\left\{E_{\alpha}\right\}(\alpha \in \Delta)$ so that for $\alpha, \beta \in \Delta$

$$
\begin{align*}
& B\left(E_{\alpha}, E_{-\alpha}\right)=1 \tag{1.2}\\
& {\left[E_{\alpha}, E_{\beta}\right]=N_{\alpha, \beta} E_{\alpha+\beta}, \quad N_{\alpha, \beta}=-N_{-\alpha,-\beta} \in \mathbb{R}}
\end{align*}
$$

As is well-known, the following \mathfrak{g}_{u} is a compact real form of $\mathfrak{g}_{\mathbb{C}}$:

$$
\mathfrak{g}_{u}=\sum_{\alpha \in \Delta^{+}} \mathbb{R} \sqrt{-1} H_{\alpha}+\sum_{\alpha \in \Delta^{+}}\left(\mathbb{R} A_{\alpha}+\mathbb{R} B_{\alpha}\right)
$$

where $A_{\alpha}=E_{\alpha}-E_{-\alpha}$ and $B_{\alpha}=\sqrt{-1}\left(E_{\alpha}+E_{-\alpha}\right)$. Now we may identify \mathfrak{g} with \mathfrak{g}_{u}. So we have

$$
\begin{equation*}
\mathfrak{k}=\sum_{\alpha \in \Delta^{+}} \mathbb{R} \sqrt{-1} H_{\alpha}+\sum_{\alpha \in \Delta_{0}^{+}}\left(\mathbb{R} A_{\alpha}+\mathbb{R} B_{\alpha}\right) . \tag{1.3}
\end{equation*}
$$

Put $\Phi=\Pi \backslash \Pi_{0}=\left\{\alpha_{i_{1}}, \cdots, \alpha_{i_{r}}\right\}$ and let $\Delta^{+}(\Phi)$ be the set $\Delta^{+} \backslash \Delta_{0}{ }^{+}$. Moreover set

$$
\begin{equation*}
\mathfrak{p}=\sum_{\alpha \in \Delta^{+}(\Phi)}\left(\mathbb{R} A_{\alpha}+\mathbb{R} B_{\alpha}\right) \tag{1.4}
\end{equation*}
$$

Then $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ (direct sum) and the tangent space $T_{o}(G / K)$ of G / K at $o=\{K\}$ is identified with \mathfrak{p}. We define a linear mapping $J: \mathfrak{p} \rightarrow \mathfrak{p}$ as

$$
\begin{equation*}
J\left(A_{\alpha}\right)=B_{\alpha}, \quad J\left(B_{\alpha}\right)=-A_{\alpha} \quad\left(\alpha \in \Delta^{+}(\Phi)\right) . \tag{1.5}
\end{equation*}
$$

Then J can be extended to a G-invariant complex structure on $G / K \cdot \mathfrak{p}^{ \pm}$denote the eigenspaces of J corresponing with the eigenvalues $\pm \sqrt{-1}$, that is

$$
\mathfrak{p}^{ \pm}=\sum_{\alpha \in \Delta^{+}(\Phi)} \mathbb{C} E_{ \pm \alpha}
$$

It is known that any G-invariant Kähler metric g is given at o by

$$
\begin{equation*}
\left.g\right|_{\mathfrak{g}_{\alpha} \times \mathfrak{g}_{\alpha}}=-\left(\sum_{j=1}^{r} c_{j} n_{i_{j}}\right) B \quad\left(\alpha=\sum_{i=1}^{l} n_{i} \alpha_{i} \in \Delta^{+}(\Phi)\right) . \tag{1.6}
\end{equation*}
$$

Here c_{j} are positive numbers and $\mathfrak{g}_{\alpha}=\mathbb{R} A_{\alpha}+\mathbb{R} B_{\alpha}$. Conversely, any bilinear form defined by (1.6) on $\mathfrak{p}^{\mathbb{C}} \times \mathfrak{p}^{\mathbb{C}}$ can be extended to a G-invariant metric on G / K (see [5]). We have thus obtained a Kähler C-space ($G / K, g$). In the remaining part of this paper we denote this Kähler C-space by $M(\mathfrak{g}, \Pi, \Phi, g)$.

2. Symmetries of Kähler \boldsymbol{C}-spaces

Let G be a compact Lie group and K a centralizer of a toral subgroup of G. Then the homogeneous space G / K is called a generalized flag manifold. It is known that G / K with G-invariant metric \langle,$\rangle admits a Riemannian m$-symmetric structure (cf. [1] and [9]). For later use we shall prove this fact in the case where \mathfrak{g} is simple.

As in section 1, we set

$$
\begin{aligned}
& \mathfrak{g}=\sum_{\alpha \in \Delta^{+}} \mathbb{R} \sqrt{-1} H_{\alpha}+\sum_{\alpha \in \Delta^{+}}\left(\mathbb{R} A_{\alpha}+\mathbb{R} B_{\alpha}\right), \\
& \Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}, \quad \Phi=\left\{\alpha_{i_{1}}, \cdots, \alpha_{i_{r}}\right\} .
\end{aligned}
$$

Let $\delta=\sum_{i=1}^{l} n_{i} \alpha_{i}$ be the highest root of Δ with respect to Π. For positive integers $m_{i}(i=0, \cdots, r)$ put $m=m_{0}+\sum_{j=1}^{r} n_{i_{j}} m_{j}$. Set

$$
\begin{align*}
& \sigma\left(E_{ \pm \alpha_{i_{j}}}\right)=\xi^{ \pm m_{j}} E_{ \pm \alpha_{i_{j}}} \quad\left(\alpha_{i_{j}} \in \Phi\right) \tag{2.1}\\
& \sigma\left(E_{ \pm \delta}\right)=\xi^{\mp m_{0}} E_{ \pm \delta}, \quad \sigma\left(E_{\alpha_{i}}\right)=E_{\alpha_{i}} \quad\left(\alpha_{i} \in \Phi_{0}\right)
\end{align*}
$$

Here ξ denotes a primitive m-th root of unity. Then σ can be extended to an inner automorphism of order m of $\mathfrak{g}_{\mathbb{C}}$. Conversely, every inner automorphism of finite order of $\mathfrak{g}_{\mathbb{C}}$ is obtained in this way (cf. Helgason [4].)

Lemma 2.1. Let σ be an inner automorphism of finite order of $\mathfrak{g}_{\mathbb{C}}$. Then there exist a fundamental root system $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ (with respect to a certain Cartan subalgebra \mathfrak{h}) and nonnegative integers ($m_{0}, m_{1}, \cdots, m_{l}$) without nontrivial common factor such that σ satisfies the following :

$$
\sigma\left(E_{ \pm \alpha_{i}}\right)=\xi^{ \pm m_{i}} E_{ \pm \alpha_{i}}, \quad \sigma\left(E_{ \pm \delta}\right)=\xi^{\mp m_{0}} E_{ \pm \delta}
$$

where $\delta=\sum_{i=1}^{l} n_{i} \alpha_{i}$ denotes the highest root, $m=m_{0}+\sum_{i=1}^{l} n_{i} m_{i}$ and ξ a primitive m-th root of unity. Moreover σ has the form

$$
\begin{equation*}
\sigma=e^{\operatorname{ad} H} \quad \text { for some } H \in \mathfrak{h} . \tag{2.2}
\end{equation*}
$$

Since $\sigma^{m}=1$, we can see that $H \in \sum_{\alpha} \mathbb{R} \sqrt{-1} H_{\alpha}$. Therefore we can regard σ as an inner automorphism of order m of \mathfrak{g}. We can easily check that $\mathfrak{g}^{\sigma}=\mathfrak{k}$, where \mathfrak{g}^{σ} is the fixed point set of σ. Set $\phi=\left(1+\sigma+\cdots+\sigma^{m-1}\right)$. Then ϕ is a linear map of \mathfrak{g} and $\mathfrak{k}=\operatorname{Im} \phi$. Moreover we have

$$
\operatorname{ker} \phi=\sum_{\alpha \in \Delta^{+}(\Phi)}\left(\mathbb{R} A_{\alpha}+\mathbb{R} B_{\alpha}\right) \quad(=\mathfrak{p})
$$

Therefore $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ and $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$.

Let \langle,$\rangle be a G$-invariant Riemannian metric on G / K. Then \langle,$\rangle is identified$ with an $\operatorname{Ad}(\mathrm{K})$-invariant scalar product on \mathfrak{p} (denoted by the same symbol \langle,$\rangle).$ Hence by (2.2) the restriction of σ to \mathfrak{p} preserves \langle,$\rangle .$

We denote the inner automorphism of G corresponding to σ by the same symbol σ. Let $\pi: G \rightarrow G / K$ be the canonical projection. Define a transformation s of G / K by $s \circ \pi=\pi \circ \sigma$. Then the differential map of s at $o=\{K\}$ coincides with the restriction of σ to \mathfrak{p}. Consequently, from Proposition 1.1, $(G / K,\langle\rangle$,$) admits a$ Riemannian m-symmetric structure.

Let (M, J, g) be a Hermitian manifold with a complex structure J. Suppose that (M, g) admits a Riemannian m-symmetric structure $\left\{s_{x}: x \in M\right\}$. We call $\left\{s_{x}\right.$: $x \in M\}$ a Hermitian m-symmetric structure if each $s_{x}(x \in M)$ is a holomorphic isometry of (M, J, g). In particular, if (M, J, g) is Kählerian, then Hermitian m symmetric structure is said to be Kählerian. It is known that a Hermitian symmetric space has a Kählerian m-symmetric structure for any $m \geq 2$.

Proposition 2.2. Let G / K be a generalized flag manifold, where G is simple. Then G / K admits a G-invariant complex structure J such that $(G / K, J,\langle\rangle$,$) has$ a Hermitian m-symmetric structure for any G-invariant Riemannian metric \langle,$\rangle . In$ particular, a Kähler C-space admits a Kählerian m-symmetric structure for some integer m.

Proof. We define a G-invariant complex structure J by (1.5). Since $\sum_{\alpha \in \Delta} \mathbb{R} \sqrt{-1} H_{\alpha}$ is contained in \mathfrak{k}, each metric \langle,$\rangle at o$ satisfies the following.

$$
\begin{aligned}
& \left\langle A_{\alpha}, A_{\alpha}\right\rangle=\left\langle B_{\alpha}, B_{\alpha}\right\rangle, \quad\left\langle A_{\alpha}, B_{\alpha}\right\rangle=0 \\
& \left(\mathbb{R} A_{\alpha}+\mathbb{R} B_{\alpha}\right) \perp\left(\mathbb{R} A_{\beta}+\mathbb{R} B_{\beta}\right), \quad\left(\alpha, \beta \in \Delta^{+}(\Phi), \alpha \neq \beta\right)
\end{aligned}
$$

Hence \langle,$\rangle is a Hermitian metric with respect to J$.
Let $\left\{s_{x}: x \in M\right\}$ be the Riemannian m-symmetric structure corresponding with σ. Since σ has the form $e^{\text {ad } H}$ for some $H \in \mathfrak{k}$, we can see that $s\left(=s_{o}\right)$ is holomorphic. Therefore, since J is G-invariant, $s_{x}=g \cdot s \cdot g^{-1}(g \cdot o=x)$ is holomorphic.

Let R and ∇ be the curvature tensor and the Levi-Civita connection, respectively, of a Kähler C-space $M(\mathfrak{g}, \Pi, \Phi,\langle\rangle$,$) . We denote by \hat{\nabla}$ the covariant derivative in the derection of \mathfrak{p}^{+}. According to [10] there exists positive integer n such that

$$
\hat{\nabla}^{n} R=0 \quad \text { and } \quad \hat{\nabla}^{n-1} R \neq 0
$$

We call the integer n the degree of $M(\mathfrak{g}, \Pi, \Phi,\langle\rangle$,$) . Then the degree of a Kähler$ C-space is equal to one if and only if it is a Hermitian symmetric space. Moreover the following holds (see [10]).

Proposition 2.3. There exists no Kähler C-space with degree two.
Let α_{a} be any of the simple roots designed by the symbol \ominus and α_{i}, α_{j} two of the simple roots designed by the symbol \oplus in the above Dynkin diagrams. Then an irreducible Kähler C-space with degree three is one of $M\left(\mathfrak{g}, \Pi,\left\{\alpha_{a}\right\},\langle\rangle,\right)$ and $M\left(\mathfrak{g}, \Pi,\left\{\alpha_{i}, \alpha_{j}\right\},\langle\rangle,\right)$. (In the diagrams, for α_{p} corresponding to \oplus or \otimes, a Kähler C-space $M\left(\mathfrak{g}, \Pi,\left\{\alpha_{p}\right\},\langle\rangle,\right)$ is a Hermitian symmetric space ([5]).)

Let $M(\mathfrak{g}, \Pi, \Phi,\langle\rangle$,$) be an irreducible Kähler C$-space with degree three and $\delta=\sum_{i=1}^{l} n_{i} \alpha_{i}$ the highest root. Then by Proposition 2.3 it is easy to see that $\Phi=\left\{\alpha_{a}\right\}$ or $\Phi=\left\{\alpha_{j}, \alpha_{k}\right\}$ with $n_{a}=2$ and $n_{j}=n_{k}=1$. Hence $M(\mathfrak{g}, \Pi, \Phi,\langle\rangle$, has a Kählerian 3 -symmetric structure. In fact, take 1 as m_{a}, m_{j} and m_{k}, and 0 as the other m_{p} (see the early part of this section and Proposition 2.2). More precisely, the following holds.

Theorem 2.4. The degree of an irreducible Kähler C-space is three if and only if it is a compact irreducible simply connected Kählerian 3-symmetric space which is not isometric to a Hermitian symmetric space.

Proof. Let $(M, J,\langle\rangle$,$) be a compact irreducible Kählerian 3-symmetric space$ and $\left\{s_{x}: x \in M\right\}$ a Kählerian 3-symmetric structure of $(M, J,\langle\rangle$,$) . Let \mathrm{Cl}\left(\left\{s_{x}\right\}\right)$ be the closure of the group generated by the set $\left\{s_{x}: x \in M\right\}$ in the isometry group of (M, g). Then $\mathrm{Cl}\left(\left\{s_{x}\right\}\right)$ is a closed subgroup of the holomorphic isometry group of $(M, J,\langle\rangle$,$) and acts transitively on M$. Thus $(M, J,\langle\rangle$,$) is a Kähler C$-space.

Let G be the identity component of $\mathrm{Cl}\left(\left\{s_{x}\right\}\right)$ and K be the isotropy subgroup of G at a point $o \in M$. Then K is a centralizer of a toral subgroup of G since $(M, J,\langle\rangle$,$) is Kähler C$-space. Define an automorphism σ of order three of G as follows :

$$
\begin{equation*}
\sigma(g)=s_{o} \circ g \circ s_{o}^{-1} \tag{2.3}
\end{equation*}
$$

Since $s_{o} \circ k=k \circ s_{o}$ for $k \in K$ (see [7]) and o is an isolated fixed point of s_{o}, we have

$$
\left(G^{\sigma}\right)_{0} \subset K \subset G^{\sigma}, \quad \text { and } \quad \mathfrak{g}^{\sigma}=\mathfrak{k}
$$

Since \mathfrak{k} contains a maximal abelian subalgebra of \mathfrak{g} and σ leaves \mathfrak{k} pointwise fixed, we can see that σ is inner. We set $\delta=\sum_{i=1} n_{i} \alpha_{i}, \alpha_{0}=-\delta$ and $n_{0}=1$. (In other wards α_{i} and $n_{i}(0 \leq i \leq l)$ are the vertices and corresponding coefficients in the extended Dynkin diagram (cf. [4])). Then, by Lemma 2.1, the possibilities of $\left(m_{0}, m_{1}, \cdots, m_{l}\right)$ are the following :
(i) $\quad m_{i}=m_{j}=m_{k}=1$ and others are zero. In this case $n_{i}=n_{j}=n_{k}=1$.
(ii) $m_{i}=m_{j}=1$ and others are zero. In this case $n_{i}=1, n_{j}=2$.
(iii) $m_{i}=1$ and others are zero. In this case $n_{i}=3$.

However, case (iii) is not possible since \mathfrak{k} must have a nonzero center (in the case, \mathfrak{g}^{σ} is semisimple).

If σ is of the form (i), then the degree of $(M, J,\langle\rangle)=,G / K$ equals three (if necessary, substitute $-\alpha_{0}$ for α_{i}). Similarly, if σ is of the form (ii), then the degree of $(M, J,\langle\rangle)=,G / K$ is equal to three.

We have thus proved the theorem.

Remark 2.5. According to Koda [6], except for compact irreducible Kählerian 3 -symmetric spaces, compact irreducible 3 -symmetric spaces admit no (possibly not invariant) Kählerian structures because their second cohomology groups vanish.

Remark 2.6. Let $M(\mathfrak{g}, \Pi, \Phi,\langle\rangle$,$) be a Kähler C$-space and set $\Phi=\left\{\alpha_{i_{1}}, \cdots\right.$, $\left.\alpha_{i_{r}}\right\}$. Let $\delta=\sum_{i=1}^{l} m_{i} \alpha_{i}$ be the highest root of \mathfrak{g} and put $m=\sum_{j=1}^{r} m_{i_{j}}$. By the above argument we can see that the space has a Riemannian $(m+1)$-symmetric structure. Moreover, in [10], we implicitly proved that the degree of $M(\mathfrak{g}, \Pi, \Phi,\langle\rangle$, is at most $(2 m-1)$.

3. Isometry groups of Riemannian 3-symmetric spaces

In this section we examine the isometry groups of Riemannian 3-symmetric spaces.

Let $(M,\langle\rangle$,$) be a Riemannian m$-symmetric space ($m>2$) and $\left\{s_{x}: x \in M\right\}$ a Riemannian m-symmetric structure of $(M,\langle\rangle$,$) . Let G$ be the identity component of $\mathrm{Cl}\left(\left\{s_{x}\right\}\right)$ and K be the isotropy subgroup of G at a point $o \in M$. As stated in Section 2, $\sigma(g)=s_{o} \circ g \circ s_{o}{ }^{-1}(g \in G)$ is an automorphism of order m of G. Moreover it follow that

$$
\begin{equation*}
\left(G^{\sigma}\right)_{0} \subset K \subset G^{\sigma} \tag{3.1}
\end{equation*}
$$

Now we shall show the following proposition.
Proposition 3.1. Let G be a compact, connected, simple Lie group and $K a$ closed subgroup of G such that G / K is simply connected and G acts effectively on G / K. Let σ be an inner automorphism of order three of G such that (3.1) is satisfied. Suppose that G / K is not Riemannian symmetric for a G-invariant metric \langle,$\rangle . Then$ G coincides with the identity component of the isometry group of $(G / K,\langle\rangle$,$) .$

Proof. Let \tilde{G} be the identity component of the isometry group of $(G / K,\langle\rangle$, and \tilde{K} the isotropy subgroup of \tilde{G} at a point $o=\{K\}$. Since G acts effectively on G / K, the group G is a closed subgroup of \tilde{G} and $K \subset \tilde{K}$. Let $\mathfrak{g}, \mathfrak{k}, \tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{k}}$ be the Lie algebras of G, K, \tilde{G} and \tilde{K}, respectively.

We denote the differential map of σ by the same symbol σ. Set $\mathfrak{p}=\operatorname{ker}\left(1+\sigma+\sigma^{2}\right)$ $(\subset \mathfrak{g})$. Then $\mathfrak{k}=\operatorname{Im}\left(1+\sigma+\sigma^{2}\right), \mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ and $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$. Since σ is inner, the restriction of σ to \mathfrak{p} preserves \langle,$\rangle . Thus by Proposition 1.1$ the space $M=(G / K,\langle\rangle$,$) has a$ Riemannian 3-symmetric structure $\left\{s_{x}: x \in M\right\}$. Moreover

$$
s_{o} \circ \pi=\pi \circ \sigma, \quad s_{x}=g \circ s_{o} \circ g^{-1} \quad(g \in G, g \cdot o=x),
$$

where $\pi: G \rightarrow G / K$ be the canonical projection. We note that $s_{o} \in K$. Hence the automorphism $\tilde{\sigma}$ of \tilde{G} defined by $\tilde{\sigma}(g)=s_{o} \circ g \circ s_{o}^{-1}$ is inner and of order three.

Let $\tilde{\mathfrak{g}}^{\tilde{\sigma}}$ be the fixed point set of $\tilde{\sigma}$ in $\tilde{\mathfrak{g}}$. Since o is an isolated fixed point of s_{o}, we have

$$
\begin{equation*}
\mathfrak{k} \subset \tilde{\mathfrak{g}}^{\tilde{\sigma}} \subset \tilde{\mathfrak{k}} . \tag{3.2}
\end{equation*}
$$

Therefore $\tilde{\mathfrak{g}}$ is semisimple, since \tilde{G} is compact and acts effectively on M. Moreover, \mathfrak{k} contains a maximal abelian subalgebra of \mathfrak{g} because σ is inner. Thus $M=(G / K,\langle\rangle$,$) is an irreducible Riemannian manifold (see the proof of Theorem$ 5 in [3]). Also $\tilde{\mathfrak{k}}$ contains a maximal abelian subalgebra of $\tilde{\mathfrak{g}}$ because $\tilde{\sigma}$ is inner. Therefore $\tilde{\mathfrak{g}}$ must be simple. In fact, if not, then we have the decomposition

$$
\tilde{\mathfrak{g}}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{r}, \quad \tilde{\mathfrak{k}}=\mathfrak{k}_{1} \oplus \cdots \oplus \mathfrak{k}_{r},
$$

where \mathfrak{g}_{i} is an ideal of $\tilde{\mathfrak{g}}$ and $\mathfrak{k}_{i} \subset \mathfrak{g}_{i}$. This contradicts the irreducibility of M.
Using a similar method as in the proof of Theorem 2.4 we shall see that $\tilde{\mathfrak{g}}^{\tilde{\sigma}}$ coincides with $\tilde{\mathfrak{k}}$.

Since $\tilde{\mathfrak{g}}$ is simple and $\tilde{\sigma}$ is an inner automorphism of order three, $\tilde{\mathfrak{g}}^{\tilde{\sigma}}$ contains a maximal abelian subalgebra \mathfrak{h} of $\tilde{\mathfrak{g}}$. Furthermore, by Lemma 2.1, there exists a fundamental root system $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ with respect to $\mathfrak{h}_{\mathbb{C}}$ of $\tilde{\mathfrak{g}}_{\mathbb{C}}$ such that the possibilities of ($m_{0}, m_{1}, \cdots, m_{l}$) are the following:
(i) $\quad m_{i}=m_{j}=m_{k}=1$ and others are zero. In this case $n_{i}=n_{j}=n_{k}=1$.
(ii) $\quad m_{i}=m_{j}=1$ and others are zero. In this case $n_{i}=1, n_{j}=2$.
(iii) $m_{i}=1$ and others are zero. In this case $n_{i}=3$.

Here $-\alpha_{0}=\sum_{i=1} n_{i} \alpha_{i}$ is the highest root and we set $n_{0}=1$. Let Δ^{+}be the set of positive roots with respect to Π. For a subset $\Phi=\left\{\alpha_{i_{1}}, \cdots, \alpha_{i_{r}}\right\}$ of Π we set

$$
\Delta^{+}(\Phi)=\left\{\alpha=\sum_{p=1}^{l} k_{p} \alpha_{p} \in \Delta^{+}: k_{i_{j}}>0 \quad \text { for some } j\right\}
$$

Now we shall see that $\tilde{\mathfrak{k}}=\tilde{\mathfrak{g}}^{\tilde{\sigma}}$.
CASE (i) As mentioned in the proof of Theorem 2.4, we may assume that $\alpha_{k}=\alpha_{0}$ ($-\alpha_{0}$: the highest root). Set $\Phi=\left\{\alpha_{i}, \alpha_{j}\right\}$. Suppose that there is a root $\alpha \in \Delta^{+}(\Phi)$ such that

$$
\mathfrak{g}_{\alpha}=\left(\mathbb{R} A_{\alpha}+\mathbb{R} B_{\alpha}\right) \subset \tilde{\mathfrak{k}} \backslash \tilde{\mathfrak{g}}^{\tilde{\sigma}} .
$$

If $k_{i}=0$ and $k_{j}=1\left(\alpha=\sum_{p=1}^{l} k_{p} \alpha_{p}\right)$, then, since $\mathfrak{g}_{\alpha_{p}}$ is contained in $\tilde{\mathfrak{g}}^{\tilde{\sigma}}(p \neq i, j)$, we see that $\mathfrak{g}_{\alpha_{j}}$ is contained in $\tilde{\mathfrak{k}}$. In this case the pair ($\left.\tilde{\mathfrak{g}}, \tilde{\mathfrak{k}}\right)$ is symmetric (take an involutive automorphism so that $m_{i}=m_{0}=1$ and the others are zero).

If $k_{i}=k_{j}=1\left(\alpha=\sum_{p=1}^{l} k_{p} \alpha_{p}\right)$, then the same argument as above implies that $\mathfrak{g}_{\alpha_{0}}$ is contained in $\tilde{\mathfrak{k}}$. Moreover $\mathfrak{g}_{\alpha_{i}}$ and $\mathfrak{g}_{\alpha_{j}}$ are not contained in $\tilde{\mathfrak{k}}$, since we assume
$\tilde{\mathfrak{k}} \neq \tilde{\mathfrak{g}}$. Then $\tilde{\mathfrak{k}}$ coincides with $\tilde{\mathfrak{g}}^{\tau}$, where τ is the inner automorphism of order two of $\tilde{\mathfrak{g}}$ defined by the relation $m_{i}=m_{j}=1$ and $m_{k}=0(k \neq i, j, 0 \leq k \leq l)$. Hence $(\tilde{\mathfrak{g}}, \tilde{\mathfrak{k}})$ is a symmetric pair.

Consequently, in this case, $\tilde{\mathfrak{g}}^{\tilde{\sigma}}=\tilde{\mathfrak{k}}$, since we assume that $M=G / K=\tilde{G} / \tilde{K}$ is not symmetric.

CASE (ii) As in the Case (i) we assume $i=0$. Suppose that there is a root $\alpha=\sum_{p=1}^{l} k_{p} \alpha_{p}$ in $\Delta^{+}\left(\alpha_{j}\right)$ such that

$$
\mathfrak{g}_{\alpha}=\left(\mathbb{R} A_{\alpha}+\mathbb{R} B_{\alpha}\right) \subset \tilde{\mathfrak{k}} \backslash \tilde{\mathfrak{g}}^{\tilde{\sigma}} .
$$

It is clear that $k_{j}=1$ or 2 . If $k_{j}=1$, then $\mathfrak{g}_{\alpha_{j}} \subset \tilde{\mathfrak{k}}$, that is, $\tilde{\mathfrak{k}}=\tilde{\mathfrak{g}}$. This is a contradiction.

If $k_{j}=2$, then $\mathfrak{g}_{\alpha_{0}} \subset \tilde{\mathfrak{k}}$. Then $\tilde{\mathfrak{k}}$ coincides with $\tilde{\mathfrak{g}}^{\tau}$, where τ is the inner automorphism of order two of $\tilde{\mathfrak{g}}$ defined by the relation $m_{j}=1$ and $m_{k}=0(k \neq j$, $0 \leq k \leq l)$. Hence the pair ($\tilde{\mathfrak{g}}, \tilde{\mathfrak{k}})$ is symmetric.

CASE (iii) In this case we can see that $\mathfrak{g}_{\alpha_{j}} \subset \tilde{\mathfrak{g}}^{\tilde{\sigma}}$ for $j \neq i(0 \leq j \leq l)$. Suppose that there is a root $\alpha=\sum_{p=1}^{l} k_{p} \alpha_{p}$ in $\Delta^{+}\left(\alpha_{i}\right)$ such that $\mathfrak{g}_{\alpha} \subset \tilde{\mathfrak{k}} \backslash \tilde{\mathfrak{g}}^{\tilde{\sigma}}$. Then $k_{i}=1$ or 2 because $\mathfrak{g}_{\alpha_{0}} \subset \tilde{\mathfrak{g}}^{\tilde{\sigma}}$. If $k_{i}=1$, then $\tilde{\mathfrak{k}}$ must be equal to $\tilde{\mathfrak{g}}$. If $k_{i}=2$, then since $\mathfrak{g}_{\alpha_{0}} \subset \tilde{\mathfrak{k}}$ there is a root β in $\Delta^{+}\left(\alpha_{i}\right)$ such that $\mathfrak{g}_{\beta} \subset \tilde{\mathfrak{k}}$ and $h_{i}=1\left(\beta=\sum_{j=1}^{l} h_{j} \alpha_{j}\right)$. Therefore $\tilde{\mathfrak{k}}=\tilde{\mathfrak{g}}$.

We have thus $\tilde{\mathfrak{k}}=\tilde{\mathfrak{g}} \tilde{\sigma}$.
Consequently, $\tilde{\mathfrak{k}}$ must be equal to $\tilde{\mathfrak{g}}^{\tilde{\sigma}}$.
Set $\tilde{\mathfrak{p}}=\operatorname{ker}\left(1+\tilde{\sigma}+\tilde{\sigma}^{2}\right)$. Then since $\tilde{\mathfrak{k}}=\operatorname{Im}\left(1+\tilde{\sigma}+\tilde{\sigma}^{2}\right)$, we have

$$
\begin{equation*}
\tilde{\mathfrak{g}}=\tilde{\mathfrak{k}} \oplus \tilde{\mathfrak{p}}, \quad[\tilde{\mathfrak{k}}, \tilde{\mathfrak{p}}] \subset \tilde{\mathfrak{p}} \tag{3.3}
\end{equation*}
$$

Then $\mathfrak{p}=\tilde{\mathfrak{p}}$ because $\mathfrak{p} \subset \tilde{\mathfrak{p}}$ and $\operatorname{dim} \mathfrak{p}=\operatorname{dim} M=\operatorname{dim} \tilde{\mathfrak{p}}$. On the other hand, $\mathfrak{g}=\mathfrak{p}+[\mathfrak{p}, \mathfrak{p}]$ and $\tilde{\mathfrak{g}}=\tilde{\mathfrak{p}}+[\tilde{\mathfrak{p}}, \tilde{\mathfrak{p}}]$ since \mathfrak{g} and $\tilde{\mathfrak{g}}$ are simple Lie algebras. Finally, we have $\mathfrak{g}=\tilde{\mathfrak{g}}$.

We consider the similar problem in other cases. Let (G, K) be one of the following:
(i) $\left(\operatorname{Spin}(8), \operatorname{SU}(3) / \mathbb{Z}_{3}\right)$,
(ii) $\left(\operatorname{Spin}(8), \mathrm{G}_{2}\right)$,
(iii) $(\{L \times L \times L\} / \delta Z, \delta L / \delta Z)$,
where L and Z denote the compact, simply connected, simple Lie group and its center, respectively. Moreover $\delta(g)=(g, g, g)(g \in L)$. Let \mathfrak{l} be the Lie algebra of L. Then the Lie algebra δl of δL is given by

$$
\delta \mathfrak{l}=\{(X, X, X): X \in \mathfrak{l}\} .
$$

Moreover, the automorphism σ of order three of $\mathfrak{l} \oplus \mathfrak{l} \oplus \mathfrak{l}$ is given by $\sigma(X, Y, Z)=$ (Z, X, Y).

Now, we shall show that $\delta \mathfrak{l}$ is a maximal σ-invariant subalgebra of $\mathfrak{l} \oplus \mathfrak{l} \oplus \mathfrak{l}$.
Let \mathfrak{k} be a σ-invariant Lie subalbegra of $\mathfrak{l} \oplus \mathfrak{l} \oplus \mathfrak{l}$ such that $\delta \mathfrak{l} \subset \mathfrak{k}$. At first, we shall see that there is $X \in \mathfrak{l}$ such that $(0,0, X) \in \mathfrak{k}$ if $\mathfrak{k} \neq \delta \mathfrak{l}$.

We may assume that there exist $X, Y \in \mathfrak{l}(X \neq Y)$ such that $(0, X, Y) \in \mathfrak{k}$. If $[X, Y] \neq 0$, then $(0,0,[X, Y]) \in \mathfrak{k}$ because $(X, X, X) \in \mathfrak{k}$. Thus we suppose that $[X, Y]=0$. Then there exists a maximal abelian subalgebra \mathfrak{h} of \mathfrak{l} such that X, $Y \in \mathfrak{h}$. Let Δ be the set of nonzero roots of $\mathfrak{l}_{\mathbb{C}}$ with respect to $\mathfrak{h}_{\mathbb{C}}$ and choose a Weyl basis $\left\{E_{\alpha}, H_{\alpha}\right\}(\alpha \in \Delta)$ so that for any $\alpha \in \Delta$

$$
A_{\alpha}=\left(E_{\alpha}-E_{-\alpha}\right) \in \mathfrak{l}, \quad B_{\alpha}=\sqrt{-1}\left(E_{\alpha}+E_{-\alpha}\right) \in \mathfrak{l}, \quad \sqrt{-1} H_{\alpha} \in \mathfrak{l}
$$

(see Section 1). Set $X=\sqrt{-1} H$ and $Y=\sqrt{-1} H^{\prime}\left(H, H^{\prime} \in \mathfrak{h}\right)$. Then

$$
\left[\left(0, \sqrt{-1} H, \sqrt{-1} H^{\prime}\right),\left(A_{\alpha}, A_{\alpha}, A_{\alpha}\right)\right]=\left(0, \alpha(H) B_{\alpha}, \alpha\left(H^{\prime}\right) B_{\alpha}\right) \in \mathfrak{k}
$$

Similarly, $\left(0, \alpha(H) B_{\alpha}, \alpha\left(H^{\prime}\right) B_{\alpha}\right) \in \mathfrak{k}$ from which we have

$$
\begin{aligned}
& {\left[\left(0, \alpha(H) A_{\alpha}, \alpha\left(H^{\prime}\right) A_{\alpha}\right),\left(0, \alpha(H) B_{\alpha}, \alpha\left(H^{\prime}\right) B_{\alpha}\right)\right]} \\
& =\left(0,2 \alpha(H)^{2} \sqrt{-1} H_{\alpha}, 2 \alpha\left(H^{\prime}\right)^{2} \sqrt{-1} H_{\alpha}\right) \in \mathfrak{k} .
\end{aligned}
$$

Now, we may assume $\alpha(H) \neq 0$ since \mathfrak{l} is simple. If $\alpha(H)^{2}=\alpha\left(H^{\prime}\right)^{2}$, then we obtain

$$
\left(\alpha(H)^{2} \sqrt{-1} H_{\alpha}, 0,0\right) \in \mathfrak{k}
$$

since $\alpha(H)^{2}\left(\sqrt{-1} H_{\alpha}, \sqrt{-1} H_{\alpha}, \sqrt{-1} H_{\alpha}\right)$ and $\left(0, \alpha(H)^{2} \sqrt{-1} H_{\alpha}, \alpha(H)^{2} \sqrt{-1} H_{\alpha}\right)$ are in \mathfrak{k}. Thus $\left(0,0, \sqrt{-1} H_{\alpha}\right) \in \mathfrak{k}$ because \mathfrak{k} is σ-invariant.

We suppose that $\alpha(H)^{2} \neq \alpha\left(H^{\prime}\right)^{2}$. Then there exist $\alpha \in \Delta$ and nonnegative number c such that $\left(0, \sqrt{-1} H_{\alpha}, c \sqrt{-1} H_{\alpha}\right) \in \mathfrak{k}$. Since \mathfrak{k} is σ-invariant, we have

$$
\left(c \sqrt{-1} H_{\alpha}, 0, \sqrt{-1} H_{\alpha}\right), \quad\left(\sqrt{-1} H_{\alpha}, c \sqrt{-1} H_{\alpha}, 0\right) \in \mathfrak{k}
$$

Hence $\left(0,-c^{2} \sqrt{-1} H_{\alpha} ; \sqrt{-1} H_{\alpha}\right) \in \mathfrak{k}$. Then it is easy to see that $\left(0,\left(1+c^{3}\right) \sqrt{-1} H_{\alpha}, 0\right)$ is in \mathfrak{k}. Thus $\left(0,0, \sqrt{-1} H_{\alpha}\right)$ is in \mathfrak{k}.

From the above argument, we assume that there is $\alpha \in \Delta$ such that $\left(0,0, \sqrt{-1} H_{\alpha}\right)$ $\in \mathfrak{k}$. Let $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be a fundamental root system of Δ with respect to some lexicographic ordering. Then there is $i(1 \leq i \leq l)$ such that $\alpha_{i}\left(H_{\alpha}\right) \neq 0$. By a similar method as above, we can see that

$$
\begin{equation*}
\left(0,0, \mathbb{R} A_{\alpha_{i}} \oplus \mathbb{R} B_{\alpha_{i}} \oplus \mathbb{R} \sqrt{-1} H_{\alpha_{i}}\right) \subset \mathfrak{k} \tag{3.4}
\end{equation*}
$$

Next, choose $j(j \neq i)$ so that $\alpha_{j}\left(H_{\alpha_{i}}\right) \neq 0$. Then

$$
\left(0,0, \mathbb{R} A_{\alpha_{j}} \oplus \mathbb{R} B_{\alpha_{j}} \oplus \mathbb{R} \sqrt{-1} H_{\alpha_{j}}\right) \subset \mathfrak{k}
$$

By induction, (3.4) holds for all $i(1 \leq i \leq l)$, since \mathfrak{l} is simple. Therefore $(0,0, \mathfrak{l}) \subset \mathfrak{k}$, and \mathfrak{k} coincides with $\mathfrak{l} \oplus \mathfrak{l} \oplus \mathfrak{l}$. We have thus proved the following.

Lemma 3.2. $\delta \mathfrak{l}$ is a maximal σ-invariant subalgebra of $\mathfrak{l} \oplus \mathfrak{l} \oplus \mathfrak{l}$.

Next, let σ be an outer automorphism of order three on a compact simple Lie algebra \mathfrak{g}. Then \mathfrak{g} is of type D_{4}. Let $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ be a fundamental root system (see Proposition 2.3). As before, we choose a Weyl basis $\left\{E_{\alpha}, H_{\alpha} ; \alpha \in \Delta\right\}$ so that it satisfies (1.2). Let ξ be a primitive cube root of unity. Set

$$
\begin{aligned}
a_{ \pm} & =E_{ \pm \alpha_{1}}+E_{ \pm \alpha_{3}}+E_{ \pm \alpha_{4}}, \quad a_{ \pm}^{\prime}=E_{ \pm \alpha_{1}}+\xi E_{ \pm \alpha_{3}}+\xi^{2} E_{ \pm \alpha_{4}}, \\
a_{ \pm}^{\prime \prime} & =E_{ \pm \alpha_{1}}+\xi^{2} E_{ \pm \alpha_{3}}+\xi E_{ \pm \alpha_{4}}, \\
b_{ \pm} & =E_{ \pm\left(\alpha_{1}+\alpha_{2}\right)}+E_{ \pm\left(\alpha_{3}+\alpha_{2}\right)}+E_{ \pm\left(\alpha_{4}+\alpha_{2}\right)}, \\
b_{ \pm}^{\prime} & =E_{ \pm\left(\alpha_{1}+\alpha_{2}\right)}+\xi E_{ \pm\left(\alpha_{3}+\alpha_{2}\right)}+\xi^{2} E_{ \pm\left(\alpha_{4}+\alpha_{2}\right)}, \\
b_{ \pm}^{\prime \prime} & =E_{ \pm\left(\alpha_{1}+\alpha_{2}\right)}+\xi^{2} E_{ \pm\left(\alpha_{3}+\alpha_{2}\right)}+\xi E_{ \pm\left(\alpha_{4}+\alpha_{2}\right)}, \\
c_{ \pm} & =E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}+E_{ \pm\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right)}+E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)}, \\
c_{ \pm}^{\prime} & =E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}+\xi E_{ \pm\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right)}+\xi^{2} E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)}, \\
c_{ \pm}^{\prime \prime} & =E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}+\xi^{2} E_{ \pm\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right)}+\xi E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{4}\right)} .
\end{aligned}
$$

Let $\mathfrak{g}\left(\sigma, \xi^{i}\right)$ be the complex eigenspace of σ with eigenvalue $\xi^{i}(i=0,1,2)$. According to Wolf and Gray [11], σ is conjugate to τ_{1} or τ_{2}, where $\tau_{i}(i=1,2)$ are defined by the following :

$$
\begin{gather*}
\mathfrak{g}\left(\tau_{1}, 1\right):\left\{H_{\alpha_{2}}, H_{\alpha_{1}}+H_{\alpha_{3}}+H_{\alpha_{4}}, E_{ \pm \alpha_{2}}, E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)},\right. \tag{3.5}\\
\left.E_{ \pm\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right)}, a_{ \pm}, b_{ \pm}, c_{ \pm}\right\} \\
\mathfrak{g}\left(\tau_{1}, \xi\right):\left\{H_{\alpha_{1}}+\xi^{2} H_{\alpha_{3}}+\xi H_{\alpha_{4}}, a_{ \pm}^{\prime \prime}, b_{ \pm}^{\prime \prime}, c_{ \pm}^{\prime \prime}\right\} \\
\mathfrak{g}\left(\tau_{1}, \xi^{2}\right):\left\{H_{\alpha_{1}}+\xi H_{\alpha_{3}}+\xi^{2} H_{\alpha_{4}}, a_{ \pm}^{\prime}, b_{ \pm}^{\prime}, c_{ \pm}^{\prime}\right\} \\
\mathfrak{g}\left(\tau_{2}, 1\right):\left\{H_{\alpha_{2}}, H_{\alpha_{1}}+H_{\alpha_{3}}+H_{\alpha_{4}}, a_{ \pm}, b_{+}^{\prime}, b_{-}^{\prime \prime}, c_{+}^{\prime}, c_{-}^{\prime \prime}\right\} \tag{3.6}\\
\mathfrak{g}\left(\tau_{2}, \xi\right):\left\{H_{\alpha_{1}}+\xi^{2} H_{\alpha_{3}}+\xi H_{\alpha_{4}}, E_{\alpha_{2}}, E_{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}},\right. \\
\left.E_{-\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right)}, a_{ \pm}^{\prime \prime}, b_{+}, b_{-}^{\prime}, c_{+}, c_{-}^{\prime}\right\} \\
\mathfrak{g}\left(\tau_{2}, \xi^{2}\right):\left\{H_{\alpha_{1}}+\xi H_{\alpha_{3}}+\xi^{2} H_{\alpha_{4}}, E_{-\alpha_{2}}, E_{-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)},\right. \\
\left.E_{\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}}, a_{ \pm}^{\prime}, b_{-}, b_{+}^{\prime \prime}, c_{-}, c_{+}^{\prime \prime}\right\}
\end{gather*}
$$

Remark 3.3. By (3.5) and (3.6) we can see that there is no element X in $\mathfrak{g}\left(\tau_{i}, \xi\right) \oplus \mathfrak{g}\left(\tau_{i}, \xi^{2}\right)$ such that

$$
\left[X, \mathfrak{g}\left(\tau_{i}, 1\right)\right]=\{0\}
$$

We note that $\left(\mathfrak{g}, \mathfrak{g}\left(\tau_{1}, 1\right)\right)$ and $\left(\mathfrak{g}, \mathfrak{g}\left(\tau_{2}, 1\right)\right)$ correspond to the cases (ii) and (i),
respectively.
Let (G, K) be one of (i), (ii) and (iii). \mathfrak{g} and \mathfrak{k} denote the Lie algebras of G and K, respectively. Let σ be an outer automorphism of order three of \mathfrak{g} such that $\mathfrak{k}=\mathfrak{g}^{\sigma}$. As in Proposition 1.1 we define a transformation s of G / K corresponding to σ. Let \langle,$\rangle be a G$-invariant metric on G / K such that \langle,$\rangle is preserved by s$ at the origin $o=\{K\}$. Then $(G / K,\langle\rangle$,$) has a Riemannian 3-symmetric structure$ $\left\{s_{x}: x \in G / K\right\}$ associated with s. Let \tilde{G} be the identity component of the isometry group of $(G / K,\langle\rangle$,$) and \tilde{\mathfrak{g}}$ its Lie algebra. Since \tilde{G} is compact, the algebra $\tilde{\mathfrak{g}}$ has the following form :

$$
\begin{equation*}
\tilde{\mathfrak{g}}=\mathfrak{z} \oplus \mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{r} \tag{3.7}
\end{equation*}
$$

Here \mathfrak{z} is the center and $\mathfrak{g}_{i}(i=1, \cdots, r)$ are simple ideals of $\tilde{\mathfrak{g}}$ and $[\tilde{\mathfrak{g}}, \tilde{\mathfrak{g}}]=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{r}$. Define an automorphism $\tilde{\sigma}$ of \tilde{G} by $\tilde{\sigma}(g)=s \circ g \circ s^{-1}$. Let \tilde{K} be the isotropy subgroup of \tilde{G} at o and $\tilde{\mathfrak{k}}$ its Lie algebra. We also denote by $\tilde{\sigma}$ the differential map of $\tilde{\sigma}$ at the identity of \tilde{G}. Then, as before, we have $\tilde{\mathfrak{g}}^{\tilde{\sigma}} \subset \tilde{\mathfrak{k}}$. Moreover, since each \mathfrak{g}_{i} in (3.7) is a simple ideal, it is easy to see that

$$
\tilde{\sigma}(\mathfrak{z})=\mathfrak{z}, \quad \tilde{\sigma}\left(\mathfrak{g}_{i}\right)=\mathfrak{g}_{j},
$$

for some $i, j(i, j=1, \cdots, j)$. Therefore we may assume that

$$
[\tilde{\mathfrak{g}}, \tilde{\mathfrak{g}}]=\mathfrak{g}_{(1)} \oplus \cdots \oplus \mathfrak{g}_{(l)} \quad(\tilde{\sigma} \text {-invariant decomposition })
$$

where $\mathfrak{g}_{(i)}$ is a simple ideal or $\mathfrak{l} \oplus \mathfrak{l} \oplus \mathfrak{l}$. In the following we denote the restriction of $\tilde{\sigma}$ to $\mathfrak{g}_{(i)}$ by the same symbol $\tilde{\sigma}$.

Suppose that $\tilde{\mathfrak{k}} \neq \tilde{\mathfrak{g}}^{\tilde{\sigma}}$. Let $X=\left(Z, X_{(1)}, \cdots, X_{(l)}\right)$ be an element of $\tilde{\mathfrak{k}} \backslash \tilde{\mathfrak{g}}^{\tilde{\sigma}}$. Assume that $X_{(1)} \neq 0$. Then it is easy to see that there exists $Y \in \mathfrak{g}_{(1)}{ }^{\tilde{\sigma}}$ such that $\left[Y, X_{(1)}\right] \neq 0$. (In fact, if $\operatorname{rk}\left(\mathfrak{g}_{(1)}{ }^{\tilde{\sigma}}\right)=\operatorname{rk}\left(\mathfrak{g}_{(1)}\right)$, then take Y from a maximal abelian subalgebra contained in $\mathfrak{g}_{(1)}{ }^{\tilde{\sigma}}$. For the other cases, by Remark 3.3 we can see that such Y exists.) In particular, $\mathfrak{g}_{(1)}$ is a compact simple Lie algebra from Lemma 3.2. Then $\left[Y, X_{(1)}\right]$ is contained in $\tilde{\mathfrak{k}} \cap \mathfrak{g}_{(1)}$. Hence the subalgebra $\mathfrak{k}_{(1)}$ of $\mathfrak{g}_{(1)}$ generated by $\left[Y, X_{(1)}\right]$ and $\mathfrak{g}_{(1)} \tilde{\sigma}$ is contained in $\tilde{\mathfrak{k}} \cap \mathfrak{g}_{(1)}$.

If $X_{(1)}$ is not in $\mathfrak{k}_{(1)}$, then we may assume that $X_{(1)}$ is perpendicular to $\mathfrak{k}_{(1)}$ with respect to the Killing form of $\mathfrak{g}_{(1)}$. Then $\left[X_{(1)}, \mathfrak{k}_{(1)}\right]$ is perpendicular to $\mathfrak{k}_{(1)}$. This contradicts the definition of $\mathfrak{k}_{(1)}$. Thus $X_{(1)}$ is contained in $\tilde{\mathfrak{k}}$. By a similar argument, if $Z \neq 0$, then Z is in \mathfrak{k}. However, this contradicts the effectivity of \tilde{G}. Therefore we have

$$
\tilde{\mathfrak{k}}=\mathfrak{k}_{1} \oplus \cdots \mathfrak{k}_{l}, \quad\left(\mathfrak{k}_{i} \subset \mathfrak{g}_{(i)}\right) .
$$

Since $(G / K,\langle\rangle$,$) is simply connected and irreducible (cf. Gray [2]), the algebra \tilde{\mathfrak{g}}$ is simple or $\mathfrak{l} \oplus \mathfrak{l} \oplus \mathfrak{l}$.

CASE (i) Let \tilde{G} be the identity component of the isometry group of the Riemannian 3 -symmetric space

$$
M=\left(\operatorname{Spin}(8) /\left(\mathrm{SU}(3) / \mathbb{Z}_{3}\right),\langle,\rangle\right)
$$

Then $\tilde{\sigma}$ is an outer automorphism of \tilde{G}. (If not, then the Euler number of M is nonzero.) Thus, by the above argument, \tilde{G} is one of the following :

$$
\operatorname{Spin}(8), \quad\{L \times L \times L\} / \delta Z
$$

If $\tilde{G}=\{L \times L \times L\} / \delta Z$, Then by Lemma 3.2 we have

$$
M=(\{L \times L \times L\} / \delta Z) /(\delta L / \delta Z)
$$

However, from [6] we can see that $\operatorname{Spin}(8) /\left(\operatorname{SU}(3) / \mathbb{Z}_{3}\right)$ is not diffeomorphic to it for any compact simple Lie group L. Thus $\operatorname{Spin}(8)$ is the identity component of the isometry group.

Case (ii) By similar argument as above, \tilde{G} is one of the following :

$$
\operatorname{Spin}(8), \quad\{L \times L \times L\} / \delta Z
$$

However, since there is no simple Lie algebra with dimension seven, the latter case is impossible. Thus $\operatorname{Spin}(8)$ coincides with the identity component of the isometry group.

Finally, we consider the case (iii).
We shall prove the following lemmas.
Lemma 3.4. Let $\mathfrak{g}=D_{4}$. Then $\mathfrak{g}\left(\tau_{2}, 1\right)$ is a maximal subalgebra of \mathfrak{g}.
Lemma 3.5. Let $\mathfrak{g}=D_{4}$. Then B_{3} and $\mathfrak{g}\left(\tau_{1}, 1\right)$ are only proper subalgebras containing $\mathfrak{g}\left(\tau_{1}, 1\right)$. Here the pair $\left(\mathfrak{g}, B_{3}\right)$ is symmetric.

If the lemmas hold, then $\{L \times L \times L\} / \delta Z$ coincides with the identity component of the isometry group of

$$
((\{L \times L \times L\} / \delta Z) /(\delta L / \delta Z),\langle,\rangle)
$$

In fact, if the Lie algebra of the isometry group coincides with D_{4}, then the Lie algebra of the isotropy subgroup must be equal to one of $\mathfrak{g}\left(\tau_{1}, 1\right), \mathfrak{g}\left(\tau_{2}, 1\right)$ and B_{3}. However, this contradicts the above argument. (Since $\operatorname{dim} \mathfrak{g}-\operatorname{dim} B_{3}=7$, the last case is impossible.)

Proof of Lemma 3.4. In this case $\mathfrak{g}\left(\tau_{2}, 1\right)$ is isomorphic to A_{2}. Set

$$
\begin{aligned}
& H_{0}=H_{\alpha_{1}}+H_{\alpha_{3}}+H_{\alpha_{4}}, \quad H_{1}=H_{\alpha_{1}}+\xi^{2} H_{\alpha_{3}}+\xi H_{\alpha_{4}} \\
& H_{2}=H_{\alpha_{1}}+\xi H_{\alpha_{3}}+\xi^{2} H_{\alpha_{4}}
\end{aligned}
$$

Then we note that

$$
\begin{aligned}
& \sqrt{-1} H_{0}, \quad\left(H_{1}-H_{2}\right), \quad \sqrt{-1}\left(H_{1}+H_{2}\right), \quad\left(a_{+}-a_{-}\right), \quad \sqrt{-1}\left(a_{+}+a_{-}\right) \in \mathfrak{g} \\
& \left(a_{+}^{\prime}-a_{-}^{\prime \prime}\right), \quad \sqrt{-1}\left(a_{+}^{\prime}+a_{-}^{\prime \prime}\right), \quad\left(a_{-}^{\prime}-a_{+}^{\prime \prime}\right), \quad \sqrt{-1}\left(a_{-}^{\prime}+a_{+}^{\prime \prime}\right) \in \mathfrak{g} \\
& \cdots, \quad\left(c_{-}^{\prime}-c_{+}^{\prime \prime}\right), \quad \sqrt{-1}\left(c_{-}^{\prime}+c_{+}^{\prime \prime}\right) \in \mathfrak{g} .
\end{aligned}
$$

Let \mathfrak{k} be a subalgebra of \mathfrak{g} such that $\mathfrak{g}\left(\tau_{2}, 1\right) \subset \mathfrak{k}$ and $\mathfrak{g}\left(\tau_{2}, 1\right) \neq \mathfrak{k}$. Let X be an element of $\mathfrak{k} \backslash \mathfrak{g}\left(\tau_{2}, 1\right)$. Since $\sqrt{-1} H_{\alpha_{2}}$ and $\sqrt{-1} H_{0}$ are contained in $\mathfrak{g}\left(\tau_{2}, 1\right)$, we may assume that X is contained in one of the following (see (3.6)) :

$$
\begin{aligned}
& \mathbb{C} a_{ \pm}^{\prime} \oplus \mathbb{C} a_{ \pm}^{\prime \prime}, \quad \mathbb{C} b_{ \pm} \oplus \mathbb{C} b_{-}^{\prime} \oplus \mathbb{C} b_{+}^{\prime \prime} \\
& \mathbb{C} c_{ \pm} \oplus \mathbb{C} c_{-}^{\prime} \oplus \mathbb{C} c_{+}^{\prime \prime}, \quad \mathbb{C} E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)} \\
& \mathbb{C} E_{ \pm \alpha_{2}}, \quad \mathbb{C} E_{ \pm\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right)}, \quad \mathbb{C} H_{1} \oplus \mathbb{C} H_{2}
\end{aligned}
$$

(Consider $[\sqrt{-1} H, X]$ for some $H \in \mathbb{R} H_{0} \oplus \mathbb{R} H_{\alpha_{2}}$.)
(1) The case $X \in \mathbb{C} E_{ \pm \alpha_{2}}$.

In this case $Y=\left[\sqrt{-1} H_{\alpha_{2}}, X\right]$ is also in \mathfrak{k}. Hence we have $E_{ \pm \alpha_{2}} \in \mathfrak{k}_{\mathbb{C}}$. On the other hand, it is known that $E_{\alpha_{2}}, a_{+}$and $c_{-}^{\prime \prime}$ generate $\mathfrak{g}_{\mathbb{C}}$ (cf. chapter X of [4]). Thus $\mathfrak{k}_{\mathbb{C}}=\mathfrak{g}_{\mathbb{C}}$, that is, $\mathfrak{k}=\mathfrak{g}$.
(2) The case $X \in \mathbb{C} E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)}$.

As in (1), we can see that $E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)} \in \mathfrak{k}_{\mathbb{C}}$. Then

$$
\left[a_{-}, E_{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}}\right] \in \mathfrak{g}\left(\tau_{2}, \xi\right) \cap\left(\mathbb{C} E_{\alpha_{1}+\alpha_{2}+\alpha_{3}}+\mathbb{C} E_{\alpha_{1}+\alpha_{2}+\alpha_{4}}+\mathbb{C} E_{\alpha_{2}+\alpha_{3}+\alpha_{4}}\right)
$$

Thus $c_{+} \in \mathfrak{k}_{\mathbb{C}}$. Similarly we have $b_{+} \in \mathfrak{k}_{\mathbb{C}}$ and $E_{\alpha_{2}} \in \mathfrak{k}_{\mathbb{C}}$. Hence, by the same reason as (1), it follows that $\mathfrak{k}=\mathfrak{g}$.
(3) The case $X \in \mathbb{C} E_{ \pm\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right)}$.

As in (1), we can see that $E_{ \pm\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right)} \in \mathfrak{k}_{\mathbb{C}}$. Then we get

$$
\begin{aligned}
{\left[E_{\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}}, b_{-}^{\prime \prime}\right](\neq 0) \in } & \mathfrak{g}\left(\tau_{2}, \xi^{2}\right) \\
& \cap\left(\mathbb{C} E_{\alpha_{1}+\alpha_{2}+\alpha_{3}}+\mathbb{C} E_{\alpha_{1}+\alpha_{2}+\alpha_{4}}+\mathbb{C} E_{\alpha_{2}+\alpha_{3}+\alpha_{4}}\right)
\end{aligned}
$$

Hence $c_{+}^{\prime \prime} \in \mathfrak{k}_{\mathbb{C}}$. Similarly we can check that $c_{-}^{\prime} \in \mathfrak{k}_{\mathbb{C}}, b_{+}^{\prime \prime}, b_{-}^{\prime} \in \mathfrak{k}_{\mathbb{C}}$. Then

$$
\left[b_{+}^{\prime}, b_{-}^{\prime}\right]=H_{1} \in \mathfrak{k}_{\mathbb{C}}, \quad\left[c_{+}^{\prime \prime}, c_{-}^{\prime \prime}\right]=-\xi H_{2} \in \mathfrak{k}_{\mathbb{C}}
$$

Then there is $H \in \sum_{i=0}^{3} \mathbb{C} H_{i}\left(H_{3}=H_{\alpha_{2}}\right)$ such that $\alpha_{2}(H)=\alpha_{3}(H)=\alpha_{4}(H)=0$ and $\alpha_{1}(H) \neq 0$. Thus we can see that $E_{ \pm \alpha_{1}} \in \mathfrak{k}_{\mathbb{C}}$. Similar argument implies that $E_{ \pm \alpha} \in \mathfrak{k}_{\mathbb{C}}$ for all $\alpha \in \Delta$. Therefore $\mathfrak{k}=\mathfrak{g}$.
(4) The case $X \in \mathbb{C} b_{ \pm} \oplus \mathbb{C} b_{-}^{\prime} \oplus \mathbb{C} b_{+}^{\prime \prime}$.

In this case we may assume that

$$
\left\{\left(b_{+}+p b_{+}^{\prime \prime}+q b_{-}^{\prime}\right), \quad\left(b_{-}+r b_{+}^{\prime \prime}+s b_{-}^{\prime}\right) \in \mathfrak{k}_{\mathbb{C}}\right\} \quad \text { or } \quad\left\{b_{+}^{\prime \prime}, \quad b_{-}^{\prime} \in \mathfrak{k}_{\mathbb{C}}\right\}
$$

for some $p, q, r, s \in \mathbb{C}$. If $b_{+}^{\prime \prime}, b_{-}^{\prime} \in \mathfrak{k}_{\mathbb{C}}$, then $\left[b_{+}^{\prime \prime}, c_{+}^{\prime}\right]\left(\in \mathbb{C} E_{\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}}\right) \subset \mathfrak{k}_{\mathbb{C}}$. Thus $E_{\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}}\left(\right.$ and $\left.E_{-\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right)}\right)$ is contained in $\mathfrak{k}_{\mathbb{C}}$. Hence this case is reduced to (3).

If $\left(b_{+}+p b_{+}^{\prime \prime}+q b_{-}^{\prime}\right),\left(b_{-}+r b_{+}^{\prime \prime}+s b_{-}^{\prime}\right) \in \mathfrak{k}_{\mathbb{C}}$, then

$$
\begin{aligned}
& {\left[a_{+},\left(b_{+}+p b_{+}^{\prime \prime}+q b_{-}^{\prime}\right)\right] \in \mathbb{C} c_{+} \oplus \mathbb{C} c_{+}^{\prime \prime} \oplus\{0\},} \\
& {\left[a_{+},\left[a_{+},\left(b_{+}+p b_{+}^{\prime \prime}+q b_{-}^{\prime}\right)\right]\right] \in \mathbb{C} E_{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}} \oplus\{0\} \oplus\{0\} .}
\end{aligned}
$$

Therefore we have $E_{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}} \in \mathfrak{k}_{\mathbb{C}}$ (and $E_{-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)} \in \mathfrak{k}_{\mathbb{C}}$). This case is reduced to (2).
(5) The case $X \in \mathbb{C} a_{ \pm}^{\prime} \oplus \mathbb{C} a_{ \pm}^{\prime \prime}$.

In this case we may assume that

$$
\left\{\left(a_{+}^{\prime \prime}+p a_{+}^{\prime}+q a_{-}^{\prime \prime}\right), \quad\left(a_{-}^{\prime}+r a_{+}^{\prime}+s a_{-}^{\prime \prime}\right) \in \mathfrak{k}_{\mathbb{C}}\right\} \quad \text { or } \quad\left\{a_{+}^{\prime}, \quad a_{-}^{\prime \prime} \in \mathfrak{k}_{\mathbb{C}}\right\}
$$

for some $p, q, r, s \in \mathbb{C}$. If a_{+}^{\prime} and $a_{-}^{\prime \prime}$ are in $\mathfrak{k}_{\mathbb{C}}$, then we have $\left[b_{-}^{\prime \prime}, a_{+}^{\prime}\right] \in \mathbb{C} E_{-\alpha_{2}}$ and $\left[b_{+}^{\prime}, a_{-}^{\prime \prime}\right] \in \mathbb{C} E_{\alpha_{2}}$. This case is reduced to (1).

If $\left(a_{+}^{\prime \prime}+p a_{+}^{\prime}+q a_{-}^{\prime \prime}\right)$ and $\left(a_{-}^{\prime}+r a_{+}^{\prime}+s a_{-}^{\prime \prime}\right)$ are in $\mathfrak{k}_{\mathbb{C}}$, then

$$
\begin{aligned}
& {\left[\left(a_{+}^{\prime \prime}+p a_{+}^{\prime}+q a_{-}^{\prime \prime}\right), c_{+}^{\prime}\right] \in \mathbb{C} E_{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}} \oplus\{0\} \oplus \mathbb{C} b_{+},} \\
& {\left[\left[\left(a_{+}^{\prime \prime}+p a_{+}^{\prime}+q a_{-}^{\prime \prime}\right), c_{+}^{\prime}\right], a_{-}\right] \in \mathbb{C} c_{+} \oplus\{0\} \oplus \mathbb{C} E_{\alpha_{2}},} \\
& {\left[\left[\left[\left(a_{+}^{\prime \prime}+p a_{+}^{\prime}+q a_{-}^{\prime \prime}\right), c_{+}^{\prime}\right], a_{-}\right], a_{-}\right] \in \mathbb{C} E_{\alpha_{2}} \oplus\{0\} \oplus\{0\} .}
\end{aligned}
$$

Hence $E_{\alpha_{2}} \in \mathfrak{k}_{\mathbb{C}}$. Similarly we have $E_{-\alpha_{2}} \in \mathfrak{k}_{\mathbb{C}}$. This case is reduced to (1).
(6) The case $X \in \mathbb{C} c_{ \pm} \oplus \mathbb{C} c_{-}^{\prime} \oplus \mathbb{C} c_{+}^{\prime \prime}$.

In this case we may assume that

$$
\left(c_{+}+p c_{-}^{\prime}+q c_{+}^{\prime \prime}\right), \quad\left(c_{-}+r c_{-}^{\prime}+s c_{+}^{\prime \prime}\right) \in \mathfrak{k}_{\mathbb{C}} \quad \text { or } \quad c_{-}^{\prime}, \quad c_{+}^{\prime \prime} \in \mathfrak{k}_{\mathbb{C}}
$$

for some $p, q, r, s \in \mathbb{C}$. If c_{-}^{\prime} and $c_{+}^{\prime \prime}$ are in $\mathfrak{k}_{\mathbb{C}}$, then

$$
\left[c_{+}^{\prime \prime}, b_{+}^{\prime}\right]\left(\in \mathbb{C} E_{\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}}\right), \quad\left[c_{-}^{\prime}, b_{-}^{\prime \prime}\right]\left(\in \mathbb{C} E_{-\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right)}\right)
$$

are contained in $\mathfrak{k}_{\mathbb{C}}$. This case is reduced to (3).
If $\left(c_{+}+p c_{-}^{\prime}+q c_{+}^{\prime \prime}\right)$ and $\left(c_{-}+r c_{-}^{\prime}+s c_{+}^{\prime \prime}\right)$ are in $\mathfrak{k}_{\mathbb{C}}$, then since

$$
\begin{gathered}
{\left[c_{+}+p c_{-}^{\prime}+q c_{+}^{\prime \prime}, a_{+}\right] \in \mathbb{C} E_{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}} \oplus\{0\} \oplus\{0\}} \\
{\left[c_{-}+r c_{-}^{\prime}+s c_{+}^{\prime \prime}, a_{-}\right] \in \mathbb{C} E_{-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)} \oplus\{0\} \oplus\{0\},}
\end{gathered}
$$

it follows that $E_{ \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right)} \in \mathfrak{k}_{\mathbb{C}}$. Hence this case is reduced to (2).
(7) The case $X \in \mathbb{C} H_{1} \oplus \mathbb{C} H_{2}$.

It is easy to see that $\left[X, a_{ \pm}\right] \neq 0$ and $\left[X, a_{ \pm}\right]$are contained in $\mathbb{C} a_{ \pm}^{\prime} \oplus \mathbb{C} a_{ \pm}^{\prime \prime}$. Thus this case is reduced to (5).

We have thus proved the lemma.
Sketch of the proof of Lemma 3.5. Suppose that there exists a Lie subalgebra \mathfrak{k} of \mathfrak{g} such that \mathfrak{k} contains $\mathfrak{g}\left(\tau_{1}, 1\right)$. As above, we may assume that there is $X \in$ $\mathfrak{k} \backslash \mathfrak{g}\left(\tau_{1}, 1\right)$ such that X is contained in one of the following (see (3.5)) :

$$
\begin{aligned}
& \left(\mathbb{R}\left(H_{1}-H_{2}\right) \oplus \mathbb{R} \sqrt{-1}\left(H_{1}+H_{2}\right)\right), \quad\left(\mathbb{R}\left(a_{ \pm}^{\prime \prime}-a_{\mp}^{\prime}\right) \oplus \mathbb{R} \sqrt{-1}\left(a_{ \pm}^{\prime \prime}+a_{\mp}^{\prime}\right)\right), \\
& \left(\mathbb{R}\left(b_{ \pm}^{\prime \prime}-b_{\mp}^{\prime}\right) \oplus \mathbb{R} \sqrt{-1}\left(b_{ \pm}^{\prime \prime}+b_{\mp}^{\prime}\right)\right), \quad\left(\mathbb{R}\left(c_{ \pm}^{\prime \prime}-c_{\mp}^{\prime}\right) \oplus \mathbb{R} \sqrt{-1}\left(c_{ \pm}^{\prime \prime}+c_{\mp}^{\prime}\right)\right)
\end{aligned}
$$

In particular, we may suppose that there exists an element in $\mathbb{R}\left(H_{1}-H_{2}\right) \oplus \mathbb{R} \sqrt{-1}\left(H_{1}\right.$ $\left.+H_{2}\right)$ such that it is contained in \mathfrak{k}. In fact, if X is in $\mathbb{R}\left(a_{ \pm}^{\prime \prime}-a_{\mp}^{\prime}\right) \oplus \mathbb{R} \sqrt{-1}\left(a_{ \pm}^{\prime \prime}+a_{\mp}^{\prime}\right)$, then

$$
\begin{aligned}
& \left(a_{+}^{\prime \prime}-a_{-}^{\prime}\right)+p\left(a_{-}^{\prime \prime}-a_{+}^{\prime}\right)+q \sqrt{-1}\left(a_{-}^{\prime \prime}+a_{+}^{\prime}\right) \in \mathfrak{k} \\
& \sqrt{-1}\left(a_{+}^{\prime \prime}+a_{-}^{\prime}\right)+r\left(a_{-}^{\prime \prime}-a_{+}^{\prime}\right)+s \sqrt{-1}\left(a_{-}^{\prime \prime}+a_{+}^{\prime}\right) \in \mathfrak{k}, \\
& \text { or } \quad\left(a_{-}^{\prime \prime}-a_{+}^{\prime}\right), \quad \sqrt{-1}\left(a_{-}^{\prime \prime}+a_{+}^{\prime}\right) \in \mathfrak{k} .
\end{aligned}
$$

If $\left(a_{-}^{\prime \prime}-a_{+}^{\prime}\right) \in \mathfrak{k}$, then we have

$$
\left[a_{-}^{\prime \prime}-a_{+}^{\prime}, \sqrt{-1}\left(a_{+}+a_{-}\right)\right] \in \mathbb{R}\left(H_{1}-H_{2}\right) \oplus \mathbb{R} \sqrt{-1}\left(H_{1}+H_{2}\right) \subset \mathfrak{k} .
$$

For the other cases, we can check that there exists an element in $\mathbb{R}\left(H_{1}-H_{2}\right) \oplus$ $\left.\mathbb{R} \sqrt{-1}\left(H_{1}+H_{2}\right)\right)$ such that it is contained in \mathfrak{k}. Thus we assume that there exist $p, q \in \mathbb{R}$ such that

$$
X=p\left(H_{1}-H_{2}\right)+q \sqrt{-1}\left(H_{1}+H_{2}\right) \in \mathfrak{k} .
$$

Since $\left[X, \mathfrak{g}\left(\tau_{1}, 1\right)\right] \subset \mathfrak{k}_{\mathbb{C}}$ and $\left[X,\left[X, \mathfrak{g}\left(\tau_{1}, 1\right)\right]\right] \subset \mathfrak{k}_{\mathbb{C}}$, we can check that if $\mathfrak{k} \neq \mathfrak{g}$ then $H_{\alpha_{i}}(i=1,3$ or 4$)$ is in \mathfrak{k}. For any case we can see that \mathfrak{k} is isomorphic to B_{3} and the pair $\left(\mathfrak{g}, B_{3}\right)$ is symmetric.

Finally we have the following.
Theorem 3.6. Let $(M,\langle\rangle$,$) be a compact irreducible simply connected Rie-$ mannian 3-symmetric space which is not isometric to a symmetric space. Then there exists a unique pair (G, K) of a compact connected Lie group G and a closed subgroup K of G satisfying (3.1) such that $(M,\langle\rangle)=,G / K$ and G acts effectively on M. In particular, G is the identity component of the isometry group of $(M,\langle\rangle$,$) .$

References

[1] F.E. Burstall and J.H. Rawnsley: Twistor Theory for Riemannian Symmetric Spaces, Lect. Notes in Math. Springer, 14241990.
[2] A. Gray: Riemannian manifolds with geodesic symmetries of order 3, J. Differetial Geometry, 7 (1972), 343-369.
[3] J. Hano and Y. Matsushima: Some studies on Kählerian homogeneous spaces, Nagoya Math. J. 11 (1957), 77-92.
[4] S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978.
[5] M. Itoh: On curvature properties of Kähler C-spaces, J. Math. Soc. Japan. 30 (1976), 39-71.
[6] T. Koda: A remark on the second homotopy groups of compact Riemannian 3-symmetric spaces, Tsukuba J. Math. 18 (1994), 145-163.
[7] O. Kowalski: Generalized Symmetric Spaces, Lect. notes in Math. Berlin, Springer, 805 (1980).
[8] Y. Matsushima: Sur les espaces homogènes Kaehlériens d'un groupe de Lie réductif, Nagoya Math. J. 11 (1957), 53-60.
[9] S. Pasiencier: Homogeneous almost complex spaces of positive characteristic, Proc. Amer. Math. Soc. 15 (1964), 601-606.
[10] K. Tojo: Covariant derivatives on Kähler C-spaces, Nagoya Math. J., toappear.
[11] J.A. Wolf and A. Gray: Homogeneous spaces defined by Lie group automorphisms, J. Differential Geometry, 2 (1968), 77-159.

Graduate School of
Science and Technology
Chiba University
Chiba-shi, 263 Japan

