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1. Introduction

In this paper, I will use the term elliptic curve to mean an abelian variety of

dimension 1, or, what is the same, an irreducible non-singular projective algebraic

curve of genus 1 furnished with a rational point 0, the origin for the group law.

Any such curve E defined over a field K (frequently denoted E/K) has a plane

cubic model of the form

(1) y2 + aixy + a3y = x3 + a2x
2 + a4x + α6

where x and y are coordinates in the affine plane and the coefficients α^ are in

our ground filed K. We call (1) a Weierstrass equation. We can simplify (1) by

completing the square. Replacing (x, y) by (2~2x, 2~3y — 2~3aιx — 2~~1α3) gives an

equation of the form

(2) y2 = x3 + b2x
2 + 864x + 1666

where

62 = αi2 + 4α2, 64 = 2α4 + αια3, b6 = α3

2 + 4α6.

We also define quantities

b8 = αι2α6 — αια3α4 + 4α2α6 + α2α3

2 — α4

2

c4 = &2

2 - 2464

c6 = -62

3

Δ = -62

268 -

They are related by the following identities

468 = b2bβ - 64

2, 1728Δ = c4

3 - c6

2.
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Also, if αi = as = 0, Then Δ is just 16 times the discriminant of the cubic polyno-

mial x3 H- a2x
2 + a4x + α6. Δ is called a discriminant of the curve (1). For another

affine curve

(3) y/2 + a'^x'y' + a'3y' = x'3 + a'2x'2 + a!±x' + a'6

related by

x = u2x' + r and y = u3yf + u2sx' + ί

where ti, r, 5, ΐ are in X and it ^ 0. The following identities hold (using an obvious
notation).

ua( = aι + 2s

τx2α2 = α2 — sαi + 3r — s2

u3a'3 = a3 + rαi + 2ί
4 / . - o__ (f -4- τ«Λπ I ^7^2 9<?y

u2{/2 = 62 -h 12r

u%'Q = b6 + 2r64 -f r262 H- 4r3

u8^ = 68 + 3rb6 H- 3r264 H- r362 -h 3r4

li4C4 = C4

If two elliptic curves E and E1 are isomorphic, then j = j' the converse is true
over an algebraically closed filed K.

2. The case E has a rational 2-division point

We will use the following notation.

k : the Gauss number filed Q(V~ 1)

P : a prime ideal of k which divides 5

Q : a prime ideal of k which divides 2

π : an integer of k such that Q|.|ττ

The purpose of this part is to prove that there is no elliptic curve E/k of
conductor P or P2 with no rational 2-division point. Observe that it is sufficient

to treat the case P = (2 + Λ/—Ϊ) We will assume that there exists such an elliptic
curve E/k. It has a global minimal Weierstrass equation since k has class number
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1. Completing the square and translating 2-division point to the origin, we obtain

an equation

E' : y2 = x3 + Ax2 + Bx = x(x - a)(x - β)

where A and B are integers of k and a and β are in C. Let Δ and Δ' be the
discriminant of E and E1 respectively. Then,

I6(aβ)2(a - β)2 = Δ' = 212Δ = 212(2 + V^ϊ)nε

where 1 < n < 11 and ε is a unit of k. Putting X — aβ and Y = (a — β)2, we gain
the following

(4) X2Y = 28(2 + v/ZT)nε (X and Y are integers of k)

(5) A - ±vY + 4x

We will solve the equation (1) for each n under the condition that (2) is in k.
Observe that X and Y are of the forms

where 2r + ί = 16, 2s -h u — n and ε', ε" are the units of k. The possibilities for
X and Y are finite since 1 < n < 11. By simple calculations, we gain the following
lemma.

Lemma 2.1. Up to isomorphism, there are 11 elliptic curves E/k with a ratio-
nal-division point and conductor of the form PTQS where 1 < r < 2 and s >0 as
follows.

(1) j = (l

(2) j = (1 + v ) ( 4 - v ^ T ) 3 x / ( 2 4-

2 - >/=ϊ), B = (1 +

(3) j = (1 + \/Zϊ)12(3 + 2V

/ΓΪ)3(2

A = (1 4- v/Zϊ)5\/l:ϊ, B = (1 +

(4) j = -27(1 + v^ ,12



(7)

(8)
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A = 0, B = (1 + \/=ϊ)4(2 + V=ϊ)

(5) j = 27(1

A = 3(1

(6) j = -(1 + v/Γ

Λ = (1 + v/zϊ)3(2 =ϊ)5(2

A =

,4 = 3(1

-3 + 28V

/ZΪ)3(2

=Ϊ), 5 = -(1

ϊ̂)%/=I, B=(l

(9) j - -(1 +

A = 1

(10) j = -(1 + v/Γϊ)12(3 - 8V=

\/Zϊ)4(2

v/zϊ)3(2 + Λ/=Ϊ), B =

We will prepare the following lemma to pick up elliptic curves of prime power
conductors.

Lemma 2.2. Let E : y2 = x3 + Ax2 + Bx be an elliptic curvre over k where
A and B are integers ofk. Assume that its discriminant is 212D where D is integral
and prime to 2. Then E has good reduction at Q if and only if A and B satisfy
either of these sets of congruences.

(D
(2)

A = 2α2 (mod Q6) B = α4 (mod Q6)

A = a2 (mod Q4) B = 0 (mod Q8)

α is integral and prime to 2.

(3) A = 0 (mod Q5) B = π4 + 8π (mod Q8)
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π2A - B = π4 + π6 (mod Q10) or π2A-B = 5ττ4 + 4π5 + ττ6 (mod Q10).

Proof. See [17, page 242]. D

Proposition 2.3. There exists no elliptic curve E/k with a non-trivial 2-dίvίsίon
point which is everywhere good reduction except for P.

Proof. This is shown by non-solvability of the congruence equations of the
above lemma. It is confirmed by case check. Since it is quite elementary, we do not
write details, but indicate the outline of computations.

For the condition (1), B = α4 (mod Q6) implies that Q\a since Q\B. But
this contradicts that a is prime to 2. For the condition (2), B does not satisfy
the congruence B = 0 (mod Q8). For the condition (3), Put π = (1 + \/^ϊ) and
calculate B~(π4 + 8π), π2A-B-(π4 + π6) and π*A-B- (5π4 + 4π5+ττ6). D

Calculating c4, we obtain the following corollaries.

Corollary 2.4. There are 5 elliptic curves E/k with a rational 2-divisίon point
and conductor of the form PQr where r > 1 as follows.

(1) c4 = 32(32 -(

(2) c4 = -64(1 + V

/IΓΪ)(4 - Λ/=Ϊ) A = (1 + v/Zϊ)3(2 - v/Γ

β = (1 + v

(3) c4 - 64(-3 - 2v

/ι:ϊ) A = (1

B = (1

(4) c4 - 192(1 + v/Zϊ)(2 - V:ιϊ)2v/I:ϊ A = 3(1 4- \/IΓϊ)3\/::ϊ

(5) c4 - 32vCΓϊ(-3 + 28V

/ZΪ) A = (1 + V/ΓΪ)(5 + 4V

/ZΪ)

Corollary 2.5. There are 6 elliptic curves E/k with a rationale-division point
and conductor of the form P2Qr where r > 1 as follows.

(1) c 4= 192(2 + v/IΓ

(2) c 4=
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(3) c4 = 33 32χ/^ϊ(2 + V

(4) c4= -
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A = 3(1 + \/=ϊ)3(2 + Λ/zϊ)v/Z

B =

(5) c4 =

(6) c4 = 320(1

\/zϊ)v/zϊ

3. The Case E has no rational 2-division point

3.1. Preliminaries

We will use the following notation in this section.

k a number field

m an integral ideal of k

the class number of k

φ the Euler function

the set of all the fractional ideals prime to m

= {(α) E Am : a G k, a = 1 (mod m)}, the ray class in Am

the number of real conjugate fields of k

all the units of k

{ε E Ek : ε = 1 (mod m)}

the absolute norm map of ideals

the relative norm map of ideals with respect to an extension K/k.

Lemma 3.1. Let E/k be an elliptic curve without a rational 2-division point
and B be a 2-division field ofE. Then Gsl(B/k) = S3 or A3.

Proof. By definition, Geί(B/k) is a subgroup of Aut(£[2]) = GL2(Z/2Z),
which does not fix non-zero element of E[2]. Hence, the lemma follows. Π

The following fact is well known.

Fact 3.2. Let E be an elliptic curve over k and B be a n-divisίon field of E.
The prime ideal which ramifies in B/k divides n or the conductor ofE.
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Lemma 3.3. Given a prime ideal P ofk. Let E/k be an elliptic curve every-
where good reduction except for P and B its 2-division field. Let Q1? , Qn be all
the prime ideals of k which divides 2 and ramify in B/k. Moreover assume that
E has no rationale-division point. Then Gal(jB/fe) = S3, ifNP ^1,0 (mod 3),

i φ 1 (mod 3) and h0 φ 0 (mod 3).

Proof. Assume that Gal(B/k) = A3. Let K be a class field correspondent to

5m where m = Pe ΠΓ=ι QT '- BY the Fact 3 2> B is a subfield of K for some e, e; G N.
Meanwhile, we have

[K:k} = [Am : 5m]

: E°k]

= NPe'1(NP-l)l[NQ^1(NQί-l)/(Ek:E
0

k}.
ί=l

Therefore, [B : k] φ 0 (mod 3) since [K : k] φ 0 (mod 3) by assumption. This is

absurd. D

Lemma 3.4. Let B/k be a Galois extension such that Gsl(B/k) = 53, let
K and L&(i = 1,2,3) be subβelds of B such that [K : k] = 2 and [Z,W : k] = 3
respectively and let P be a prime ideal ofk which ramifies in B/k andφ (resp. p^\
φ) be a prime ideal of K (resp. Z,W, B) which divides P. Put Gsl(B/L^) = (τ;).
Then, we inertia (resp. decomposition) group ofty in B/k.

(1) z(qj) = rpp) = s3 p = φ6 in B
P = p^)3 in L
P = p2 //i #

(2) z(qj) = 53,r(q}) = A3 P-φ3 &ι B
P - p^)3 i/i L
P = p i/i if

(3)
P - p^)3 ί/i

P - p!p2 i/i

(4) Z(φ) - Γ(φ) - (r,) P - (?P!?P2?P3)
2 i/i

P = pW p(02 /Λ

P = p2 i/i

Proof. This lemma follows immediately from the fact that Γ(φ) ^ {1} and
is a cyclic group. D
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Lemma 3.5. Notation as Lemma 3.4. If Z(φ) = T(φ) = S3, then φ
divides 3.

Proof. Let p a rational prime number divided by 9β and V(Vβ) be a first
ramification group of φ. V(9β) must equal A% since the order of V^(φ) is a power
of p and Γ(φ)/VΛ(φ) is a cyclic group. Therefore p = 3. D

Lemma 3.6. Notation as Lemma 3.4. IfZ(φ) = Γ(φ) = A3 then, Nφ ± 2.

Proof. Assume that TVφ = 2, F(φ) must equal A3 since [T(φ) : V(φ)]\(Nφ
— 1) — 1. This contradicts the fact that the order of V(9β) is a power of p. Π

Lemma 3.7. Let K/k be a Galois extension and P be a prime ideal ofk. Let
φ be a prime ideal ofK which divides P and e its ramification index and let n be
an integer such thattyn\\5)K/k, here^κ/k denotes the different of K/k. Then, we
have
(1) n = e-l ι/(φ,l) = l.
(2) e < n < e - 1 + eι/p(e) //* (φ, 1) ̂  1.
where vp(e) denotes P -index of e.

Proof. See [5, page 61, Vol. 2]. D

3.2. The case k = Q(V::Ϊ)

Let k = Q(^/—ϊ). Hereafter till the end of this section, let P and Q be prime
ideals of k which divides 5 and 2 respectively. Let φ (resp. p, p W ) be a prime ideal
of φ (resp. K, I/W) which divides P and let £l (resp. q, q W ) be a prime ideal of B
(resp. X, Z/W) which divides Q.

The following lemma is immediate from Lemma 3.3.

Lemma 3.8. Let E/k be an elliptic curve having everywhere good reduction
except at P and no rational 2-division point. Let B be a 2-division field ofE. Then,

Gal(S/fe) ^ 53.

Lemma 3.9. Notation as above. Q ramifies in B/k as the case (4) in Lemma
3.4.

Proof. Let K be a subfield of B such that [K : k] = 2. Only P and Q
can ramify in K/k. So, K is a subfield of a class field correspondent to 5m where
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m = PrQs(r, s e N). Then, we have

{
5r-ι2s if r > i and s > i

1 if r = 0 and 1 < s < 3

2s-3 if r = 0 and s > 4

5r~1 if r > 1 and 5 = 0.

So, s > 1 since [X : k] divides [^4m : 5m]. Hence, Q ramifies as the case (1) or (4)

in Lemma 3.4. But, by Lemma 3.5, Q can not ramify as the case (1). Therefore, Q

ramifies as the case (4). D

Proposition 3.10. There exists no elliptic curve E/k of conductor P without

a rational 2-division point.

Proof. Assume that there exists such an elliptic curve E. By a suitable

transformation, we have an affine equation

E' : y2 = x3 + ax2 + bx + c

where α, fr, c are integers of k and the discriminant of E1 equals 212(2 ± \/^ϊ)mε

where 1 < m < 11 and ε is a unit of k. Let B be a 2-division field of E. Let

K and LW(i = 1,2,3) be subfields of B such that (K : k] = 2 and [Z,W : k] = 3

respectively. Observe that the 2-division field and the conductor of E are the same

as those of E'. By the assumption that E has multiplicative reduction at P, we have

x3 + ax2 + bx + c = (x-a)2(x-β) (mod P)

for suitable distinct integers of k a,β. So, P = p^p£)2 in L& since L& = k ( j )

where 7 is a solution for the equation x3 + ax2 -f bx + c = 0. Therefore, P ramifies

as the case (4) in Lemma 3.4. Let ^β/k be a different of B/k and dβ a discriminant

of 5. Then, we can put ΏB/k = (ί*ιΦ2Φ3)(£ι£2H3)m. Let Δ be a discriminant

of E. We have K = Q(>/Δ) = Q(γ/(2 ± Λ/^Ϊ)^)) since P ramifies in ϋf/fc. Using

the chain rule of differents, we have

\ds\ = NB/Q(VB/Q) = Nk/Q(NB/k(VB/k) - S)gjl) = 53 23m+12

and

\dB\ = NB/Q(ΏB/k - 2)^/Q) - 53 |dA-|3.

Hence, m must be even since the discriminant of J(2 ± Λ/^T)ε equals 28 5 or

212 5. Meanwhile, we have 2 < m < 5 by Lemma 3.7. Therefore, m = 2,4.
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According to [13, p. 17], \dB\
(l/l<2} must be larger than 7.412879... But, (53

2(3 4+i2))(ι/i2) = 5.981395... This is a contradiction. D

Proposition 3.11. There exists no elliptic curve E/k with conductor P2 and
no rational 2-divίsion point.

Proof. Assume that there exists no elliptic curve E. By a suitable transfor-
mation, we have an affine equation

E' : y2 = x3 + ax2 + bx + c

where α, 6, c are integers of k and the discriminant of E' equals 212(2 ± \/— T)mε
where 1 < n < 11 and ε is a unit of k. Let B be a 2-division field of E. Let K and

lβ\i = 1, 2, 3) be subfields of B such that [K : k] = 2 and [L(i) : k] = 3 respectively.
By the assumption that E has additive reduction at P, we have

x3 + αx2 + 6x + c = (x - α)3 (mod P)

for a suitable integer of k,a. Therefore, P = p(^3 in Z/W. Let Δ be a discriminant

of E and Cs be a primitive 8th root of unity. Then, we have K = fc(\/Δ) — Q(Cs)
since P does not ramify in K/k. Hence, P = p xp2 in K since 5^1 (mod 8) and
52 Ξ 1 (mod 8). Therefore, P ramifies as the case (2) in Lemma 3.4. Then, we have

^B/k — Φ2> meanwhile \dκ\ = 28. Consequently by the chain rule of differents, we
have

\dB = NB/Q(®B/Q) = NB/Q(ΏB/K - 33K/Q)

and

\dB\
(l/l2} =6.839903... .

But, this contradicts the fact that \dB\
(l/l^ must be larger than 7.412879... D

Corollary 3.12. There exists no elliptic curve E/k having everywhere good
reduction except at P.

3.3. The case k = Q(Λ/^S)

Let k = Q(\/— 3). Hereafter till the end of this section, let Q be a prime ideals
of k which divides 2. Let 0 (resp. q, q W ) be a prime ideal of B (resp. K, L^)
which divides Q.
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Lemma 3.13. Let P be a prime ideal ofk which divides 1 or 13 and let E/k
be an elliptic curve having everywhere good reduction except at P and no rational
2-division point. Then, Gsί(B/k) ^ S3.

Proof. Assume that Gal(J3/fc) ^ A3. Then, B is a subfield of a class field
correspondent to 5m where m = PTQs(r, s E N) and we have [Am : Sm] φ 0 (mod 3).
This is absurd. D

Proposition 3.14. Let P be a prime ideal of k which divides 7. Then, there
exists no elliptic curve E/k of conductor P with no rational '2- division point.

Proof. By the above lemma, we may assume that Geί(B/k) = 53. We will
suppose that there exists such an elliptic curve E. By the assumption of conductor,
P ramifies as the case (4) in Lemma 3.4. Meanwhile, Q must ramify in K/k by
class field theory. Therefore, Q ramifies as the case (4). Then we have ^B/k —

and \dβ\l/l2 = 5.634626... But, this is a contradiction. D

Proposition 3.15. Notation as above. There exists no elliptic curve E/k of
conductor P2 with no rational 2-divίsίon point.

Proof. We may assume that Gal(B/k) = 53. Suppose that there exists such
an elliptic curve E. Let Δ be a discriminant of E. By the assumption of conductor,
P ramifies as the case (2) or (3) in Lemma 3.4. Therefore, we have K = Q(Ci2) (C is
a primitive 12th root of unity.) since K = Q(\/Δ) and P does not ramify in K/k.
Meanwhile, Q ramifies as the case (4) since K = Q(Ci2) Then, we have \dk\ = 24 32

and |dβ|
(1/12) = N(8B/K - DK/Q)1/12 = 6.626588... But, this is absurd. D

Proposition 3.16. Let P be a prime ideal of k which divides 13. Then, there
exists no elliptic curve E/k of conductor P with no rationale-division point.

Proof. We may assume that Gdl(B/k) = 53. Suppose that there exists such an
elliptic curve E. By the assumption of conductor and class field theory, P ramifies
as the case (4) in Lemma 3.4 and Q unramifies in B/k or ramifies as the case (2),
(3) or (4). Then, we have

r
V = I

B/k

hence, we have

\dB\
(l/l2} = 3.288868..., 5.220752... or 6.577736...
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This is absurd. D

REMARK 3.17. Notation as Lemma 3.16. Let consider the case conductor of

E is P2. In this case, P ramifies as the case (2) or (3) in Lemma 3.4. So, we have

K = Q(Ci2) since K = Q(\/Δ) and P does not ramify in K/k. Meanwhile, Q

ramifies as the case (4) since K = Q(Ci2) Therefore, we have \dB\
l/l2 = 8.145262...

So, it fails.

REMARK 3.18. By using the above method, we can prove that there exists no

elliptic curve E/k having everywhere good reduction and no rational 2-division

point for A: -
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