ACYCLIC ALGEBRAIC SURFACES BOUNDED BY SEIFERT SPHERES

S. Yu. OREVKOV

(Received November 13, 1995)

Let Y be a complex algebraic surface. We say that it is Z-acyclic (respectively \boldsymbol{Q}-acyclic) if its reduced homology with coefficients in \boldsymbol{Z} (resp. in \boldsymbol{Q}) vanishes. Topologically one can represent Y as a compact 4-manifold with boundary (denote the boundary by S), attached by a collar $S \times[0,1)$. Call S the boundary of Y. If Y is an affine surface in C^{m} then S is the intersection of Y with a sufficiently large sphere. We say that Y is A-acyclic at infinity If S is an A-homology 3 -sphere. $(A=\boldsymbol{Z}, \boldsymbol{Q})$. If Y is A-acyclic then it is A-acyclic at infinity. If Y is \boldsymbol{Q}-acyclic and Z-acyclic at infinity, then it is Z-acyclic.

In the paper [18] Ramanujam proved that the only \boldsymbol{Z}-acyclic surface bounded by a homotopy 3 -sphere is \boldsymbol{C}^{2}, and he also constructed there the first example of a nontrivial \boldsymbol{Z}-acyclic (and even contractible) surface. Later on Gurjar and Shastri [7] proved that all \boldsymbol{Z}-acyclic surfaces are rationnal. Tom Dieck and Petri [1] classifind all acyclic surfaces which rise out of line configurations on P^{2}. Fujita [5] (resp. Miyanishi, Tsunoda [11] and Gurjar, Miyanishi [6]) classified acyclic surfaces with $\bar{\kappa}=0$ (resp. $-\infty$ and 1), where $\bar{\kappa}$ denotes the log-Kodaira dimension. Zaidenberg [21] pointed out the connection of Z-acyclic surfaces with exotic algebraic and analytic structures on $C^{n}, n \geq 3$. Flenner and Zaidenberg [4] studied deformations of acyclic surfaces.

A Seifert fibration (see [19], [17]) on a smooth compact 3-manifold M is a mapping onto a 2-manifold $\pi: M \rightarrow B$, which is a locally trivial fibration with fiber S^{1} over $B-\left\{p_{1}, \ldots, p_{r}\right\}$ and which looks near p_{j} like $D^{2} \times S^{1} \rightarrow D^{2},\left(z_{1}, z_{2}\right) \mapsto$ $z_{1}^{u_{j}} / z_{2}^{v_{j}}$, where $D^{2}=\left\{|z|^{2}<1\right\} \subset \boldsymbol{C}, S^{1}=\partial D^{2}$ and μ_{j}, ν_{j} are coprime integers, $\mu_{j} \geq 2$. The $\pi^{-1}\left(p_{j}\right)$ are called multiple fibers; M is called Seifert manifold if it admits a Seifert fibration. Seifert A-homology sphere (A stands for \boldsymbol{Z} or \boldsymbol{Q}) is a Seifert manifold M with $H_{*}(M ; A)=H_{*}\left(S^{3} ; A\right)$. In this case the base B is a 2 -sphere. The question, when a Seifert homology sphere bounds an acyclic 4 -manifold, was studied, for instance, in [3], [15].

Our main result is:
Theorem 1. Let Y be a smooth algebraic Q-acyclic surface of logarithmic Kodaira dimension 2, bounded by a Seifert \boldsymbol{Q}-homology sphere with r multiple fibers.

Then:
(a) Y can not be Z-acyclic.
(b) $r \leq 16$.

Let Y be a Q-acyclic surface. Consider an algebraic compactification X of Y such that $Y=X-D$, where D is a reduced curve with simple normal crossings (an SNC-curve). Then all irreducible components of D are rational, and the dual weighted graph of D (denote it by Γ_{D}) is a tree (see [13]). (The dual graph of a curve is the weighted graph, whose vertices correspond to the irreducible components, edges correspond to their intersection points and the weight of a vertex is the self-intersection number.) A tree is called r-fork if it has one vertex of valence r and valences are ≤ 2. Suppose that D is minimal, i.e. it contains no (-1)-curve intersecting one or two others. A \boldsymbol{Q}-acyclic surface Y with $\bar{\kappa}(Y)=2$ is bounded by a Seifert sphere if and only if Γ_{D} (with minimal D) is a fork. ${ }^{1}$ Thus, we can reduce Theorems 1 to:

Theorem 1'. Let D be a minimal $S N C$-curve on a smooth projective surface X. Suppose that $Y=X-D$ is \boldsymbol{Q}-acyclic, $\bar{\kappa}(Y)=2$ and the dual graph Γ_{D} is an r-fork. Then:
(a) Y can not be Z-acyclic.
(b) $r \leq 16$.

Remark 1. As we mentioned above, acyclic surfaces with $\bar{\kappa}<2$ are classified [5], [11], [6]. Using this classification and the classification of Seifert homology spheres [17], one can see that if Y is a Z-acyclic surface which is bounded either by a Seifert sphere or by a fork, then $Y=\boldsymbol{C}^{2}$. If Y is \boldsymbol{Q}-acyclic and $\bar{\kappa}(Y)<2$ then all the possible values for r are shown in the following table:

$\bar{\kappa}(Y)$	$-\infty$	0	1
∂Y is a Seifert sphere with r mult. fibers	$\{0,1,2,3\}$	$\{3,4,5\}$	$\{4,5, \ldots\}$
Γ_{D} is an r-fork	$\{0,1, \ldots\}$	$\{3\}$	\varnothing

This fact can be easily deduced from the results in [5], [6] and [10]. Note only that the cases with $\bar{\kappa}=0,1$ and $r \geq 4$ correspond to the surfaces $X-D$ with Γ_{D} of the form $\vdots>0-0<!$. Such a surface is bounded by a Seifert sphere becuse Γ_{D} becomes a fork after a 0 -absorption (see [2], [14]).

[^0]Remark 2. Zaidenberg asked [22; Question 1.6] if there is only a finite list of possibilities for the topological type of the dual graph at infinity of an acyclic (resp. contractible) surface with $\bar{\kappa}=2$. Theorem 1^{\prime} can be considered as a very first step toward the positive answer to this question.

Remark 3. The proof of the part (b) of Theorem 1^{\prime} is based on the logarithmic Bogomolov-Miyaoka-Yau (log-BMY) inequality [12], strengthened by Kobayashi-Nakamura-Sakai [9], and Fujita's computation [5] of the Zariski decomposition of $K+D$. The part (a) also can be obtained as a direct consequence of the elementary formulas from $\S \S 1-3$ (most of them needed for the part (b)) using the rationality of Z-acyclic surfaces [7] and the log-BMY inequality ${ }^{2}$. However, these two results are quite non-trivial, while, as the referee of the first version of the paper has pointed out,
"... a very elementary proof is possible. Using Lemma 4.1 in part I of [7], we can show: Write $K_{X} \sim a_{0} D_{0}+\sum_{i \geq 1} a_{i} D_{i}$ where D_{0} is the central curve. Then $a_{0} \geq 0 \Longrightarrow$ all $a_{i} \geq 0$ and $a_{0}<0 \Longrightarrow$ all $a_{i}<0$. But if all $a_{i} \leq 0$, then $p_{g}(X)>0$. This is not possible. Hence all $a_{i}<0$. But then $K+D$ is eigher trivial or a strictly negative divisor. In the latter case, $\bar{\kappa}(Y)=-\infty$. If $K+D \sim 0$, then $(K+D) \cdot D_{0}=-2+r=0 \Longrightarrow r=2$. Hence Γ_{D} is linear. This completes the proof."

In fact, only the implication " $a_{0} \leq 0 \Longrightarrow$ all $a_{i} \leq 0$ " is proven in [7, Lemma 4.1]. However, the proof can be easily completed to derive the implication " $a_{0}<$ $0 \Longrightarrow$ all $a_{i}<0$ " as well. Indeed, if $a_{0}<0$ then by [7, (4.1)] all $a_{i} \leq 0$. If some of them were $=0$ then (due to connectedness of D) would exist two componets D_{i} and D_{j} such that $a_{i}=0, a_{j} \neq 0$ and $D_{i} \cdot D_{j}=1$. Then, since $D_{i}^{2}+2 \leq 0$, one would have $0=g\left(D_{i}\right)=K D_{i}+D_{i}^{2}+2 \leq K D_{i}=a_{j}+\sum_{k \neq i, j} a_{k} D_{k} D_{i} \leq a_{j}<0$.

Remark 4. After the old proof of Theorem $1^{\prime}(a)$ was omitted, the propositions $1.4-1.6$ remained without applications. However, we decided to leave them because they are simple but maybe they are of some independent interest.

Remark 5. The estimate $r \leq 16$ in Theorem 1^{\prime}, requires messy calculations (see $\S 8$). However, the fact that r is bounded from above, can be obtained without them. Therefore, we presented in $\S 7$ a shorter proof of Theorem 1^{\prime} with a weaker estimate for r.

Remark 6. The estimate $r \leq 16$ still does not seem to be the best possible. However, a stronger estimate needs other techniques, because an attempt to prove it by the methods of this paper leads to so huge volume of calculations that the result does not worth them.

[^1]I am grateful to M.G. Zaidenberg for introducing me to the subject and useful discussions. I am grateful to the referee for pointing out the elementary proof of Theorem 1(a) and other useful remarks. This work was done during my stay at the University Bordeaux-I (supported by the program "PAST") and partially in Göttingen Mathematical Institute (supported by SFB-170). I thank these institutions for the hospitality and the financial support.

1. Weighted trees and their discriminants

We list in this section some well-known elementary facts about discriminants of weighted trees. A weighted tree is a finite tree (finite graph without cycles) with an integer weight $w(v)$ assigned to each vertex v. Let Γ be a weighted tree and v_{1}, \ldots, v_{n} be its vertices. The incidence matrix of Γ is $A_{\Gamma}=\left(a_{i j}\right)$, where

$$
a_{i j}= \begin{cases}w\left(v_{i}\right) & \text { if } i=j \\ 1 & \text { if } v_{i} \text { is connected to } v_{i} \text { by an edge } \\ 0 & \text { otherwise }\end{cases}
$$

The discriminant of Γ is defined as $d(\Gamma)=\operatorname{det}\left(-A_{\Gamma}\right)$. By convention, $d(\varnothing)=1$. Clearly, this definition is independent of the order of the vertices and that the discriminant of a disjoint union is the product of the discriminants of the connected components.

The following lemma can be easily obtained, using the Cramer rule (see e.g. [2] for details).

Lemma 1.1. Let Γ be a weighted tree with $d(\Gamma) \neq 0$. Let $B_{\Gamma}=\left(b_{i j}\right)=A_{\Gamma}^{-1}$ be the inverse matrix. Then

$$
b_{i j}=-d\left(\Gamma-\left[v_{i}, v_{j}\right]\right) / d(\Gamma)
$$

where $\left[v_{i}, v_{j}\right]$ is the minimal connected subgraph of Γ, which contains v_{i} and v_{j}.
Lemma 1.2. Let Γ be a weighted tree, v a vertex of Γ and $w(v)$ the weight of v. Denote by $\Gamma_{1}, \ldots, \Gamma_{r}$ the connected components of $\Gamma-v$, and let $\Gamma_{j}^{\prime}=\Gamma_{j}-v_{j}$, $j=1, \ldots, r$, where v_{j} is the vertex of Γ_{j}, connected by an edge to v. Then (remind that $d(\varnothing)=1$)

$$
d(\Gamma)=-w(v) \prod_{j=1}^{r} d\left(\Gamma_{j}\right)-\sum_{j=1}^{r}\left(d\left(\Gamma_{j}^{\prime}\right) \prod_{k \neq j} d\left(\Gamma_{k}\right)\right)
$$

Proof. Expand the determinant of A_{Γ} according to the row, corresponding to v.

The valence of a vertex v of a graph is the number of edges, incident to v. A graph is called a linear chain if its vertices v_{1}, \ldots, v_{n} can be orders so, that v_{i} is connected to v_{j} iff $|i-j|=1$.

Corollary 1.3. Let T be a linear chain with all weights ≤-2.
a) If v is one of the ends of T then $d(T)>d(T-v)>0$.
b) Let u be any vertex of T. Denote by T_{1} and T_{2} the connected components of $T-u$, and let $a=d(T), b=d\left(T_{1}\right), c=d\left(T_{2}\right)$. Then $a \geq b+c$.

Proof. a) Induction by the number of vertices, using Lemma 1.2.
b) For $i=1,2$ let u_{i} be the vertex of T_{i}, nearest to u, and $T_{i}^{\prime}=T_{i}-u_{i}$. Put $b^{\prime}=d\left(T_{1}^{\prime}\right), c^{\prime}=d\left(T_{2}^{\prime}\right)$ (if $T_{1}^{\prime}=\varnothing$, put $b^{\prime}=0$). Let w be the weight of u. Then by Lemma 1.2 we have $a=-w b c-b c^{\prime}-b^{\prime} c=(-w-2) b c+b\left(c-c^{\prime}\right)+c\left(b-b^{\prime}\right) \geq b+c$, because $-w-2 \geq 0$, and by (a), $c-c^{\prime} \geq 1, b-b^{\prime} \geq 1$.

The following three propositions will not be used in the rest of the paper.
Proposition 1.4. Let Γ be a weighted tree; u and v two its vertices. Let A_{0}, \ldots, A_{k} be the connected components of $\Gamma-u$, and B_{0}, \ldots, B_{m} be those of $\Gamma-v$, indexed in such a way that $v \in A_{0}, u \in B_{0}$. Denote: $a_{i}=d\left(A_{i}\right), b_{i}=d\left(B_{i}\right)$, $a=a_{1} \cdots a_{k}, b=b_{1} \cdots b_{m}, \Delta=d(\Gamma), \delta=d\left(A_{0} \cap B_{0}\right), c=d\left(\left(A_{0} \cap B_{0}\right)-[u, v]\right)$. Suppose that $a \neq 0, b \neq 0, \delta \neq 0$. Then

$$
\begin{equation*}
\delta \Delta=a_{0} b_{0}-a b c^{2} \tag{27}
\end{equation*}
$$

Proof. Let M be the minor of A_{Γ} obtained by deleting the two rows and the two columns, corresponding to u and v. Clearly, $M=\delta a b$. On the other hand, by Jacobi formula for the minor of the inverse matrix,

$$
\frac{M}{\Delta}=\left|\begin{array}{ll}
b_{u u} & b_{u v} \\
b_{v u} & b_{v v}
\end{array}\right|
$$

where, by Lemma 1.1, $b_{u u}=a a_{0} / \Delta, b_{u v}=b_{v u}=a b c / \Delta, b_{v v}=b b_{0} / \Delta$.
Remarks. 1. If γ is a linear chain and $d(\Gamma)= \pm 1$ then (1) is the formula for the "edgede determinant" due Eisenbud-Neumann.
2. In fact, (1) is still true even if any of its ingredients are zeros.

A tree Γ is called r-fork, if it contains a vertex v_{0} of valence r and the valences of other vertices are ≤ 2.

Proposition 1.5. Let Γ be an r-fork and v_{0} the vertex of valence r. Suppose
that the weights of the other vertices are ≤-2. Let Q_{Γ} be the quadratic form, defined by A_{Γ}. Then:
(i) if $d(\Gamma)>0$ then Q_{Γ} is negatively definite;
(ii) if $d(\Gamma)<0$ then Q_{Γ} has the signature $(+,-, \ldots,-)$.

Proof. Apply the Sylvester criterium, choosing an increasing sequence $1=$ $M_{0}, M_{1}, \ldots, M_{n}=d(\Gamma)$ of principal minors of the matrix $-A$. where M_{n-1} is obtained from M_{n} by deleting the row and the column, which correspond to v_{0}. It follows from Corollary 1.3, that $M_{i}>0$ for $i<n$.

Proposition 1.6. In the hypothesis of Proposition 1.5 if $d(\Gamma)=-1$ then all the entries $b_{i j}$ of $B_{\Gamma}=A_{\Gamma}^{-1}$ are non-negative.

Proof. Denote by T_{1}, \ldots, T_{r} the coonected components of $\Gamma-v_{0}$, and by v_{j} the end vertex of T_{j} (the vertex of T_{j}, whose valence in Γ is 1). Denote also: $\Gamma_{j}^{\prime}=\Gamma-v_{j}$, $T_{j}^{\prime}=T-v j, \Delta_{j}^{\prime}=d\left(\Gamma_{j}^{\prime}\right), a_{j}=d\left(T_{j}\right), a_{j}^{\prime}=d\left(T_{j}^{\prime}\right), e_{j}=a_{j}^{\prime} / a_{j}(j=1, \ldots, r)$, and $p=a_{1} \ldots a_{r}$.

By Lemma 1.1 it is enough to show that the descriminant of any connected proper (i.e. $\neq \Gamma$) subgraph of Γ is non-negative. First, we prove this for the subgraphs Γ_{j}^{\prime}. Indeed, applying 1.4 with $u=v_{0}$ and $v=v_{j}$, we obtain $a_{j}^{\prime} \cdot(-1)=$ $\Delta_{j}^{\prime} a_{j}-p / a_{j}$, or, dividing by $a_{j}, \Delta_{j}^{\prime}=p / a_{j}^{2}-e_{j}$. But $p / a_{j}^{2}>0$ and $e_{j}<1$. Hence, $\Delta_{j}^{\prime}>-1$, but $\Delta_{j}^{\prime} \in Z$, so, $\Delta_{j}^{\prime} \geq 0$.

Let $\Gamma^{\prime \prime}$ be any proper connected subgraph of Γ. It is contained in some Γ_{j}^{\prime}. Chose an increasing sequence of principal minors which involves $d\left(\Gamma^{\prime \prime}\right)$ as well as $d\left(\Gamma_{j}^{\prime}\right)$, and estimate the signature of Q_{Γ}, by Sylvester criterium. Clearly, the inequality $d\left(\Gamma^{\prime \prime}\right)<0$ contradicts Proposition 1.5.

2. Some elementary linear algebra on dual graphs

Let X be a smooth projective algebraic surface and D a reduced SNC-curve on X. Denote by V_{D} the subspace of $H^{2}(X ; Q)$ generated by the irreducible components D_{1}, \ldots, D_{n} of D. We shall call elements of V_{D} by \boldsymbol{Q}-divisors.

Denote by $A_{D}=\left(D_{i} \cdot D_{j}\right)_{i j}$ the intersection matrix of D. Let Γ_{D} be the dual weighted graph of D. Clearly that A_{D} is the incidence matrix (see $\S 1$) of Γ_{D}. Define the discriminant of D as $d(D)=d\left(\Gamma_{D}\right):=\operatorname{det}\left(-A_{D}\right)$.

Suppose that $d(D) \neq 0$ (in particular D_{i} 's are linearly independent), and let $B_{D}=A_{D}^{-1}$.

Lemma 2.1. For $C_{1}, C_{2} \in V_{D}$ one has $C_{1} \cdot C_{2}=\sum_{i, j} b_{i j}\left(C_{1} \cdot D_{i}\right) \cdot\left(C_{2} \cdot D_{j}\right)$
Proof. Any bilinear form defines a homomorphism to the dual space. One can intepret A_{D} as the matrix of that for the intersction form. Then the required
equality is just $C_{1} \cdot C_{2}=\left\langle A_{D} C_{1}, C_{2}\right\rangle=\left\langle Z_{1}, B_{D} Z_{2}\right\rangle$ for $Z_{k}=A_{D} C_{k}, k=1,2$.
Let K_{X} be the canonical class of V and let $K=K_{D}$ be its orthogonal projection onto V_{D}. Actually, for the main purpose of this paper we need only the case, when $V_{D}=\operatorname{Pic} X \otimes \boldsymbol{Q}$, and hence $K_{D}=K_{X}$ (it is so if $X-D$ is \boldsymbol{Q}-acyclic). However, this assumption does not simplify the statements (nor the proofs), in this and next $\S \S$, so we do not restrict ourselves by this case here.

For an irrenducible component C of D denote by $\nu_{D}(C)$ its valence in Γ_{D}, i.e. $\nu_{D}(C)=C \cdot(D-C)$, and put $\nu_{i}=\nu_{D}\left(D_{i}\right)$. Let χ_{i} be the Euler characteristic of D_{i}.

Lemma 2.2. $(K+D) \cdot D_{i}=\nu_{i}-\chi_{i}$.
Proof. Apply adjunction formula: $D_{i} \cdot(K+D)=D_{i} \cdot\left(K+D_{i}\right)+\nu_{i}=\nu_{i}-\chi_{i}$.

Corollary 2.3 (cf. [16]). $\quad(K+D)^{2}=\sum_{i, j} b_{i j}\left(\nu_{i}-\chi_{i}\right)\left(\nu_{j}-\chi_{j}\right)$.
Following Fujita [5], define a t wig of D as a maximal linear rational branch. It means that T is a twig, if $T=C_{1} \cup \cdots \cup C_{k}$, where each C_{i} is a rational irreducible component of $D ; \nu_{D}\left(C_{k}\right)=1 ; \nu_{D}\left(C_{i}\right)=2$ and $C_{i} \cdot C_{i+1}=1$ for $1 \leq i<k$; and if we denote by C_{0} the component of $D-T$, which intersects C_{1}, then either C_{0} is not rational or $\nu_{D}\left(C_{0}\right) \neq 2$. In this case C_{0} is called the root of the twig T (it is not contained in T); C_{k} is called the tip of T. The rational number $d\left(T-C_{k}\right) / d(T)$ is called inductance of T and is denoted by $e(T)$ (we use the convention: $d(\varnothing)=$ $1, e(\varnothing)=0)$. The twig is called admissible if $C_{i}^{2}<-1$ for all $i=1, \ldots, k$. Clearly, that if a twig T is admissible then $d(T)>0$ and $0<e(T)<1$ (see Corollary 1.3)

For a twig T of D with $d(T) \neq 0$ we define the bark of T (see [5]) as the unique \boldsymbol{Q}-divisor $\operatorname{Bk}(T)$ in V_{T} (i.e. $\left.\operatorname{Supp}(\operatorname{Bk}(T)) \subset T\right)$, such that $\operatorname{Bk}(T) \cdot \operatorname{tip}(T)=-1$, $\mathrm{Bk}(T) \cdot C=0$ for a component C of T, which is not the tip. The following lemma is an immediate consequence of Lemmas 1.1 and 2.1, applied to the matrix B_{T}.

Lemma 2.4 (Fujita, [5, (6.16)]). Let T be a twig of D, and $d(T) \neq 0$. Then
(i) $\operatorname{Bk}(T)^{2}=-e(T)$.
(ii) If C is a vertex of a twig T then the coefficient of C in $\operatorname{Bk}(T)$ is equal to $d\left(T_{C}\right) / d(T)$, where T_{C} is the connected component of $T-C$ which is between C and the root of T.
(iii) In particular, if C is the vertex, nearest to the root, then the coefficient of C is equal to $1 / d(T)$.

3. Local Zariski-Fujita decomposition

Let, an in $\S 2, D$ be an SNC-curve on a smooth projective algebraic surface X, $K=K_{D}$ be the projection of K_{X} onto V_{D}, and suppose that D is not a linear chain of rational components, and that all the twigs of D are admissible.

In this case we define the local Zariski-Fujita decomposition of $K+D$ near D as $K+D=H+N$, where $N=N_{D}$ is the sum of the barks of all the twigs of D. The \boldsymbol{Q}-divisors $H=H_{D}$ and N_{D} are called respectively positive and nagative parts of $K_{D}+D$ near D. From Lemma 2.2 and the definition of bark we obtain immediately the follwing properties of the local Zariski-Fujita decomposition:

Lemma 3.1 (Fujita, [5, (6.12)]).
(i) $K+D=H+N$, where $H, N \in V_{D}$;
(ii) $\operatorname{Supp}(N)$ is contained in the union of all twigs of D;
(iii) H is orthogonal to each irreducible component of N.

Remark. It is proved in [5] (we do not use this here), that H and N are uniquely defined by the conditions (i)-(iii) in Lemma 3.1. Fujita has also proved (see [5, (6.20-6.24)]) that under certain conditions Zariski decomposition of $K+D$ coincides with the local one (see Theorem 5.2 below). Even if this is not the case, it is much more convenient to calculate separately H^{2} and N^{2} in order to calculate $(K+D)^{2}$ in terms of discriminants of subgraphs (i.e. via the inverse matrix $B_{D}=A_{D}^{-1}$).

Denote by $\operatorname{br}(D)$ the set of all irrenducible components C of D which have either positive genus or $\nu_{D}(C)>2$, and put

$$
h_{i}= \begin{cases}\nu_{i}-\chi_{i}-\sum \frac{1}{d(T)} & \text { for } i \in \operatorname{br}(D) \\ 0 & \text { otherwise }\end{cases}
$$

where T runs through all twigs, rooted by D_{i}
Lemma 3.2. If all the twigs of D are admissible, then $H_{D} \cdot D_{i}=h_{i}$ for any i.
Proof. By Lemma 2.2 we have $(K+D) \cdot D_{i}=\nu_{i}-\chi_{i}$. By Lemma 2.4(iii) and the definition of bark we have

$$
N_{D} \cdot D_{i}= \begin{cases}\sum \frac{1}{d(T)} & \text { for } i \in \operatorname{br}(D) \\ 2-\nu_{i} & \text { otherwise }\end{cases}
$$

It remains to subtract the latter equality from the former one.

Corollary 3.3 [16]. If all the twigs of D are admissible, then $H_{D}^{2}=\sum_{i, j \in \operatorname{br}(D)}$ $b_{i j} h_{i} h_{j}$.

Proof. Apply Lemmas 2.1 and 3.2

4. The formulas from $\S \S 2,3$ for the case of a fork

Let D be a rational r-fork on a smooth projective algebraic surface X. This means that D is an SNC-curve with rational components, and the dual graph of D is an r-fork. Introduce the following notation. Denote by D_{0}, \ldots, D_{n} the irreducible components of D and by $\nu_{i}=\nu\left(D_{i}\right)$ their valences. Without loss of generality we may assume that $\nu_{0}=r$ (and hence, $\nu_{i} \leq 2$ for $i>0$). Let T_{1}, \ldots, T_{r} be the twigs of D, i.e the connected components of $D-D_{0}$, and d_{1}, \ldots, d_{r} their discriminants. For $i=1, \ldots, n$ put

$$
a_{i}=d_{j}, \quad b_{i}=d\left(T_{j, i}^{+}\right), \quad c_{i}=d\left(T_{j, i}^{-}\right),
$$

where T_{j} is the twig containing D_{j} and $T_{j, i}^{+}$(resp., $T_{j, i}^{-}$) is the connected components of $T_{j}-D_{i}$, which does not intersect (resp., does intersect) the "central" curve D_{0} (see Fig. 1). Extend this notation for $i=0$, putting $a_{0}=b_{0}=1, c_{0}=0$.

Fig. 1.

Let V_{D} be the \boldsymbol{Q}-vector space generated by D_{0}, \ldots, D_{n}. Denote by $V_{j}, j=$ $1, \ldots, r$ the subspace of V_{D} generated by the irreducible components of T_{j}, and let V_{H} be the orthogonal complement of $\bigoplus_{j=1}^{r} V_{j}$. Denote by $\mathrm{pr}_{1}, \ldots, \mathrm{pr}_{r}$ and pr_{H} the orthogonal projections onto V_{1}, \ldots, V_{r} and V_{H} respectively. Let $K+D=H+N$ be the local Fujita decomosition of $K+D$ near D. Since V_{H} is one-dimensional, it is generated by H unless $H=0$. Let $N_{j}=\operatorname{Bk}\left(T_{j}\right)$ (clearly, that $\mathrm{pr}_{j}(N)=N_{j}$, $\operatorname{pr}_{H}(N)=0$ and $N=\sum N_{j}$). Denote:

$$
\begin{equation*}
p=\prod_{j=1}^{r} d_{j} ; \quad \Delta=d(D) ; \quad h=r-2-\sum_{j=1}^{r} \frac{1}{d_{j}} ; \quad \varepsilon=-p h / \Delta . \tag{28}
\end{equation*}
$$

Lemma 4.1. Let C be a Q-divisor in V_{D}. Put $x_{i}=C \cdot D_{i}, i=0, \ldots, r$ and
$C_{H}=\operatorname{pr}_{H}(C)$. Then
(a) $H^{2}=\varepsilon h ;$
(d) $C \cdot D=\sum_{i=1}^{n} x_{i} ;$
(b) $C \cdot H=\varepsilon \sum_{i=0}^{n} x_{i} \frac{b_{i}}{a_{i}}$
(e) $C \cdot K=\sum_{i=0}^{n} x_{i}\left(\frac{c_{i}+\varepsilon b_{i}}{a_{i}}-1\right)$;
(c) $C \cdot N=\sum_{i=0}^{n} x_{i} \frac{c_{i}}{a_{i}} ;$
(f) $\quad C_{H}^{2}=\frac{\left(C \cdot H^{2}\right)}{\varepsilon h}=\frac{\varepsilon}{h}\left(\sum_{i=0}^{n} x_{i} \frac{b_{i}}{a_{i}}\right)^{2}$.

Proof. (a) is an immediate consequences of Corollary 3.3. By Lemma 1.1 the entry $b_{0 i}$ of the matrix B_{D} is equal to $-\left(b_{i} \cdot\left(p / a_{i}\right)\right) \Delta$. Thus, (b) follows from Lemmas 2.1 and 3.2. (c) follows from Lemma 2.4(ii); (d) id trivial; (e) follows from (b,c,d) since $K=H+N-D$; (f) follows from (b) and (a).

Corollary 4.2. If $r \geq 4$ and all twigs of D are admissible then there exists no smooth rational (-1)-curve C on X such that $C \cdot D=1$ and $C \not \subset D$.

Proof. Suppose that such a curve C exists. Then $C \cdot K=-1$ and $C \cdot D=1$ implies that for some i we have $x_{i}=1, x_{k}=0$ for $k \neq i$. Hence, by Lemma 4.1(e) we have $-1=C \cdot K=\left(c_{i}+\varepsilon b_{i}\right) / a_{i}-1$. But if $r>3$ then $\varepsilon>0$. Contradiction.

5. Zariski decomposition and refined log-BMY inequality

Let D be an SNC-curve on a smooth projective surface X, and $Y=X-D$. Remind the following definition (see e.g. [5], [8]). If $\bar{\kappa}(Y) \geq 0$, then there exitst the Zariski decoposition $K+D=H+N$, where H, N are \boldsymbol{Q}-devisors in X such that
(i) the intersection form is negatively definite on the subspace V_{N} generated by the irreducible components of N (in particular, $N^{2} \leq 0$);
(ii) $H C \geq 0$ for any complete irreducible curve $C \subset X$;
(iii) H is orthogonal to V_{N} (and hence, $(K+D)^{2}=H^{2}+N^{2}$).

The main tool, used in the proof of Theorem 1^{\prime}, is the following refined version of the log-BMY inequality.

Theorem 5.1 Kobayashi-Nkamura-Sakai [9]. If $\bar{\kappa}(Y)=2$, then $H^{2} \leq$ $3 e(Y)$, where e is the topological Euler characteristic.

The following theorem is a partial case of [5, (6.20)].

Theorem 5.2 (Fujita). Let $Y=X-D$ be a smooth projective surface with $\bar{\kappa}(Y) \geq 0$ and D a connected $S N C$-curve on it. Suppose that all twigs of D are admissible and D is neither a linear rational chain, nor a 3-fork. Then the (global) Zariski decomposition of $(K+D)$ coincides with the local Zariski-Fujita decomposition near D unless there exists a smooth rational (-1)-curve C on X, which is not contained in D and which satisfies one of the following conditions.
(i) $D \cdot C=0$, i.e. $D \cap C=\varnothing$.
(ii) $T \cdot C=1$ for some twig T of D.

Corollary 5.3. Let $Y=X-D$ be a \boldsymbol{Q}-acyclic surface with $\bar{\kappa}(Y)=2$, and D be a minimal rational r-fork with $r \geq 4$. Then Zariski decomposition of $K+D$ coincides with its local Zariski-Fujita decomposition near D.

Proof. Let C be some smooth rational (-1 -curve on X. Since $\bar{\kappa}(X)=2$, according to $[5,(6.13)]$, all the twigs are admissible, so, according to the Theorem 5.2 it suffices to check that C does not satisfies (i), (ii) of 5.2. The condition (i) evidently contradicts to $H_{2}(Y)=0$. The condition (ii) contradicts Corollary 4.2.

6. Begining of the proof of Theorem $\mathbf{1}^{\prime}$

Let D be a minimal SNC-curve on smooth projective X, such that Γ_{D} is a r-fork with $r \geq 4, Y=X-D$ is a Q-acyclic surface and $\bar{\kappa}(Y)=2$. Introduce the notation as in $\S 4$. Since $\bar{\kappa}(Y)=2$, it follows from [5, (6.13)], that all twigs are admissible, so, all a_{i}, b_{i}, c_{i} are positive for $i>0$.

Lemma 6.1. $r \leq 2 h+4$.
Proof. By (2), $h=r-2-1 / d_{1}-\cdots-1 / d_{r} \geq r-2-1 / 2-\cdots-1 / 2=(r / 2)-2$.

Due to the refined log-BMY inequality (Theorem 5.1) and Corollary 5.3, we have (see Lemma 4.1(a))

$$
\begin{equation*}
\varepsilon h \leq 3 . \tag{29}
\end{equation*}
$$

Thus, by Lemma 6.1 we must estimate h from above, or, equivalently, ε from below.
Lemma 6.2. If $D_{0}^{2} \leq 0$ then $h<(3+\sqrt{33}) / 2 \approx 4.3722 \cdots$
Proof. Denote: $d_{j}=d\left(T_{j}\right), d_{j}^{\prime}=d\left(T_{j}^{\prime}\right), j=1, \ldots, r$, where T_{j}^{\prime} is obtained from the twing T_{j} by deleting the component, nearest to D_{0}. Then, by Lemma 1.2,
if $D_{0}^{2} \leq 0$, we have

$$
-\Delta=p \cdot\left(D_{0}^{2}+\sum_{j=1}^{r} \frac{d_{j}^{\prime}}{d_{j}}\right) \leq p \cdot\left(0+\sum_{j=1}^{r} \frac{d_{j}-1}{d_{j}}\right)=p \cdot(h+2) .
$$

Thus, (3) implies $3 \geq h \varepsilon=-p h^{2} / \Delta \geq h^{2} /(h+2)$, hence $h^{2}-3 h-6 \leq 0$.
Corollary 6.3. If $r>12$ then X is rational.
Proof. If $r>12$ then by 6.1 and 6.2 we have $D_{0}^{2}>0$. Hence, [20; Ch. II, $\S 4$, Theorem 2] implies that X is rational.

From now on we suppose that $r>12$, hence by $6.3, X$ is rationl, and there exists a smooth rational (-1)-curve C on X. Hence,

$$
\begin{equation*}
C^{2}=-1 ; \quad C \cdot K=1 \tag{30}
\end{equation*}
$$

Like in Lemma 4.1, put $x_{i}=C \cdot D_{i}, i=0, \ldots, n$ and $C_{H}=\operatorname{pr}_{H}(C)$. Put also $C_{j}=\operatorname{pr}_{j}(C), j=1, \ldots, r, C_{N}=\sum_{j=1}^{r} D_{j}$. By Lemma 6.2, $C \neq D_{0}$, and from minimality of D we know that $C \neq D_{i}, i>0$. So, $C \not \subset D$, hence, all x_{i} are ≥ 0.

Lemma 6.4. $-C_{N}^{2} \geq C N$.
Proof. Let $I_{j}=\left\{i \mid D_{i} \subset T_{j}\right\}$. Then by Lemma 2.1 and lemma 4.1(c)

$$
-C_{j}^{2}=\sum_{i \in I_{j}} x_{i}^{2} \frac{c_{i} b_{i}}{a_{i}}+2 \sum_{i, k \in I_{j} ; i<k} x_{i} x_{k} \frac{c_{i} b_{k}}{a_{i}} \geq \sum_{i \in I_{j}} x_{i}^{2} \frac{c_{i} b_{i}}{a_{i}} \geq \sum_{i \in I_{j}} x_{i} \frac{c_{i}}{a_{i}}=C N_{j} .
$$

Lemma 6.5. If $C \cdot D>2$ then $h \leq(9+\sqrt{21}) / 2 \approx 6.7912 \cdots$
Proof. By Corollary 1.3(b) we have $b_{i} / a_{i}+c_{i} / a_{i} \leq 1$, hence, by Lemma 4.1(b,c,d), $(C H) / \varepsilon+C N \leq C D$. Therefore, by (4),

$$
1=-C K=-C H-C N+C D \geq-C H+\frac{C H}{\varepsilon}=C H \frac{1-\varepsilon}{\varepsilon} .
$$

Thus, $C H \leq \varepsilon /(1-\varepsilon)$, hence, by Lemma 4.1(f), $\left.C_{H}^{2} \leq \varepsilon\right) /\left((1-\varepsilon)^{2} h\right)$, and by (4) and Lemma 6.4, $2=-C^{2}-C K=\left(C_{N}^{2}-C N\right)-\left(C_{H}^{2}+C H\right)+C D \geq C D-\varepsilon_{1}$, where

$$
\varepsilon_{1}=\frac{\varepsilon}{1-\varepsilon}\left(1+\frac{1}{(1-\varepsilon) h}\right)
$$

Since $C D$ is integer, $C D>2$ implies $\varepsilon_{1} \geq 1$, hence $2 \varepsilon^{2}-(3+1 / h) \varepsilon+1 \geq 0$, hence $\varepsilon \geq 1 / 4 h\left(3 h+1-\sqrt{h^{2}+6 h+1}\right)$, and by (3) it implies $h^{2}-9 h+15 \leq 0$.

7. Proof of Theorem $\mathbf{1}^{\prime}$ with a weaker estimate

Let all the notation be like in $\S \S 4,6$, but in this section we shall suppose, that $C D=2$. Let i and k be such indices that $C D_{i}+C D_{k}=C D=2$. Thus, if $i=k$ then $x_{i}=2, x_{l}=0$ for $l \neq i$, and if $i \neq k$ then $x_{i}=x_{k}=1, x_{l}=0$ for $l \neq i, k$. In any case we rewrite the last two formulas of Lemma 4.1 as

$$
\begin{equation*}
\left(\mathrm{e}^{\prime}\right) . \quad C K=\left(\frac{c_{i}}{a_{i}}+\frac{c_{k}}{a_{k}}\right)+\varepsilon\left(\frac{b_{i}}{a_{i}}+\frac{b_{k}}{a_{k}}\right)-2 ; \quad\left(\mathrm{f}^{\prime}\right) . C_{H}^{2}=\frac{\varepsilon}{h}\left(\frac{b_{i}}{a_{i}}+\frac{b_{k}}{a_{k}}\right)^{2} \tag{31}
\end{equation*}
$$

Denote by $Q_{i k}$ "the predicate of belonging D_{i} and D_{k} to the save twig", i.e. $Q_{i k}=1$ if $D_{i} \cup D_{k} \subset T_{j}$ for some j, and $Q_{i k}=0$ otherwise. When $Q_{i k}=1$, without loss of generality we can assume that D_{i} is between D_{0} and D_{k}. In this notation we have

$$
\begin{equation*}
-C_{N}^{2}=\frac{b_{i} c_{i}}{a_{i}}+\frac{b_{k} c_{k}}{a_{k}}+2 Q_{i k} \frac{c_{i} b_{k}}{a_{i}} . \tag{32}
\end{equation*}
$$

Using (5), (6) and the fact that $C^{2}=C_{H}^{2}+C_{N}^{2}$, we rewrite (4) as

$$
\begin{equation*}
\left(\frac{c_{i}}{a_{i}}+\frac{c_{k}}{a_{k}}\right)+\varepsilon\left(\frac{b_{i}}{a_{i}}+\frac{b_{k}}{a_{k}}\right)=1 \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{b_{i} c_{i}}{a_{i}}+\frac{b_{k} c_{k}}{a_{k}}\right)+2 Q_{i k} \frac{c_{i} b_{k}}{a_{i}}-\frac{\varepsilon}{h}\left(\frac{b_{i}}{a_{i}}+\frac{b_{k}}{a_{k}}\right)^{2}=1 \tag{34}
\end{equation*}
$$

Lemma 7.1. Suppose that one of the following conditions holds.
(i) $x_{0}>0$; (ii) $x_{0}=0$ (i.e. $i \neq 0$ and $\left.k \neq 0\right)$ and $b_{i} \geq 2, b_{k} \geq 2$. Then there exists a constant A_{1} such that $h>A_{1}$.

Proof. In the case (i) without loss of generality we suppose that $k=0$, and, putting $a_{k}=b_{k}=1, c_{k}=Q_{i k}=0$, into (8), and using $c_{i} / a_{i}<1$, we see that $b_{i}>1$, hence, $b_{i} \geq 2$. Thus, in the both cases (i) and (ii) we have $\left(c_{\nu} / a_{\nu}\right) \cdot\left(b_{\nu}-2\right) \geq 0$ for $\nu=i, k$. Hence, subtracting (7) multiplied by 2 from (8), we obtain

$$
\frac{\varepsilon}{h} u^{2}+2 \varepsilon u-1=\sum_{\nu=i, k} \frac{c_{\nu}}{a_{\nu}} \cdot\left(b_{v}-2\right)+2 Q_{i k} \frac{c_{i} b_{k}}{a_{i}} \geq 0, \quad \text { where } u=\frac{b_{i}}{a_{i}}+\frac{b_{k}}{a_{k}}
$$

Since $u<2$ and $\varepsilon \leq 3 / h$, we see that h can not be arbitrary big.

Lemma 7.2. If $x_{0}=0$ (i.e. $i \neq 0$ and $k \neq 0$), $b_{k}=1$ and $Q_{i k}=1$ then $h<(3+\sqrt{21}) / 2 \approx 3.791 \cdots$

Proof. Putting $b_{k}=Q_{i k}=1, a_{i}=a_{k}=a$ into (7) and (8), subtracting (7) from (8) and multiplying the result by $a /\left(b_{i}+1\right)$, we see that $c_{i}-\varepsilon-(\varepsilon / h) \cdot\left(1+b_{i}\right) / a=$ 0 . Hence, using the estivates $c_{i} \geq 1$ and $\left(b_{i}+1\right) / a \leq 1$, we get $1-\varepsilon-(\varepsilon / h) \leq 0$, and applying (3), we obtain $h^{2}-3 h-3<0$.

Lemma 7.3. Let $Q_{i k}=0$ and $b_{k}=1$. Then $b_{i} \geq 2$.
Proof. If $b_{i}=1$, then subtracting (7) from (8) we would obtain $\varepsilon=0$.
Lemma 7.4. If $x_{0}=0($ i.e. $k \neq 0$ and $i \neq 0), b_{k}=1$ and $Q_{i k}=0$ then there exists a constant A_{2} such that $h<A_{2}$.

Proof. Putting $b_{k}=1, Q_{i k}=0$ into (7) and (8), subtracting (7) from (8) and multiplying the result by a_{i}, wee see that

$$
b_{i} c_{i}-c_{i}=\left(b_{i}+\frac{a_{i}}{a_{k}}\right) \varepsilon_{1}, \quad \text { where } \quad \varepsilon_{1}=\varepsilon \cdot\left(1+\frac{1}{h}\left(\frac{b_{i}}{a_{i}}+\frac{1}{a_{k}}\right)\right)=O(\varepsilon)
$$

or, equivalently,

$$
\begin{equation*}
\frac{a_{i}}{a_{k}}=\frac{b_{i} c_{i}-c_{i}}{\varepsilon_{1}}-b i . \tag{35}
\end{equation*}
$$

On the other hand, applying the estimate $c_{k} \leq a_{k}-1$ (see 1.3(a)) to (7), putting $b_{i}=1$ and multilying the obtained inequality by a_{i}, we see that

$$
\begin{equation*}
c_{i}+\varepsilon b_{i} \geq \frac{a_{i}}{a_{k}}(1-\varepsilon) \tag{36}
\end{equation*}
$$

Substituting (9) into (10), we obtain ($1-\varepsilon) b_{i} c_{i} \leq \varepsilon_{1} b_{i}+\left(1+\varepsilon_{1}-\varepsilon\right) c_{i}$. Replacing b_{i} with $b^{\prime}+1$, this inequality can be transformed into $\left(b^{\prime}-\varepsilon_{2}\right)\left(c_{i}-\varepsilon_{3}\right) \leq \varepsilon_{4}$ where $\varepsilon_{2}, \varepsilon_{3}$ and ε_{4} are $O(\varepsilon)$. Since $b^{\prime} \geq 1$ (by 7.3) and $c_{i} \geq 1$, we see that ε can not be arbitrary small.

Proposition 7.5. Under the hypothesis of Theorem 1^{\prime} one has $r \leq 30$.
Proof. Lemmas 6.2-7.4 imply $h<\max \left(A_{1}, A_{2}\right)$. Easy to see that these constants can be chosen to be less than $131 / 2$. Hence, by 6.1 we have $r \leq 2 h+4<$ 31.

8. More precise estimates for the case $\boldsymbol{C} \cdot \boldsymbol{D}=2$

In this and the next section we are going to prove Theorem 1^{\prime} in full volume (with the estimate $r \leq 16$). To this end we strengthen here the estimates for h given in $\S 7$. Thus, let C be a smooth rational (-1)-curve on X, where $X-D$ is a Q-acyclic surface with $\bar{\kappa}=2$, and $C D=2$. Let the notation be like in $\S \S 4,6,7$. Denote also $h+\left(1 / a_{i}\right)+\left(1 / a_{k}\right)$ by h^{+}. We shall need the following evident identity:

$$
\begin{align*}
b(x-y)^{2} & =\left(x^{2}+y^{2}\right) b+x y\left((b-1)^{2}-b^{2}-1\right) \tag{37}\\
& =\left(y-b_{x}\right)\left(b_{y}-x\right)+x y(b-1)^{2} .
\end{align*}
$$

Lemma 8.1. Let $k \neq 0, Q_{i k}=0, b_{k}=1$ and $h^{+} \geq 71 / 2$. Then $h^{+}=8$, $b_{i}=5, c_{i}=1, c_{i}=a_{k}-1, a_{i}=5 a_{k}-1$ and $a_{k}=2,3$ or 4 .

Proof. Denote $a_{k}-c_{k}$ by c_{k}^{\prime}. Putting $Q_{i k}=0, b_{k}=1, c_{k}=a_{k}-c_{k}^{\prime}$ into (7), (8) and resolving the obtained simultaneous equations with respect to ε and h, we see that

$$
\begin{equation*}
\varepsilon=\frac{c_{k}^{\prime} a_{i}-c_{i} a_{k}}{a_{i}+b_{i} a_{k}}, \quad h=\frac{\left(c_{k}^{\prime} a_{i}-c_{i} a_{k}\right)\left(b_{i} a_{k}+a_{i}\right)}{a_{i} a_{k} u}, \tag{38}
\end{equation*}
$$

where $u=c_{i} b_{i} a_{k}-c_{k}^{\prime} a_{i}>0$. Hence,

$$
\begin{array}{rlrl}
h^{+}=\left(b_{i}-1\right)\left(c_{i}+c_{k}^{\prime}\right) / u ; & \\
3 \geq \varepsilon h & =\frac{\left(c_{k}^{\prime} a_{i}-c_{i} a_{k}\right)^{2}}{a_{i} a_{k} u}=\frac{b_{i}\left(c_{k}^{\prime} a_{i}-c_{i} a_{k}\right)^{2}}{b_{i} a_{i} a_{k} u} & & \text { by (3), (12) } \\
& =\frac{\left(c_{i} a_{k}-c_{k}^{\prime} b_{k} a_{i}\right) u+c_{i} c_{k}^{\prime} a_{i} a_{k}\left(b_{i}-1\right)^{2}}{b_{i} a_{i} a_{k} u} & & \text { by (11) } \\
& =\frac{c_{i}}{b_{i} a_{i}}-\frac{c_{k}^{\prime}}{a_{k}}+\frac{c_{i} c_{k}^{\prime}\left(b_{i}-1\right)^{2}}{b_{u}} & & \text { omit } \frac{c_{i}}{b_{i} a_{i}} \\
>-\frac{c_{k}^{\prime}}{a_{k}}+\frac{c_{i} c_{k}^{\prime}\left(b_{i}-1\right)^{2}}{b_{i} u} ; & & \text { use } a_{k} \geq c_{k}^{\prime}+1 \\
& >-\frac{c_{k}^{\prime}}{c_{k}^{\prime}+1}+\frac{c_{i} c_{k}^{\prime}\left(b_{i}-1\right)^{2}}{b_{i} u} ; & & \text { by (16) } \\
u & >\frac{c_{i} c_{k}^{\prime}\left(c_{k}^{\prime}+1\right)\left(b_{i}-1\right)^{2}}{\left(4 c_{k}^{\prime}+3\right) b_{i}} ; & & \text { by (13), (17), 7.2 } \\
h^{+}<\frac{\left(c_{i}+c_{k}^{\prime}\right)\left(4 c_{k}^{\prime}+3\right) b_{i}}{c_{i} c_{k}^{\prime}\left(c_{k}^{\prime}+1\right)\left(b_{i}-1\right)} . & & \tag{44}
\end{array}
$$

Denote the right hand side of (18) by $\eta^{+}\left(b_{i}\right)=\eta_{c_{i}, c_{k}^{\prime}}^{+}\left(b_{i}\right)$. Easy to check that η^{+}is decreasing with respect to each variable when $b_{i} \geq 2, c_{i} \geq 1, c_{k}^{\prime} \geq 1$.

In the Table 1 we show the values of $c_{i}, c_{k}^{\prime}, b_{i}$, for which $\eta^{+}\left(b_{i}\right) \leq 71 / 2$ and hence, the inequality $h^{+}<71 / 2$ follows from (18).

Table 1.

$: c_{i}=1$	$c_{i}=2 \quad c_{i} \geq 3 \quad c_{i} \geq 14$	
$c_{k}^{\prime}=1: b_{i} \geq 15$	$b_{i} \geq 4 \quad b_{i} \geq 3 \quad b_{i} \geq 2$	
$c_{k}^{\prime}=2:$	$b_{i} \geq 4 \quad b_{i} \geq 2 \quad b_{i} \geq 2 \quad b_{i} \geq 2$	
$c_{k}^{\prime} \geq 3$	$: b_{i} \geq 3$	$b_{i} \geq 2 \quad b_{i} \geq 2 \quad b_{i} \geq 2$

Table 2.

$$
\begin{aligned}
& : c_{i}=1 \quad c_{i}=2 \quad c_{i} \leq 6 \\
\hline c_{k}^{\prime}=1 & : b_{i} \leq 4 \quad b_{i} \leq 3 \quad b_{i}=2 \\
c_{k}^{\prime}=2 & : b_{i} \leq 3 \\
c_{k}^{\prime} \leq 6 & : b_{i}=2
\end{aligned}
$$

To see this, it is enough to verify that

$$
\begin{aligned}
& \eta_{1,1}^{+}(15)=71 / 2, \quad \eta_{2,1}^{+}(4)=7, \quad \eta_{3,1}^{+}(3)=7, \quad \eta_{4,1}^{+}(2)=71 / 2, \\
& \eta_{1,2}^{+}(4)=71 / 3, \quad \eta_{2,2}^{+}(2)=71 / 3, \\
& \eta_{1,3}^{+}(3)=71 / 2,
\end{aligned}
$$

In the Table 2 we show the values of c_{i}, c_{k}^{\prime}, for which the inequality $h+<71 / 2$ follows from (13), using the evident estimate $u \geq 1$.

Commparing the two table (note that $b_{i} \geq 2$ by 7.3) shows that the only cases which are not covered by them, are:

$$
7 \leq c_{i} \leq 13, c_{k}^{\prime}=1, b_{i}=2 ; \quad c_{i}=1, c_{k}^{\prime} \geq 7, b_{i}=2 ; \quad c_{i}=c_{k}^{\prime}=1,5 \leq b_{i} \leq 14
$$

Consider these three cases separately:
Case 1 ($7 \leq c_{i} \leq 13, c_{k}^{\prime}=1$ and $b_{i}=2$). It follows from (17) that $u>c_{i} / 7 \geq$

1. Hence, $u \geq 2$ and (13) implies $h^{+} \leq\left(c_{i}+1\right) / u \leq(13+1) / 2=7$.

Case $2 \quad\left(c_{i}=1, c_{k}^{\prime} \geq 7\right.$ and $\left.b_{i}=2\right)$.
Subcase $2.1 \quad\left(c_{k}^{\prime}=7\right)$. Suppose that $u=1$. Then by definition of u we have

$$
\begin{equation*}
2 a_{k}-7 a_{i}=1 \tag{45}
\end{equation*}
$$

We know that $a_{i} \geq b_{i}+1=3$. If a_{i} were equal to 3 , then by (19) one would have $a_{k}=11$, and hence, (14) would imply $3 \geq \varepsilon h=100 / 33$. Therefore, $a_{i}>3$, but a_{i} is odd by (19), hence, $a_{i} \geq 5$. Thus, by (19) we have $a_{k}=\left(7 a_{i}+1\right) / 2 \geq 18$. Hence, (14) implies $3 \geq 1 / 2 a_{i}-7 / a_{k}+7 / 2>-7 / a_{k}+7 / 2 \geq-7 / 18+7 / 2>3$.

The obtained contradiction shows that $u \geq 2$. Hence, (13) implies $h^{+}=8 / u \leq$ 4.

Subcase $2.2\left(c_{k}^{\prime} \geq 8\right)$. It follows from (15) that $3>-\left(c_{k}^{\prime} / a_{k}\right)+\left(c_{k}^{\prime} / 2 u\right)>$ $-1+\left(c_{k}^{\prime} / 2 u\right)$. Hence, $u>c_{k}^{\prime} / 8 \geq 1$. Subtracting (14) multiplied by 2 from (13), we see that $h^{+}-6 \leq 1 / u-1 / a_{i}+2 c_{k}^{\prime} a_{k}$. But $0<u=2 a_{k}-c_{k}^{\prime} a_{i}$ implies $2 c_{k}^{\prime} / a_{k}<4 / a_{i}$, hence, $h^{+}-6<1 / u+3 / a_{i} \leq 1 / 2+3 / 3$.

Case $3 \quad\left(c_{i}=1, c_{k}^{\prime}=1\right.$ and $\left.5 \leq b_{i} \leq 14\right)$. By (17) we have $u>2 / 7\left(b_{i}-1\right)^{2} / b_{i}>$ $2 / 7\left(b_{i}-2\right)$. Hence, $b_{i}<(7 u+4) / 2$ and this implies

$$
b_{i} \leq \begin{cases}(7 u+2) / 2 & \text { if } u \text { is even } \tag{46}\\ (7 u+3) / 2 & \text { if } u \text { is odd }\end{cases}
$$

Thus, for $u>1$ by (13) we have $h^{+}=2\left(b_{i}-1\right) / u \leq 71 / 3$.
Suppose that $u=1$. Then (20) implies $b_{i}=5$. By (15) we obtain $3>$ $-1\left(1 / a_{k}\right)+16 / 5$. Since $a_{k} \geq 2$, we have only three solutions: $a_{k}=2,3,4$. For Them $a_{i}=b_{i} a_{k}-u=5 a_{k}-1$, and by (13) we have $h^{+}=2\left(b_{i}-1\right) / u=8$. This is the only case when $h^{+} \geq 71 / 2$.

Lemma 8.2. Let $k=0$ and $h^{+} \geq 8$. Then $h^{+}=8$ and $\left(a_{i}, b_{i}, c_{i}\right)=(13,2,7)$.
Proof. The proof is similar to that of Lemma 8.1. The beginning of the proof of 8.1 including the formulas (12), (13), (14) and (15) is valid in the case $k=0$ without changes. However, the implication $(15) \Rightarrow(16)$ does not work in this case. Since we have $a_{k}=b_{k}=c_{k}^{\prime}=1$, let us denote a_{i}, b_{i} and c_{i} simply by a, b and c till the end of the proof. Them $u=b c-a$.

First, note that $c>1$ because otherwise u would be negative. Eliminating u from (13) and (15), we see that

$$
\begin{equation*}
h^{+}<\eta^{+}(b, c), \quad \text { where } \quad \eta^{+}=\frac{4(c+1) b}{c(b-1)} \tag{47}
\end{equation*}
$$

Case $1(b \geq 4)$. Since $c \geq 2$, by (21) we have $h^{+}<\eta^{+}(4,2)=8$.
Case $2(b=3)$. If $c \geq 4$ then $h^{+}<\eta^{+}(3,4)=71 / 2$ by (21). If $c \leq 3$ then (13) implies $h^{+}=2(c+1) / u \leq 2(c+1) \leq 8$, hence $h^{+}<8$ unless $c=3$ and $u=1$. But in this case $a=b c-u=8$ which contradicts (14).

Case $3(b=2)$. By (14) we have $3 \geq c / 2 a-1+c / 2 u>-1+c / 2 u$. Hence, $c<8 u$ and being integer, $c \leq 8 u-1$. Putting this estimate into (13), we see that $h^{+}=(c+1) / u \leq 8$ and $h^{+}<8$ unless $c=8 u-1$. If $h^{+}=8$, then putting $c=8 u-1$, $a=2 c-u=15 u-2$ into (14), we obtain $u=1$. Hence (a, b, c) $=(13,2,7$).

Corollary 8.3. (a) Under the hypothesis of Lemma 8.1 the graph Γ_{D} has one of the following forms:

(b) Under the hypothesis of Lemma 8.2 the graph Γ_{D} has the form:

Lemma 8.4. Let $b_{i} \geq b_{k} \geq 2$. Then

$$
\begin{equation*}
k<\left(\frac{b_{k}}{a_{k}}+\frac{b_{i}}{a_{i}}\right) \cdot\left(\frac{2}{b_{k}}+\frac{3 b_{k}}{q}\right), \quad \text { where } \quad q=\left(b_{k}-1\right)+\left(b_{i}-b_{k}\right) \frac{c_{k}}{a_{i}} . \tag{48}
\end{equation*}
$$

Proof. Denote $\left(b_{i} / a_{i}\right)+\left(b_{k} / a_{k}\right)$ by u. Multiplying (7) by b_{k}, subtracting the result from (8) and using the estimate $Q_{i k} c_{i} b_{k} / a_{i} \geq 0$, we obtain the inequality $(\varepsilon / h) u^{2}+b_{k} \varepsilon u-q \geq 0$, where q denotes the save as in (22). Therefore, we have

$$
u \geq \frac{h b_{k}}{2}\left(-1+\sqrt{1+\frac{4 q}{\varepsilon h b_{k}^{2}}}\right) \stackrel{\text { by }}{\geq}(3) \frac{h b_{k}}{2}\left(-1+\sqrt{1+\frac{4 q}{3 b_{k}^{2}}}\right)=\frac{h b_{k}}{2}(-1+\sqrt{1+v})
$$

where $v=4 q /\left(3 b_{k}^{2}\right)$. It remains to apply the evident estimate $-1+\sqrt{1+v}=-1+(1+v) / \sqrt{1+v}>-1+(1+v) /(1+(v / 2))=v /(2+v)$.

Lemma 8.5. Let $b_{i} \geq b_{k} \geq 10$. Then $h<641 / 55 \approx 6.745 \cdots$.
Proof. Applying the estimates $\left(b_{k} / a_{k}\right)+\left(b_{i} / a_{i}\right)<\left(b_{k} /\left(b_{k}+1\right)\right)+1$ and $q \geq b_{k}-1$ to the inequality (22), we see that $h<f\left(b_{k}\right)$ where

$$
f(b)=\left(1+\frac{b}{b+1}\right) \cdot\left(\frac{2}{b}+\frac{3 b}{b-1}\right)=6+\frac{2}{b}+\frac{3}{b-1}+\frac{2}{b+1}+\frac{3}{b^{2}-1}
$$

f decreases when $b>1$. Hence, $h<f\left(b_{k}\right) \leq f(10)=641 / 55$.
Lemma 8.6. Let $b_{i} \geq b_{k} \geq 2$. Suppose also that $b_{k} \leq 9$ and $a_{k} \geq 20$. Then $h \leq 5113 / 120$.

Proof. Case $1 \quad\left(3 \leq b_{k} \leq 9\right)$. Apply to (22) the estimates $b_{i} / a_{i}<1, a_{k} \geq 20$ and $q \geq b_{k}-1$. We obtaion the inequality

$$
h<f\left(b_{k}\right), \quad \text { where } \quad f(b)=\left(1+\frac{b}{2-}\right)\left(\frac{2}{b}+\frac{3 b}{b-1}\right) .
$$

Direct calculation shows that $f(b) \leq 5113 / 120$ for $b=3,4, \ldots, 9$.
Case $2\left(b_{k}=2\right)$. Substituting $b_{k}=2$ into (22) and applying the estimates $a_{k} \geq 20, c_{i} \geq 1$, we obtain $h<f\left(a_{o}, b_{i}\right)$ where

$$
\begin{array}{ll}
f(a, b)=\left(\frac{1}{10}+\frac{b}{a}\right)\left(1+\frac{6 a}{a+b-2}\right) \quad \text { and } \\
& \frac{\partial f}{\partial b}=\frac{5 b^{2}+\gamma_{1} b+\gamma_{2}}{5 a(a+b-2)^{2}},
\end{array} \begin{aligned}
& \gamma_{1}=10 a-20 \\
& \gamma_{2}=32 a^{2}-8 a+20
\end{aligned}
$$

If $a \geq 3$ then $\gamma_{1}, \gamma_{2}>0$, hence $f_{b}^{\prime}>0$. Therefore, since $b_{i} \leq a_{i}-1$, we have $h<f\left(a_{i}, b_{i}\right) \leq f\left(a_{i}, a_{i}-1\right)=g\left(a_{i}\right)$, where $g(a)=f(a, a-1)$. Easy to calculate that $g^{\prime}(a)<0$ when $a>1$. Recall that $a_{i} \geq b_{i}+1 \geq b_{k}+1=3$. Hence, $h<g\left(a_{i}\right) \leq g(3)=511 / 30$.

Lemma 8.7. Let $b_{i} \geq b_{k} \geq 2$. Suppose also that $b_{k} \leq 9$ and $a_{i} \geq 40$. Then $h<6.8$.

Proof. From (22) and the estimates $a_{k} \geq b_{k}+1$ and $c_{i} \geq 0$, we obtain the inequality

$$
h<f_{b k}\left(a_{i}, b_{i}\right), \quad \text { where } \quad f_{m}(a, b)=\left(\frac{m}{1+m}+\frac{b}{a}\right) \cdot\left(\frac{2}{m}+\frac{3 m a}{(m-1) a+b-m}\right) .
$$

If $a \geq 6, b \geq 2, m \geq 2$ then f_{m} is monotonically increasing with respect to b. Indeed, one can check that

$$
\frac{\partial f_{m}}{\partial b}=\frac{2}{m a}+\frac{3 m}{m+1} \cdot \frac{\gamma_{1} a-\gamma_{2}}{((m-1) a+b-m)^{2}}, \quad \begin{aligned}
\gamma_{1} & =m^{2}-m-1 \\
\gamma_{2} & =m^{2}+m
\end{aligned}
$$

$m \geq 2$ implies $\gamma_{1}>0$, hence, for $a>6$ we have $\gamma_{1} a-\gamma_{2}>6 \gamma_{1}-\gamma_{2}=5 m^{2}-7 m-6 \geq$ 0 , thus, $\partial f_{m} / \partial_{b}>0$. Obviously, for $b \geq 2$ the denominator is non-zero.

We know that $b_{i} \leq a_{i}-1$ and $a_{i} \geq 40$. Hence, $h<f_{b k}\left(a_{i}, a_{i}-1\right)<g_{b k}\left(a_{i}\right)$, where

$$
g_{m}(a):=f_{m}(a, a-1)+\frac{2}{m a}=6+\frac{m+2}{m^{2}+m}+\frac{3(m+1)}{m a-m-1} .
$$

Clearly, g_{m} is monotonically decreasing with respect to a when $a \geq 2$. Thus, it suffices to check that $g_{m}(40)<6.8$ for $m=2, \ldots, 9$.

Lemma 8.8. Suppose that $b_{i} \leq b_{k} \leq 2$ and $a_{k}<20, a_{i}<40$. Then $h \leq$ $6.023810 \cdots$.

Proof. Since $b_{\nu}<a_{\nu}$ and $c_{\nu}<a_{\nu}$, it suffices to check only finitely many possibilities for the values of $Q_{i k}, a_{\nu}, b_{\nu}$ and c_{ν} (where $\nu=i, k$). In each case we can find ε and h from the equations (7), (8) and search the maximum of h under the restrictions $\varepsilon>0, h>0, \varepsilon h \leq 3$. These calculations were performed with a compute. The corresponding C-program is shown on the Fig. 2.

Corollary 8.9. Let $b_{i} \geq b_{k} \geq 2$. Then $h<6.8$.
Proof. For $b_{k} \geq 10$ see 8.5 ; for $b_{k} \leq 9$ see $8.6-8.8$

```
#include <stdio.h>
main(){ int ak,bk,ck, ai,bi,ck, Q; double B,C,BC,h, hmax=0;
    for( Q=0; Q<=1; Q++ ){
        for( bk=2; bk<=9; bk++}{
        for( ak=bk+1; ak<=21; ak++ ){
            for( bi=bk; bi<=40; bi++ ){
            for( ai=bi+1; ai<=41; ai++ ){
            for( ck=1; ck<=ak-bk; ck++ ){
                for( ci=1; ci<=ai-bi; ci++ ){
                        B=(double)bi/ai + (double)bk/ak;
                        C=(double)ci/ai + (double)ck/ak;
                        BC=(double)(bi*ci)/ai + (double)(bk*ck)/ak;
                        if( ai==ak ) BC=BC+(double) (2*Q*ci*bk)/ai;
                if( 1-C <= 0 )continue; /* eps>0 */
                if( BC-1 <= 0 )continue; /* h>0 */
                if( (1-C)*(1-C) > 3*(BC-1) )continue; /* BMY */
                if( (h=(1-C)*B/(BC-1)) > hmax ) hmax=h;
    }}}}}}}
    pringf( "hmax=%lf", hmax );
}
```

Fig. 2.

9. Proof of Theorem $\mathbf{1}^{\prime}$

Let things be like in $\S 6$.
Lemma 9.1. Supose that $r \geq 17$. then:
(a) $h \geq 6.5$.
(b) If $h<6.8$ then $r=17$, and up to a permutation, $\left(d_{1}, \ldots, d_{17}\right)$ is eigher $(4,2, \ldots, 2)$ or $(3,2, \ldots, 2)$ or $(2,2, \ldots, 2)$.

Proof. (a) See Lemma 6.1.
(b) If $h<6.8$ then $r=17$ by Lemma 6.1. Without loss of generality we may assume that $d_{1} \geq d_{2} \geq \cdots \geq d_{17}$. If $d_{2} \geq 3$, we would have $h=17-2-1 / d_{1}-\cdots-$ $1 / d_{17} \geq 15-1 / 3-1 / 3-1 / 2-\cdots-1 / 2=65 / 6>6.8$. Thus $d_{2}=\cdots=d_{1} 7=2$ and $1 / d_{1}=17-2-1 / 2-\cdots-1 / 2-h=7-h>1 / 5$.

Lemma 9.2. Suppose that $r \geq 17$ and $h \geq 6.8$. Then (up to a permutation) one of the following possibilities holds:
(1) $\left(T_{1}, T_{2}\right)$ is one of the three pairs listed in 8.3(a) and either
(1.1) $r=18$ and $d_{3}=\cdots=d_{18}=2$, or
(1.2) $r=17$ and $\left(d_{3}, \ldots, d_{17}\right)$ is one of $(6,3,2, \ldots, 2),(4,4,2, \ldots, 2)$, (3, 3, 3, 2 $\ldots, 2$).
(2) $r=17, d_{2}=\cdots=d_{17}=2$ and T_{1} is the twig depicted i8.3(b).

Proof. By 6.3, X is rational. Hence, there exists a smooth rational (-1)-curve C. It does not coincide with one of D_{1}, \ldots, D_{n} by the minimality, and $C \neq D_{0}$ by Lemma 6.2. Thus, it follows from 6.5 and 4.2 that $C D=2$.

Introduce the notation like in $\S 7, \S 8$. If the both b_{i} and b_{k} were ≥ 2, then by Corollary 8.9 we would have $h<6.8$. Thus, one of them, say, b_{k} is equal to 1 and by Lemma 7.2 we have $Q_{i k}=0$.

Case 1 (Like in 8.1). $b_{k}=1, k \neq 0$.
Since D_{i} and D_{k} do not belong to the save twig, without loss of generality we may assume that $D_{i} \subset T_{1}, D_{k} \subset T_{2}$ (i.e. $d_{1}=a_{i}, d_{2}=a_{k}$) and that $d_{3} \leq d_{4} \leq \cdots$. Then

$$
\begin{align*}
h^{+} & =r-2-1 / d_{3}-1 / d_{4}-\cdots-1 / d_{r} \geq r-2-1 / 2-\cdots-1 / 2 \tag{49}\\
& =(r-2) / 2 .
\end{align*}
$$

Since $r \geq 17$, it follows that $h^{+} \geq 71 / 2$. Hence, by 8.1 we have $h^{+}=8$.
Subcase $1.1 \quad r \geq 18$. Then (23) turns out into $8=\cdots \geq(r-2) / 2 \geq 8$. Hence, all the " \geq " can be replaced with " $=$ ", and we have $r=18$ and $d_{3}=\cdots=d_{18}=2$.

Subcase $1.2 r=17$. If $d_{6}=\geq 3$, then like in (23) we would have $8 \geq 15-$ $(1 / 3-1 / 3-1 / 3-1 / 3)-1 / 2-\cdots=81 / 6$. Thus, $d_{6}=\cdots=d_{17}=2$ and $1 / d_{3}+1 / d_{4}+1 / d_{5}=15-h^{+}-1 / 2-\cdots=1$.

Case 2 (Like in 8.2). $k=0$.
Subcase 2.1 Without loss of generality assume that $D_{i} \in T_{1}$, i.e. $d_{1}=a_{i}$. Then $r \geq 17$ implies like in (23) that $h^{+}=h+1+1 / d_{1} \geq r-1-1 / 2-\cdots-1 / 2=$ $(r-1) / 2 \geq 8$, and by 8.2 we have $h^{+}=8$. Hence, all the " \geq " can be replaced with "=" and we obtain $r=17$ and $d_{2}=\cdots=d_{17}=2$.

Lemma 9.3. Let X be a smooth rational projective surface. Then $K^{2}+b=10$ where $K=K_{X}$ is the canonical class and $b=b_{2}(X)$ is the second Betti number.

Proof. Since X is rational, it is obtained from P^{2} by successive blow-ups and -downs. Clearly that $K^{2}+b=10$ for \boldsymbol{P}^{2} and that $K^{2}+b$ is invariant under blow-ups.

Corollary 9.4 (See e.g. $[4 ; 1.3]$). Let notation be like in 9.3 . Suppose that D is an $S N C$-curve such that $X-D$ is \boldsymbol{Q}-acyclic. Then

$$
\begin{equation*}
(K+D)^{2}=8-s-3 b \tag{50}
\end{equation*}
$$

where s denotes the sum of all the weights of Γ_{D}.

Proof. Let D_{1}, \ldots, D_{b} be the irreducible components of D. Write $(K+D)^{2}=$ $K^{2}+2 K D+D^{2}$ and compute each summand in the right hand side:
$K^{2}=10-b$ by Lemma 9.3;
$K D=\sum D_{i}\left(K+D_{i}\right)-\sum D_{i}^{2}=-2 b-s$ by adjunction formula;
$D^{2}=\sum D_{i}^{2}+\sum_{i \neq k} D_{i} D_{k}=\sum D_{i}^{2}+2\left(\right.$ number of edges of $\left.\Gamma_{D}\right)=s+2(b-1)$.

Now let (X, D) be again as in $\S 6$. Introduce the following notation. For a twig T denote $s(T)=\sum\left(w_{\nu}+3\right)$, where w_{ν} are the weights and the summation is over all the vertices. Recall that $e(T)$ denotes the inductance of a twig T (cf. §2). Let $e^{\prime}(T)=e\left(T^{\prime}\right)$ where T^{\prime} is the twig obtained from a twig T by reversing the order of the vertices. Denote $e(T)+e^{\prime}(T)-s(T)$ by $\varphi(T)$, and put: $e_{j}=e\left(T_{j}\right), e_{j}^{\prime}=e^{\prime}\left(T_{j}\right)$, $s_{j}=s\left(T_{j}\right)$ and $\varphi_{j}=\varphi\left(T_{j}\right)$.

Lemma 9.5. $\sum \varphi_{j} \geq 2 h-5$.
Proof. By Lemma 1.2 and (2) we have $-\Delta=p \cdot\left(D_{0}^{2}+\sum e_{j}^{\prime}\right)$. Hence, $D_{0}^{2}=-\Delta / p-\sum e_{j}^{\prime}=h / \varepsilon-\sum e_{j}^{\prime}$. Further, by 4.1(a) and 2.4(i) we have $(K+D)^{2}=$ $H^{2}+N^{2}=\varepsilon h-\sum e_{j}$. Putting these expressions for D_{0}^{2} and $(K+D)^{2}$ into (24) (where, in out notation, $s+3 b=D_{0}^{2}+3+\sum s_{j}$), we obtain $5+\sum \varphi_{j}=h(\varepsilon+1 / \varepsilon) \geq$ $2 h$.

Now let us complete the proof of Theorem 1^{\prime}. Suppose that $r \geq 17$. Then by 9.1 (a) we have $h \geq 6.5$, hence, 9.5 implies $\sum \varphi_{i} \geq 13-5=8$. However, each φ_{j} depends only on the twig, and by 9.1 and 9.2 only few types of twigs can appear. The values of $\varphi(T)$ for these twigs are as follows:

Table 3.

$d(T)$	T	$\varphi(T)$		$d(T)$	T	$\varphi(T)$
2	$[2]$	0		5	$[5]$	2.4
3	$[3]$	$2 / 3$			$[3,2]$	0
	$[2,2]$	$-2 / 3$			$[2,2,2,2]$	-2.4
4	$[4]$	1.5		6	$[6]$	$31 / 3$
	$[2,2,2]$	-1.5			$[2,2,2,2,2]$	$-31 / 3$

Here the twing wigh the weights w_{1}, w_{2}, \ldots is denoted by $\left[-w_{1},-w_{2}, \ldots\right]$. In Table 3 we listed all the twigs with discriminants ≤ 6. The values $\varphi(T)$ for those
twigs which appear in 8.3 , are

$$
\varphi([2,5])=1 \frac{7}{9}, \quad \varphi([3,5])=2 \frac{4}{7}, \quad \varphi([4,5])=3 \frac{9}{19}, \quad \varphi([4,2,2,2])=-\frac{12}{13}
$$

It is easy to check that in all the cases allowed by 9.1 and 9.2 we can not have $\sum \varphi_{j} \geq 8$. Theorem 1^{\prime} is proven.

References

[1] T. Dieck and T. Petrie: Homology planes. An announcement and survey, in "Topological Methods in Algebraic Transformations Groups", Progress in Math. 80, Birkhäuser, Boston, 1986, 27-48.
[2] D. Eisenbud and W.D. Neumann: Three-dimensional link theory and invariants of plane curve singularities, Ann. Math. Stud. 110, Princeton Univ. Press, Princeton, 1985.
[3] R. Fintushel and R.J. Stern: Pseudofree orbifolds, Ann. of Math. 122 (1985), 335-364.
[4] H. Flenner and M. Zaidenberg: Q-acyclic surfaces and their deformations, Contemporary Math. 162 (1994), 143-208
[5] T. Fujita: On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo (Ser 1A) 29 (1982), 503-566.
[6] R.V. Gurjar and M. Miyanishi: Affine surfaces with $k \leq 1$, in "Algebraic Geometry and Commutative Algebra in Honor of M. Nagata", 1987, 99-124.
[7] R.V. Gurjar and A.R. Shastri: On the rationality of complex homology 2-cells, I, II , J. Math. Soc. Japan 41 (1989), 37-56; 175-212.
[8] Sh. Iitaka: On logarithmic Kodaira dimension of algebraic varieties, in "Complex Analysis and Algebraic Geometry", Cambridge Univ. Press, Cambridge, 1977, 175-190.
[9] R. Kobayashi, S. Nakamura and F. Sakai: A numerical characterization of ball quotients for normal surfaces with branch loci, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 238-241.
[10] M. Miyanishi and T. Sugie: Homology planes with quotient singularities, J. Math. Kyoto Univ. 31 (1991), 755-788.
[11] M. Miyanishi and S. Tsunoda: Open algebraic surfaces with Kodaira dimension $-\infty$, Symposia in Pure Mathematics 46 (1987), 435-450
[12] Y. Miyaoka: The minimal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), 159-171.
[13] D. Mumford: the topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S. 9 (1961), 229-246.
[14] W.D. Neumann: On bilinear forms represented by trees, Bull. Austral. Math. Soc. 40 (1989),303-321.
[15] W.D. Neumann and D. Zagier: A note on an invariant of Fintushel and Stern, in "Geometry and topology (College Park, MD, 1983/84)", Lect. Notes in Math. 1167, Springer, Berlin-NewYork, 1985, 241-244.
[16] S.Yu. Orevkov and M.G. Zaidenberg: On the number of singular points of plane curves, in "Algebraic Geometry.Proc. Conf., Saintama Univ., March 15-17", 1995.
[17] P. Orlik: Seifert manifolds. Lecure Notes in Math. 291, Springer, Berlin-New York, 1972, 241-244.
[18] C.P. Ramanujam: A topological characterization of the affine plane as an algebraic variety, Ann. of Math. 94 (1971), 69-88.
[19] H. Seifert: Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238.
[20] I.R. Shafarevich (ed.) et al.: Algebraic surfaces, Proc. Steklov Inst. Math. 75, Nauka, Moscow, 1965.
[21] M.G. Zaidenberg: Ramanujam's surfaces and exotic algebraic structures on $\boldsymbol{C}^{n}, n \geq 3$, Soviet Math. Dokl. 42 (1991), 636-640.
[22] M.G. Zaidenberg: Problems on open algebraic varieties, in "Open problems on open varieties (Montreal 1994 problems)", P. Russell (ed.), Prépublication de l'Institut Fourier des Mathématiques, 311, Grenoble, 1995; E-print alg-geom/9506006

Inst. of System Studies, Russ. Acad. Sci.
Avtozavodskaya 23
Moscow, Russia
e-mail:orevkov@glas.apc.org
Math. Pures, Universite Bordeaux I.
351 Cours de la Liberation, 33405 Talence France
e-mail:orevkov@math.u-bordeaux.fr

[^0]: ${ }^{1}$ It is so, because when $\bar{\kappa}=2$, the tree Γ_{D} satisfies so called Negative Chains Condition: If the valence of a vertex is ≤ 2 then its weight is ≤-2. When $\bar{\kappa}<2$, the both assertions "if" and "only if" are wrong.

[^1]: ${ }^{2}$ see the preliminary version of this paper in "Mathematica Gottingensis", $\mathbf{3 8}$ (1995).

