Xiao, Y.
Osaka J. Math.
33 (1996), 895-913

HAUSDORFF MEASURE OF THE SAMPLE PATHS
OF GAUSSIAN RANDOM FIELDS

YmMIN XTIAO

(Received November 17, 1995)

1. Introduction

Let Y(f) (teR®) be a real-valued, centered Gaussian random field with
Y(0)=0. We assume that Y(f) (t€ R") has stationary increments and continuous
covariance function R(t,s)=EY(f)Y(s) given by

(1.1) R(t,s)=f (€D — (e~ 1D _ 1)A(dA),
RN

where {x,y) is the ordinary scalar product in RY and A(dl) is a nonnegative
symmetric measure on R"\{0} satisfying

A2
(1.2) 2 _Adl) < co.
rv 14

Then there exists a centered complex-valued Gaussian random measure W{(dA)
such that

(1.3) Y(o)= J (€< — 1YW(dA)
RN

and for any Borel sets 4, B< RY
EW(A)W(B)=A(ANnB) and W(—A)= W(A).

It follows from (1.3) that
(1.4) E[(Y(t+h)— Y()*]= 2J (1 —cos<h,AD)A(dA).
RN

We assume that there exist constants §,>0, 0<c, <c,<oo and a non-decreasing,
continuous function ¢:[0,0,) = [0,00) which is regularly varying at the origin with
index « (0<a<1) such that for any re R" and heR" with |h| <4,

(1.5) E[(Y(t+h)— Y(0)* 1< c,0%(lh)).
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and for all ze RY and any 0<r<min{|t|,5,}
(1.6) Var(Y(t)| Y(s): r <|s—t| <o) = c,6°(r).

If (1.5) and (1.6) hold, we shall say that Y(r) (teR") is strongly locally

og-nondeterministic. We refer to Monrad and Pitt [14], Berman [4] [5] and

Cuzick and Du Peez [6] for more information on (strongly) locally nondeterminism.
We associate with Y(¢) (e R") a Gaussian random field X(¢) (€ R") in R? by

(1.7) X(0)=(X(1), -, X 1)),

where X,,---,X; are independent copies of Y. The most important example of
such Gaussian random fields is the fractional Brownian motion of index o (see
Example 4.1 below).

It is well known (see [1], Chapter 8) that with probability 1

dim X([0,1]")=min (d, H) .
o

The objective of this paper is to consider the exact Hausdorff measure of the
image set X([0,1]%). The main result is the following theorem, which generalizes
a theorem of Talagrand [22].

Theorem 1.1. If N<od, then with probability 1
(1.8) 0 < ¢-m(X([0,1]")) < oo,

where ¢(s)=y(s)"loglogl, y is the inverse function of o and ¢-m(X([0,11%)) is the
¢-Hausdorff measure of X([0,1]").

If N>od, then by a result of Pitt [17], X([0,1]¥) a.s. has interior points and
hence has positive d-dimensional Lebesgue measure. In the case of N=ad, the
problem of finding ¢-m(X([0,1]")) is still open even in the fractional Brownian
motion case.

The paper is organized as follows. In Section 2 we recall the definition and
some basic facts of Hausdorff measure, Gaussian processes and regularly varying
functions. In Section 3 we prove the upper bound and in Section 4, we prove
the lower bound for ¢-m(X([0,1]V)). We also give some examples showing that
the hypotheses in Theorem 1.1 are satisfied by a large class of Gaussian random
fields including fractional Brownian motion.

Another important example of Gaussian random fields is the Brownian sheet
or N-parameter Wiener process W(t) (te RY), see Orey and Pruitt [16]. Since
W(t) (teRY) is not locally nondeterministic, Theorem 1.1 does not apply. The
problem of finding exact Hausdorff measure of W([0,1]") was solved by Ehm [7].
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We will use K to denote an unspecified positive constant which may be
different in each appearance.

2. Preliminaries

Let @ be the class of functions ¢:(0,0) = (0,1) which are right continuous,
monotone increasing with ¢(0+)=0 and such that there exists a finite constant
K>0 for which

$(2s)
¢(s)

For ¢ € ®, the ¢-Hausdorfl measure of E = R" is defined by

<K, for O<s<%<§.

¢-m(E)=1liminf {Zd)(Zr,.):E < U2, B(x,r), r,~<s},

-0

where B(x,r) denotes the open ball of radius r centered at x. It is known that ¢-mis a
metric outer measure and every Borel set in RY is ¢-m measurable. The Hausdorff
dimension of E is defined by

dim E=inf{a>0: s*-m(E)=0}
=sup{a>0: s*m(E)=o0}.

We refer to [F] for more properties of Hausdorff measure and Hausdorff dimension.

The following lemma can be easily derived from the results in [18] (see [23]),
which gives a way to get a lower bound for ¢-m(E). For any Borel measure u
on RY and ¢ e®, the upper ¢-density of u at xe RN is defined by

TR H(B(x,r))
D"(x)_ln?ﬁ?p_d)(h) .

Lemma 2.1. For a given ¢ € ® there exists a positive constant K such that for
any Borel measure p on RN and every Borel set E = R, we have

$-m(E)> Ku(E)inf( DY)} ",

xeE

Now we summarize some basic facts about Gaussian processes. Let Z(¢)
(teS) be a Gaussian process. We provide S with the following metric

d(s,)=Z(s)— Z()||2,

where || Z||,=(E(Z?)}. We denote by N,(S,e) the smallest number of open d-balls
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of radius & needed to cover S and write D=sup{d(s,?):s, teS}.
The following lemma is well known. It is a consequence of the Gaussian
isopermetric inequality and Dudley’s entropy bound ([11], see also [22]).

Lemma 2.2. There exists an absolute constant K>0 such that for any u>0,
we have

P{sup |Z(s)— Z(8)| > K(u + jb, /log N,,(S,As)ds)} < exp< — ;—22) .
(1]

s, teS

Lemma 2.3. Consider a function ¥ such that N(S,e) <¥(e) for alle>0. Assume
that for some constant C>0 and all ¢>0 we have

W(e) C< ‘I’G) < C¥(e).
Then

P{sup|Z(s) — Z(t)| <u} > exp(— K'¥(u)),

s, teS

where K>0 is a constant depending only on C.

This is proved in [21]. It gives an estimate for the lower bound of the small
ball probability of Gaussian processes. Similar problems have also been considered
be Monrad and Rootzén [15] and by Shao [20].

We end this section with some lemmas about regularly varying functions. Let
a(s) be a regularly varying function with index « (0<a < 1). Then o can be written as

a(s)=s*L(s),

where L(s): [0,0,) — [0,00) is slowly varying at the origin in the sense of Karamata
and hence can be represented by

2.1) L(s)=exp (n(s) + JA i(ti) dt) ,

s

where 7(s):[0,6,) = R, &(s):(0,4] - R are bounded measurable functions and

limy(s)=c, |c|]<oo; lime(s)=0.
s—=0 s—0

In the following, Lemma 2.4 is an easy consequence of (2.1) and Lemma 2.5 can be
deduced from Theorem 2.6 and 2.7 in Seneta [19] derectly.
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Lemma 2.4. Let L(s) be a slowly varying function at the origin and let
U=U(s):[0,00) = [0,00) satisfying

limU(s)=c0 and limsU(s)=0.

50 50
Then for any ¢>0, as s small enough we have
U(s) "2 L(s) < L(s U(s)) < U(s)°L(s)
and

U(s) "L(s) < L(sU(s) ") < U(s)*L(s).

Lemma 2.5. Let o be a regularly varying function at the origin with index
o>0. Then there is a constant K>0 such that for r>0 small enough, we have

(2.2) f 00a(re ~"*)du < Ka(r),
(2.3) f 1 a(rs)ds < Ko(r),
0
2.4) J l o(rs)s¥ ~'ds < Ka(r).
0

Let ¢:[0,6,) — [0,00) be non-decreasing and let i be the inverse function of
o, that is

Y(s)=inf{t>0:0(t)>s}.
then Y(s)=s*f(s), where f(s) is also a slowly varying function and

2.5) o((s)~s and Y(o(s))~s as s—0.

3. Upper bound for ¢-m(X([0,1]"))

Let Y(#) (€ R") be a real-valued, centered Gaussian random field with stationary
increments and a continuous covariance function R(t,s) given by (1.1). We assume
that ¥(0)=0 and (1.5) holds. Let X{(¢) (te R") be the (N,d) Gaussian random field
defined by (1.7).

We start with the following lemma.

Lemma 3.1. Let Y(f) (te RY) be a Gaussian process with Y(0)=0 satisfying
(1.5). Then
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(i) For any r>0 small enough and u> Ko(r), we have

uZ
3.1) P{|Sx|u£, Y(0)| 2u}$exp<——Ko_z(r)>.
(i) Let
wyl(h)= sup |Y(t+5)— Y(0)

t, t+se[0,1]V, |s|<h

be the uniform modulus of continuity of Y(t) on [0,1]N. Then

(3.2) fim sup %)

— <1, a.
n-0  a(h)/2c,logt

Proof. Let r<d, and S={¢: |f|<r}. Since d(s,?)<c,a(|t—s]), we have

S.

N{S K( ry'
> S AN
{52 w(e)>

and

D=sup{d(s,?);s, te S} <Ka(r).

By simple calculations

D Ka(r)
f J10g N(S,¢) dssKJ log (Kr)/ /(e) de
0

0o

<K K'. /log (RT)F do(?)
0

<K (a(r) + a(ur)du)

K 1
ou/logK/u
SK(a(r)+ j Oocr(re"‘z)du>

K
<Ko(r),

where the last inequality follows from (2.2). If u> Ko(r), then by Lemma 2.2 we have

P{supl Y1) = 2Ku}

Itl<r

< P{supl Y| =K@u+ JD. /log N,,(S,s)de)}

ltl<r 0
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u2
= ("KaZ(r))

This proves (3.1). The inequality (3.2) can be derived from Lemma 2.2 directly
in a standard way (see also [13]).

In order to get the necessary independence, we will make use of the spectral
representation (1.3). Given 0<a<b< oo, we consider the process

Y(a,b,t)= (e<H —1)W(dA).

as|t|<b

Then for any O<a<b<a' <b'<oo, the processes Y(a,b,f) and Y(d,b',t) are
independent. The next lemma expresses how well Y(a,b,t) apporximates Y(?).

Lemma 3.2. Let Y(¢) (te R") be defined by (1.3). If(1.5) holds, then there exists a
constant B>0 such that for any B<a<b we have

(3.3 I Y(a,b,0)— Y()ll, <K[ItI*a’0*(@™ ) +o*(b~ ]

Proof. First we claim that for any >0 and any he R¥ with |4|=1/u we have

3.4 J < AYAAdA) < K| (1—cosCh,AD)A(dA)
1Al <u

RN

3.5 J A(dh) sK(3> J dv J (1—cos{v, D)AdA).
1A|=u 2 [—1/u, 1/u]¥ RN

For N=1, (3.4) and (3.5) are the truncation inequalities in [12] p209. For N>1
a similar proof yields (3.4) and (3.5).
Now for any a>d, ' and any te RM\{0}, by (1.4), (1.5) and (3.4) we have

(3.6) J (1 = cos{t, AD)AdA) < f CLAY2A(dR)
|A|<a

|Al<a

=|t]*a? f (t/(alt)), AY*A(dA) < K|t|*a**(a™?).
|A|<a

For >0 large enough, by (3.5), (1.4), (1.5) and (2.4) we have

N
(3.7 f AdA) <K (1—)> -[ 02(|v|)dv
1A|=b 2 [—1/b, 1/}

VNb-1
< Kb"f o p)pN " dp < Ko?(b™?).
0
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Combining (3.6) and (3.7), we see that there exists a constant B>0 such that
B<a<b implies

E[(Y(a,b,t)— Y(1))*]= 2[ (1 —cos{t,A))A(d2)

{[Al <a}u{]A] > b}

<2 f (1 —cos{t, ) A(dA) +2 j A(d2)
[4l<a [

A>b

<K[|t|*a*a* (@™ ") +a*(b™")].
This proves (3.3).

Lemma 3.3. There exists a constant B>0 such that for any B<a<b and
0<r<B~! the following holds: let A=r*a*c*(a™")+0*(b™") such that Y(./A)<}r,

then for any
+
u= K(A log K )

.
¥(/4)

we have

(3.8) P{lst:lspJ Y(¢)— Y(a,b,1)| Zu}SCXp(—;—;).

Proof. Let S={t:|f|<r} and Z(t)= Y()— Y(a,b,7). Then
dis,0)=1Z(2) — Z(9)ll , < ¢, 0(|t — 5]).

Hence

r N
N/S,e) < K<m> .

By Lemma 3.2 we have DSK\/Z. As in the proof of Lemma 3.1,

D o KA I
f J1og N(S,e)de < Kf Jog (Kr) [ y(e) de
0 (4]
Ky(v/A)/r
SKJ J91og K /tda(rt)
0
Ky(y/A)/r 1

<K [\/log—K/—t o(ro|KeeAir 4 J

——————oa(rt)dt
0 t,/logK/ta(r) ]
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0

<KNAlogKr/y(/4)+K [ o(Kre™"*)du

'\ ogKriw(/4)
<&\ dtogkr /9(/A),

at least for >0 small enough, where the last step follows from (2.2). Hence
(3.8) follows immediately from Lemma 2.2.
Let X,(a,b,t),---,Xa,b,?) be independent copies of Y(a,b,t) and let

X@,b,t)=(X,(@b,0), - Xfa,b,f) (teRY).

Then we have the following corollary of Lemma 3.3.

Corollary 3.1. Consider B<a<b and O<r<B™!. Let A=r%a’c*a™")
+a%(b™ 1) with w(ﬁ)g%r. Then for any

4
uZK(Alog Kr )

W(/A)

we have

(3.9) P{suplX(t)—X(a,b,tH Zu}Sexp(—;—;)

ti<r

Lemma 3.4. Given 0<r<d, and e¢<a(r). Then for any 0 <a<b we have

(3.10) P{suplX(a,b,t)l Se}Zexp(—E‘;:—)ﬁ)
€

lef<r

Proof. It is sufficient to prove (3.10) for Y(a,b,r). Let S={t:|t{|<r} and
define a distance d on S by

d(S, t)= ” Y(a’ba t) - Y(a,b,s)||2 .

Then d(s,f)<c,a(t—s|) and

r N
N(S,e)<K|— | .
45,8)< <w(s))

By Lemma 2.3 we have

”{ﬁ.‘z‘i' Tab.il S*’} ZP("W)
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This proves lemma 3.4.

Proposition 3.1. There exists a constant 6,>0 such that for any 0<r,<9é,,
we have

(3.11) P{Hre[rﬁ,roj such that sup|X(f)| sKa(r(loglogl)‘%)}
’

ltl<r
1
>1—exp| —(log—)* ).
o
Proof. We follow the line of Talagrand [22]. Let U= U(ry)=>1, where U(r)

satisfying
(3.12) Ur)-» 0 as r-0
and for any ¢>0
(3.13) r*Uir)—-0 as r-0,

will be chosen later. For k>0, let r,=roU"2*. Let k, be the largest integer
such that

1
ko< log s, ’
2logU

then for any 0<k <k, we have r3<r,<r,. In order to prove (3.11), it suffices
to show that

(3.19 P{Elk < ko such that sup|X(?)| sKo(r,‘(loglogl)'%’)}
Ty

It <r
1
>1 —exp(—(]og—)*).
o
Let a,=ry 'U*~! and we define for k=0,1,---

Xk(t)z X(ak,ak+ lst)’

then X,,X,, .- are independent. By Lemma 3.4 we can take a constant K; such
that for r,>0 small enough

(3.15) P{ sup | X, (t)| <K,o(r(log 10grl)—%)}
k

ltl<rk

1 1
>exp| — Zlog log;—
k
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1
(log )
Thus, by independence we have
(3.16) P{Hk <k,, sup|X )| <K, o(r(log logl)_”")}
ltl<ri T

1 ko
21~(1_—)
(2log1/ro)t*

> 1—ex <__li_>
=T TQ2log1/ro) ")

Let
A= rfafo'z(llk_ l)+ 0'2(ak_+11)
=U"2* 242 LY (r, U)+ U™ ?r}*L*(r,/ U).

Let f=2min{l—a,a} and fix an e<}B. Then by Lemma 2.4, we see that as r,
small enough

U P %6X(r) <A, < U P*%62(r,).
Notice that r, for small enough we have
W/ A)Z YUV (ry)
=(U~"2a(r))'"* f(U) ~2a(r,))
= U =P, L(n) (U ~*20(r,))

>KU™ ¢ +6)/2/(Za)rk,
the last inequality follows from (2.5). It follows from Corollary 3.1 that for
B—¢
u>Ko(r))U ™ 2 (log U)'/2,

we have

3.17) P{ sup | X(0)— X, ()] > u} Sexp( _f‘i‘_{”_ﬁf)

lth<ric

Hence, if we take

U=(log1/rofi 7,
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then as r, small enough

o(r)U85%(log U)'"* < o(r,(log log ) ).

o

Hence by taking

K 1

u=—"a(r,(loglog —1—)‘}’)

2 To

in (3.17), we obtain
2 Uﬁ
(3.18) sup | X(£)— X, (1) | >—a(rk(loglog_) —)}<exp<———2~—-)
|t] <7 (o)
Combining (3.16) and (3.18) we have
(3.19) P{Hk < ko such that sup |X(?)| <2K,a(r(log 10g_)-1/N)}
It <re

>1—ex <— ko ) koex < ur )
=P\ 2og 1/r9) ) 0P\ T K(loglog 1 /) @V ¥

We recall that

lo 1
g"’ <k0<log—
4logU ro

and hence for r, small enough, (3.11) follows from (3.19).
Now we are in a pposition to prove the uppper bound for ¢-m(X([0,1])).

Theorem 3.1. Let ¢(s)=y(s)"loglogl. Then with probability 1
¢-m(X([0,1]")) < 0.

Proof. For k>1, consider the set

R,= {t €[0,17V:3re[27%%,27¥] such that

sup |X(s)— X(¢)| < Ko(r(loglog ) ‘/")}

|s—tj<r

By Proposition 3.1 we have

P{te R} >1—exp(—+/k/2).
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Denote the Lebesgue measure in RN by Ly. It follows from Fubini’s theorem
that P(Q,)=1, where

Qo={w:Ly(R)=1—exp(—+/k/4) infinitely often}.

On the other hand, by Lemma 3.1 ii), there exists an event Q, such that P(Q,)=1
and for all weQQ,, there exists n, =n,(w) large enough such that for all n>n, and
any dyadic cube C of order n in RY, we have

(3.20) sup|X(t)— X(s)| < Ka(2~")y/n.

s,teC
Now fix an w e Q,NnQ, , we show that ¢-m(X([0,1]¥)) < 0. Consider k> 1 such that
Ly(R)=1—exp(—+/k/4).
For any xe R, we can find n with k<n<2k+k, (where k, depends on N only)

such that

(3.21) sup |X(6)— X(s)| < Ko(2 "(loglog 2"~ /M),

8,teCn(x)
where C,(x) is the unique dyadic cube of order n containing x. Thus we have
R, S V=y2ktky,

and each V, is a union of dyadic cubes C, of order »n for which (3.21) holds. Clearly
X(C,) can be covered by a ball of radius

p,=Ko(2 "(loglog2m~ /M),

Since ¢(2p,) < K2~ "N=KL\(C,), we have

(3.22) ) CEV: $2p) <Y CZ;,, KL\(C,)
=KLy(V)< o0.

On the other hand, [0,1]¥\V is contained in a union of dyadic cubes of order
q=2k+k,, none of which meets R,. There can be at most

2ML([0,11M\ V) < K2Vexp(— /K / 4)

of such cubes. For each of these cubes, X(C) is contained in a ball of radius
p=Ka(2“’)\/(;. Thus for any ¢>0

(3.23) Y $(20) < K2Mexp(— \/]; /4)2~NagNiGo+e < |
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for k large enough. Since k can be arbitrarily large, Theorem 3.1 follows from
(3.22) and (3.23).

4. Lower bound for ¢-m(X([0,1]")

Let Y(¢) (te R") be a real-valued, centered Gaussian random field with stationary
increments and a continuous covariance function R(t,s) given by (1.1). We assume
that ¥(0)=0 and (1.6) holds. Let X(?) (t€ R") be the (N,d) Gaussian random field
defined by (1.7). In this section, we prove that if N<ad, then

¢-m(X([0,17%)>0 a.s.

For simplicity we assume d,=1 and let I=[0,17¥nB(0,1) (otherwise we
consider a smaller cube). For any O<r<1 and yeR’. Let

Ty(r) = J l B(y,r)(X(t))dt
I

be the sojourn time of X(¢) (tel) in the open ball B(y,r). If y=0, we write T(r)
for To(r).

Proposition 4.1. There exist 6,>0 and b>0 such that for any 0<r<é,

4.1 E(exp(by(r) " T(r))) < K < 0.

Proof. We first prove that there exists a constant 0<K<oo such that for
any n>1

4.2) E(T(r)" < K"nW(r)™".
For n=1, by (2.4) and (2.5) we have

@.3) Enr)=J P{X({)e BO,r)}dt
I

. ro
szmm{l,K(;ﬂTl)) }dt

1 K d
SKJ min{l,—rv‘—i}pN' Ydp
0 a(p)

Ky(r) 1 rde -1
0 Ku(r) o(p)

@© 1
N d N-—ad
<Kyl + Kyt J | L
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<KY((r)" + Kr'y(r)¥ = | LOp(r))*
<Ky(r)".

For n>2
4.4 E(T(r)")=J P{X(@t)l<r,--- | X(t,) <r}dt,---dt,.
[n

Consider ¢,,---,t, €1 satisfying

t;#0 for j=1,---,n, t;#t, for j#k.
Let n=min{¢,), |t,—¢], i=1,--,n—1}. Then by (1.6) we have
(4.5) Var(X(t,)| X(t), -+, X(t,— 1)) = c,6%(n).

Since conditional distributions in Gaussian processes are still Gaussian, it follows
from (4.5) that

(4.6) P{X() <rlX(t) =2, X(t,— 1) =X, 1}

Juwir ™ 5)
<K ——exXp| ———— |du
ju <r (1) Ka*(n)

Similar to (4.3), we have

luf?

1
47 di,| ——exp| — d
&4 L 'Lu.qo(n)‘ Xp( Kal(n)) “

< j min{1, K(——)"}dt,
I a(n)

r

n—1
: d —
SKJ; igomm{l, Ko(lt,,—-t,.l)) e,  (to=0)

1 d
San min{1, Kr 1" " ldp
0 a(p)
< Kny(r)".

By (4.4), (4.6) and (4.7), we obtain

E(T(r))”st PUX (1) <o | Xty )| <rhdty --dt,_

m-1
2
f dt,,f ~1—dexp<—ili—> du
1 Jpu<ro(n) Ko*(n)
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< Knp(r)VE(T(r)y" ™.

Hence, the inequality (4.2) follows from (4.3) and induction. Let 0<b<1/K,
then by (4.2) we have

0

Eexp(by(r) " "T(r))= Y. (Kb)" < o0.

n=0

This proves (4.1)

Proposition 4.2. With probability 1
4.83) limsup—<—,

where ¢(r)=y(r)"oglog1/r.

Proof. For any ¢>0, it follows from (4.1) that

K
. N
Take r,=exp(—n/logn), then by (4.9) we have
K
N
P{T(r,)=(1/b+ep(r,) loglogl/r,,}sW.

Hence by Borel-Cantelli lemma we have

. 1

(4.10) lim sup nr,) <-+e.

n—o ¥y b
It is easy to verify that
@.11) im 20 _ 4.

n= oo ¢(rn + 1)

Hence by (4.10) and (4.11) we have

lim sup@sl+s.

r—0 r b

Since £¢>0 is arbitrary, we obtain (4.8).
Since X(#) (€ R™) has stationary increments, we derive the following
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Corollary 4.1. Fix tyel, then with probability 1

lim supMsl.
r-0 o) b

Theorem 4.1. If N<ad, then with probability 1
4.12) ¢-m(X([0,1]"))>0,
where ¢(r)=y(r)"oglog1/r.

Proof. We define a random Borel measure u on X(/) as follows. For any
Borel set B < R?, let

wB)=Ly{tel, X(¢)e B}.

Then u(R%) = u(X(I))=Ly(I). By Corollary 4.1, for each fixed ¢, € I, with probatility 1

" i s MBX(E0).7)
@19 R0

<lim supMsl.
ro P(r) b

Let E(w)={X(to): toel and (4.13) holds}. Then E(w) < X(I). A Fubini argument
shows u(E(w))=1, a.s.. Hence by Lemma 2.1, we have

¢-m(E(w)) > Kb.
This proves (4.12).

Proof of Theorem 1.1. It follows from Theorems 3.1 and 4.1 immediately.

ExaMPLE 4.1. Let Y(f) (tfe R") be a real-valued fractional Brownian motion
of index o (O<a<1) (see [10], Chapter 18). Its covariance function has the
representation

1
R(s, t)=§(ISI2“+ [£2% — |t —51%%)

; . di
)| (@ — 1) e~ 1 ,
o )LN( X )—-—I PRz

where (o) is a normalizing constant. Then (1.5) is verified and by a result of Pitt
[17], (1.6) is also verified. In this case, Theorem 1.1 is proved by Goldman [9]
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for «=1/2 and by Talagrand [22] for O0<a< 1.

ExAMPLE 4.2 Let Z(t) (te R") be a real-valued mean zero stationary random
field with covariance function

R(s,t)=exp(—c|s—1|>*) with ¢>0 and O<a<l.

Then Y(¢)= Z(f) — Z(0) verifies the conditions (1.5) and (1.6). We can apply Theorem
1.1 to obtain the Hausdorff measure of X([0,1]"), where

X=X (1),---, X[0)
and X,,---,X; are independent copies of Z. Other examples with absolutely

continuous spectral measure can be found in Berman [2] p289, and Berman [4].

ExAMPLE 4.3. Now we give an example with discrete spectral measure. Let
X, n=0) and Y, (n>0) be independent standard normal random variables and
a, (n>0) real numbers such that ¥,a2<oo. Then for each ¢, the random series

4.19) Z(H)= ) a,X,cosnt+Y,sinni)

n=0

converges with probability 1 (see [10]), and Z(t) (te R) represents a stationary
Gaussian process with mean 0 and covariance function

R(s,0)= Y, aZ cosn(t —s).

n=0

By a result of Berman [4], there are many choices of a, (n>0) such that the
process Y(f)=Z(f)— Z(0) satisfies the hypotheses of Theorem 1.1 with

a(s)=2 ;iaf(l —cosns).

Let X(7) (te R) be the Gaussian process in R? associated with Z(f) or Y(2) (teR)
by (1.7). If 1<ad, then
0 < ¢-m(X([0,1]")) < o0,

where ¢(s)=y(s)loglog! and  is the inverse function of ¢. A special case of
(4.14) is Example 3.5 in Monrad and Rootzén [15].
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