THE FEFFERMAN-PHONG INEQUALITY IN THE LOCALLY TEMPERATE WEYL CALCULUS

Ferruccio COLOMBINI, Daniele Del SANTO and Claude ZUILY

(Received June 26, 1995)

1. Introduction

The Fefferman-Phong inequality, which is a two derivatives Gårding type inequality, has been proved by its authors for pseudo-differential operators with symbols in the class $S_{1,0}^{m}$. It has been extended by Hörmander [5], in his work on the Weyl calculus, to symbols in the general class $S(m, g)$ where g is a slowly varying and temperate metric satisfying the uncertainly principle. Further works on spectral theory and singularities for nonlinear hyperbolic equations showed the necessity to relax the temperacy condition on the metric and Dencker [3], Bony-Lerner [1] introduced new classes allowing to deal with these applications. However the Fefferman-Phong inequality was not proved for these classes. In a recent work, Colombin, Del Santo, Zuily [2], we have also been led to consider non temperate metrics and the above mentioned inequality was required in the proof; it turned out that these metrics were locally temperate in the sense of Dencker [3]. The purpose of this work is then to prove the Fefferman-Phong inequality for properly supported pseudo-differential operators with symbols in locally temperate classes. Unfortunately, because of the complexity of the quantification, this inequality is still not available in the general case of the Bony-Lerner classes.
2. Notations, statement of the result, examples

We first recall some definitions taken from Hörmander [5] and Dencker [3].
Let V be an n dimensional vector space and $W=V \oplus V^{\prime}$ where V^{\prime} is the dual of V. Elements in V will be denoted by x and those in W by w or (x, ξ).

Let G be a metric on V, assumed to be slowly varying i.e.

$$
\left\{\begin{array}{l}
\text { there exist constants } a_{0}>0, A_{0} \geq 1 \text { such that for } x, y \text { in } V \text { : } \tag{2.1}\\
\qquad G_{x}(x-y) \leq a_{0} \Rightarrow \frac{1}{A_{0}} \leq \frac{G_{x}}{G_{y}} \leq A_{0} .
\end{array}\right.
$$

Let g be a metric on W which is also slowly varying i.e. there exist constants $a_{1}>0, A_{1} \geq 1$ such that for w, w^{\prime} in W :

$$
\begin{equation*}
g_{w}\left(w-w^{\prime}\right) \leq a_{1} \Rightarrow \frac{1}{A_{1}} \leq \frac{g_{w}}{g_{w^{\prime}}} \leq A_{1} . \tag{2.2}
\end{equation*}
$$

We shall also assume that

$$
\begin{equation*}
\text { for every }(x, \xi) \text { in } W, \quad G_{x} \leq g_{x, \xi} \tag{2.3}
\end{equation*}
$$

The space W is a symplectic space with the standard symplectic form

$$
\begin{equation*}
\sigma\left(w, w^{\prime}\right)=\langle y, \xi\rangle-\langle x, \eta\rangle \quad \text { if } w=(x, \xi), w^{\prime}=(y, \eta) \in W \tag{2.4}
\end{equation*}
$$

The dual metric of g with respect to σ is then defined by

$$
\begin{equation*}
g_{w_{0}}^{\sigma}(w)=\sup _{w^{\prime} \neq 0} \frac{\left|\sigma\left(w, w^{\prime}\right)\right|^{2}}{g_{w_{0}}\left(w^{\prime}\right)} . \tag{2.5}
\end{equation*}
$$

The metric g will also be assumed to separate the uncertainly principle which reads

$$
\begin{equation*}
g_{w} \leq g_{w}^{\sigma} \text { for every } w \text { in } W \tag{2.6}
\end{equation*}
$$

We then define the function h on W by

$$
\begin{equation*}
h^{2}(w)=\sup _{w^{\prime} \neq 0} \frac{g_{w}\left(w^{\prime}\right)}{g_{w}^{\sigma}\left(w^{\prime}\right)} \leq 1 . \tag{2.7}
\end{equation*}
$$

The metric g is said locally temperate if :

$$
\left\{\begin{array}{l}
\text { there exist positive constants } a_{2}, A_{2} \text { and } N \in N \text { such that } \tag{2.8}\\
G_{x}(x-y) \leq a_{2} \Rightarrow g_{w} \leq A_{2} g_{w^{\prime}}\left(1+g_{w}^{\sigma}\left(w-w^{\prime}\right)\right)^{N} \\
\text { if } w=(x, \xi) \text { and } w^{\prime}=(y, \eta) .
\end{array}\right.
$$

We introduce now the order functions. These are positive functions m on W for which one can find constants $b_{j}>0, B_{j} \geq 1, j=0,1$ and $M \in N$ such that

$$
\begin{gather*}
g_{w}\left(w-w^{\prime}\right) \leq b_{0} \Rightarrow \frac{1}{B_{0}} \leq \frac{m(w)}{m\left(w^{\prime}\right)} \leq B_{0}, \quad w, w^{\prime} \in W, \tag{2.9}\\
\left\{\begin{array}{l}
G_{x}(x-y) \leq b_{1} \Rightarrow m(w) \leq B_{1} m\left(w^{\prime}\right)\left(1+g_{w}^{\sigma}\left(w-w^{\prime}\right)\right)^{M} \\
\text { if } w=(x, \xi) \text { and } w^{\prime}=(y, \eta) .
\end{array}\right. \tag{2.10}
\end{gather*}
$$

Given G, g, m as above we define the class of symbols $S(m, g)$ to be the set of C^{∞} functions a on W such that

$$
\left\{\begin{array}{l}
\text { for every } k \in N \text { one can find } C_{k}>0 \text { such that for every } \tag{2.11}\\
w, w_{1}, \cdots w_{k} \text { in } W \text { we have } \\
\left|a^{(k)}(w)\left(w_{1}, \cdots, w_{k}\right)\right| \leq C_{k} m(w) \prod_{i=1}^{k}\left(g_{w}\left(w_{i}\right)\right)^{1 / 2}
\end{array}\right.
$$

We define a metric \tilde{G} on $V \times V$ by

$$
\begin{equation*}
\tilde{G}_{x, y}(s, t)=G_{x}(s)+G_{y}(t) \tag{2.12}
\end{equation*}
$$

and we consider the \tilde{G} distance of a point $(x, y) \in V \times V$ to the diagonal

$$
\begin{equation*}
D(x, y)=\inf _{x_{0} \in V} \tilde{G}_{x_{0}, x_{0}}\left(x-x_{0}, y-x_{0}\right) \tag{2.13}
\end{equation*}
$$

If $\varepsilon>0$, we shall set $D_{\varepsilon}=\{(x, y) \in V \times V, D(x, y) \leq \varepsilon\}$.
Given $0<\varepsilon^{\prime}<\varepsilon$ one can construct χ such that

$$
\begin{equation*}
\chi \in S(1, \tilde{G}), \quad \operatorname{supp} \chi \subset D_{\varepsilon}, \quad \chi=1 \text { on } D_{\varepsilon^{\prime}} \tag{2.14}
\end{equation*}
$$

We shall call such a function properly supported.
Given $a \in \mathscr{S}(W)$ and χ properly supported we can define a pseudo-differential operator by the Weyl quantification

$$
\begin{equation*}
a_{\chi}^{w} u(x)=(2 \pi)^{-n} \iint e^{i\langle x-y, \xi\rangle} \chi(x, y) a\left(\frac{x+y}{2}, \xi\right) u(y) d y d \xi \tag{2.15}
\end{equation*}
$$

This formula can be extended to the case where $a \in S(m, g)$, as an operator sending $C_{0}^{\infty}(V)$ into $\mathscr{E}^{\prime}(V)$ and $C^{\infty}(V)$ to $\mathscr{D}^{\prime}(V)$. The symbolic calculus for this class of operators and the L^{2} continuity, when m is bounded, have been achieved by Dencker [3]. The purpose of this work is to prove that the Feffermann-Phong inequality [4], which has been proved by Hörmander [5] when the metric is temperate, still holds for locally temperate metrics and properly supported operators. Thus the main result of this work is the following.

Theorem 2.1. Let $a \in S\left(h^{-2}, g\right), a \geq 0$ on W. Let χ be properly supported. Then one can find a positive constant C such that

$$
\left(a_{\chi}^{w} u, u\right)+C\|u\|_{L^{2}}^{2} \geq 0, \quad \text { for } u \in C_{0}^{\infty}(V)
$$

Example 2.2. As we said before, locally temeperate metrics occur in proving Carleman estimates with singular weights (see [2]). Let $V=\boldsymbol{R}_{x}^{n} \times \boldsymbol{R}_{y}, V^{\prime}=\boldsymbol{R}_{\xi}^{n} \times \boldsymbol{R}_{\eta}$. Let $\theta(y)$ be a C^{∞} function on \boldsymbol{R} such that

$$
O(y)=e^{y} \text { if } y \leq 0, \quad 0(y)=2 \text { if } y \geq 1, \quad 0 \leq \theta \leq 2 .
$$

We set $\Phi^{2}(x, y ; \xi, \eta)=1+0^{2}(y)|\xi|^{2}+|\eta|^{2}$. For G we take the flat metric on V, $G_{x, y}(s, t)=|s|^{2}+t^{2}$. Then the metric

$$
g_{x, y ; \xi, \eta}=d x^{2}+d y^{2}+\frac{d \xi^{2}+d \eta^{2}}{\Phi^{2}(x, y ; \xi, \eta)}
$$

is slowly varying, locally temperate, satisfies the uncertainly principle and (2.3), but is not temperate in the sense of Hörmander [5].

3. Proof of Theorem $\mathbf{2 . 1}$

The first step is to prove an analogue of Lemma 18.6.10 in [5].
Proposition 3.1. Let G (resp. g) be one positive definite quadratic form on \boldsymbol{R}^{n} (resp. $\boldsymbol{R}^{2 n}$). Let us assume

$$
\begin{gather*}
G(t) \leq g(t, \tau), \quad(t, \tau) \in R^{2 n}, \tag{3.1}\\
\sup _{(t, \tau)} \frac{g(t, \tau)}{g^{\sigma}(t, \tau)}=\lambda^{2} \leq 1 . \tag{3.2}
\end{gather*}
$$

Let $a \in C^{\infty}\left(\boldsymbol{R}^{2 n}\right), a \geq 0$, be such that for each $k \in N$ one can find a constant $C_{k}>0$ such that for X, T_{1}, \cdots, T_{k} in $R^{2 n}$

$$
\begin{equation*}
\left|a^{(k)}(X)\left(T_{1}, \cdots, T_{k}\right)\right| \leq C_{k} \lambda^{-2} \prod_{i=1}^{k}\left(g\left(T_{i}\right)\right)^{1 / 2} \tag{3.3}
\end{equation*}
$$

Let $\chi \in S(1, \tilde{G}), \operatorname{supp} \chi \subset D_{\varepsilon}, \chi=1$ on $D_{\varepsilon^{\prime}}, \varepsilon^{\prime}<\varepsilon$. Then there exists a constant $C>0$ such that

$$
\begin{equation*}
\left(a_{x}^{w} u, u\right)+C\|u\|_{L^{2}}^{2} \geq 0 \quad \text { for } u \in C_{0}^{\infty}\left(R^{n}\right) . \tag{3.4}
\end{equation*}
$$

Here C is independent of g, G and depends on a only through a finite sum $\sum_{k=1}^{k_{0}} C_{k}$, where k_{0} is independent of a.

Proof. Let us first assume $a \in \mathscr{S}\left(\boldsymbol{R}^{2 n}\right)$. Then we shall have $a_{x}^{w}=b^{w}$ if

$$
\hat{a}\left(\frac{1}{2}(x+y), y-x\right) \chi(x, y)=\hat{}\left(\frac{1}{2}(x+y), y-x\right)
$$

where ${ }^{\wedge}$ is the Fourier transform with respect to the second variable.
Taking the inverse Fourier transform we obtain

$$
b(x, \xi)=\left.\exp \left(-i\left\langle D_{t}, D_{\eta}\right\rangle\right)\left[\chi\left(x+\frac{t}{2}, x-\frac{t}{2}\right) a(x, \eta)\right]\right|_{\substack{t=0 \\ \eta=\xi}} .
$$

By Proposition 2.4 in [3] and Theorem 18.4.11 in [5], the mapping $a \mapsto b$ has a continuous extension to a weakly continuous linear mapping from $S\left(\lambda^{-2}, g\right)$ to $S\left(\lambda^{-2}, g\right)$. Moreover the remainder term

$$
\left.b(x, \xi)-\sum_{j=0}^{N}\left(-i\left\langle D_{t}, D_{\eta}\right\rangle\right)^{j}\left[\chi\left(x+\frac{t}{2}, x-\frac{t}{2}\right) a(x, \eta)\right]\right]_{\substack{t=0 \\ \eta=\xi \\=\xi}} \cdot \frac{1}{j!}
$$

is weakly continuous with value in $S\left(\lambda^{N-1}, g\right)$ and its semi-norms in this space depend on N and on the semi-norms of a in $S\left(\lambda^{-2}, g\right)$ of χ in $S(1, \widetilde{G})$. Since $\chi=1$ near the diagonal we get, if $N=1: b=a+r$ with $r \in S(1, g)$. Therefore $a_{x}^{w}=a^{w}+r^{w}$. Now, by Lemma 18.6 .10 in [5] we have $\left(a^{w} u, u\right) \geq-C_{0}\|u\|_{L^{2}}^{2}$ with C_{0} independent of a and g. On the other hand, since $r \in S(1, g)$ we have by Theorem 18.6.3 in [5]: $\left|\left(r^{w} u, u\right)\right| \leq C_{1}\|u\|_{L^{2}}^{2}$, where C_{1} depends on a fixed number of semi-norms of r in $S(1, g)$, therefore on a fixed number of semi-norms of a in $S\left(\lambda^{-2}, g\right)$ and of χ in $S(1, \widetilde{G})$. It follows that $\left(a_{x}^{w} u, u\right) \geq C\|u\|_{L^{2}}^{2}$ with C as claimed.

Now we return to general a, g, G and we localize the problem in the balls constructed in Lemma 18.4.4 of [5].

Let G, g be metrics on V and W, satisfying (2.1) to (2.8).
Let $\rho>0$ be so small that, with a_{j}, A_{j} defined in (2.1) to (2.8),

$$
\begin{equation*}
\rho<a_{1}, \quad 32 A_{0}^{3} \rho \leq a_{2}, \quad 8 A_{0}^{4} \rho \leq a_{0} \tag{3.5}
\end{equation*}
$$

Let us set with $\rho_{0}<\rho$,

$$
\begin{aligned}
B_{v}=\left\{w: g_{w_{v}}\left(w-w_{v}\right) \leq \rho_{0}\right\} \subset U_{v} & =\left\{w: g_{w_{v}}\left(w-w_{v}\right) \leq \rho\right\} \subset U_{v}^{\prime} \\
U_{v}^{\prime} & =\left\{w: g_{w_{v}}\left(w-w_{v}\right) \leq a_{1}\right\} .
\end{aligned}
$$

Let $\varphi_{v} \in C_{0}^{\infty}\left(B_{v}\right)$ be real such that $\sum_{v} \varphi_{v}^{2}=1$ and $\theta_{v} \in C_{0}^{\infty}\left(U_{v}\right), \theta_{v} \geq 0, \theta_{v}=1$ on B_{v}, φ_{v} and θ_{v} uniformly bounded in $S(1, g)$. If we set we get $a_{v}=\theta_{v} a$ we get $a=\sum_{v} \varphi_{v} a_{v} \varphi_{v}$ and the semi-norms of a_{v} in $S\left(h^{-2}, g\right)$ are uniformly bounded by those of a in $S\left(h^{-2}, g\right)$.

We also fix $\varepsilon>0$ so small that

$$
\begin{equation*}
16 A_{0}^{6} \varepsilon \leq a_{2}, \quad 8 A_{0}^{4} \varepsilon \leq a_{0} \tag{3.6}
\end{equation*}
$$

and we take a properly supported χ with $\operatorname{supp} \chi \subset D_{\varepsilon}, \chi=1$ near the diagonal. We also assume that χ is real and $\chi(y, x)=\chi(x, y)$. Since $a_{v} \geq 0$, it follows from Proposition 3.1, that

$$
\begin{equation*}
\left(a_{v x}^{w} u, u\right)+C\|u\|_{L^{2}}^{2} \geq 0, \quad u \in C_{0}^{\infty} \tag{3.7}
\end{equation*}
$$

where C is independent of G, g and v. Applying (3.7) to $\varphi_{v x}^{w} u$, instead of u, we get

$$
\left(\varphi_{v x}^{w} a_{v x}^{w} \varphi_{v x}^{w} u, u\right)+C\left(\varphi_{v x}^{w} \varphi_{v x}^{w} u, u\right) \geq 0
$$

since $\left(\varphi_{v \chi}^{w}\right)^{*}=\varphi_{v \chi}^{w}$, because χ is real and $\chi(x, y)=\chi(y, x)$.
Taking the sum with respect to v we get

$$
\begin{equation*}
(\sum_{v} \underbrace{\varphi_{v x}^{w} a_{v x}^{w} \varphi_{v x}^{w}, u, u}_{(1)})+C\left(\sum_{v}^{\varphi_{v x}^{w} \varphi_{v x}^{w}, u, u}\right) \geq 0 . \tag{3.8}
\end{equation*}
$$

Lemma 3.2. The operator $\sum_{v} \varphi_{v x}^{w} \varphi_{v x}^{w}$ is bounded on L^{2}.
Proof. As in the proof of the L^{2} continuity in [5] we shall use the Cotlar-Knapp-Stein Lemma. Let us set $A_{v}=\varphi_{v x}^{w} \cdot \varphi_{v x}^{w}$. We have to show

$$
\begin{equation*}
\sup _{v} \sum_{\mu}\left\|A_{v} A_{\mu}^{*}\right\|^{1 / 2} \leq C, \sup _{v} \sum_{\mu}\left\|A_{v}^{*} A_{\mu}\right\|^{1 / 2} \leq C . \tag{3.9}
\end{equation*}
$$

The proof of course is completly symmetric for the two terms. Let us consider the firstt. We have (here the norm is the $L^{2}-L^{2}$ operator norm), $\left\|A_{v} A_{\mu}^{*}\right\|$ $\leq\left\|\varphi_{v \chi}^{w}\right\| \cdot\left\|\varphi_{v \chi}^{w} \varphi_{\mu \chi}^{w}\right\| \cdot\left\|\varphi_{\mu_{\chi}}^{w}\right\|$.

Since $\varphi_{v} \in S(1, g)$ has uniformly bounded semi-norms in this space, $\varphi_{v \chi}^{w}$ is bounded in L^{2} with uniformly bounded operator norm (see the Remark after Theorem 4.3 in [3]). Therefore the first part of (3.9) will be a consequence of the following estimate.

For every $l \in N$ one can find $C_{l}>0$ such that for every v

$$
\begin{equation*}
\left\|\varphi_{v \chi}^{w} \varphi_{\mu x}^{w}\right\| \leq C_{l}\left(1+d_{v \mu}\right)^{-1} . \tag{3.10}
\end{equation*}
$$

One can find $l_{0} \in N$ such that

$$
\sup _{v} \sum_{\mu}\left(1+d_{v \mu}\right)^{-l_{0}}<+\infty .
$$

The proof of 3.10 is close to that of Theorem 4.3 in [3] and we give it for sake of completess and the convenience of the later use in the proof of Lemma 3.3. Let $\psi \in S(1, \tilde{G}), \psi=1$ on $\{(x, y): \exists z: \chi(x, z) \chi(z, y) \neq 0\}$.

Then by formula (4.22) in [3] we can write

$$
\begin{equation*}
\varphi_{v \chi}^{w} \varphi_{\mu \chi}^{w}=\theta_{v \mu \psi}^{w} \tag{3.11}
\end{equation*}
$$

$$
\left\{\begin{array}{c}
\theta_{v \mu}(x, \xi)=\left.\exp \left(\frac{i}{2} \sigma\left(D_{z}, D_{\zeta} ; D_{v}, D_{\tau}\right)\right)\left[F_{x, \xi}(z, t, \zeta, \tau)\right]\right|_{i=\tau=0} ^{\zeta=z=0} \tag{3.12}\\
F_{x, \xi}(z, t, \zeta, \tau)=\chi(x+z+t, x+z-t) \chi(x+z+t, x-z+t) \\
\varphi_{v}(x+z, \xi+\zeta) \varphi_{\mu}(x+t, \xi+\tau) .
\end{array}\right.
$$

We claim that, denoting by πU_{v} the projection of U_{v} on V :

$$
\begin{equation*}
\inf _{t \in \pi U_{0}} G_{t}(x-t)>A_{0}^{2} \varepsilon \Rightarrow \operatorname{supp} F_{x, \xi}=\phi \tag{3.13}
\end{equation*}
$$

Indeed let $(z, t, \zeta, \tau) \in \operatorname{supp} F_{x, \xi}$. Then $x+z \in \pi U_{v}, x+t \in \pi U_{v},(X, Y) \in \operatorname{supp} \chi,(X, Z)$ $\epsilon \operatorname{supp} \chi$ where $X=x+z+t, Y=x+z-t, Z=x-z+t$. It follows that $D(X, Y) \leq \varepsilon$, $D(X, Z) \leq \varepsilon$. By Lemma 2.2 in [3], since $\varepsilon \leq a_{0}$, we get $G_{X}(X-Y) \leq 4 A_{0} \varepsilon$, $G_{X}(X-Z) \leq 4 A_{0} \varepsilon$. It follows that $G_{X}\left(X-\frac{X+Y}{2}\right)=\frac{1}{4} G_{X}(X-Y) \leq A_{0} \varepsilon \leq a_{0}$ so by (2.1),

$$
G_{x+z}(z)=\frac{1}{4} G_{\frac{X+Y}{2}}(X-Z) \leq \frac{A_{0}}{4} G_{X}(X-Z) \leq A_{0}^{2} \varepsilon .
$$

Since $t=x+z \in \pi U_{v}$ this contradicts (3.13).
It follows that, on the support of $\theta_{v \mu}$ we have

$$
\left\{\begin{array}{l}
\inf _{t \in \pi U_{0}} G_{t}(x-t) \leq A_{0}^{2} \varepsilon \tag{3.14}\\
\inf _{z \in \pi U_{0}} G_{z}(x-z) \leq A_{0}^{2} \varepsilon
\end{array}\right.
$$

We shall show that this implies

$$
\left\{\begin{array}{lll}
\forall t \in \pi U_{v} & G_{t}(x-t) \leq 2 A_{0}^{4} \varepsilon+4 A_{0} \rho & \left(\leq \min \left(a_{0}, a_{2}\right)\right) \tag{3.15}\\
\forall z \in \pi U_{\mu} & G_{z}(x-z) \leq 2 A_{0}^{4} \varepsilon+4 A_{0} \rho & \left(\leq \min \left(a_{0}, a_{2}\right)\right) .
\end{array}\right.
$$

Indeed let $t_{0} \in \pi U_{v}$ be such that $G_{t_{0}}\left(x-t_{0}\right) \leq A_{0}^{2}$. Since t_{0}, t are in πU_{v} we have $G_{t_{0}}\left(t-t_{v}\right) \leq g_{w_{v}}\left(w-w_{v}\right) \leq \rho, \quad G_{t_{0}}\left(t_{0}-t_{v}\right) \leq \rho$. Since $\rho \leq a_{0} \quad$ we obtain $G_{t} \leq A_{0} G_{t_{0}}$ $\leq A_{0}^{2} G_{t_{0}}$. Therefore

$$
G_{t}(x-t) \leq 2\left[G_{t}\left(x-t_{0}\right)+G_{t}\left(t_{0}-t\right)\right] \leq 2\left[A_{0}^{4} \varepsilon+2 A_{0} \rho\right] .
$$

It follows from [5], formula (18.4.12) that, for every $k \in N$ one can find $C_{k}>0$, independent of v such that

$$
\begin{equation*}
\left|\theta_{v \mu}(w)\right| \leq C_{k}\left(1+\inf _{\substack{w^{\prime} \in V_{v} \\ w^{\prime \prime} \in U_{\mu}}}\left[g_{w^{\prime}}^{\sigma}\left(w-w^{\prime \prime}\right)+\left[g_{w^{\prime \prime}}^{\sigma}\left(w-w^{\prime}\right)\right]\right)^{-k} .\right. \tag{3.16}
\end{equation*}
$$

We would like to replace the right hand side of (3.16) by

$$
\left(1+\inf _{w^{\prime} \in U_{0}} g_{w}^{\sigma}\left(w-w^{\prime}\right)+\inf _{w^{\prime \prime} \in U_{\mu}} g_{w}^{\sigma}\left(w-w^{\prime \prime}\right)\right)^{-k}
$$

This will follow from

$$
\begin{equation*}
g_{w}^{\sigma}\left(w-w^{\prime}\right)+g_{w}^{\sigma}\left(w-w^{\prime \prime}\right) \leq C\left(1+g_{w^{\prime}}^{\sigma}\left(w-w^{\prime \prime}\right)+g_{w^{\prime \prime}}^{\sigma}\left(w-w^{\prime}\right)\right)^{n_{0}} \tag{3.17}
\end{equation*}
$$

for some n_{0} independent of $w, w^{\prime}, w^{\prime \prime}$.
If we set $w=(x, \xi), w^{\prime}=(y, \eta), w^{\prime \prime}=(z, \zeta)$, it follows from (3.15) that $G_{y}(x-y)$ and $G_{z}(x-z)$ are bounded by a_{2}. It follows from (2.8) that

$$
\begin{aligned}
& g_{w^{\prime}} \leq A_{2} g_{w}\left(1+g_{w^{\prime}}^{\sigma}\left(w-w^{\prime}\right)\right)^{N} \\
& g_{w^{\prime \prime}} \leq A_{2} g_{w}\left(1+g_{w^{\prime}}^{\sigma} \cdot\left(w-w^{\prime \prime}\right)\right)^{N}
\end{aligned}
$$

which implies

$$
\begin{aligned}
& g_{w}^{\sigma} \leq A_{2} g_{w^{\prime}}^{\sigma}\left(1+g_{w^{\prime}}^{\sigma}\left(w-w^{\prime}\right)\right)^{N} \\
& g_{w}^{\sigma} \leq A_{2} g_{w^{\prime \prime}}^{\sigma}\left(1+g_{w^{\prime \prime}}^{\sigma}\left(w-w^{\prime \prime}\right)\right)^{N}
\end{aligned}
$$

so

$$
g_{w}^{\sigma}\left(w-w^{\prime}\right)+g_{w}^{\sigma}\left(w-w^{\prime \prime}\right) \leq A_{2}\left(2+g_{w^{\prime}}^{\sigma}\left(w-w^{\prime}\right)+g_{w^{\prime \prime}}^{\sigma}\left(w-w^{\prime \prime}\right)\right)^{N+1} .
$$

It follows that (3.17) will be a consequence of

$$
\begin{equation*}
g_{w^{\prime}}^{\sigma}\left(w-w^{\prime}\right)+g_{w^{\prime \prime}}^{\sigma}\left(w-w^{\prime \prime}\right) \leq C\left(1+g_{w^{\prime}}^{\sigma}\left(w-w^{\prime \prime}\right)+g_{w^{\prime \prime}}^{\sigma}\left(w-w^{\prime}\right)\right)^{q} \tag{3.18}
\end{equation*}
$$

ffor some $q \in \boldsymbol{N}$.
Let us set $w_{1}=w^{\prime}+w^{\prime \prime}-w$. Since $w^{\prime}=(y, \eta) \in U_{v}, w^{\prime \prime}=(z, \zeta) \in U_{\mu}(3.13)$ implies that $G_{y}(x-y) \leq a_{0}, G_{z}(x-z) \leq a_{0}$. We deduce from (2.1) that $G_{y}(x-z) \leq A_{0}^{2} G_{z}(x-z)$ $\leq 2 A_{0}^{6} \varepsilon+4 A_{0}^{3} \rho \leq a_{2}$. Since $w_{1}-w^{\prime}=w^{\prime \prime}-w=(z-x, \zeta-\xi)$ and $w^{\prime}=(y, \eta),(2.8)$ implies

$$
\begin{aligned}
g_{w^{\prime}} & \leq A_{2} g_{w_{1}}\left(1+g_{w^{\prime}}^{\sigma}\left(w^{\prime \prime}-w_{1}\right)\right)^{N} \\
g_{w^{\prime \prime}} & \leq A_{2} g_{w_{1}}\left(1+g_{w^{\prime \prime}}^{\sigma}\left(w^{\prime \prime}-w_{1}\right)\right)^{N} .
\end{aligned}
$$

This implies

$$
\left\{\begin{array}{l}
g_{w_{1}}^{\sigma}\left(w-w^{\prime \prime}\right) \leq A_{2}\left(1+g_{w^{\prime}}^{\sigma} \cdot\left(w-w^{\prime \prime}\right)\right)^{N+1} \tag{3.19}\\
g_{w_{1}}^{\sigma}\left(w-w^{\prime}\right) \leq A_{2}\left(1+g_{w^{\prime \prime}}^{\sigma}\left(w-w^{\prime}\right)\right)^{N+1}
\end{array}\right.
$$

By symmetry one gets

$$
\left\{\begin{array}{l}
g_{w^{\prime}}^{\sigma} \leq A_{2} g_{w_{1}}^{\sigma}\left(1+g_{w_{1}}^{\sigma}\left(w^{\prime}-w_{1}\right)\right)^{N} \tag{3.20}\\
g_{w^{\prime \prime}}^{\sigma} \leq A_{2} g_{w_{1}}^{\sigma}\left(1+g_{w_{1}}^{\sigma}\left(w^{\prime \prime}-w_{1}\right)\right)^{N}
\end{array}\right.
$$

It follows from (3.19) and (3.20) that

$$
g_{w^{\prime}}^{\sigma}\left(w-w^{\prime}\right)+g_{w^{\prime}}^{\sigma}\left(w-w^{\prime \prime}\right) \leq C\left(A_{2}\right)\left(1+g_{w^{\prime}}^{\sigma}\left(w-w^{\prime \prime}\right)+g_{w^{\prime \prime}}^{\sigma}\left(w-w^{\prime}\right)\right)^{q}
$$

for some q. This is (3.18). Therefore (3.17) is proved and by (3.16) we get

$$
\begin{equation*}
\left|\theta_{v \mu}(x, \xi)\right| \leq C_{l}\left(1+\inf _{w^{\prime} \in U_{0}} g_{w}^{\sigma}\left(w-w^{\prime}\right)+\inf _{w^{\prime \prime} \in U_{\mu}} g_{w}^{\sigma}\left(w-w^{\prime \prime}\right)\right)^{-l} \tag{3.21}
\end{equation*}
$$

Let $w_{0}^{\prime} \in U_{v}$ and $w_{0}^{\prime \prime} \in U_{\mu}$ be such that

$$
\begin{equation*}
g_{w}\left(w-w_{0}^{\prime}\right)=\inf _{w^{\prime} \in U_{v}} g_{w}\left(w-w^{\prime}\right), \quad g_{w}\left(w-w_{0}^{\prime \prime}\right)=\inf _{w^{\prime \prime} \in U_{\mu}} g_{w}\left(w-w^{\prime \prime}\right) \tag{3.22}
\end{equation*}
$$

Since $w_{0}^{\prime} \in U_{v}$ it follows from (3.15) that $G_{x_{0}^{\prime}}\left(x-x_{0}^{\prime}\right) \leq a_{2}$. Then (2.8) implies $g_{w_{0}^{\prime}}^{\sigma} \leq A_{2} g_{w}^{\sigma}\left(1+g_{w}^{\sigma}\left(w-w_{0}^{\prime}\right)\right)^{N}$. By the slow variation of g in U_{v} we get

$$
\begin{aligned}
g_{w_{0}}^{\sigma}\left(w_{0}^{\prime}-w_{0}^{\prime \prime}\right) & \leq A_{1} g_{w_{0}^{\prime}}^{\sigma}\left(w_{0}^{\prime}-w_{0}^{\prime \prime}\right) \leq A_{1} A_{2} g_{w}^{\sigma}\left(w_{0}^{\prime}-w_{0}^{\prime \prime}\right)\left(1+g_{w}^{\sigma}\left(w-w_{0}^{\prime}\right)\right)^{N} \\
& \leq 2 A_{1} A_{2}\left[g_{w}^{\sigma}\left(w_{0}^{\prime}-w\right)+g_{w}^{\sigma}\left(w-w_{0}^{\prime \prime}\right)\right]\left(1+g_{w}^{\sigma}\left(w-w_{0}^{\prime}\right)\right)^{N} \\
& \leq 2 A_{1} A_{2}\left(1+g_{w}^{\sigma}\left(w-w_{0}^{\prime}\right)+g_{w}^{\sigma}\left(w-w_{0}^{\prime \prime}\right)\right)^{N+1} .
\end{aligned}
$$

It follows from (3.21) and (3.22) that if we set

$$
\begin{equation*}
d_{v \mu}=\inf _{\substack{w^{\prime} \in U_{v} \\ w^{\prime} \in \in U_{\mu}}} g_{w_{v}}\left(w^{\prime}-w^{\prime \prime}\right) \tag{3.23}
\end{equation*}
$$

we have for every $l \in N$,

$$
\begin{equation*}
\left|\theta_{v \mu}(x, \xi)\right| \leq C_{l}\left(1+d_{v \mu}\right)^{-l} . \tag{3.24}
\end{equation*}
$$

The same estimate is true for every semi-norm of $\theta_{v \mu}$ in $S(1, g)$. It follows from [3] (Remark after Theorem 4.3) that first part of (3.10) is valid. Let us now show the second part. We fix so we may assume that $g_{w_{v}}(t)=|t|^{2}$. We have

$$
\sum_{\mu=1}^{\mu_{0}}\left(1+d_{v \mu}\right)^{-l_{0}}=\sum_{k=1}^{k_{0}} \sum_{k-1 \leq d_{\nu \mu}<k}\left(1+d_{v \mu}\right)^{-l_{0}} \leq \sum_{k=1}^{k_{0}} k^{-l_{0}} \operatorname{card} M_{k}
$$

where $M_{k}=\left\{\mu: d_{v \mu}<k\right\}$. We shall show that card $M_{k} \leq C k^{q}$ for some q, which will prove (3.10).

Now if $\mu \in M_{k}$ there exists $w_{v}^{\prime} \in U_{v}, w_{\mu}^{\prime \prime} \in U_{\mu}$ such that $g_{w_{v}}^{\sigma}\left(w_{v}^{\prime}-w_{\mu}^{\prime \prime}\right)<k$. It follows from (2.3) that

$$
\begin{equation*}
g_{w_{v}^{\prime}}^{\sigma}\left(w_{v}^{\prime}-w_{\mu}^{\prime \prime}\right) \leq A_{1} k \tag{3.25}
\end{equation*}
$$

Now, by (3.15), if $w \in \operatorname{supp} \theta_{v \mu}, w=(x, \xi)$ we have $G_{x_{v}^{\prime}}^{\sigma}\left(x-x_{v}^{\prime}\right) \leq a_{0}$ and $G_{x_{\mu}^{\prime}}\left(x-x_{\mu}^{\prime \prime}\right)$ $\leq a_{0}$. It follows that $G_{x}\left(x-x_{v}^{\prime}\right)+G_{x}\left(x-x_{\mu}^{\prime \prime}\right) \leq 4 A_{0}^{5} \varepsilon+8 A_{0}^{2} \rho$ so $G_{x}\left(x_{\mu}^{\prime \prime}-x_{v}^{\prime}\right) \leq 8 A_{0}^{5} \varepsilon$ $+16 A_{0}^{2} \rho$. Therefore $G_{x_{v}^{\prime}}\left(x_{v}^{\prime}-x_{\mu}^{\prime \prime}\right) \leq 8 A_{0}^{6} \varepsilon+16 A_{0}^{3} \rho \leq a_{2}$ by (3.5), (3.6). We deduce from (2.8) that $g_{w_{\mu}^{\prime}}^{\sigma}(t) \leq C g_{w_{v}^{\prime}}^{\sigma}(t)\left(1+g_{w_{v}^{\prime}}^{\sigma}\left(w_{v}^{\prime}-w_{\mu}^{\prime \prime}\right)\right)^{N}$. It follows from (2.6) and (3.25) that $g_{w_{\mu}^{\prime \prime}}^{\sigma}(t) \leq C\left(A_{1}\right)|t|^{2} k^{N}$. Therefore $|t| \leq \delta k^{-N / 2}$ imlies $g_{w_{\mu}^{\prime}}(t) \leq C\left(A_{1}\right) \delta^{2}$ so:

$$
\left|z-w_{\mu}^{\prime \prime}\right| \leq \delta k^{-N / 2} \Rightarrow g_{w_{\mu}}\left(z-w_{\mu}^{\prime \prime}\right) \leq C^{\prime}\left(A_{1}\right) \delta^{2}
$$

Now $g_{w_{\mu}}^{1 / 2}\left(z-w_{\mu}\right) \leq g_{w_{\mu}}^{1 / 2}\left(z-w_{\mu}^{\prime \prime}\right)+g_{w_{\mu}}^{1 / 2}\left(w_{\mu}-w_{\mu}^{\prime \prime}\right) \leq C^{\prime}\left(A_{1}\right) \delta+\rho \leq a_{1}$ if δ is small enough. Therefore

$$
\begin{equation*}
\left|z-w_{\mu}^{\prime \prime}\right| \leq \delta k^{-N / 2} \Rightarrow z \in U_{\mu}^{\prime} \tag{3.26}
\end{equation*}
$$

Now, $\left|z-w_{v}^{\prime}\right| \leq\left|z-w_{\mu}^{\prime \prime}\right|+\left|w_{\mu}^{\prime \prime}-w_{v}^{\prime}\right| \leq \delta k^{-N / 2}+g_{w_{\nu}}^{1 / 2}\left(w_{\mu}^{\prime \prime}-w_{v}^{\prime}\right) \leq \delta k^{-N / 2}+k^{1 / 2}$, by (2.6). Then,

$$
\begin{equation*}
\left|z-w_{\mu}^{\prime \prime}\right| \leq \delta k^{-N / 2} \Rightarrow\left|z-w_{v}^{\prime}\right| \leq 2 k^{1 / 2} \tag{3.27}
\end{equation*}
$$

Let us set $V_{\mu}=\left\{z:\left|z-w_{\mu}^{\prime \prime}\right| \leq \delta k^{-N / 2}\right\}$. We deduce from (3.27)

$$
\begin{equation*}
\bigcup_{\mu \in M_{k}} V_{\mu} \subset\left\{z:\left|z-w_{v}^{\prime}\right| \leq 2 k^{1 / 2}\right\} \tag{3.28}
\end{equation*}
$$

Now there is a bound for the number of V_{μ} which can intersect (since it is true for U_{μ}^{\prime} and $V_{\mu} \subset U_{\mu}^{\prime}$. Therefore (3.28) implies

$$
C_{1} \sum_{\mu \in M_{k}} m\left(V_{\mu}\right) \leq m\left(\bigcup_{\mu \in M_{k}} V_{\mu}\right) \leq C_{0} k^{n / 2}
$$

It follows that card $M_{k} . \quad\left(\delta k^{-N / 2}\right)^{n} \leq C k^{n / 2}$. This completes the proof of Lemma 3.2.

We consider now the term (1) in (3.8). Using Theorem 3.3 in [3] we get

$$
\begin{equation*}
\varphi_{v \chi}^{w} a_{v \chi}^{w} \varphi_{v \chi}^{w}=\left(\varphi_{v}^{2} a_{v}\right)_{\psi}^{w}+r_{v \psi}^{w} \tag{3.29}
\end{equation*}
$$

where $\psi=1$ on the support of $\chi, r_{v} \in S(1, g)$ and

$$
\begin{equation*}
\left|r_{v}^{(k)}(w)\left(w_{1}, \cdots, w_{k}\right)\right| \leq C \prod_{i=1}^{k} g_{w}^{1 / 2}\left(w_{i}\right)\|a\|_{S\left(h^{-2}, g\right)} \tag{3.30}
\end{equation*}
$$

Since $\left(\sum_{v} \varphi_{v}^{2} a_{v}\right)=a_{\psi}^{w}$ we get

$$
\left(a_{\psi}^{w} u, u\right)=\left(\sum_{v} \varphi_{v x}^{w} a_{v x}^{w} \varphi_{v x}^{w} u, u\right)-\left(\left(\sum_{v} r_{v}\right)_{\psi}^{w} u, u\right) .
$$

Lemma 3.3. The operator $\left(\Sigma r_{v}\right)_{\psi}^{w}$ is bounded on L^{2}.
If we prove this Lemma, it will follow from (3.8) and Lemma 3.2, that $\left(a_{\psi}^{w} u, u\right) \geq-C\|u\|_{L^{2}}^{2}$. Since, by Corollary 2.5 in [3], we have $a_{\psi}^{w}-a_{x}^{w}=r_{x}^{w}$ with $r \in S(1, g)$, we shall have $\left(a_{x}^{w} u, u\right) \geq-C\|u\|_{L^{2}}^{2}$ for every properly supported χ, which proves Theorem 2.1.

Proof of Lemma 3.3. We shall estimate the semi-norms in $S(1, g)$ of the symbol of $r_{v \psi}^{w}$ more precisely than (3.30). We split the proof into two cases. Let $w=(x, \xi) \in W$ be fixed.

Case 1: $\quad g_{w_{v}}\left(w-U_{v}\right)=\inf _{w^{\prime} \in U_{v}} g_{w_{v}}\left(w-w^{\prime}\right) \leq \rho$.
We know by the construction of the balls U_{v} (see [5] Lemma 18.4.4) that there is at most N_{0} (independent of w) such v. By (3.30) we get

$$
\sum_{v \geq 1}\left|r_{v}^{(k)}(w)\left(w_{1}, \cdots, w_{k}\right)\right| \leq N_{0} \cdot C \prod_{i=1}^{k} g_{w_{v}}^{1 / 2}\left(w_{i}\right)\|a\|_{S\left(h^{-2}, g\right)}
$$

Case 2: $g_{w_{v}}\left(w-U_{v}\right)>\rho$.
Then $w \notin U_{v}$ and $\varphi_{v}^{2} a_{v}(w)=0$. Let us set $\varphi_{v x}^{w} a_{v x}^{w} \varphi_{v x}^{w}=d_{v \psi}^{w}$; then by (3.18) in [3] and (3.29) it is easy to see that $r_{v}(w)=d_{v}(w)$. We want to show that for every k, l in N,

$$
\begin{equation*}
\left|d_{v}^{(k)}(w)\left(w_{1}, \cdots, w_{k}\right)\right| \leq C_{k l} h^{-2}\left(w_{v}\right) \prod_{i=1}^{k} g_{w_{v}}^{1 / 2}\left(w_{i}\right)\left(1+g_{w_{0}}^{\sigma}\left(w-U_{v}\right)\right)^{-1 / 2} \tag{3.31}
\end{equation*}
$$

where $C_{k l}$ are independent of w, w_{i} and v.
This will follow essentially from the proof of Theorem 2.2.1 in [1]. Indeed, according to Bony-Lerner, a symbol c is said to be confined in U_{v} if for every integers k, l one can find constants $C_{k l}$ such that for every X in U_{v} and every w_{i} in W we have

$$
\left|c^{(k)}(X)\left(w_{1}, \cdots, w_{k}\right)\right| \leq C_{k l} m(X) \prod_{i=1}^{k} g_{w_{v}}^{1 / 2}\left(w_{i}\right)\left(1+g_{w_{v}}^{\sigma}\left(X-U_{v}\right)\right)^{-l / 2}
$$

We shall show that since a_{v} is supported in U_{v} and φ_{v} is confined in U_{v} then $a_{v \chi}^{w} \varphi_{v \chi}^{w}=b_{v}^{w}$, with b_{v} confined in U_{v}. Then since φ_{v} is supported in U_{v}, the same argument will show that d_{v} is confined in U_{v}, which proves (3.31).

Accorting to (3.8) in [3] we have

$$
\begin{align*}
& b_{v}(X)=\pi^{-2 n} \iint e^{2 i \sigma(T-x, z-x)} a_{v}(Z) \varphi_{v}(T) \chi(x+z-t, t+z-x) \tag{3.32}\\
& \cdot \chi(t+z-x, x+t-z) d Z d T,
\end{align*}
$$

where $X=(x, \xi), T=(t, \tau), Z=(z, \zeta)$.
Let $X_{0}=\left(x_{0}, \xi_{0}\right)$ be such that $g_{w_{0}}\left(X_{0}\right)=1,\left(g_{w_{0}}^{\sigma}(X)\right)^{1 / 2}=\sigma\left(X, X_{0}\right)$. Then

$$
\frac{1}{2}\left\langle X_{0}, D_{Z}\right\rangle(2 i \sigma(T-X, Z-X))=\sigma\left(T-X, X_{0}\right)=\left[g_{w_{0}}^{\sigma}(T-X)\right]^{1 / 2}
$$

It follows that

$$
\left(1+\frac{1}{2}\left\langle X_{0}, D_{Z}\right\rangle\right)^{k} e^{2 i \sigma(T-X, Z-X)}=\left(1+g_{w_{0}}^{\sigma}(T-X)^{1 / 2}\right)^{k} e^{2 i \sigma(T-X, Z-X)} .
$$

Therefore

$$
\begin{array}{r}
b_{v}(X)=\pi^{-2 n} \iint e^{2 i \sigma(T-X, Z-X)}\left(1+g_{w_{v}}^{\sigma}(T-X)^{1 / 2}\right)^{-k} \varphi_{v}(T)\left(1+\frac{1}{2}\left\langle X_{0}, D_{Z}\right\rangle\right)^{k} \\
{\left[a_{v}(Z) \chi(x+z-t, t+z-x) \chi(t+z-x, x+t-z)\right] d Z d T .}
\end{array}
$$

Now since φ_{v} and a_{v} are confined in U_{v} and $\chi \in S(1, \tilde{G})$, the Leibniz formula will give

$$
\begin{align*}
& \left|b_{v}(X)\right| \\
& \leq C\left\|\varphi_{v}\right\|_{0, l}\left\|a_{v}\right\|_{k, N}\|\chi\|_{S(1, \tilde{G})}^{2} \iint_{\left(1+g_{w_{v}}^{\sigma}(T-X)\right)^{-k / 2}\left(1+g_{w_{v}}^{\sigma}\left(T-U_{v}\right)\right)^{-l / 2}} \quad \cdot\left(1+g_{w_{v}}^{\sigma}\left(T-U_{v}\right)\right)^{-N}\left(G_{x+z-t}^{1 / 2}\left(x_{0}\right)+G_{t+z-x}^{1 / 2}\left(x_{0}\right)+G_{x+t-z}^{1 / 2}\left(x_{0}\right)\right)^{k} d Z d T .
\end{align*}
$$

Now in the integral defining b_{v}, since a_{v} is supported in U_{v}, we get exactly as in (3.15)

$$
\begin{equation*}
\forall s \in \pi U_{v} \quad G_{s}(x-s) \leq 2 A_{0}^{4} \varepsilon+4 A_{0} \rho \quad\left(\leq \min \left(a_{0}, a_{2}\right)\right) . \tag{3.34}
\end{equation*}
$$

It follows that on the support of the function inside the integral in (3.32) we have

$$
\left\{\begin{array}{l}
G_{x+z-t} \leq A_{0} G_{z} \\
G_{t+z-x} \leq A_{0} G_{z} \\
G_{x+t-z} \leq A_{0} G_{z} .
\end{array}\right.
$$

Since $z \in \pi U_{v}$ (because $Z \in \operatorname{supp} a_{v} \subset U_{v}$) we get $G_{z} \leq A_{0}^{2} G_{x_{0}}$; by (2.3), $G_{x_{v}} \leq g_{w_{v}}$, therefore

$$
G_{x+z-t}^{1 / 2}\left(x_{0}\right)+G_{t+z-x}^{1 / 2}\left(x_{0}\right)+G_{x+t-z}^{1 / 2}\left(x_{0}\right) \leq C\left(A_{0}\right) g_{w_{0}}\left(X_{0}\right)=C\left(A_{0}\right) .
$$

We deduce from (3.33),

$$
\begin{align*}
& \left|b_{v}(X)\right| \tag{3.35}\\
& \leq C\left\|\varphi_{v}\right\|_{0, l}\left\|a_{v}\right\|_{k, N}\|\chi\|_{S_{(1, \tilde{G})}^{2}}^{2} \iint\left(1+g_{w_{v}}^{\sigma}(T-X)\right)^{-k / 2}\left(1+g_{w_{v}}^{\sigma}\left(T-U_{v}\right)\right)^{-l / 2} \\
& \cdot\left(1+g_{w_{v}}^{\sigma}\left(Z-U_{v}\right)\right)^{-N} d Z d T .
\end{align*}
$$

Now

$$
\begin{gather*}
1+g_{w_{v}}^{\sigma}\left(X-U_{v}\right) \leq C\left(1+g_{w_{0}}^{\sigma}(X-T)+g_{w_{0}}^{\sigma}\left(T-U_{v}\right)\right) \\
1+g_{w_{v}}^{\sigma}\left(X-U_{v}\right) \leq C\left(1+g_{w_{v}}^{\sigma}(X-T)\right)\left(1+g_{w_{0}}^{\sigma}\left(T-U_{v}\right)\right) \tag{3.36}
\end{gather*}
$$

On the other hand for every w^{\prime} in U_{v}

$$
1+g_{w_{v}}^{\sigma}\left(Z-w_{v}\right) \leq 1+2 g_{w_{0}}\left(Z-w^{\prime}\right)+2 g_{w_{v}}\left(w^{\prime}-w_{v}\right) \leq 3+2 g_{w_{v}}^{\sigma}\left(Z-w^{\prime}\right)
$$

because $g \leq g^{\sigma}$ and the radius of U_{v} is smaller than one. It follows that

$$
\begin{equation*}
\left(1+g_{w_{0}}^{\sigma}\left(Z-U_{v}\right)\right)^{-1} \leq C\left(1+g_{w_{v}}\left(Z-w_{v}\right)\right)^{-1} . \tag{3.37}
\end{equation*}
$$

Taking in (3.35) $N=2 n+1, k=l+2 n+1$, we deduce from (3.36) and (3.37)

$$
\begin{aligned}
& \left|b_{v}(X)\right| \leq C\left\|\varphi_{v}\right\|_{0, l}\left\|a_{v}\right\|_{2 n+1+l, 2 n+1}\left(1+g_{w_{v}}^{\sigma}\left(X-U_{v}\right)\right)^{-l / 2} \\
& \quad \cdot \iint\left(1+g_{w_{0}}^{\sigma}(X-T)\right)^{-(n+1 / 2)}\left(1+g_{w_{v}}\left(Z-w_{v}\right)\right)^{-(n+1 / 2)} d Z d T .
\end{aligned}
$$

Since the product of the determinant of $g_{w_{v}}$ and $g_{w_{v}}^{\sigma}$ is equal to one and

$$
\left\|\varphi_{v}\right\|_{o, l} \leq M, \quad\left\|a_{v}\right\|_{2 n+1+l, 2 n+1} \leq C_{l, n} \sup _{X \in U_{0}} h^{-2}(X),
$$

we get our claim. We estimate the derivatives by the same method. This proves (3.31).

Now, from the definition (2.7) of h we have for every w^{\prime} in U_{v},

$$
g_{w_{0}}^{\sigma}\left(w-w^{\prime}\right) \geq h^{-2}\left(w_{v}\right) g_{w_{0}}\left(w-w^{\prime}\right)
$$

Since we are in case 2 it follows that

$$
\begin{equation*}
g_{w_{v}}^{\sigma}\left(w-U_{v}\right) \geq \rho h^{-2}\left(w_{v}\right) . \tag{3.38}
\end{equation*}
$$

Now, let $w_{0}^{\prime}=\left(x_{0}^{\prime}, \xi_{0}^{\prime}\right) \in U_{v}$ be such that

$$
\begin{equation*}
g_{w_{0}}^{\sigma}\left(w-U_{v}\right)=g_{w_{0}}^{\sigma}\left(w-w_{0}^{\prime}\right) . \tag{3.39}
\end{equation*}
$$

It follows from (3.34) that $G_{x_{0}^{\prime}}\left(x-x_{0}^{\prime}\right) \leq a_{2}$ and from (2.8)

$$
g_{w_{0}^{\prime}} \leq A_{2} g_{w}\left(1+g_{w_{0}^{\prime}}^{\sigma}\left(w-w_{0}^{\prime}\right)\right)^{N} .
$$

By the slow variation of of g in U_{v} we deduce

$$
g_{w_{v}} \leq A_{1} A_{2} g_{w}\left(1+A_{1} g_{w_{0}}^{\sigma}\left(w-w_{0}^{\prime}\right)\right)^{N} .
$$

From (3.31), (3.38) and (3.39) we get

$$
\begin{equation*}
\left|r_{v}^{(k)}(w)\left(w_{1}, \cdots, w_{k}\right)\right| \leq C_{k I N} \prod_{i=1}^{k} g_{w}^{1 / 2}\left(w_{i}\right)\left(1+g_{w_{v}}^{\sigma}\left(w-U_{v}\right)\right)^{-\frac{1}{2}+\frac{N}{2}+1} . \tag{3.40}
\end{equation*}
$$

Assume $w \in U_{\lambda}$. Using the slow variation of g in U_{λ} and (3.34) we get

$$
g_{w \lambda}^{\sigma} \leq A_{1} g_{w}^{\sigma} \leq A_{1} A_{2} g_{w_{0}^{\prime}}^{\sigma}\left(1+g_{w_{0}^{\prime}}^{\sigma}\left(w-w_{0}^{\prime}\right)\right)^{N}
$$

and therefore

$$
\begin{equation*}
1+\inf _{\substack{w^{\prime} \prime U_{v} \\ w^{\prime} \in U_{\lambda}}} g_{w_{\lambda}}^{\sigma}\left(w^{\prime}-w^{\prime \prime}\right) \leq C\left(A_{1}, A_{2}\right)\left(1+g_{w_{v}}^{\sigma}\left(w-U_{v}\right)\right)^{N+1} \tag{3.41}
\end{equation*}
$$

Recall that we defined in (3.23) $d_{\lambda v}$ by

$$
d_{\lambda v}=\inf _{\substack{w^{\prime} \in U_{v} \\ w^{\prime} \in \in U_{\lambda}}} g_{w^{\prime \prime}}^{\sigma}\left(w^{\prime}-w^{\prime \prime}\right)
$$

By (3.40), (3.41) and the slow variation of g on U_{λ} we get for every $k, q \in N$

$$
\begin{equation*}
\left|r_{v}^{(k)}(w)\left(w_{1}, \cdots, w_{k}\right)\right| \leq C_{k q} \prod_{i=1}^{k} g_{w}^{1 / 2}\left(w_{i}\right)\left(1+d_{\lambda v}\right)^{-q} \tag{3.42}
\end{equation*}
$$

Using the second part of (3.10) we obtain that the semi-norms of Σr_{v} are uniformly bounded in $S(1, g)$; it follows that the operator $\left(\Sigma r_{v}\right)_{\psi}^{w}$ is bounded on L^{2}, by Theorem 4.3 in [3]. The proof is complete.

References

[1] J-M. Bony and Lerner: Quantification asymptotique et microlocalisations d'ordre supérieur I, Ann. Sc. ENS, t. 22 (1989), p.377-433.
[2] F. Colombini, D. Del Santo and C. Zuily: Singular principal normality in the Cauchy problem, Journ. Math. Kyoto Univ. vol. 36 (1996), 365-384.
[3] N. Dencker: The Weyl calculus with locally temperate metrics and weights, Arkiv for Mat. 24
(1986), 59-79.
[4] C. Fefferman and D.H. Phong: On positivity of pseudo-differential operators, Proc. Nat. Acad. Sci., 75, (1978), 4673-4674.
[5] L. Hörmander: The analysis of linear partial differential operators 3, Springer Verlag, (1985).

F. Colombini
Dipartimento di Matematica
Universita di Pisa
56127 Pisa, Italia
e-mail: colombin@dm.unipi.it
D. Del Santo
Dip. di Scienze Matematiche
Università di Trieste
Piazzale Europa 1
34127 Trieste, Italia
e-mail: delsant@univ.trieste.it
Claude Zuily
Université de Paris-Sud
Departement de Mathématiques
91405 Orsay Cedex, France
e-mail: Claude.Zuily@math.u-psud.fr

