HANDLEBODY DECOMPOSITIONS OF 4-MANIFOLDS AND TORUS FIBRATIONS

Yukio MATSUMOTO

(Received October 11, 1995)

1. Introduction

The purpose of this paper is to prove the following
Theorem A. Let M be a closed smooth 4-manifold which has a handlebody decomposition of this type:

$$
M=H^{0} \cup a H^{2} \cup b H^{3} \cup H^{4}
$$

where $b \leq 1$. Then M admits a torus fibration over the 2 -sphere $f: M \rightarrow S$. The projection f is smooth except at a point $\in M$, and f has only one singular fiber.

In this theorem, a and b are the numbers of 2 and 3 handles, respectively. The type of the singular fiber in the above fibration is not necessarily 'good' in the sense of [7].

Theorem A was first announced in 1982 in [6]. (See also [7], [8].) The main reason for the long delay in publishing the proof is, of course, the author's laziness. But a reason was partly because the author was not fully convinced of the usefulness of the result; the variety of the singular fibers appearing in the construction seemed quite uncontrolable. As a matter of fact, such wide variety was a key to the proof of the existence theorem. Recently, the author received an enquiry from Daniel Ruberman about the proof. In trying to answer him, the author found a new example of a smooth torus fibration of S^{4} over S^{2} applying the general construction in this paper to S^{4}. Also, he found that, if $H_{2}(M ; Z) \neq\{0\}$, we can arrange so that the general fiber is not homologous to zero in M (Theorem B in Section 3). He hopes that these improvements might justify this late publication of the proof. The author thanks D . Ruberman, whose enquiry gave him an opportunity to publish this paper.

2. Multiple fibered links

We begin by recalling 'multiple fibered links' from [6], [8]. Let L^{3} be an oriented closed 3 -manifold.

Definition. A smooth map $g: L^{3} \rightarrow C$ is called a multiple fibered link in L^{3} if it satisfies the following:
(i) $g^{-1}(0) \neq \phi$;
(ii) the map $\varphi(x)=g(x) /|g(x)|: L^{3}-g^{-1}(0) \rightarrow S^{1}$ is a submersion with connected fibers;
(iii) around each point $x_{0}\left(\epsilon g^{-1}(0)\right)$, there exist local coordinates u_{1}, u_{2}, u_{3} of L^{3} satisfying

$$
g(x)=\left(u_{2}(x)+\sqrt{-1} u_{3}(x)\right)^{m}
$$

for all \boldsymbol{x} near \boldsymbol{x}_{0}, m being a positive integer called the multiplicity at \boldsymbol{x}_{0}.
The first coordinate u_{1} is along the component of the link $g^{-1}(0)$. The multiplicity is constant along a component of $g^{-1}(0)$, which is the multiplicity of the component. Sometimes $g^{-1}(0)$ itself is called a multiple fibered link for simplicity. A fiber of $\varphi: L^{3}-g^{-1}(0) \rightarrow S^{1}$ is a punctured surface, whose genus is the genus of the multiple fibered link.

Lemma 1. Let $\hat{\beta}$ be a closed braid in a 3 -sphere Σ^{3}. Suppose Dehn surgery along the components $K_{0}^{*}, K_{1}^{*}, \cdots, K_{a}^{*}$ of $\hat{\beta}$ with integer coefficients $n_{0}, n_{1}, \cdots, n_{a}$ gives a 3 -manifold $L^{3}=\chi_{\Sigma^{3}}\left(K_{0}^{*}, \cdots, K_{a}^{*} ; n_{0}, \cdots, n_{a}\right)$. Then the meridians $K_{0}, K_{1}, \cdots, K_{a}$ of $K_{0}^{*}, K_{1}^{*}, \cdots, K_{a}^{*}$ and the circle C_{0} (in Fig. 1) become a multiple fibered link of genus 0 in L^{3}. A typical fiber is the punctured disk shaded in the diagram. Also circles belonging to $\left\{C_{1}, \cdots, C_{r}\right\}$ (in Fig. 1) are isotopic in L^{3} to a component K_{i} of the mutiple fibered link if and only if they link the component K_{i}^{*} of $\hat{\beta}$ in Σ^{3}.

We chose the notation $K_{0}^{*}, K_{1}^{*}, \cdots, K_{a}^{*}$ for the components of $\hat{\beta}$, and Σ^{3} for the 3 -sphere, so that they are concordant with the notation in Section 3.

Proof of Lemma 1. $\Sigma^{3}-\operatorname{int} N\left(C_{0} \cup K_{0}^{*} \cup \cdots \cup \cdots K_{a}^{*}\right)$ is fibered over the circle S^{1} with fiber the shaded punctured disk in Figure 1. For a component K_{i}^{*} of $\hat{\beta}$, let $\varphi_{i}: \partial D^{2} \times S^{1} \rightarrow \partial N\left(K_{i}^{*}\right)$ be the diffeomorphism used for the Dehn surgery. We may assume

$$
\left\{\begin{array}{l}
\varphi_{i}\left(\partial D^{2} \times\{p t\}\right)=n_{i} \mu_{i}+\lambda_{i} \\
\varphi_{i}\left(\{p t\} \times S^{1}\right)=-\mu_{i} .
\end{array}\right.
$$

Here λ_{i} is a preferred longitude of K_{i}^{*}, and μ_{i} is a meridian. Then on $\partial D^{2} \times S^{1}$ the preimages $\varphi_{i}^{-1}\left(\lambda_{i}\right), \varphi_{i}^{-1}\left(\mu_{i}\right)$ look as shown in Figure 2.

Fig. 1.

Fig. 2.
Thus if $C_{1}^{(i)}, C_{2}^{(i)}, \cdots, C_{m_{i}}^{(i)}$ are the boundary circles of the punctured disk (different from C_{0}) which link the component K_{i}^{*}, then $\varphi_{i}^{-1}\left(C_{1}^{(i)}\right), \cdots, \varphi_{i}^{-1}\left(C_{m_{i}}^{(i)}\right)$ look as shown in Figure 3:

Fig. 3.
A tubular neighborhood of a component of the fibered link is obtained by identifying the 2-disks at the right and left ends of the cylinder in Figure 4 in an untwisted manner. (In this figure, the multiplicity of the component is 3.) This tubular neighborhood is identified with the solid torus of Figure 3.

a component of the multiple fibered link
Fig. 4
Now it would be clear that in L^{3} the circles $C_{1}^{(i)}, \cdots, C_{m_{i}}^{(i)}$ are isotopic to the central circle of the above tubular neighborhood, which is a component K_{i} of the asserted multiple fibered link in L^{3}.

The argument is similar for the component C_{0}.
Finally it is an easy task to construct a projection $g: L^{3} \rightarrow C$ of the multiple fibered link.

Remark. The multiplicity m_{i} of the component K_{i} is equal to the number of the circles $C_{1}^{(i)}, \cdots, C_{m_{i}}^{(i)}$, which is equal to the linking number $\| \operatorname{link}_{\Sigma^{3}}\left(K_{i}{ }^{*}, C_{0}\right) \mid$, ($i=1, \cdots, a$).

3. Proof of Theorem A

By the assumption M has a handlebody decomposition $M=H^{0} \cup a H^{2} \cup b H^{3}$ $\cup H^{4}$ with $b \leq 1$. If $b=0$, we introduce an extra pair of 2 , 3 -handles, and we may assume $b=1$. Then $\partial\left(H^{0} \cup a H^{2}\right)=S^{1} \times S^{2}$. Suppose an unknot K_{0}^{*} of Figure 5 with framing 0 is a surgery description of $S^{1} \times S^{2}$:

$$
S^{1} \times S^{2}=\chi_{\Sigma^{3}}\left(K_{0}^{*}, 0\right),
$$

where Σ^{3} is a 3 -sphere in which K_{0}^{*} is drawn.

Fig. 5.

Fig. 6.

Let $H_{1}^{*}, H_{2}^{*}, \cdots, H_{a}^{*}$ be the 2-handles dual to the 2-handles $H_{1}^{2}, H_{2}^{2}, \cdots, H_{a}^{2}$ in the decomposition of M. Let $K_{1}^{*}, K_{2}^{*}, \cdots, K_{a}^{*}$ be the attaching circles (in $S^{1} \times S^{2}=\chi_{\Sigma^{3}}\left(K_{0}^{*}, 0\right)$) of $H_{1}^{*}, H_{2}^{*}, \cdots, H_{a}^{*}$ with certain framings $n_{1}, n_{2}, \cdots, n_{a}$. Then the framed link in Σ^{3}

$$
\mathscr{L}=\left\{\left(K_{0}^{*}, 0\right),\left(K_{1}^{*}, n_{1}\right), \cdots,\left(K_{a}^{*}, n_{a}\right)\right\}
$$

gives a surgery description of $S^{3}=\partial H^{0}$. By Alexander's theorem [1], [2, Thm.2.1] we can put \mathscr{L} into the form of a closed braid $\hat{\beta}$. Applying Lemma 1 , we use $\hat{\beta}$ and draw a surgery description of a multiple fibered link L (in $S^{3}=\partial H^{0}$) of genus zero as shown in Figure 6, where the curve K_{0}^{*} is arranged to link C_{0} geometrically once.

Let $K_{1}, K_{2}, \cdots, K_{a}$ be the attaching circles (in $\partial H^{0}=S^{3}=\chi_{\Sigma^{3}}(\mathscr{L})$) of the 2-handles $H_{1}^{2}, H_{2}^{2}, \cdots, H_{a}^{2}$. Since H_{i}^{2} is dual to $H_{i}{ }^{*}$, we may assume that K_{i} is a meridian of K_{i}^{*} for each i and that the attaching framings of these handles $H_{1}^{2}, \cdots, H_{a}^{2}$ are all zero (we are speaking of the framing in the diagram of Figure 6, in other words, on the 'canvas' Σ^{3}).

We denote a meridian of K_{0}^{*} by K_{0}.
By Lemma 1, the multiple fibered link L is the union

$$
C_{0} \cup K_{0} \cup K_{1} \cup \cdots \cup K_{a} .
$$

Now the torus fibration $f: M \rightarrow S^{2}$ will be constructed in 3 steps:
(1) construction of a map $G: H^{0} \rightarrow D^{2}$,
(2) extension of G to a map $F: H^{0} \cup a H^{2} \rightarrow D^{2}$, and
(3) extension of F to the desired torus fibration $f: M \rightarrow S^{2}$.

Step 1. Let L be the multiple fibered link constructed above, $g: S^{3} \rightarrow C$ the projeciton of \boldsymbol{L}. Let us recall the definition of the 'cone extension' of g. (See [6], [8].) In this definition, we identify S^{3} with the unit sphere of \boldsymbol{R}^{4}.

Definition. A function $\tilde{g}: \boldsymbol{R}^{4} \rightarrow \boldsymbol{C}$ is called the d-th cone extension of $g: S^{3} \rightarrow \boldsymbol{C}$ if \tilde{g} satisfies the following:

$$
\tilde{g}(x)= \begin{cases}\|x\|^{d} g\left(\frac{\boldsymbol{x}}{\|x\|}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

The integer $d(\geq 1)$ is usually equal to 1 , in which case \tilde{g} is simply called the cone extension of g. (See Figure 7.)

Topological properties of \tilde{g} are independent of $d . \quad \tilde{g}$ is smooth except at the origin $\mathbf{0} \in \boldsymbol{R}^{4}$. (Fig. 7.)

Remark. The cone extension construction of a multiple fibered link is intended to mimic topologically the local fibering structure of a holomorphic function. See Milnor [9].

Fig. 7.
Let D^{4} be the unit 4-disk of \boldsymbol{R}^{4}. Put $S_{\varepsilon}^{1}=\{z \in C| | z \mid=\varepsilon\}$ and $D_{\varepsilon}^{2}=\{z \in C| | z \mid \leq \varepsilon\}$.
Lemma 2. For a sufficiently small $\varepsilon>0$, the fiber bundle $\tilde{g} \mid\left(D^{4} \cap \tilde{g}^{-1}\left(S_{\varepsilon}^{1}\right)\right)$: $D^{4} \cap \tilde{g}^{-1}\left(S_{\varepsilon}^{1}\right) \rightarrow S_{\varepsilon}^{1}$ is smoothly isomorphic to the bundle $\varphi=g /|g|:\left(S^{3}-\operatorname{int} T\right) \rightarrow S^{1}$ in the complement of a tubular neighborhood T of \boldsymbol{L}.

Proof. The proof is similar to Theorem 5.11 or Lemma 11.3 in [9], but here easier, because there exists a standard vector field

$$
\boldsymbol{v}(\boldsymbol{x})=\sum_{k=1}^{4} x_{k} \frac{\partial}{\partial x_{k}}, \quad \boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \boldsymbol{R}^{4}
$$

that is transverse to both $\tilde{g}^{-1}\left(S_{\varepsilon}^{1}\right)$ and S^{3}.
Let Δ_{ε}^{4} denote $D^{4} \cap \tilde{g}^{-1}\left(D_{\varepsilon}^{2}\right)$. Δ_{ε}^{4} is a smooth manifold with corners. By 'straightening corners', we can find a homeomorphism $h: H^{0} \rightarrow \Delta_{\varepsilon}^{4}$ of the 0-handle H^{0} of M to Δ_{ε}^{4} such that
(i) h is the identity on the tubular neighborhood T of L in S^{3}, and
(ii) h is a diffeomorphism except at ∂T. (See Figure 8)

We construct the map $G: H^{0} \rightarrow D_{\varepsilon}^{2}$ by setting

$$
G=\left(\tilde{g} \mid \Delta_{\varepsilon}^{4}\right) \circ h
$$

Fig. 8.
G has the following properties: G becomes a fiber bundle over $D_{\varepsilon}^{2} \backslash\{0\}$, and has a singular fiber over 0 . By Lemma 2, the general fiber $G^{-1}\left(z_{0}\right), z_{0} \in D_{\varepsilon}^{2} \backslash\{0\}$, is diffeomorphic to the shaded punctured disk in Figure 1. Also the monodromy of the restricted bundle $G \mid G^{-1}\left(S_{\varepsilon}^{1}\right): G^{-1}\left(S_{\varepsilon}^{1}\right) \rightarrow S_{\varepsilon}^{1}$ is isomorphic to the bundle associated with the multiple fibered link \boldsymbol{L}.

The singular fiber $G^{-1}(0)$ is a cone $\mathbf{0} * \boldsymbol{L}$ over \boldsymbol{L} from the origin $\mathbf{0}$. (Cf. Fig. 8)
Another property of G is that $G|T=\tilde{g}| T(=g \mid T)$, which follows from Property (i) of h.

Step 2. Note that the tubular neighborhood T of L in $\partial H^{0}\left(=S^{3}\right)$ is a union $T=T\left(C_{0}\right) \cup T\left(K_{0}\right) \cup \cdots \cup T\left(K_{a}\right)$ of tubular neighborhoods of the components $C_{0}, K_{0}, \cdots, K_{a}$. From the 'fringe structure' shown in Figure 4 and the definition of a multiple fibered link (in particular, condition (iii)), it follows that each tubular neihborhood has a natural product structure in the following sense : In the case of $T\left(K_{i}\right)(i=0,1, \cdots, a)$, it is diffeomorphic to $S^{1} \times D_{\delta_{i}}^{2}$:

$$
\begin{equation*}
T\left(K_{i}\right) \cong S^{1} \times D_{\delta_{i}}^{2} \tag{3.1}
\end{equation*}
$$

and under this identification, $G \mid T\left(K_{i}\right): T\left(K_{i}\right) \rightarrow D_{\varepsilon}^{2}$ is written as

$$
\begin{equation*}
G\left(z_{1}, z_{2}\right)=z_{2}^{m_{i}}, \quad\left(z_{1}, z_{2}\right) \in S^{1} \times D_{\delta_{i}}^{2} \tag{3.2}
\end{equation*}
$$

where $\delta_{i}=(\varepsilon)^{1 / m_{i}}>0, m_{i}$ being the multiplicity of K_{i}. In the case of $T\left(C_{0}\right)$, the situation is similar and simpler; $T\left(C_{0}\right) \cong S^{1} \times D_{\varepsilon}^{2}$ and $G\left(z_{1}, z_{2}\right)=z_{2}$ for each $\left(z_{1}, z_{2}\right) \in S^{1} \times D_{\varepsilon}^{2}$.

Recall that the 2-handles $H_{1}^{2}, H_{2}^{2}, \cdots, H_{a}^{2}$ of M are attached along $K_{1}, K_{2}, \cdots, K_{a}$ $\left(\subset \partial H^{0}=S^{3}=\chi_{\Sigma^{3}}(\mathscr{L})\right)$. We may assume

$$
H_{i}^{2} \cap \partial H^{0}=T\left(K_{i}\right) .
$$

We saw at the begining of Section 3 that the attaching framing of H_{i}^{2} to $\partial H^{0}=\chi_{\Sigma^{3}}(\mathscr{L})$
is zero framing on Σ^{3}. From the proof of Lemma 1, the natural product structure (3.1) of $T\left(K_{i}\right)$ is zero framingt on Σ^{3}, too. Thus the attaching framing of $H_{i}{ }^{2}$ coincides with the natural framing of $T\left(K_{i}\right)$. In the other words, the product structure $H_{i}^{2} \cong D^{2} \times D^{2}$ as a handle coincides on $T\left(K_{i}\right)$ with the natural product structure (3.1) up to the scaling of the second facter $D^{2} \cong D_{\delta_{i}}^{2}$. Consequently we can extend $G: H^{0} \rightarrow D_{\varepsilon}^{2}$ to a map $F: H^{0} \cup a H^{2} \rightarrow D_{\varepsilon}^{2}$ by defining it on $H_{i}^{2} \cong D^{2} \times D_{\delta_{i}}^{2}$ $(i=1,2, \cdots, a)$ as

$$
\begin{equation*}
F\left(z_{1}, z_{2}\right)=z_{2}^{m_{i}}, \quad\left(z_{1}, z_{2}\right) \in D^{2} \times D_{\delta_{i}}^{2} \tag{3.3}
\end{equation*}
$$

where m_{i} is the multiplicity of K_{i} (Cf. (3.2).)
This completes the construction of the map F.
Before proceeding to Step 3, we study the fibering structure of $F: H^{0} \cup a H^{2}$ $\rightarrow D_{\varepsilon}^{2}$. We will henceforth identify H^{0} with Δ_{ε}^{4} through the homeomorphism $h: H^{0} \rightarrow \Delta_{\varepsilon}$. Then we may consider $H^{0} \cup a H^{2}$ to be a smooth manifold with corners along $\partial T\left(C_{0}\right) \cup \partial T\left(K_{0}\right)$.

As we saw in Step 1, the general fiber $G^{-1}\left(z_{0}\right)$ of $G: H^{0} \rightarrow D_{\varepsilon}^{2}$ is diffeomorphic to the shaded punctured disk in Figure 1. This punctured disk has $2+\Sigma_{i=1}^{a} m_{i}$ boundary components: one isotopic to C_{0}, one isotopic to K_{0}, and m_{i} isotopic to $K_{i}, i=1, \cdots, a$.

The m_{i} boundary components of $G^{-1}\left(z_{0}\right)$ which are isotopic to K_{i} are situated in $T\left(K_{i}\right) \cong S^{1} \times D_{\delta_{i}}^{2}$ as parallel copies of K_{i}, more precisely, as

$$
S^{1} \times\left\{m_{i} \text {-th roots of } z_{0}\right\} \quad\left(\subset S^{1} \times D_{\delta_{i}}^{2}\right) .
$$

When the handle H_{i}^{2} is attached to H^{0} along $T\left(K_{i}\right)$, these m_{i} circles are capped off by m_{i} disks parallel to the core of H_{i}^{2} :

$$
D^{2} \times\left\{m_{i} \text {-th roots of } z_{0}\right\} \quad\left(\subset D^{2} \times D_{\delta_{i}}^{2}\right),
$$

and these m_{i} disks coincide with $F^{-1}\left(z_{0}\right) \cap H_{i}^{2}$. Thus the general fiber $F^{-1}\left(z_{0}\right)$, $z_{0} \neq 0$, is obtained from the shaded punctured disk in Figure 1 by capping off all the boundary components except C_{0} and K_{0}. Hence $F^{-1}\left(z_{0}\right)$ is an annulus with boundary components parallel to $C_{0} \cup K_{0}$. (Cf. Fig. 9.)

The restriction $F \mid F^{-1}\left(S_{\varepsilon}^{1}\right): F^{-1}\left(S_{\varepsilon}^{1}\right) \rightarrow S_{\varepsilon}^{1}$ is an annulus bundle over a circle. The monodromy of this bundle relative to $\partial T\left(C_{0}\right) \cup \partial T\left(K_{0}\right)$ is trivial, because attaching the 2-handles $H_{1}^{2}, H_{2}^{2}, \cdots, H_{a}^{2}$ along $K_{1}, K_{2}, \cdots, K_{a}$ (with 0 -framings on Σ^{3}) has the effect, on the boundary, of neglecting $K_{1}^{*}, K_{2}^{*}, \cdots, K_{a}^{*}$, which leaves the surgery description (in the sense of Lemma 1) of a fibered link $C_{0} \cup K_{0}$ in $S^{1} \times S^{2}$ whose fibering structure (in the complement of an open tubular neighborhood of $C_{0} \cup K_{0}$) is trivial and isomorphic to $F \mid F^{-1}\left(S_{\varepsilon}^{1}\right): F^{-1}\left(S_{\varepsilon}^{1}\right) \rightarrow S_{\varepsilon}^{1}$. (See Figure 10.)

Fig. 9.

Fig. 10.
So far we have been considering general fibers. Now we describe the singular fiber of $F: H^{0} \cup a H^{2} \rightarrow D_{\varepsilon}^{2}$.

The singular fiber $F^{-1}(0)$ is obtained by attaching the cores of the 2-handles $H_{1}^{2}, \cdots, H_{a}^{2}$ to $G^{-1}(0)$ along K_{1}, \cdots, K_{a}. Thus $F^{-1}(0)$ is a bouquet of 2 -spheres $S_{1}^{2}, \cdots, S_{a}^{1}$ (with 'equators' K_{1}, \cdots, K_{a}) and 2-disks $\mathbf{0} * C_{0} \cup \mathbf{0} * K_{0}$. (See Figure 9.)

As $z_{0} \rightarrow 0$, the general fiber $F^{-1}\left(z_{0}\right)$ covers the sphere $S_{i}^{2} m_{i}$ times $(i=1, \cdots, a)$ and covers $0 * C_{0}$ and $0 * K_{0}$ once.

Step 3. Let $\Phi: S^{3} \rightarrow S^{2}$ be the Hopf fibering. Regarding S^{2} as $C \cup\{\infty\}$, we take an ε-disk $D_{\varepsilon}^{2}=\{z \in C| | z \mid \leq \varepsilon\}$ in S^{2}. Let p_{0} be a point $\Phi^{-1}(0)$. We take a closed neighborhood N of p_{0} in S^{3} which is identified with $D_{\varepsilon}^{2} \times[-1,1]$ via an
appropriate diffeomorphism such that
(i) p_{0} is identified with $(0,0)$ in $D_{\varepsilon}^{2} \times[-1,1]$, and
(ii) $\Phi \mid N: N \rightarrow D_{\varepsilon}^{2}$ is identified with the projection $D_{\varepsilon}^{2} \times[-1,1] \rightarrow D_{\varepsilon}^{2}:(z, t) \mapsto z$. Consider the projection

$$
\Phi^{\prime}:\left(S^{3}-\operatorname{int} N\right) \times S^{1} \rightarrow S^{2}
$$

defined by $\Phi^{\prime}=\left(\Phi \mid\left(S^{3}-\operatorname{int} N\right)\right) \circ P$, where $P:\left(S^{3}-\operatorname{int} N\right) \times S^{1} \rightarrow\left(S^{3}-\operatorname{int} N\right)$ is the projection to the first factor.

It is easy to see that the restriction of Φ^{\prime} to the boundary $\partial\left(S^{3}-\right.$ int $\left.N\right) \times S^{1}$,

$$
\Phi^{\prime} \mid \partial\left(S^{3}-\operatorname{int} N\right) \times S^{1}: \partial\left(S^{3}-\operatorname{int} N\right) \times S^{1} \rightarrow D_{\varepsilon}^{2}
$$

has the same trivial fibering structure as the restriction of F (constructed in Step 2) to the boundary $\partial\left(H^{0} \cup a H^{2}\right)$,

$$
F \mid \partial\left(H^{0} \cup a H^{2}\right): \partial\left(H^{0} \cup a H^{2}\right) \rightarrow D_{\varepsilon}^{2}
$$

Thus by gluing $H^{0} \cup a H^{2}$ and $\left(S^{3}-\right.$ int $\left.N\right) \times S^{1}$ along their boundaries, we obtain a smooth closed 4-manifold $M^{\prime}=\left(H^{0} \cup a H^{2}\right) \cup\left(S^{3}-\right.$ int $\left.N\right) \times S^{1}$ and a map $f: M^{\prime} \rightarrow S^{2}$.

By straightening corners, we may assume that $H^{0} \cup a H^{2}$ and $\left(S^{3}-\operatorname{int} N\right) \times S^{1}$ are smooth 4-manifolds. The latter manifold is diffeomorphic to $D^{3} \times S^{1}$. By [5] and [10], the diffeomorphism type of the resulting closed 4-manifold $\left(H^{0} \cup a H^{2}\right) \cup\left(S^{3}-\operatorname{int} N\right) \times S^{1}$ is indepenednt of the gluing diffeomorphism. Thus M^{\prime} is diffeomorphic to our original $M\left(=H^{0} \cup a H^{2} \cup H^{3} \cup H^{4}\right)$, and we obtain a map $f: M \rightarrow S^{2}$.

From the fibering structure of $F: H^{0} \cup a H^{2} \rightarrow D_{\varepsilon}^{2}$ and $\Phi^{\prime}:\left(S^{3}-\right.$ int $\left.N\right) \times S^{1} \rightarrow S^{2}$, it is easy to see that the map $f: M \rightarrow S^{2}$ is a torus fibration of $M . f$ is smooth except at the center $\mathbf{0}$ of H^{0}.

The fiber $f^{-1}(0)$ over $0\left(\in C \subset S^{2}\right)$ is a single singular fiber of f. It is a bouquet of 2-spheres $S_{1}^{2}, \cdots, S_{a}^{2}$ and a 'croissant' X. Note that $\Phi^{-1}(0) \cap\left(S^{3}-N\right)$ is an interval, and X is obtained by attaching the annulus $\left(\Phi^{-1}(0) \cap\left(S^{3}-N\right)\right) \times S^{1}$ to the bouquet of disks $0 * C_{0} \cup 0 * K_{0}$. Hence X is an immersed 2-sphere with a single transverse self-intersection point at $\mathbf{0}$.

This completes Step 3 and thus the proof of Theorem A.

Problem. Find a condition on a closed 4-manifold M under which M admits a torus fibration $f: M \rightarrow S^{2}$ which is smooth everywhere.

Let M be the same 4-manifold as in Theorem A. The following theorem answers Ruberman's question.

Theorem B. Suppose $H_{2}(M ; \boldsymbol{Z}) \neq\{0\}$. Then there exists a torus fibration $f: M \rightarrow S^{2}$ such that a general fiber is not homologous to 0 in M.

Proof. Let $f: M \rightarrow S^{2}$ be the torus fibration constructed in the proof of Theorem A. $H_{2}(M)$ is generated by the homology classes $\left[S_{1}^{2}\right],\left[S_{2}^{2}\right], \cdots,\left[S_{a}^{2}\right]$ of the 'irreducible components' $S_{1}^{2}, S_{2}^{2}, \cdots, S_{a}^{2}$ of the singular fiber $f^{-1}(0)$. This is because these 2-spheres belong to the relative homology classes $\left[H_{1}^{2}\right],\left[H_{2}^{2}\right], \cdots,\left[H_{a}^{2}\right]$ of the 2-handles in $H_{2}\left(H^{0} \cup a H^{2}, H^{0}\right)$, and the natural homomorphism

$$
H_{2}\left(H^{0} \cup a H^{2}, H^{0}\right) \rightarrow H_{2}\left(M, H^{0}\right) \cong H_{2}(M)
$$

is onto.
By the observation at the end of Step 2 (of the proof of Theorem A), a general fiber $f^{-1}\left(z_{0}\right)$ covers $S_{i}^{2} m_{i}$ times $(i=1, \cdots, a)$ and covers X once. Thus in $H_{2}(M)$, we have

$$
\begin{equation*}
\left[f^{-1}\left(z_{0}\right)\right]=\sum_{i=1}^{a} m_{i}\left[S_{i}^{2}\right]+[X] \tag{3.4}
\end{equation*}
$$

if S_{i}^{2},s and X are appropriately oriented.
By Remark at the end of Section 2, the multiplicity m_{i} is equal to the linking number $\| \operatorname{link}_{\Sigma^{3}}\left(K_{i}^{*}, C_{0}\right) \mid$. On the other hand, we can arbitrarily increase this linking number by introducing extra linking between K_{i}^{*} and C_{0} when applying the Alexander theorem as we did at the begining of Section 3. (See Figure 11.)

Fig. 11
Therefore, there exists a large positive number n_{0} such that, given any integers $m_{1}, m_{2}, \cdots, m_{a}$ greater than $n_{0}(i=1, \cdots, a)$, we can construct a torus fibration $f: M \rightarrow S^{2}$ in which (3.4) holds with the given coefficients $m_{1}, m_{2}, \cdots, m_{a}$. Choosing $m_{1}, m_{2}, \cdots, m_{a}$ appropriately, we can accomplish $\left[f^{-1}\left(z_{0}\right)\right] \neq 0$ in $H_{2}(M)$.

This completes the proof of Theorem B.

4. An example

In [6], [7], [8], we showed that the 4 -sphere S^{4} has torus fibrations over S^{2} with one singular fiber of type T win or with two singular fibers of types I_{1}^{+}, I_{1}^{-}. A singular fiber of type Twin consists of two 2 -spheres cutting each other in two points. A singular fiber of type I_{1}^{+}(or I_{1}^{-}) is an immersed 2 -sphere with one transverse self-intersection point of positive (or negative) sign.

Applying our construction in this paper to S^{4}, we obtain a new example of a torus fibration of S^{4}.

Let us start with the following handlebody decomposition of S^{4} :

$$
S^{4}=H^{0} \cup H_{1}^{2} \cup H_{1}^{3} \cup H^{4}
$$

where H_{1}^{2} and H_{1}^{3} are a cancelling pair. The boundary $\partial\left(H^{0} \cup H_{1}^{2}\right)$ is diffeomorphic to $S^{1} \times S^{2}$ and has the surgery description $\chi_{\Sigma^{3}}\left(K_{0}^{*}, 0\right)$. Let H_{1}^{*} be the dual 2-handle to H_{1}^{2}. The attaching circle K_{1}^{*} of H_{1}^{*} may be assumed to have attaching framing 0 , and ($K_{1}^{*}, 0$) together with ($K_{0}^{*}, 0$) gives the surgery description of $S^{3}=\partial H^{0}$ $=\chi_{\Sigma^{3}}\left(K_{0}^{*}, K_{1}^{*} ; 0,0\right)$. See Figure 12

Fig. 12.
By Lemma 1, Figure 13 gives a surgery description of a multiple fibered link $\boldsymbol{L}=C_{0} \cup K_{0} \cup K_{1}$ in $S^{3}=\chi_{\Sigma^{3}}\left(K_{0}^{*}, K_{1}^{*} ; 0,0\right)$.

Let us see what L looks like actually in S^{3}. We apply Kirby's calculus [4] for framed links; Blow up a point on K_{0}^{*}, then we have Figure 14(a). Figure 14(b) is essentially the same as (a). We proceed as indicated in Fig. 14.

We obtain a fibered link of Figure 14(f), which is nothing but the fibered link denoted by B_{1}^{3} in Kanenobu's list [3, p.32].

As we observed at the end of Step 3 (of the proof of Theorem A), the singular fiber of the resulting $f: S^{4} \rightarrow S^{2}$ is obtained by attaching an annulus along $K_{0} \cup C_{0}$, and a disk along K_{1}, to the bouquet of disks $\mathbf{0} * C_{0} \cup \mathbf{0} * K_{0} \cup \mathbf{0} * K_{1}, \mathbf{0}$ being the

Fig. 13.

$\|$
Fig. 14 (a)
center of H^{0}. Thus it is homeomorphic to a one-point union of an embedded 2 -sphere and an immersed 2 -sphere. The latter has a transverse self-intersection point at 0 with negative sign. (Cf. Fig. 15(a))

If we choose the opposite orientation of S^{4} in every stage, then we will obtain a torus fibration with a singular fiber of the same type but in which the immersed sphere has a positive self-intersection point (Fig. 15(b)).

For the singular fiber of Fig. 15 (a), the projection $f: S^{4} \rightarrow S^{2}$ can be locally written around the intersection point 0 as

$$
f\left(z_{1}, z_{2}\right)=z_{1} z_{2}\left(\overline{z_{1}+z_{2}}\right)
$$

with certain complex coordinates $\left(z_{1}, z_{2}\right)$ satisfying $\mathbf{0}=(0,0)$. Consequently $f: S^{4} \rightarrow S^{2}$ may be taken to be smooth at the intersection point, thus smooth

Fig. 14 (b)(c)
everywhere. The same thing can be said for the singular fiber of Fig. 15(b).
We remark that once the results have been obtained, the singular fibers of Fugures 15 (a) and (b) are seen to be the results of blowing up and down starting from a Twin singular fiber. (See Figure 16, where attached integers are self-intersection numbers.)

Fig. 14 (d)(e)(f)

Fig. 15.

Fig. 16.

References

[1] J. W. Alexander: A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. USA 9 (1923), 93-95.
[2] J. S. Birman: Braids, Links, and Mapping Class Groups, Ann. Math. Studies 82, Princeton U. P., Princeton, N.J., 1974.
[3] T. Kanenobu: Fibered links of genus zero whose monodromy is the identity, Kobe J. Math. 1 (1984), 31-41.
[4] R. Kirby: A calculus for framed links in S^{3}, Inventiones math. 45 (1978), 35-56.
[5] F. Laudenbach and V. Poenaru: A note on 4-dimensional handlebodies, Bull. Math. Soc. France 100 (1972), 337-344.
[6] Y. Matsumoto: On 4-manifolds fibered by tori, Proc. Japan Acad., 58 (1982), 298-301.
[7] Y. Matsumoto: Good torus fibrations, Contemporary Math. 35 (1984), 375-397.
[8] Y. Matsumoto: Topology of torus fibrations, Sugaku Expositions 2 (1989), 55-73.
[9] J. Milnor: Singular Points of Complex Hypersurfaces, Ann. Math. Studies 61, Princeton U.P., Princeton N. J., 1968.
[10] J. M. Montesinos: Heegaad diagrams for closed 4-manifolds, in Geometric Topoligy (J. Cantrell ed.), Acad. Press, New York, 1979.

Department of Mathematical Sciences,
The University of Tokyo,
Komaba, Meguro-ku,
Tokyo 153,
Japan

