STABLE HOMOTOPY TYPES OF THOM SPACES OF BUNDLES OVER ORBIT MANIFOLDS ($\left.\mathbf{S}^{2 m+1} \times S^{\prime}\right) / D_{p}$

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

Susumu KÔNO

(Received November 10, 1994)

1. Introduction

Let $q \geqq 3$ be an integer, and D_{q} the dihedral group of order $2 q$ generated by two elements a and b with relations $a^{q}=b^{2}=a b a b=1$. Let $S^{2 m+1}$ and S^{l} be the unit spheres in the complex $(m+1)$-space \boldsymbol{C}^{m+1} and the real $(l+1)$-space \boldsymbol{R}^{l+1} respectively. Then D_{q} operates on the product space $S^{2 m+1} \times S^{l}$ by

$$
\left\{\begin{array}{l}
a \cdot(z, x)=(\exp (2 \pi \sqrt{-1} / q) \cdot z, x) \\
b \cdot(z, x)=(\bar{z},-x)
\end{array}\right.
$$

for $(z, x) \in S^{2 m+1} \times S^{l}$, where \bar{z} is the conjugate of z. We set

$$
\left\{\begin{array}{l}
D(q)^{2 m+1, l}=\left(S^{2 m+1} \times S^{l}\right) / D_{q}, \\
D(q)^{2 m, l}=\left\{\left.\left[\left(z_{0}, \cdots, z_{m}, x\right)\right] \in D(q)^{2 m+1, l}\right|_{m} \text { is real } \geqq 0\right\}, \\
D(q)^{m, l, i, j}=D(q)^{m, l} \cup D(q)^{i, l+1} \cup D(q)^{m+1, j} .
\end{array}\right.
$$

Then $D(q)^{m, 0}$ is naturally identified with the space L_{q}^{m} defined in [6], and $D(q)^{m, l} \approx\left(L_{q}^{m} \times S^{l}\right) /(\boldsymbol{Z} / 2)$, where the action of $\boldsymbol{Z} / 2$ is given by $b \cdot([z], x)=([\bar{z}],-x)$. Complex K-rings $K\left(D(q)^{m, l}\right)$ for odd q are studied in [9]. KO-groups $\widetilde{K O}\left(D(q)^{m, l}\right)$ and J-groups $\widetilde{J}\left(D(q)^{m, l}\right)$ for odd q are studied in [8] and [16]. Let m, n, l, k, i, j, c and d be integers with $m \geqq n \geqq 0, l \geqq k \geqq 0, m+1 \geqq i \geqq n-1, l+1 \geqq j \geqq k-1$, $m+1 \geqq c \geqq n$ and $l+1 \geqq d \geqq k$. We set

$$
\left\{\begin{array}{l}
D(q)_{m, k}^{m, l}=D(q)^{m, l} /\left(D(q)^{m, k-1} \cup D(q)^{n-1, l}\right), \\
D(q)_{n, k, c, c, d}^{m, l, j}=D(q)^{m, l, i, j} /\left(D(q)^{m, k-1, c-1, k-1} \cup D(q)^{n-1, l, n-1, d-1}\right) .
\end{array}\right.
$$

Let q be an odd integer. Then the group $\widetilde{K O}\left(S^{j} D(q)_{n, k}^{m, l}\right)$ is decomposed to a direct sum of $\widetilde{K O}$-groups of suspensions of stunted lens spaces $\bmod q$ or $\bmod 2$ (Theorem 1). J-groups $\widetilde{J}\left(S^{j} D(q)_{n, k}^{m, l}\right)$ of suspensions $S^{j} D(q)_{n, k}^{m, l}$ of the spaces $D(q)_{n, k}^{m, l}$ are determined for the case in which q is an odd prime (Theorems 2 and 3). Combining the results in [6] and [16], we obtain a sufficient condition for
the spaces $D(q)_{2 n, k}^{m, l}$ and $D(q)_{2 n+2 s, k+t}^{m+2 s, l+t}$ to have the same stable homotopy type for the case $q \equiv 1(\bmod 2)$ (Theorem 4). As an application of Theorems 1,2 and 3, we obtain some necessary conditions for the spaces $D(q)_{2 n, k}^{2 m+1, l}$ and $D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}$ to have the same stable homotopy type for the case in which q is an odd prime (Theorem 5).

The paper is organized as follows. In section 2 we state main theorems. In section 3 we prepare some lemmas and recall known results in [5], [10], [16] and [18]. The proofs of Theorems 1 and 2 are given in section 4. Theorem 3 is proved in section 5. We prove Theorems 4 and 5 in the final section.

I would like to express my gratitude to Professor Akie Tamamura and Professor Katsuo Kawakubo for helpful suggestions and constant encouragement.

2. Statement of results

In this section q denotes an odd integer with $q \geqq 3$. In order to state theorems, we set

$$
\left.\left.\begin{array}{rl}
G_{0}(n) & = \begin{cases}\boldsymbol{Z} / 2 \oplus \boldsymbol{Z} / 2 & (n \equiv 1(\bmod 8)) \\
\boldsymbol{Z} / 2 & (n \equiv 0 \text { or } 2(\bmod 8))\end{cases} \\
0 & \text { (otherwise) } .
\end{array}\right\} \begin{array}{ll}
\widetilde{K O}\left(S^{j+k}\left(L_{q}^{m} / L_{q}^{n-1}\right)\right) & (j \equiv k+2(\bmod 4)) \\
0 & (\text { otherwise }) .
\end{array}\right\}
$$

Theorem 1. Let m, n, l and k be integers with $m \geqq n \geqq 0$ and $l>k \geqq 0$. Then
(1) $\widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \cong A(q, j-1, k+1)_{2 n+1}^{2 m} \oplus A\left(q, j, l_{2 n+1}^{2 m}\right.$.
(2) $\overparen{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m+1, l}\right) \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j+m} R P_{m+k+1}^{m+l+1}\right)$.
(3) $\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l}\right) \cong \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j+m} R P_{m+k+1}^{m+l+1}\right)$.
(4) $\widetilde{K O}\left(S^{j} D(q)_{n, k}^{2 m, l}\right) \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+k}\right)$.

Remark. (1) If $l=k$, then

$$
S^{j} D(q)_{n, k}^{m, l} \approx S^{j+k}\left(L_{q}^{m} / L_{q}^{n-1}\right)
$$

(Lemma 3.11), and groups $\widetilde{K O}\left(S^{j+k}\left(L_{q}^{m} / L_{q}^{n-1}\right)\right)$ are studied in [19].
(2) The partial results for the case $j=n=k=0$ of this theorem have been obtained in [16] (Proposition 3.20 (1)).
(3) $K O$-groups of suspensions of stunted real projective spaces are determined completely in [7].

Let $v_{p}(s)$ denote the exponent of the prime p in the prime power decomposition of s, and $\mathfrak{m}(s)$ the function defined on positive integers as follows (cf. [3]):

$$
v_{p}(\mathfrak{m}(s))= \begin{cases}\left(1+v_{p}(s)\right)([s /(p-1)]-[(s-1) /(p-1)]) & (p \neq 2) \\ \left(1+v_{2}(s)\right)([s / 2]-[(s-1) / 2])+1 & (p=2)\end{cases}
$$

Theorem 2. Let m, n, l and k be integers with $m \geqq n \geqq 0$ and $l>k \geqq 0$. Then
(1) $\tilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \cong B(q, j-1, k+1)_{2 n+1}^{2 m} \oplus B\left(q, j, l_{2 n+1}^{2 m}\right.$.
(2) $\tilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m+1, l}\right) \cong \tilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{J}\left(S^{j+m} R P_{m+k+1}^{m+1+1}\right)$.
(3) $\widetilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m+1 . l}\right) \cong \widetilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, .}\right) \oplus \widetilde{J}\left(S^{j+m} R P_{m+k+1}^{m+1+1}\right)$.
(4) If $(k-j, j+2 n+k) \not \equiv(0,0)(\bmod 4)$ and $(l+2-j, j+2 n+l) \not \equiv(0,0)(\bmod 4)$, or $(m-n) n=0$, then

$$
\widetilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \cong \widetilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \tilde{J}\left(S^{j+n} R P_{n+k}^{n+l}\right) .
$$

(5) Suppose $m>n>0$ and $j-l+2 \equiv j+2 n+l \equiv 0(\bmod 4)$.
i) If $j+n \equiv 1(\bmod 4)$, then

$$
\widetilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \cong B(q, j-1, k+1)_{2 n+1}^{2 m} \oplus B\left(q, j, l_{2 n}^{2 m} \oplus G_{0}(j+2 n+k) .\right.
$$

ii) If $j+n \equiv 3(\bmod 4)$, then

$$
\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m}\right) \cong B(q, j-1, k+1)_{2 n+1}^{2 m} \oplus B\left(q, j, l_{2 n}^{2 m}\right.
$$

(6) Suppose $m>n>0$ and $j-k \equiv j+2 n+k \equiv 0(\bmod 4)$.
i) If $j+n \equiv 2(\bmod 4)$, then

$$
\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \cong B(q, j-1, k+1)_{2 n}^{2 m} \oplus B(q, j,)_{2 n+1}^{2 m} \oplus G_{0}\left(j+2 n+l+0^{l-k-1}\right) .
$$

ii) If $j+n \equiv 0(\bmod 4)$, then

$$
\tilde{J}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l, 2 n-1, k-1}\right) \cong \tilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \tilde{J}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) .
$$

iii) If $j+n \equiv 0(\bmod 4)$ and $l \equiv j+2(\bmod 4)$, then

$$
\widetilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \cong \tilde{J}\left(S^{j} D(q)_{2 n, k, 2 n, k}^{2 m, l-1,2 n, k-1}\right) \oplus B\left(q_{j}, l_{2 n+1}^{2 m}\right.
$$

and

$$
\widetilde{J}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l-1,2 n-k-1}\right) \cong B(q, j-1, k+1)_{2 n+1}^{2 m} \oplus \tilde{J}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) .
$$

Remark. The partial results for the case $j=n=k=0$ of this theorem have been obtained in [16] (Proposition 3.20 (2)).

Let p be an odd prime. In order to state next theorem, we set

$$
\begin{align*}
& \varphi(m)=[m / 4]+[(m+7) / 8]+[(m+6) / 8] . \tag{2.5}\\
& a_{2}(m, n)=\varphi(m)-[(n+1) / 4]-[(n+7) / 8]-[(n+6) / 8] . \tag{2.6}\\
& a_{p}(m, n)=[m / 2(p-1)]-[(n+1) / 2(p-1)] . \tag{2.7}\\
& b_{2}(j, m, n)= \begin{cases}a_{2}(m, n) & (j=0) \\
\min \left\{v_{2}(j)+1, a_{2}(m+j, n+j)\right\} & (j>0) .\end{cases} \tag{2.8}\\
& b_{p}(j, m, n)= \begin{cases}a_{p}(m, n) & (j=0) \\
\min \left\{v_{p}(j)+1, a_{p}(m+j, n+j)\right\} & (j>0) .\end{cases} \tag{2.9}
\end{align*}
$$

Theorem 3. Let p be an odd prime. Suppose $m>n>0, l>k \geqq 0, j \equiv k(\bmod 4)$ and $j+n \equiv 0(\bmod 4)$. Then

$$
\tilde{J}\left(S^{j} D(p)_{2 n, k}^{2 m, l}\right) \cong B\left(p, j, l_{2 n+1}^{2 m} \oplus \boldsymbol{Z} / 2^{b_{2}-i_{2}} p^{b_{p}-i_{p}} M \oplus \boldsymbol{Z} / 2^{i_{2}} \oplus \boldsymbol{Z} / p^{i_{p}}\right.
$$

where $M=\mathfrak{m}((j+2 n+k) / 2), b_{2}=b_{2}(j+n, n+l, n+k), b_{p}=b_{p}(j+k, 2 m, 2 n), i_{2}=\min \left\{b_{2}\right.$, $\left.v_{2}(n+k)\right\}$ and $i_{p}=\min \left\{b_{p}, v_{p}(n), v_{p}(M)\right\}$.

Remark. Combining Theorem 2, Theorem 3, [13] and [14], we obtain complete results of groups $\widetilde{J}\left(S^{j} D(p)_{n, k}^{m, l}\right)$.

Considering the (Z / q)-action on $S^{2 m+1} \times C$ given by

$$
\exp (2 \pi \sqrt{-1} / q) \cdot(z, v)=(\exp (2 \pi \sqrt{-1} / q) \cdot z, \exp (2 \pi \sqrt{-1} / q) v)
$$

for $(z, v) \in S^{2 m+1} \times C$, we have a complex line bundle

$$
\eta_{q}:\left(S^{2 m+1} \times C\right) /(\boldsymbol{Z} / q) \rightarrow L_{q}^{2 m+1} .
$$

We denote the restriction of η_{q} to L_{q}^{n} by $\eta_{q}(0 \leqq n \leqq 2 m+1)$. Let $h(q, k)$ denotes the order of $J\left(r\left(\eta_{q}\right)-2\right) \in \tilde{J}\left(L_{q}^{k}\right)$, which has been determined completely (cf. [6]). Spaces X and Y are said to have the same stable homotopy type ($X \simeq \underset{s}{ } Y$) if there exist non-negative integers c and d such that $S^{c} X$ and $S^{d} Y$ have the same homotopy type ($S^{c} X \simeq S^{d} Y$).

Theorem 4. If $s \equiv 0(\bmod h(q, m))$ and $t \equiv-s\left(\bmod 2^{\varphi(l)}\right)$, then $D(q)_{2 n, k}^{2 n+m, k+l}$ and $D(q)_{2 n+2 s, k+t}^{2 n+2 s+m, k+t+l}$ have the same stable homotopy type.

Remark. (1) The partial results for the case in which q is an odd prime, and $m \equiv 1(\bmod 2), n=s=0$ or $k=t=0, m \equiv l \equiv 7(\bmod 8)$ of this theorem have been obtained in [8].
(2) Let q be an odd prime. Then $h(q, m)=q^{[m / 2(q-1)]}$ (cf. [11]).

In order to state the next theorem, we prepare functions β and γ defined by (2.10) $\beta(k, n)$ is equal to the corresponding integer in the following table:

$k(\bmod 4)$	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	0	1
2	1	0	0	0	0	0	1	1
3	0	0	0	1	0	1	1	1

(2.11) $\gamma(q, k, n)=[(n+k-2[n / 2]-2) /(q-1)]$.

Theorem 5. Suppose $D(q)_{2 n, k}^{2 m+1, l}$ and $D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}$ have the same stable homotopy type, where m, n, l, k, s and t are integers with $m \geqq n \geqq 0, l>k \geqq 0, s \geqq 0$ and $k+t \geqq 0$. Then
(1) Set $v=v_{2}\left(|s+t|+2^{l}\right)$ and $v_{2}=v_{2}\left(n+k+2^{l}\right)$. Then
i) $v \geqq\left[\log _{2}(l-k)\right]+1$.
ii) $v \geqq \varphi(l-k)-1+\max \{\beta(l-k, n+k), \beta(l-k, m+k+1)\}$.
iii) If $\max \left\{v_{2}, \quad v_{2}(n+l+1), \quad v_{2}(m+k+1), \quad v_{2}(m+l+2)\right\} \geqq \varphi(l-k)-1$, then $v \geqq \varphi(l-k)$.
(2) Let q be an odd prime. Set $v_{q}=v_{q}\left(n+q^{m}\right)$. Then
i) $\quad v_{q}\left(s+q^{m}\right) \geqq \max \{\gamma(q, m-n, n+k), \gamma(q, m-n, n+l+1)\}$.
ii) If $\max \left\{(-1)^{(n+k)(n+l+1)} v_{q},(-1)^{(m+l)(m+k+1)} v_{q}(m+1)\right\} \geqq[(m-n) /(q-1)]$, then $v_{q}\left(s+q^{m}\right) \geqq[(m-n) /(q-1)]$.

Remark. Let q be an odd prime. It follows from Theorems 4 and 5 that we have obtained the necessary and sufficient condition for spaces $D(q)_{2 n, k}^{2 m+1, l}$ and $D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}$ to have the same stable homotopy type if following conditions (1) and (2) are satisfied.
(1) One of the following conditions:
i) $k<l \leqq k+8$,
ii) $\max \{\beta(l-k, n+k), \beta(l-k, m+k+1)\}=1$,
iii) $\max \left\{v_{2}\left(n+k+2^{\prime}\right), v_{2}(n+l+1), v_{2}(m+k+1), v_{2}(m+l+2)\right\} \geqq \varphi(l-k)-1$.
(2) One of the following conditions:
i) $n \leqq m<n+q-1$,
ii) $\max \{\gamma(q, m-n, n+k), \gamma(q, m-n, n+l+1)\}=[(m-n) /(q-1)]$,
iii) $\max \left\{(-1)^{(n+k)(n+l+1)} v_{q}\left(n+q^{m}\right),(-1)^{(m+l)(m+k+1)} v_{q}(m+1)\right\}$ $\geqq[(m-n) /(q-1)]$.

3. Preliminaries

We begin by recalling some notation in [18]. Let $\alpha_{i}(u, v)(1 \leqq i \leqq 8)$ be the integers defined by
(1) $\alpha_{1}(u, v)=\binom{2 u}{u-v}(-1)^{u-v}$,
(2) $\alpha_{4}(u, v)=\binom{u+v-1}{u-v}$,
(3) $\alpha_{6}(u, v)=\binom{2 u-v-1}{u-v}(-1)^{u-v}$,
(4) $\alpha_{7}(u, v)=\binom{v-1}{u-v}$,
(5) $\alpha_{3}(u, v)=\alpha_{1}(u-1, v-1)-\alpha_{1}(u-1, v+1)$,
(6) $\alpha_{2}(u, v)=\alpha_{4}(u+1, v+1)-\alpha_{4}(u-1, v+1)$,
(7) $\alpha_{5}(u, v)=\alpha_{7}(u+1, v+1)+\alpha_{7}(u-1, v)$,
(8) $\alpha_{8}(u, v)=\alpha_{6}(u-1, v-1)+\alpha_{6}(u, v+1)$.

We set elements $a_{i}^{2 j, m}(q), b_{i}^{2 j, m}(q)$ and $c_{i}^{2 j, m}(q)$ of $\widetilde{K O}\left(S^{2 j} L_{q}^{m}\right)$ by
(3.2) $\left\{\begin{array}{lll}a_{i}^{2 j, m}(q)=r\left(I^{j}\left(\left(\eta_{q}\right)^{i}-1\right)\right) \\ b_{i}^{2 j, m}(q)=\left\{\begin{array}{lll}\Sigma_{u=1}^{i} \alpha_{1}(i, u) a_{u}^{2 j, m}(q) \\ \Sigma_{u=1}^{i} \alpha_{3}(i, u) a_{u}^{2 j, m}(q) & (j \equiv 0 & (\bmod 2)) \\ c_{i}^{2 j, m}(q)=r\left(I^{j}\left(\left(\eta_{q}-1\right)\right)\right), & (\bmod 2))\end{array}\right.\end{array}\right.$
where $r: K \rightarrow K O$ denotes the real restriction and $I: \tilde{K}(X) \rightarrow \tilde{K}\left(S^{2} X\right)$ is the Bott periodicity isomorphism.

Lemma 3.3 (Tamamura [18]). The elements $a_{i}^{2 j, m}(q), b_{i}^{2 j, m}(q)$ and $c_{i}^{2 j, m}(q)$ satisfy following relations.
(1) $a_{1}^{2 j, m}(q)=b_{1}^{2 j, m}(q)=c_{1}^{2 j, m}(q)$.
(2) $a_{i}^{2 j, m}(q)=\left\{\begin{array}{lll}\Sigma_{u=1}^{i} \alpha_{2}(i, u) b_{u}^{2 j, m}(q) & (j \equiv 0 & (\bmod 2)) \\ \Sigma_{u=1}^{i} \alpha_{4}(i, u) b_{u}^{2 j, m}(q) & (j \equiv 1 & (\bmod 2)) .\end{array}\right.$
(3) $a_{i}^{2 j, m}(q)=\Sigma_{u=1}^{i}\binom{i}{u} c_{u}^{2 j, m}(q)$.
(4) $c_{i}^{2 j, m}(q)=\Sigma_{u=1}^{i}\binom{i}{u}(-1)^{i-u} a_{u}^{2 j, m}(q)$.
(5) $c_{i}^{2 j, m}(q)=\left\{\begin{array}{lll}\sum_{u=1}^{i} \alpha_{5}(i, u) b_{u}^{2 j, m}(q) & (j \equiv 0 & (\bmod 2)) \\ \Sigma_{u=1}^{i} \alpha_{7}(i, u) b_{u}^{2 j, m}(q) & (j \equiv 1 & (\bmod 2)) .\end{array}\right.$
(6) $b_{i}^{2 j, m}(q)=\left\{\begin{array}{lll}\sum_{u=1}^{i} \alpha_{6}(i, u) c_{u}^{2 j, m}(q) & (j \equiv 0 & (\bmod 2)) \\ \Sigma_{u=1}^{i} \alpha_{8}(i, u) c_{u}^{2 j, m}(q) & (j \equiv 1 & (\bmod 2)) .\end{array}\right.$

Lemma 3.4 (Tamamura [18]). Let $q \geqq 3$ be an odd integer and $d=(q-1) / 2$. Then

$$
b_{d+1+u}^{2 j, m}(q)=-\Sigma_{i=1}^{d} \alpha_{5}(q, d+i) b_{i+u}^{2 j, m}(q),
$$

where $u \geqq 0$ is an integer.

By Lemmas 3.3 and 3.4, we obtain
Lemma 3.5. Let p be an odd prime, and $d=(p-1) / 2$. Then

$$
\widetilde{K O}\left(S^{2 j} L_{p}^{m}\right)=\left\langle\left\{c_{2 i-j+2[j / 2]}^{2 j, m}(p) \mid 1 \leqq i \leqq d\right\}\right\rangle .
$$

For each integer n with $0 \leqq n<m$, we denote the inclusion map of L_{q}^{n} into L_{q}^{m} by i_{n}^{m}, and the kernel of the homomorphism

$$
\left(i_{n}^{m}\right)^{\prime}: \widetilde{K O}\left(S^{2 j} L_{q}^{m}\right) \rightarrow \widetilde{K O}\left(S^{2 j} L_{q}^{n}\right)
$$

by $V O_{m, n}^{2 j}(q)$, and set

$$
\begin{equation*}
U O_{m, n}^{2 j}(q)=\sum_{k}\left(\cap k_{e}^{e}\left(\psi^{k}-1\right) V O_{m, n}^{2 j}(q)\right) . \tag{3.6}
\end{equation*}
$$

Proposition 3.7 (Tamamura [18]). Let p be an odd prime, and $d=(p-1) / 2$. Then the group $V O_{2 m, 2 n}^{2 j}(p)$ is isomorphic to the direct sum of cyclic groups of order

$$
p^{a_{p}(2 m-4 i+2 j-4[j / 2], 2 n-4 i+2 j-4[j / 2])}
$$

generated by $p^{a_{p}(2 n-4 i+2 j-4[j / 2], 0)+1} b_{i}^{2 j, 2 m}(p) \quad(1 \leqq i \leqq d)$.

Proposition 3.8 ([14]). Let p be an odd prime. Then

$$
\begin{aligned}
\tilde{J}\left(S^{2 j}\left(L_{p}^{2 m} / L_{p}^{2 \eta}\right)\right) & \cong V O_{2 m, 2 n}^{2 j}(p) / U O_{2 m, 2 n}^{2 j}(p) \\
& =\left\langle\left[p^{[(n-v) /(p-1)]+1} c_{v}^{2 j, 2 m}(p)\right]\right\rangle \cong \boldsymbol{Z} / p^{b_{p}(2 j, 2 m, 2 n)},
\end{aligned}
$$

where $v=p-1-j+(p-1)[j /(p-1)]$.

Considering the D_{q}-action on $S^{2 m+1} \times S^{l} \times R$ and $S^{2 m+1} \times S^{l} \times C$ given by

$$
\left\{\begin{array}{l}
a \cdot(z, x, y)=(\exp (2 \pi \sqrt{-1} / q) \cdot z, x, y) \\
b \cdot(z, x, y)=(\bar{z},-x,-y)
\end{array}\right.
$$

for $(z, x, y) \in S^{2 m+1} \times S^{l} \times R$ and

$$
\left\{\begin{array}{l}
a \cdot(z, x, w)=(\exp (2 \pi \sqrt{-1} / q) \cdot z, x, \exp (2 \pi \sqrt{-1} / q) w) \\
b \cdot(z, x, w)=(\bar{z},-x, \bar{w})
\end{array}\right.
$$

for $(z, x, w) \in S^{2 m+1} \times S^{l} \times C$, we have a real line bundle

$$
\xi(q):\left(S^{2 m+1} \times S^{l} \times R\right) / D_{q} \rightarrow D(q)^{2 m+1, l}
$$

and a real 2-plane bundle

$$
\eta(q):\left(S^{2 m+1} \times S^{l} \times C\right) / D_{q} \rightarrow D(q)^{2 m+1, l} .
$$

We denote the restriction of $\xi(q)$ (resp. $\eta(q))$ to $D(q)^{n, k}(0 \leqq n \leqq 2 m+1,0 \leqq k \leqq l$ by $\xi(q)$ (resp. $\eta(q)$). Then we have following elements of $\widetilde{K O}\left(D(q)^{m, l}\right)$:
(3.9) $\alpha(q)=\eta(q)-\xi(q)-1$.

We denote by X^{γ} the Thom complex of a vector bundle γ over a finite CW-complex X. Define a map

$$
f: S^{2 m+1} \times S^{l} \times D^{2 n} \times D^{k} \rightarrow S^{2 m+2 n+1} \times S^{l+k}
$$

by setting

$$
f((z, x, v, w))=\left(\left(v,\left(1-\|v\|^{2}\right)^{1 / 2} z\right),\left(w,\left(1-\|w\|^{2}\right)^{1 / 2} x\right)\right)
$$

Then f induces homeomorphisms

$$
\bar{f}:\left(D(q)^{2 m+1, l}\right)^{n \eta(q) \oplus k \xi(q)} \rightarrow D(q)_{2 n, k}^{2 m+2 n+1, l+k}
$$

and $\bar{f} \mid D(q)^{2 m, l}:\left(D(q)^{2 m, l}\right)^{n(q) \oplus k \xi(q)} \rightarrow D(q)_{2 n, k}^{2 m+2 n, l+k}$. Thus we obtain
Lemma 3.10. $\left(D(q)^{m, l}\right)^{n(q) \oplus k \xi(q)}$ is homeomorphic to $D(q)_{2 n, k}^{2 n+m, k+l}$.
Remark. The partial results for the case in which q is an odd prime and $m \equiv 1(\bmod 2)$ have been obtained in [8].

Lemma 3.11. There are following homeomorphisms:
(1) $D(q)_{2 m, k}^{2 m, l} \approx S^{m} R P_{m+k}^{m+l}$,
(2) $D(q)_{2 m+1, k}^{2 m+1, l} \approx S^{m} R P_{m+k+1}^{m+l+1}$,
(3) $D(q)_{n, l}^{m, l} \approx S^{l}\left(L_{q}^{m} / L_{q}^{n-1}\right)$.

Proof. By Lemma 3.10, we obtain

$$
D(q)_{2 m, k}^{2 m+1, l} \approx\left(D(q)^{1, l-k}\right)^{m \eta(q) \oplus k \xi(q)} .
$$

Define a map

$$
h: S^{1} \times S^{l-k} \times C \rightarrow S^{1} \times S^{l-k} \times C
$$

by setting $h((z, x, v))=\left(z, x, z^{q-1} v\right)$. Then h induces a bundle isomorphism $\bar{h}: \eta(q)$ $\rightarrow 1 \oplus \xi(q)$ over $D(q)^{1, l-k}$. This implies

$$
\begin{aligned}
& D(q)_{2 m, k}^{2 m+1, l} \approx\left(D(q)^{1, l-k}\right)^{m \oplus(m+k) \xi(q)} \approx S^{m}\left(D(q)^{1, l-k}\right)^{(m+k) \xi(q)}, \\
& D(q)_{2 m, k}^{2 m, l} \approx S^{m}\left(D(q)^{0, l-k}\right)^{(m+k) \xi(q)} \approx S^{m} R P(l-k)^{(m+k) \xi(q)} \approx S^{m} R P_{m+k}^{m+l}
\end{aligned}
$$

and

$$
\begin{aligned}
D(q)_{2 m+1, k}^{2 m+1, l} & \approx S^{m}\left(D(q)^{1, l-k}\right)^{(m+k) \xi(q)} / S^{m}\left(D(q)^{0, l-k}\right)^{(m+k) \xi(q)} \\
& \approx S^{m}\left(\left(\left(S^{l-k} \times D^{m+k+1}\right) /\left(S^{l-k} \times S^{m+k}\right)\right) /(Z / 2)\right) \\
& \approx S^{m} R P(l-k)^{(m+k+1) \xi(q)} \approx S^{m} R P_{m+k+1}^{m+1+1}
\end{aligned}
$$

By the homemorphism $D(q)^{m, l} \approx\left(L_{q}^{m} \times S^{l}\right) /(\boldsymbol{Z} / 2)$,

$$
\begin{aligned}
D(q)_{n, l}^{m, l} & \approx\left(L_{q}^{m} \times D_{+}^{l}\right) /\left(\left(L_{q}^{m} \times S^{l-1}\right) \cup\left(L_{q}^{n-1} \times D_{+}^{l}\right)\right) \\
& \approx\left(L_{q}^{m} \times S^{l}\right) /\left(\left(L_{q}^{m} \times *\right) \cup\left(L_{q}^{n-1} \times S^{\prime}\right)\right) \\
& \approx\left(\left(L_{q}^{m} / L_{q}^{n-1}\right) \times S^{l}\right) /\left(\left(\left(L_{q}^{m} / L_{q}^{n-1}\right) \times *\right) \cup\left(* \times S^{l}\right)\right) \\
& \approx S^{l}\left(L_{q}^{m} / L_{q}^{n-1}\right)
\end{aligned}
$$

Let $\tau(q)^{2 m+1, l}: T D(q)^{2 m+1, l} \rightarrow D(q)^{2 m+1, l}$ be the tangent bundle of $D(q)^{2 m+1, l}$. Then we have

Lemma 3.12. $\quad \tau(q)^{2 m+1, l} \oplus 2$ is isomorphic to $(m+1) \eta(q) \oplus(l+1) \xi(q)$.
Proof. There exists an equivariant isomorphism

$$
h: T\left(S^{2 m+1} \times S^{l}\right) \times R^{2} \rightarrow S^{2 m+1} \times S^{l} \times C^{m+1} \times R^{l+1}
$$

which induces a bundle isomorphism

$$
\bar{h}:\left(T\left(S^{2 m+1} \times S^{l}\right) / D_{q}\right) \times \boldsymbol{R}^{2} \rightarrow\left(S^{2 m+1} \times S^{l} \times C^{m+1} \times \boldsymbol{R}^{l+1}\right) / D_{q}
$$

from $\tau(q)^{2 m+1, l} \oplus 2$ to $(m+1) \eta(q) \oplus(l+1) \xi(q)$.
q.e.d.

Lemma 3.13. Let N and M be integers with $N \equiv 0(\bmod h(q, 2 m-2 n+1)), M \equiv 0$ $\left(\bmod 2^{\varphi(l-k)}\right), N>m+1$ and $M>N+l+2$. Then the S-dual of $D(q)_{2 n, k}^{2 m+1, l}$ is
$D(q)_{2 N-2 n-1, M-N-k-1}^{2 N-2, M-N-l-1 .}$.

Proof. By Lemma 3.10, Lemma 3.12 and [5, Proposition (2.6) and Theorem (3.5)], the S-dual of

$$
D(q)_{2 n, k}^{2 m+1, l} \approx\left(D(q)^{2 m-2 n+1, l-k}\right)^{n \eta(q) \oplus k \xi(q)}
$$

is

$$
\begin{aligned}
& \left(D(q)^{2 m-2 n+1, l-k}\right)^{(N-n) \eta(q) \oplus(M-N-k) \xi(q)-\tau(q)^{2 m-2 n+1, l-k}} \\
\widetilde{\Omega} & \left(D(q)^{2 m-2 n+1, l-k}\right)^{(N-n) \eta(q) \oplus(M-N-k) \xi(q)-((m-n+1) \eta(q) \oplus(l-k+1) \xi(q))} \\
\approx & \left(D(q)^{2 m-2 n+1, l-k}\right)^{(N-m-1) \eta(q) \oplus(M-N-l-1) \xi(q)} \\
\approx & D(q)_{2 N-2 m-1, M-N-k-1}^{2 N-2, M-N-l-1 .}
\end{aligned}
$$

q.e.d.

According to [10], $D(q)^{m, l}$ has a cellular decomposition

$$
\left\{\left(C_{i}, D_{j}\right) \mid 0 \leqq i \leqq m, 0 \leqq j \leqq l\right\}
$$

where $\operatorname{dim}\left(C_{i}, D_{j}\right)=i+j$ and boundary operations are given by

$$
\left\{\begin{array}{l}
\partial\left(C_{2 i}, D_{j}\right)=q\left(C_{2 i-1}, D_{j}\right)+\left((-1)^{i}+(-1)^{j}\right)\left(C_{2 i}, D_{j-1}\right) \tag{3.14}\\
\partial\left(C_{2 i+1}, D_{j}\right)=\left((-1)^{i}+(-1)^{j+1}\right)\left(C_{2 i+1}, D_{j-1}\right)
\end{array}\right.
$$

We denote by $\left(c^{i}, d^{j}\right)$ the dual cochain of $\left(C_{i}, D_{j}\right)$.
Lemma 3.15. Suppose $q \equiv 1(\bmod 2)$.
(1) $\tilde{H}^{*}\left(D(q)_{2 n+1, k}^{2 m, l}\right) \cong\left(\oplus_{2 n<4 i-2 k \leqq 2 m}(Z / q)\left[\left(c^{4 i-2 k}, d^{k}\right)\right]\right)$

$$
\begin{equation*}
\oplus\left(\oplus_{2 n<4 i-2 l-2 \leqq 2 m}(Z / q)\left[\left(c^{4 i-2 l-2}, d^{\prime}\right)\right]\right) \tag{2}
\end{equation*}
$$

$\tilde{H}^{*}\left(D(q)_{2 n+1, k}^{2 m, l} ; \boldsymbol{Z} / 2\right) \cong 0$.
Lemma 3.16. Suppose $q \equiv 1(\bmod 2)$ and $l>k$. Then there exists a split short exact sequence

$$
\begin{equation*}
0 \rightarrow A\left(q, j, l_{2 n+1}^{2 m} \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \rightarrow A(q, j-1, k+1)_{2 n+1}^{2 m} \rightarrow 0\right. \tag{3.17}
\end{equation*}
$$

of ψ-groups.
Proof. It follows from Lemma 3.15 and the Atiyah-Hirzebruch spectral sequence for $K O$-theory that the order of the group $\widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right)$ is a divisor of $q^{a(j, m, n, l, k)}$, where

$$
a(j, m, n, l, k)=\left\{\begin{array}{lc}
[(m+k) / 2]-[(n+k) / 2])+[(m+l+1) / 2]-[(n+l+1) / 2] \\
{[(m+k) / 2]-[(n+k) / 2]} & (j \equiv k \equiv l+2(\bmod 4)) \\
{[(m+l+1) / 2]-[(n+l+1) / 2]} & (j \equiv k \neq l+2(\bmod 4)) \\
0 & (\equiv \equiv l+2 \not \equiv k(\bmod 4)) \\
0 & \text { (otherwise). }
\end{array}\right.
$$

In the case $k \equiv l(\bmod 2)$, the order of the group $\widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right)$ is equal to $q^{a(j, m, n, l, k)}$. By Lemma 3.11, we obtain a sequence

$$
\widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) \xrightarrow{h_{1}} \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right)^{h_{2}} \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 \eta}\right)\right)
$$

of ψ-groups with $h_{2} \circ h_{1}=0$. It follows from [19] that

$$
\widetilde{K O}\left(S^{2 j+1}\left(L_{q}^{2 m} / L_{q}^{2 \eta}\right)\right) \cong 0
$$

and the order of $\widetilde{K O}\left(S^{2 j}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right)$ is equal to $q^{[(m+j) / 2]-[(n+j) / 2]}$. Inspect the commutative diagram

$$
\begin{gathered}
\rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k+1}^{2 m, l}\right) \xrightarrow{g_{1}} \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \xrightarrow{h_{2}} \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) \rightarrow \\
\uparrow \\
\rightarrow \widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) \xrightarrow{h_{1}} \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \xrightarrow{g_{2}} \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l-1}\right) \rightarrow
\end{gathered}
$$

with exact rows. Suppose $j \equiv k \equiv l(\bmod 4) . \quad$ Then $g_{1}=0$. This implies that $h_{1}=0$, h_{2} is an isomorphism and g_{2} is an isomorphism. Suppose $j-2 \equiv k \equiv l$ $(\bmod 4)$. Then $g_{2}=0$. This implies that $h_{2}=0, h_{1}$ is an isomorphism and g_{1} is an isomorphism. Thus we obtain the lemma for the case $k \equiv l(\bmod 4)$ and it is shown that the order of $\widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right)$ is equal to $q^{a(j, m, n, l, k)}$ if $k \equiv l-3$ $(\bmod 4)$. Suppose $j \equiv k \equiv l-3(\bmod 4)$. Then $g_{1}=h_{1}=0$. This implies that h_{2} is an isomorphism and g_{2} is a monomorphism. Suppose $j-1 \equiv k \equiv l-3(\bmod 4)$. Then $h_{2}=g_{2}=0$. This implies that g_{1} is an epimorphism and h_{1} is an isomorphism. Thus we obtain the lemma for the case $k \equiv l-3(\bmod 4)$. Suppose $j \equiv k \equiv l-2(\bmod 4)$. Then h_{1} is a monomorphism and h_{2} is an epimorphism. This implies that $\operatorname{Im} h_{1}=\operatorname{Ker} h_{2}$. Using the isomorphism

$$
\widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l+2}\right) \xlongequal{\rightrightarrows} \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right)
$$

we obtain a ψ-map

$$
h_{3}: \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 \eta}\right)\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right)
$$

with $h_{2} \circ h_{3}=1$. Thus we obtain the lemma for the case $k \equiv l-2(\bmod 4)$ and it is shown that the order of $\widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right)$ is equal to $q^{a(j, m, n, l, k)}$ if $k \equiv l-1$ $(\bmod 4) . \quad$ Suppose $j \equiv k \equiv l-1(\bmod 4) . \quad$ Then $g_{1}=h_{1}=0 . \quad$ This implies that h_{2} and
g_{2} are isomorphisms. Suppose $j+1 \equiv k \equiv l-1(\bmod 4)$. Then $h_{2}=g_{2}=0$. This implies that g_{1} and h_{1} are isomorphisms. Thus we obtain the lemma for the case $k \equiv l-1(\bmod 4)$.
q.e.d.

We consider the following maps

$$
\left\{\begin{array}{l}
i_{1}: L_{q}^{2 m+1} \rightarrow D(q)^{2 m+1, l}, i_{2}: R P(l) \rightarrow D(q)^{2 m+1, l} \tag{3.18}\\
p_{0}: D(q)^{2 m+1, l} \rightarrow R P(l), p_{1}: D(q)^{2 m+1, l} \rightarrow S^{l} L_{q}^{2 m+1} \\
p_{2}: D(q)^{2 m+1, l} \rightarrow S^{m} R P_{m+1}^{m+l+1}
\end{array}\right.
$$

We set the following homomorphisms

$$
\left\{\begin{array}{l}
f_{1}: \widetilde{K O}\left(L_{q}^{2 m}\right) \rightarrow \widetilde{K O}\left(D(q)^{2 m+1, l}\right), \tag{3.19}\\
i_{0}: \widetilde{K O}\left(S^{l} L_{q}^{2 m}\right) \overparen{K O}\left(S^{l} L_{q}^{2 m+1}\right) \\
f_{2}=\left(p_{1}\right)^{1} \circ i_{0}: \widetilde{K O}\left(S^{l} L_{q}^{2 m}\right) \rightarrow \widetilde{K O}\left(D(q)^{2 m+1, l}\right)
\end{array}\right.
$$

where f_{1} is defined by $f_{1}\left(r\left(\eta_{q}-1\right)\right)=\alpha(q)$, and i_{0} is a right inverse of the restriction homomorphism $\widetilde{K O}\left(S^{l} L_{q}^{2 m+1}\right) \rightarrow \widetilde{K O}\left(S^{l} L_{q}^{2 m}\right)$.

Proposition 3.20 ([16]). Suppose $q \equiv 1(\bmod 2)$ and $l>0$.
(1) The homomorphism

$$
f: \widetilde{K O}\left(L_{q}^{2 m}\right) \oplus A\left(q, 0, l_{1}^{2 m} \oplus \widetilde{K O}\left(R P(l) \oplus \widetilde{K O}\left(S^{m} R P_{m+1}^{m+l+1}\right) \rightarrow \widetilde{K O}\left(D(q)^{2 m+1, l}\right)\right.\right.
$$

defined by $f(x, y, z, w)=f_{1}(x)+f_{2}(y)+\left(p_{0}\right)^{\prime}(z)+\left(p_{2}\right)^{\prime}(w)$ is an isomorphism.
(2) The homomorphism

$$
g: \tilde{J}\left(L_{q}^{2 m}\right) \oplus B\left(q, 0, l_{1}^{2 m} \oplus \tilde{J}(R P(l)) \oplus \tilde{J}\left(S^{m} R P_{m+1}^{m+l+1}\right) \rightarrow \tilde{J}\left(D(q)^{2 m+1, l}\right)\right.
$$

defined by $g(J(x), J(y), J(z), J(w))=J\left(f_{1}(x)+f_{2}(y)+\left(p_{0}\right)^{\prime}(z)+\left(p_{2}\right)^{\prime}(w)\right)$ is an isomorphism.

4. Proof of Theorems 1 and 2

The part (1) of Theorems 1 and 2 is a direct consequence of Lemma 3.16. It follows from Lemma 3.11 that there exists a commutative diagram

$$
\begin{aligned}
0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 m+1, k}^{2 m+2, l}\right) & \stackrel{f_{1}}{\rightarrow} \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m+2, l}\right) \xrightarrow{f_{2}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \rightarrow 0 \\
0 & \rightarrow \widetilde{K O}\left(S^{j+m} R P_{m+k+1}^{m+l+1}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \rightarrow 0
\end{aligned}
$$

with exact rows. Since $\widetilde{K O}\left(S^{j} D(q)_{2 m+1, k}^{2 m+2, l}\right)$ has an odd order, $f_{3}=0$ and we obtain the following commutative diagram

$$
\begin{aligned}
& \operatorname{Coker} f_{1} \cong \\
& \hdashline \widetilde{=} \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \\
& 0 \rightarrow \widetilde{K O}\left(S^{j+m} R P_{m+k+1}^{m+l+1}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \rightarrow 0,
\end{aligned}
$$

in which the row is exact. Thus we obtain

$$
\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l}\right) \cong \widetilde{K O}\left(S^{j+m} R P_{m+k+1}^{m+l+1}\right) \oplus \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m}\right)
$$

and $\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l}\right) \cong \tilde{J}\left(S^{j+m} R P_{m+k+1}^{m+l+1}\right) \oplus \tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right)$. Similarly we obtain

$$
\widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m+1, l}\right) \cong \widetilde{K O}\left(S^{j+m} R P_{m+k+1}^{m+l+1}\right) \oplus \widetilde{K O}\left(S^{j} D(q)_{2 n^{2}+1, k}^{2 m, l}\right)
$$

and $\tilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m+1, l}\right) \cong \tilde{J}\left(S^{j+m} R P_{m+k+1}^{m+l+1}\right) \oplus \tilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right)$.
Since the short exact sequence

$$
0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{1, k}^{2 m, l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{0, k}^{2 m, l}\right) \rightarrow \widetilde{K O}\left(S^{j} R P_{k}^{l}\right) \rightarrow 0
$$

of ψ-groups splits, we obtain

$$
\widetilde{K O}\left(S^{j} D(q)_{0, k}^{2 m, l}\right) \cong \widetilde{K O}\left(S^{j} D(q)_{1, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j} R P_{k}^{l}\right)
$$

and $\tilde{J}\left(S^{j} D(q)_{0, k}^{2 m, l}\right) \cong \widetilde{J}\left(S^{j} D(q)_{1, k}^{2 m, l}\right) \oplus \widetilde{J}\left(S^{j} R P_{k}^{l}\right)$.
Suppose $n>0$. There exists a commutative diagram

$$
\begin{aligned}
& 0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \rightarrow \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right) \rightarrow 0 \\
& \| \quad \downarrow \quad \downarrow \\
& 0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n-1, k}^{2 m, l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n-1, k}^{2 n, l}\right) \rightarrow 0
\end{aligned}
$$

with exact rows. If $(j-l-2, j+2 n+l) \not \equiv(0,0)(\bmod 4)$ and $(j-k, j+2 n+k) \not \equiv(0,0)$ $(\bmod 4)$, then $\widetilde{K O}\left(S^{j} D(q)_{2 n-1, k}^{2 n, l}\right) \cong 0$. Hence

$$
\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right)
$$

and $\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \cong \tilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{J}\left(S^{j+n} R P_{n+k}^{n+l}\right)$.
Suppose $m>n>0$ and $j-l-2 \equiv j+2 n+l \equiv 0(\bmod 4) . \quad$ Then $j+n \equiv 1(\bmod 2)$ and we obtain a commutative diagram

of exact sequences. Since $j-l-1 \equiv 1 \not \equiv 0(\bmod 4)$ and $j+n \equiv 1 \not \equiv 0(\bmod 2)$, there exists a ψ-map

$$
f_{7}: \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l-1}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l-1}\right)
$$

with $f_{7} \circ f_{5}=1$. By Lemma 3.16, we obtain a ψ-map

$$
h_{4}: \widetilde{K O}\left(S ^ { j } D (q q _ { 2 } ^ { 2 m + 1 , - 1 , k }) \rightarrow \widetilde { K O } \left(S^{j} D\left(q q_{2 m+1, k}^{2 m, l}\right)\right.\right.
$$

with $h_{1} \circ h_{4}=1$. If $\widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+1-1}\right) \cong 0$, then

$$
\widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right) \cong \widetilde{K O}\left(S^{j+2 n+l}\right) \cong Z,
$$

f_{5} is an isomorphism,

$$
\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l} \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right)\right.
$$

and

$$
\begin{aligned}
\left.\tilde{J}\left(S^{j} D(q)\right)_{n, k}^{2 m, k}\right) & \cong \tilde{J}\left(S^{j} D(q)_{n+1, k}^{2 m+l}\right) \oplus \tilde{J}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \\
& \cong B(q, j-1, k+1)_{2 n+1}^{2 m} \oplus B(q, j,)_{2 n}^{2 m} .
\end{aligned}
$$

Suppose $m>n>0, j-l-2 \equiv j+n-3 \equiv 0(\bmod 4), j+l+2 n \equiv 4(\bmod 8)$ and $l>k+1$. Then

$$
\begin{gathered}
\widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+1-1}\right) \cong Z / 2, \\
\widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+k}\right) \cong \widetilde{K O}\left(S^{j+2 n+l}\right) \cong \boldsymbol{Z}
\end{gathered}
$$

and $\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m l}\right) \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+1}\right)$. Choose generators $\alpha \in$ $\widetilde{K O}\left(S^{j+2 n+1}\right)$ and $\beta \in \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+1}\right)$ with $g_{3}(\alpha)=2 \beta$. Choose $z \in \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2, l}\right)$ with $f_{4}(z)=\beta$. Set

$$
y=z-\left(f_{3} \circ h_{4} \circ f_{7} \circ h_{2}\right)(z)
$$

Since $f_{6}\left(h_{2}(2 z)\right)=h_{3}\left(2 f_{4}(z)\right)=h_{3}(2 \beta)=0$, there exists an element $u \in \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l-1}\right)$ with $f_{5}(u)=h_{2}(2 z)$. Then

$$
\begin{aligned}
h_{2}(2 y) & =h_{2}(2 z)-f_{5}\left(f_{7}\left(h_{2}(2 z)\right)\right) \\
& =f_{5}(u)-f_{5}\left(f_{7}\left(f_{5}(u)\right)\right) \\
& =f_{5}(u)-f_{5}(u)=0 .
\end{aligned}
$$

So, there exists an element $x \in \widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right)$ with $g_{2}(x)=2 y$. Then $f_{2}(x)=\alpha$. Since $\widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 \eta}\right)\right)$ has an odd order, the homomorphism

$$
i_{0}: \widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 \eta \eta}\right)\right) \rightarrow \widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right)
$$

defined by $i_{0}(a)=2 a$ is an isomorphism. Let

$$
f_{8}: \widetilde{K O}\left(S^{j+2 n+l}\right) \rightarrow \widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right)
$$

be the homomorphism defined by $f_{8}(a \alpha)=a x$ for $a \in Z$, and

$$
f_{9}: \widetilde{K O}\left(S^{j+2 n+l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right)
$$

the homomorphism defined by $f_{9}(a \alpha)=a y$ for $a \in \boldsymbol{Z}$. Define the homomorphism

$$
g_{0}: \widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right)
$$

by setting

$$
g_{0}(a)=f_{3}\left(g_{1}\left(i_{0}^{-1}\left(f_{1}^{-1}\left(a-f_{8}\left(f_{2}(a)\right)\right)\right)\right)\right)+f_{9}\left(f_{2}(a)\right)
$$

Suppose $g_{0}(a)=0$. Then $f_{4}\left(g_{0}(a)\right)=f_{4}\left(f_{9}\left(f_{2}(a)\right)\right)=0$. This implies that $f_{2}(a)=0$. Hence $f_{3}\left(g_{1}\left(i_{0}^{-1}\left(f_{1}^{-1}(a)\right)\right)\right)=0$. Since f_{3} and g_{1} are monomorphisms, this implies that $a=0$. Thus g_{0} is a monomorphism. Since g_{2} is given by

$$
\begin{aligned}
g_{2}(a) & =g_{2}\left(a-f_{8}\left(f_{2}(a)\right)\right)+g_{2}\left(f_{8}\left(f_{2}(a)\right)\right) \\
& =g_{2}\left(f_{1}\left(i_{0}^{-1}\left(2 f_{1}^{-1}\left(a-f_{8}\left(f_{2}(a)\right)\right)\right)\right)\right)+2 f_{9}\left(f_{2}(a)\right) \\
& =2 f_{3}\left(g_{1}\left(i_{0}^{-1}\left(f_{1}^{-1}\left(a-f_{8}\left(f_{2}(a)\right)\right)\right)\right)\right)+2 f_{9}\left(f_{2}(a)\right) \\
& =2 g_{0}(a),
\end{aligned}
$$

$g_{2}=2 g_{0}$. This implies that the homomorphism g_{0} is a ψ-map. Consider the sequence
(4.1) $0 \rightarrow A\left(q, j, l_{2 n}^{2 m} \xrightarrow{g_{0}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \xrightarrow{f_{7} \circ h_{2}} \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l-1}\right) \rightarrow 0\right.$.

Noting that $f_{7} \circ h_{2} \circ f_{3} \circ h_{4}=f_{7} \circ f_{5}=1$, it is not difficult to see that (4.1) is a split exact sequence of ψ-groups. Thus we obtain

$$
\begin{aligned}
\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) & \cong \tilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l-1}\right) \oplus \tilde{J}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \\
& \cong B(q, j-1, k+1)_{2 n+1}^{2 m} \oplus B\left(q, j, l_{2 n}^{2 m}\right.
\end{aligned}
$$

Suppose $m>n>0, j-l-2 \equiv n+j-1 \equiv 0(\bmod 4)$ and $l>k+1$. In the commutative diagram
with exact rows, k_{1} and k_{3} are isomorphisms. This implies that k_{2} is an isomorphism. Using k_{2}, we obtain a ψ-map

$$
h_{5}: \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l-1}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right)
$$

with $h_{2} \circ h_{5}=1$. Thus we have

$$
\begin{aligned}
\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) & \cong \widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \oplus \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l-1}\right) \\
& \cong A\left(q, j, l_{2 n+1}^{2 m} \oplus Z \oplus A(q, j-1, k+1)_{2 n+1}^{2 m} \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l-1}\right)\right. \\
& \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) & \cong \tilde{J}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \oplus \tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, l-1}\right) \\
& \cong B\left(q, j, l_{2 n}^{2 m} \oplus B(q, j-1, k+1)_{2 n+1}^{2 m} \oplus G_{0}(j+2 n+k)\right.
\end{aligned}
$$

Suppose $m>n>0$ and $j-k \equiv j+2 n+k \equiv 0(\bmod 4)$. Then $j+n \equiv 0(\bmod 2)$. If $n+j \equiv 2(\bmod 4)$ and $j+2 n+k \equiv 4(\bmod 8)$, then we obtain the following commutative diagram

$$
\begin{array}{lll}
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{lll}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow
\end{array} \\
& 0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k+1}^{2 m, l}\right) \xrightarrow{f_{1}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k+1}^{2 m, l}\right) \xrightarrow{f_{2}} \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l-1}\right) \xrightarrow{f_{5}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l-1}\right) \xrightarrow{f_{6}} \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l-1}\right) \rightarrow 0
\end{aligned}
$$

of exact sequences. Choose $r \geq l$ with $r \not \equiv j+2(\bmod 4)$ and $j+2 n+r \equiv 3,4,5,6$ or 7 $(\bmod 8)$. Then, in the commutative diagram
with exact rows, k_{1} and k_{3} are isomorphisms. This implies that k_{2} is an isomorphism. Using k_{2}, we obtain a ψ-map

$$
h_{5}: \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \rightarrow \widetilde{K} \widetilde{O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right)
$$

with $h_{2} \circ h_{5}=1$. Since $j+n \equiv 0(\bmod 2)$ and $j-k-1 \equiv 3 \not \equiv 0(\bmod 4)$, there exists a ψ-map

$$
f_{7}: \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k+1}^{2 m, l}\right)
$$

with $f_{2} \circ f_{7}=1$. Thus we obtain

$$
\begin{aligned}
\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) & \cong \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \oplus \widetilde{K O}\left(S^{j} D(q)_{2 n, k+1}^{2 m, l}\right) \\
& \cong A(q, j-1, k+1)_{2 n+1}^{2 m} \oplus Z \oplus A\left(q, j, l_{2 n+1}^{2 m} \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right)\right. \\
& \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m}\right) & \cong \tilde{J}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \oplus \tilde{J}\left(S^{j} D(q)_{2 n, k+1}^{2 m, l}\right) \\
& \cong B(q, j-1, k+1)_{2 n}^{2 m} \oplus B\left(q, j, l_{2 n+1}^{2 m} \oplus G_{0}(j+2 n+l)\right.
\end{aligned}
$$

If $n+j \equiv 2(\bmod 4)$ and $j+2 n+k \equiv 0(\bmod 8)$, then we obtain a commutative diagram

$$
\downarrow
$$

$$
0
$$

of exact sequences. If $l=k+1$, then $\widetilde{K O}\left(S^{j} D(q)_{2 n+1, k+1}^{2 m, l}\right) \cong 0$ and there exists a

$$
\begin{aligned}
& \begin{array}{lll}
0 & \rightarrow \widetilde{K O}\left(S^{j+k+1}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \rightarrow & \widetilde{K O}\left(S^{j+2 n+k+1}\right) \\
\downarrow & { }^{h_{4}} \downarrow
\end{array} \\
& 0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k+1}^{2 m, l}\right) \xrightarrow{f_{1}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k+1}^{2 m, l}\right) \quad \stackrel{f_{2}}{\rightarrow} \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \rightarrow 0
\end{aligned}
$$

homotopy equivalence

$$
g: S^{j+n} R P_{n+k}^{n+l} \stackrel{\simeq}{\rightrightarrows} S^{j+2 n+k+1} \vee S^{j+2 n+k} .
$$

Using g, we obtain a ψ-map

$$
g_{6}: \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+k+1}\right) \rightarrow \widetilde{K O}\left(S^{j+2 n+k+1}\right)
$$

with $g_{6}{ }^{\circ} g_{3}=1$. Define a ψ-map

$$
g_{5}: \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, k+1}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k+1}^{2 m, k+1}\right)
$$

by $g_{5}(a)=f_{2}^{-1}\left(g_{6}\left(f_{4}(a)\right)\right)$ for $a \in \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, k+1}\right)$. Then

$$
g_{5} \circ g_{2}=f_{2}^{-1} \circ g_{6} \circ f_{4} \circ g_{2}=f_{2}^{-1} \circ g_{6} \circ g_{3} \circ f_{2}=f_{2}^{-1} \circ f_{2}=1 .
$$

Thus we obtain

$$
\begin{aligned}
\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, k+1}\right) & \cong \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \oplus \widetilde{K O}\left(S^{j+2 n+k+1}\right) \\
& \cong \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) \oplus \boldsymbol{Z} \oplus \boldsymbol{Z} / 2 \\
& \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, k+1}\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+k+1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m, k+1}\right) & \cong \widetilde{J}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \oplus \tilde{J}\left(S^{j+2 n+k+1}\right) \\
& \cong B(q, j-1, k+1)_{2 n}^{2 m} \oplus Z / 2 .
\end{aligned}
$$

If $l>k+1$, then $\operatorname{Im} h_{3}=2 \widetilde{K O}\left(S^{j+2 n+k}\right), \operatorname{Im} h_{2}=2 \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right)$ and

$$
\operatorname{Ker} g_{2} \cong \operatorname{Ker} g_{3} \cong \widetilde{K O}\left(S^{j+2 n+k+1}\right) \cong Z / 2
$$

Thus we obtain the commutative diagram

$$
\begin{aligned}
& \begin{array}{lll}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow
\end{array} \\
& 0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k+1}^{2 m, l}\right) \xrightarrow{\bar{f}_{1}} \quad \text { Coker } h_{4} \xrightarrow{\bar{f}_{2}} \quad \operatorname{Coker} h_{5} \quad \rightarrow 0 \\
& { }^{g_{1}} \downarrow \quad \bar{g}_{2} \downarrow \quad \bar{g}_{3} \downarrow \\
& 0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n_{n}+1, k}^{2 m, l}\right) \xrightarrow{f_{3}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \xrightarrow{f_{4}} \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right) \rightarrow 0 \\
& \begin{array}{ccccc}
{ }^{h_{1}} \downarrow \\
0 \rightarrow \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) & \bar{f}_{5} \\
& \overline{\bar{h}}_{5} \downarrow & & \bar{h}_{3} \downarrow & \\
\operatorname{Im} h_{2} & \xrightarrow{\bar{f}_{6}} & \operatorname{Im} h_{3} \quad \rightarrow 0
\end{array} \\
& \begin{array}{lll}
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}
\end{aligned}
$$

of exact swquences. Since $j+n \equiv 0(\bmod 2)$ and $j-k-1 \equiv 3 \not \equiv 0(\bmod 4)$, there exists a ψ-map

$$
f_{7}: \widetilde{K O}\left(S^{j} D(q)_{2 n, k+1}^{2 m, l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k+1}^{2 m, l}\right)
$$

with $f_{7} \circ f_{1}=1$. Since $\widetilde{K O}\left(S^{j} D(q)_{2 n^{2}+1, k+1}^{2 m, l}\right)$ has an odd order, f_{7} induces a ψ-map

$$
\bar{f}_{7}: \operatorname{Coker} h_{4} \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k+1}^{2 m, l}\right)
$$

with $\bar{f}_{7} \circ \bar{f}_{1}=1$. Choose an integer $r \geqq l$ with $j+2 n+r \equiv 5(\bmod 8)$. Then $j \not \equiv r+2$ (mod 4$)$ and using the isomorphism

$$
f_{8}: \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, r}\right) \rightarrow \operatorname{Im} h_{2},
$$

we obtain a ψ-map

$$
h_{6}: \operatorname{Im} h_{2} \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right)
$$

with $\bar{h}_{2} \circ h_{6}=1$. Thus we obtain

$$
\begin{aligned}
\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) & \cong \widetilde{\operatorname{Im} h_{2} \oplus \operatorname{Coker} h_{4}} \\
& \cong \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n-1}\right)\right) \oplus \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k+1}^{2 m, l}\right) \oplus \operatorname{Coker} h_{5} \\
& \cong A(q, j-1, k+1)_{2 n+1}^{2 m} \oplus Z \oplus A\left(q, j, l_{2 n+1}^{2 m} \oplus G_{0}(j+2 n+l)\right. \\
& \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m}\right) & \cong J^{\prime \prime}\left(\operatorname{Im} h_{2}\right) \oplus J^{\prime \prime}\left(\text { Coker } h_{4}\right) \\
& \cong B(q, j-1, k+1)_{2 n}^{2 m} \oplus B\left(q, j, l_{2 n+1}^{2 m} \oplus G_{0}(j+2 n+l) .\right.
\end{aligned}
$$

Suppose $j-k \equiv j+n \equiv 0(\bmod 4)$. Then, there exists a commutative diagram

$$
\begin{aligned}
& 0 \\
& \downarrow \quad \downarrow \\
& 0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k+1}^{2 m, l}\right) \xrightarrow{f_{1}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k+1}^{2 m, l}\right) \quad \xrightarrow{f_{2}} \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \rightarrow 0 \\
& { }^{g_{1}} \downarrow \quad{ }^{g_{2}} \downarrow \\
& 0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \xrightarrow{f_{3}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l, 2 n-1, k-1}\right) \xrightarrow{f_{4}} \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \rightarrow 0 \\
& \begin{array}{cc}
{ }^{h_{1}} \downarrow \\
\widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) & = \\
\downarrow & \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) \\
0 & \downarrow \\
& 0
\end{array}
\end{aligned}
$$

of exact sequences. Since $j+n \equiv 0(\bmod 4)$ and $j-k-1 \equiv 3 \not \equiv 0(\bmod 4)$, there exists a ψ-map

$$
f_{8}: \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k+1}^{2 m, l}\right)
$$

with $f_{2} \circ f_{8}=1$. Thus we obtain

$$
\widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l, 2 n-1, k-1}\right) \cong \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \oplus \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right)
$$

and $\tilde{J}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l, 2 n-1, k-1}\right) \cong \widetilde{J}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \oplus \widetilde{J}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right)$. There exists an exact sequence

$$
0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l, 2 n-1, k-1}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \rightarrow \widetilde{K O}\left(S^{j+2 n+k}\right) \rightarrow 0
$$

Since $\widetilde{K O}\left(S^{j+2 n+k}\right) \cong Z$, we obtain

$$
\begin{aligned}
\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) & \cong \widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l, 2 n-1, k-1}\right) \oplus Z \\
& \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2, l}\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \oplus Z \\
& \cong \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l}\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right) .
\end{aligned}
$$

If $j+n \equiv 0(\bmod 4)$ and $l \equiv j+2(\bmod 4)$, then there exists an exact sequence

$$
0 \rightarrow A(q, j, l)_{2 n+1}^{2 m} \xrightarrow{h_{1}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right) \xrightarrow{h_{2}} \widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n, k}^{2 m, l-1,2 n, k-1}\right) \rightarrow 0
$$

In the commutative diagram

$$
\begin{array}{rlrl}
0 & \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l+1}\right) & \rightarrow \underset{k_{1}}{ } \quad \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l+1}\right) & \rightarrow \widetilde{k_{2}} \downarrow \\
0 & \rightarrow \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l+1}\right) & \rightarrow 0 \\
k_{3} \downarrow \\
& \widetilde{\left.k^{j} D(q)_{2 n+1, k}^{2 m, l-1}\right)} \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n, k}^{2 m, l-1,2 n, k-1}\right) & \rightarrow \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right) & \rightarrow 0
\end{array}
$$

with exact rows, k_{1} and k_{3} are isomorphisms. This implies that k_{2} is an isomorphism. Using k_{2}, we obtain a ψ-map

$$
h_{3}: \widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n, k}^{2 m, l-1,2 n, k-1}\right) \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m, l}\right)
$$

with $h_{2} \circ h_{3}=1$. Thus we obtain

$$
\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m}\right) \cong \widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n, k}^{2 m, l-1,2 n, k-1}\right) \oplus \widetilde{K O}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right)
$$

and

$$
\begin{aligned}
\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m}\right) & \cong \tilde{J}\left(S^{j} D(q)_{2 n, k, 2 n, k}^{2 m, l-1,2 n, k-1}\right) \oplus \tilde{J}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) \\
& \cong \tilde{J}\left(S^{j} D(q)_{2 n, k, 2 n, k}^{2 m, l-1,2 n, k-1}\right) \oplus B\left(q, j, l_{2 n+1}^{2 m}\right.
\end{aligned}
$$

There exists a commutative diagram

$$
\begin{aligned}
0 \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n+1, k}^{2 m, l-1}\right) & \rightarrow \widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l-1,2 n, k-1}\right) \rightarrow \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \rightarrow 0 \\
\cong \downarrow & \left.\widetilde{\downarrow} \begin{array}{l}
\downarrow \\
\widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right)
\end{array}\right) \rightarrow \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right),
\end{aligned}
$$

in which the row is exact. This implies that

$$
\widetilde{K O}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l-1,2 n-k-1}\right) \cong \widetilde{K O}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) \oplus \widetilde{K O}\left(S^{j+n} R P_{n+k+1}^{n+1}\right)
$$

and

$$
\begin{aligned}
\tilde{J}\left(S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m, l-1,2 n, k-1}\right) & \cong \tilde{J}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right) \oplus \tilde{J}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \\
& \cong B(q, j-1, k+1)_{2 n+1}^{2 m} \oplus \tilde{J}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) .
\end{aligned}
$$

This completes the proof of Theorems 1 and 2.

5. Proof of Theorem 3

Suppose $m>n>0, j-k \equiv j+n \equiv 0(\bmod 4)$ and p is an odd prime. We set

$$
X= \begin{cases}S^{j} D(p)_{2 n, k, 2 n, k}^{2 m, l-2 n, k-1} & (l \equiv j+2(\bmod 4)) \\ S^{j} D(p)_{2 n, k}^{2 m, l} & (\text { otherwise })\end{cases}
$$

and

$$
Y= \begin{cases}S^{j} D(p)_{2, n, k 2 n+1, k}^{2 m, l-1,2 n+k-1} & (l \equiv j+2(\bmod 4)) \\ S^{j} D(p)_{2 n, k, 2 n+1,2 n+1, k-1}^{2 m+1, k-1} & \text { (otherwise) } .\end{cases}
$$

There exists a commutative diagram

$$
\begin{aligned}
& 0 \rightarrow V O_{n+l, n+k}^{j+n}(2) \xrightarrow{f_{2,1}} \widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right) \xrightarrow{f_{2,2}} \widetilde{K O}\left(S^{j+2 n+k}\right) \rightarrow 0 \\
& \begin{array}{llll}
& \begin{array}{l}
k_{2,1} \uparrow \\
\\
0
\end{array} \widetilde{n_{2,2}} \uparrow \\
\widetilde{K O}(Y) & \xrightarrow{f_{1}} & \widetilde{K O}(X)
\end{array} \quad \xrightarrow{f_{2}} \widetilde{K O}\left(S^{j+2 n+k}\right) \rightarrow \quad 0 \\
& { }^{h_{p, 1}} \downarrow \quad{ }^{h_{p, 2}} \downarrow \text { || } \\
& 0 \rightarrow V O_{2 m, 2 n}^{j+k}(p) \xrightarrow{f_{p, 1}} \widetilde{K O}\left(S^{j+k}\left(L_{p}^{2 m} / L_{p}^{2 n-1}\right)\right) \xrightarrow{f_{p, 2}} \widetilde{K O}\left(S^{j+2 n+k}\right) \rightarrow 0
\end{aligned}
$$

with exact rows. In the diagram, $h_{2,2}$ and $h_{p, 2}$ are epimorphisms. There exist ψ-maps

$$
g_{2}: V O_{n+l, n+k}^{j+n}(2) \rightarrow \widetilde{K O}(Y)
$$

and $g_{p}: V O_{2 m, 2 n}^{j+k}(p) \rightarrow \widetilde{K O}(Y)$ with $h_{2,1} \circ g_{2}=1, h_{p, 1} \circ g_{p}=1, \operatorname{Im} g_{2}=\operatorname{Ker} h_{p, 1}$ and $\operatorname{Im} g_{p}=\operatorname{Ker} h_{2,1} . \quad$ For each i prime to p (resp. 2), $N_{p}(i)\left(\right.$ resp. $\left.N_{2}(i)\right)$ denote the integer chosen to satisfy the property

$$
\begin{equation*}
i N_{p}(i) \equiv 1\left(\bmod p^{m}\right)\left(\text { resp. } i N_{2}(i) \equiv 1\left(\bmod 2^{\prime}\right)\right) . \tag{5.1}
\end{equation*}
$$

In order to state the next lemma, we set

$$
\begin{align*}
& \text { (1) } v=(p-1)([(j+k) / 2(p-1)]+1)-(j+k) / 2 . \\
& \text { (2) } s=[(n-v) /(p-1)] . \\
& \text { (3) } u_{p}=\left\{\begin{array}{lll}
N_{p}(2) p^{s+1} c_{v}^{j+k, 2 m}(p) & (j+2 n+k \equiv 0 & (\bmod 8)) \\
p^{+1} c_{v}^{j+k, 2 m}(p) & (j+2 n+k \equiv 4 & (\bmod 8)) .
\end{array}\right. \tag{5.2}\\
& \text { (4) } U O=\sum_{i}\left(\cap i_{e}^{e}\left(\psi^{i}-1\right) \widetilde{K O}(Y)\right) .
\end{align*}
$$

Lemma 5.3. There exists an element $x \in \widetilde{K O}(X)$ such that
(1) $f_{2}(x)$ generates the group $\widetilde{K O}\left(S^{j+2 n+k}\right) \cong \boldsymbol{Z}$.
(2) The Adams operations are given by

$$
\psi^{i}(x) \equiv i^{u} x+f_{1}\left(g_{p}\left(v_{p}\right)+g_{2}\left(v_{2}\right)\right) \quad\left(\bmod f_{1}(U O)\right)
$$

where $u=(j+2 n+k) / 2$,

$$
\begin{aligned}
& v_{2}= \begin{cases}-\left(i^{u} / 2\right) u_{2} & (i \equiv 0 \\
-\left(\left(i^{u}-i^{(j+n) / 2}\right) / 2\right) u_{2} & (i \equiv 1 \\
(\bmod 2))\end{cases} \\
& v_{p}=\left\{\begin{array}{lll}
-\left(i^{u} / p\right) 0^{u-t(p-1)} u_{p} & (i \equiv 0 & (\bmod p)) \\
-\left(\left(i^{u}-1+((j+k) / 2)\left(i^{p-1}-1\right)\right) / p\right) 0^{u-t(p-1)} u_{p} & (i \neq 0 & (\bmod p)),
\end{array}\right.
\end{aligned}
$$

$t=[u /(p-1)]$ and u_{2} is a generator of the group $V O_{n+l, n+k}^{i+n}(2)$.
Proof. According to [14], there exists an element

$$
x_{p} \in \widetilde{K O}\left(S^{j+k}\left(L_{p}^{2 m} / L_{p}^{2 n-1}\right)\right)
$$

such that
i) $f_{p, 2}\left(x_{p}\right)$ generates the group $\widetilde{K O}\left(S^{j+2 n+k}\right) \cong Z$.
ii) The Adams operations are given by

$$
\psi^{i}\left(x_{p}\right) \equiv i^{(j+2 n+k) / 2} x_{p}+f_{p, 1}\left(v_{p}\right) \quad\left(\bmod f_{p, 1}\left(U O_{2 m, 2 n}^{j+k}(p)\right)\right),
$$

where

$$
v_{p}= \begin{cases}-\left(i^{u} / p\right) 0^{u-t(p-1)} u_{p} & (i \equiv 0 \quad(\bmod p)) \\ -\left(\left(i^{u}-1+((j+k) / 2)\left(i^{p-1}-1\right)\right) / p\right) 0^{u-t(p-1)} u_{p} & (i \neq 0 \quad(\bmod p))\end{cases}
$$

$u=(j+2 n+k) / 2$ and $t=[u /(p-1)]$. Choose an element $\tilde{x} \in \widetilde{K O}(X)$ with $f_{2}(\tilde{x})$
$=f_{p, 2}\left(x_{p}\right)$. Then, there exists an element $y_{p} \in V O_{2 m, 2 n}^{j+k}(p)$ with $x_{p}-h_{p, 2}(\tilde{x})=f_{p, 1}\left(y_{p}\right)$. Set $x=\tilde{x}+f_{1}\left(g_{p}\left(y_{p}\right)\right)$ and $x_{2}=h_{2,2}(x)$. Then, we have $h_{p, 2}(x)=x_{p}$ and $f_{2,2}\left(x_{2}\right)=f_{2}(x)$ $=f_{p, 2}\left(x_{p}\right)$. It follows from [13] that the Adams operations are given by

$$
\psi^{i}\left(x_{2}\right)=i^{u} x_{2}+f_{2,1}\left(v_{2}\right),
$$

where

$$
v_{2}=\left\{\begin{array}{ll}
-\left(i^{u} / 2\right) u_{2} & (i \equiv 0 \\
-\left(\left(i^{u}-i^{(j+n) / 2}\right) / 2\right) u_{2} & (i \equiv 1
\end{array} \quad(\bmod 2)\right),
$$

and u_{2} is a generator of the group $V O_{n+l, n+k}^{j+n}(2)$. We necessarily have

$$
\psi^{i}(x)=a x+f_{1}\left(g_{2}(b)+g_{p}(c)\right)
$$

for some integer a and an element $g_{2}(b)+g_{p}(c) \in \widetilde{K O}(Y)$. By using the ψ-map f_{2}, we see that $a=i^{u}$. Under $h_{2,2}, f_{1}\left(g_{2}(b)+g_{p}(c)\right)$ maps into $f_{2,1}(b)$ and x maps into x_{2}, and we see that

$$
\psi^{i}\left(x_{2}\right)=i^{u} x_{2}+f_{2,1}(b) .
$$

This implies that $b=v_{2}$. Under $h_{p, 2}, f_{1}\left(g_{2}(b)+g_{p}(c)\right)$ maps into $f_{p, 1}(c)$ and x maps into x_{p}, and we see that

$$
\psi^{i}\left(x_{p}\right)=i^{u} x_{p}+f_{p, 1}(c)
$$

This implies that $c \equiv v_{p}\left(\bmod U O_{2 m, 2 n}^{j+k}(p)\right)$. Since $g_{p}\left(U O_{2 m, 2 n}^{j+k}(p)\right)$ is contained in $U O$, we obtain

$$
\psi^{i}(x) \equiv i^{u} x+f_{1}\left(g_{p}\left(v_{p}\right)+g_{2}\left(v_{2}\right)\right)\left(\bmod f_{1}(U O)\right) .
$$

This completes the proof of the lemma. q.e.d.

We now recall some difinition in [3]. Let f be a function which assigns to each integer i a non-negative integer $f(i)$. Given such a funciton f, we define $\widetilde{K O}(X)_{f}$ to be the subgroup of $\widetilde{K O}(X)$ generated by

$$
\left\{i^{f(i)}\left(\psi^{i}-1\right)(y) \mid i \in Z, y \in \widetilde{K O}(X)\right\}
$$

that is, $\widetilde{K O}(X)_{f}=\left\langle\left\{i^{f(i)}\left(\psi^{i}-1\right)(y) \mid i \in Z, y \in \widetilde{K O}(X)\right\}\right\rangle$. According to [2], [3] and [17], the kernel of the homomorphism $J: \widetilde{K O}(X) \rightarrow \tilde{J}(X)$ coincides with $\underset{f}{\cap \widetilde{K O}(X)_{f}}$, where the intersection runs over all functions f. Set $w_{2}=f_{1}\left(g_{2}\left(u_{2}\right)\right)$ and $w_{p}=f_{1}\left(g_{p}\left(u_{p}\right)\right)$. Suppose that f satisfies
(5.4) $f(i) \geqq m+l+\max \left\{v_{r}(\mathfrak{m}(u)) \mid r\right.$ is a prime divisor of $\left.i\right\}$
for every $i \in \boldsymbol{Z}$. It follows from Lemma 5.3 that we have

$$
\begin{aligned}
& i^{f(i)}\left(\psi^{i}-1\right)(x) \\
\equiv & i^{f(i)}\left(i^{u}-1\right) x+\left(i^{f(i)}\left(i^{(j+n) / 2}-i^{u}\right) / 2\right) w_{2} \\
- & \left(i^{f(i)}\left(i^{u}-1+((j+k) / 2)\left(i^{p-1}-1\right)\right) / p\right) 0^{u-t(p-1)} w_{p} \quad\left(\bmod f_{1}(U O)\right) \\
= & i^{f(i)}\left(i^{u}-1\right) x+\left(i^{f(i)} N_{2}\left(u / 2^{v_{2}(u)}\right)\left(u\left(i^{(j+n) / 2}-1\right)-u\left(i^{u}-1\right)\right) / 2^{v_{2}(2 u)}\right) w_{2} \\
- & \left(i^{f(i)} N_{p}\left(u / p^{v_{p}(u)}\right)\left(u\left(i^{u}-1\right)+u((j+k) / 2)\left(i^{p-1}-1\right)\right) / p^{v_{p}(p u)}\right) 0^{u-t(p-1)} w_{p} \\
\equiv & i^{f(i)}\left(i^{u}-1\right) x+\left(i^{f(i)} N_{2}\left(u / 2^{v_{2}(u)}\right)((j+n-2 u) / 2)\left(i^{u}-1\right) / 2^{v_{2}(2 u)}\right) w_{2} \\
- & -\left(i^{f(i)} N_{p}\left(u / p^{v_{p}(u)}\right)((2 u-j-k) / 2)\left(i^{u}-1\right) / p^{v_{p}(p u}\right) 0^{u-t(p-1)} w_{p} \quad\left(\bmod f_{1}(U O)\right) \\
= & \left(i^{f(i)}\left(i^{u}-1\right) /\left(2^{v_{2}(2 u)} p^{v_{p}(p u)}\right)\right)\left(2^{v_{2}(2 u)} p^{v_{p}(p u)} x\right. \\
- & \left.p^{v_{p}(p u)} N_{2}\left(u / 2^{v_{2}(u)}\right)((n+k) / 2) w_{2}-2^{v_{2}(2 u)} N_{p}\left(u / p^{v_{p}(u)}\right) n 0^{u-t(p-1)} w_{p}\right) .
\end{aligned}
$$

By virtue of [3; II, Theorem (2.7) and Lemma (2.12)], we have

$$
\left.\left\langle f_{1}(U O) \cup\left\{i^{f(i)}\left(\psi^{i}-1\right)(x) \mid i \in Z\right\}\right\rangle=f_{1}(U O) \cup\left\{\mathfrak{m}(u) x-M_{2} w_{2}-M_{p} w_{p}\right\}\right\rangle
$$

where $M_{2}=\left(\mathfrak{m}(u) / 2^{v_{2}(4 u)}\right) N_{2}\left(u / 2^{v_{2}(u)}\right)(n+k) \quad$ and

$$
M_{p}= \begin{cases}\left(\mathfrak{m}(u) / p^{v_{p}(p u)}\right) N_{p}\left(u / p^{v_{p}(u)}\right) n & (u \equiv 0 \quad(\bmod (p-1))) \\ 0 & \text { (otherwise) } .\end{cases}
$$

Since this is true for every function f which satisfies (5.4), we obtain

$$
\begin{equation*}
\widetilde{J}(X) \cong \widetilde{K O}(X) /\left\langle f_{1}(U O) \cup\left\{\mathfrak{n}((j+2 n+k) / 2) x-M_{2} w_{2}-M_{p} w_{p}\right\}\right\rangle \tag{5.5}
\end{equation*}
$$

where $w_{2}=f_{1}\left(g_{2}\left(u_{2}\right)\right), w_{p}=f_{1}\left(g_{p}\left(u_{p}\right)\right), v_{2}\left(M_{2}\right)=v_{2}(n+k)$ and

$$
\begin{cases}v_{p}\left(M_{p}\right)=v_{p}(n) & (j+2 n+k \equiv 0 \quad(\bmod 2(p-1))) \\ M_{p}=0 & \text { (otherwise }) .\end{cases}
$$

It follows from [13], [14] and the proof of Theorem 2 that we have

$$
\widetilde{J}(X) \cong F(z) /\left\langle\left\{B_{0}, B_{2}, B_{p}\right\}\right\rangle
$$

where $F(z)$ is a free abelian group generated by $\left\{z_{0}, z_{2}, z_{p}\right\}$,

$$
\begin{aligned}
& B_{2}=2^{b_{2}(j+n, n+l, n+k)} z_{2}, \\
& B_{p}=p^{b_{p}(j+k, 2 m, 2 n)} z_{p}, \\
& B_{0}=M_{0} z_{0}-M_{2} z_{2}-M_{p} z_{p}
\end{aligned}
$$

and $M_{0}=\mathfrak{m}((j+2 n+k) / 2)$. Set

$$
\left\{\begin{array}{l}
i_{2}=\min \left\{b_{2}(j+n, n+l, n+k), v_{2}(n+k)\right\} \tag{5.6}\\
i_{p}=\min \left\{b_{p}(j+k, 2 m, 2 n), v_{p}\right\}
\end{array}\right.
$$

where

$$
v_{p}= \begin{cases}v_{p}(n) & \left(M_{p} \neq 0\right) \\ m & \left(M_{p}=0\right) .\end{cases}
$$

For the sake of simplicity, we put $b_{2}=b_{2}(j+n, n+l, n+k)$ and $b_{p}=b_{p}(j+k, 2 m, 2 n)$ in the following calculation. Choose integers e_{1}, e_{2}, e_{3} and e_{4} with $e_{1} 2^{b_{2}}$ $-e_{2} p^{b_{p}-i_{p}} M_{2}=2^{i_{2}}$ and $e_{3} p^{b_{p}}-e_{4} 2^{b_{2}-i_{2}} M_{p}=p^{i_{p}}$. We assume $e_{4}=0$ if $M_{p}=0$. Then we have

$$
A\left(\begin{array}{l}
B_{0} \\
B_{2} \\
B_{p}
\end{array}\right)=\left(\begin{array}{l}
2^{b_{2}-i_{2}} p^{b_{p}-i_{p}} M_{0} z_{0} \\
e_{2} p^{b_{p}-i_{p}} M_{0} z_{0}+2^{i_{2}} z_{2} \\
e_{4} 2^{b_{2}-i_{2}} M_{0} z_{0}+p^{i_{p_{p}}} z_{p}
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{lll}
2^{b_{2}-i_{2}} p^{b_{p}-i_{p}} & p^{b_{p}-i_{p}} M_{2} / 2^{i_{2}} & 2^{b_{2}-i_{2}} M_{p} / p^{i_{p}} \\
e_{2} p^{b_{p}-i_{p}} & e_{1} & e_{2} M_{p} / p^{i_{p}} \\
e_{4} 2^{b_{2}-i_{2}} & e_{4} M_{2} / 2^{i_{2}} & e_{3}
\end{array}\right)
$$

and $\operatorname{det} A=1$. This implies that

$$
\tilde{J}(X) \cong \boldsymbol{Z} / 2^{b_{2}-i_{2}} p^{b_{p}-i_{p}} M_{0} \oplus \boldsymbol{Z} / 2^{i_{2}} \oplus \boldsymbol{Z} / p^{i_{p}}
$$

This completes the proof of Theorem 3.

6. Proof of Theorems $\mathbf{4}$ and $\mathbf{5}$

By Proposition 3.20, $J(h(q, m) \alpha(q))=J\left(2^{\varphi(l)}(\xi(q)-1)\right)=0$. It follows from [5, Proposition (2.6)] that

$$
\left(D(q)^{m, l}\right)^{(n+s) \eta(q) \oplus(k-s+t+s)(q)} \simeq\left(D(q)^{m, l}\right)^{n \eta(q) \oplus(k-s+s) \xi(q)}
$$

Theorem 4 follows from Lemma 3.10.
Suppose $D(q)_{2 n, k}^{2 m+1, l}$ and $D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}$ are of the same stable homotopy type, $s \geqq 0$ and $k+t \geqq 0$. There exists an integer $j>2 s+t$ and a cellular homotopy equivalence

$$
h: S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t} \rightarrow S^{j} D(q)_{2 n, k}^{2 m+1, l},
$$

which induces isomorphisms

$$
\begin{aligned}
h^{*}: \widetilde{H}^{*}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l} ; Z / 2\right) & \rightarrow \widetilde{H}^{*}\left(S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t} ; \boldsymbol{Z} / 2\right), \\
h^{!}: \widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l}\right) & \rightarrow \widetilde{K O}\left(S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}\right)
\end{aligned}
$$

and $J(h): \widetilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l}\right) \rightarrow \widetilde{J}\left(S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}\right)$. If $n+k \equiv 0(\bmod 2)$, then h induces a homotopy equivalence

$$
\bar{\hbar}: S^{j-2 s-t} D(q)_{2 n+2 s, k+t, 2 n+2 s+1, k+t}^{2 m+2 s+1, t+, 2 n+2 s-1, k+t-1} \rightarrow S^{j} D(q)_{2 n, k, 2 n+1, k}^{2 m+1,, 2 n-1, k-1} .
$$

By Lemma 3.11, we obtain

$$
\mathrm{Sq}^{i}\left(\sigma^{j-2 s-t}\left(\left[\left(c^{2 n+2 s}, d^{k+t}\right]\right)\right)=\binom{n+k+s+t}{i} \sigma^{j-2 s-t}\left(\left[\left(c^{2 n+2 s}, d^{k+t+i}\right)\right]\right)\right.
$$

and $\operatorname{Sq}^{i}\left(\sigma^{j}\left(\left[\left(c^{2 n}, d^{k}\right)\right]\right)\right)=\binom{n+k}{i} \sigma^{j}\left(\left[\left(c^{2 n}, d^{k+i}\right)\right]\right)$ for $1 \leqq i \leqq l-k$, where $\sigma: \tilde{H}^{*}(X ; \boldsymbol{Z} / 2)$ $\rightarrow \tilde{H}^{*+1}(S X ; Z / 2)$ is the suspension isomorphism. Since $h^{*}\left(\sigma^{j}\left(\left[\left(c^{2 n}, d^{k}\right)\right]\right)\right)$ $=\sigma^{j-2 s-t}\left(\left[\left(c^{2 n+2 s}, d^{k+t}\right)\right]\right)$, we obtain

$$
\binom{n+k}{i} \equiv\binom{n+k+s+t}{t} \quad(\bmod 2)
$$

for $1 \leqq i \leqq l-k$. It follows from [12, Lemma 2.1] that $v \geqq\left[\log _{2}(l-k)\right]+1$, where $v=v_{2}\left(|s+t|+2^{l}\right)$. This completes the proof of the part i$)$ of (1) of Theorem 5.

To prove the parts ii) and iii) of (1) of Theorem 5, we may assume $l \geqq k+9$. So, assume $l \geqq k+9$ and $v \geqq 4$. If $m=n$, then

$$
\begin{aligned}
\tilde{J}\left(S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}\right) & \cong \tilde{J}\left(S^{j+n-s-t} R P_{n+k+s+t}^{n+1+s+t}\right) \\
& \oplus \tilde{J}\left(S^{j+n-s-t} R P_{n+k+s+t+1}^{n+l+s+t+1}\right)
\end{aligned}
$$

and $\tilde{J}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l}\right) \cong \tilde{J}\left(S^{j+n} R P_{n+k}^{n+l}\right) \oplus \tilde{J}\left(S^{j+n} R P_{n+k+1}^{n+l+1}\right)$. Suppose $v_{2}(j+n)>\varphi(l-k)$. By the isomorphism $J(h)$, we see

$$
v+1 \geqq \max \left\{a_{2}(n+l, n+k-1), a_{2}(n+l+1, n+k)\right\} .
$$

If $n+k \equiv 0\left(\bmod 2^{\varphi(l-k)-1}\right)$, then $a_{2}(n+l, n+k-1)=\varphi(l-k)$ and

$$
n+k+s+t \equiv n+k \quad\left(\bmod 2^{\varphi(l-k)}\right) .
$$

This implies that $v \geqq \varphi(l-k)$. If $n+k+1 \equiv 0\left(\bmod 2^{\varphi(l-k)-1}\right)$, then $a_{2}(n+l+1$, $n+k)=\varphi(l-k)$ and

$$
n+k+1+s+t \equiv n+k+1 \quad\left(\bmod 2^{\varphi(l-k)}\right) .
$$

This implies that $v \geqq \varphi(l-k)$. Thus the parts ii) and iii) of (1) of Theorem 5 for the case $m=n$ are obtained by using Lemma 3.13.

Suppose $m>n$. If $m \equiv n(\bmod 4)$, then

$$
h\left(i_{0}\left(S^{j+n-s-t} R P_{n+k+s+t}^{n+k+s+t+8}\right)\right) \subset S^{j} D(q)_{2 n, k}^{2 m, l}
$$

and $i_{0}^{!} \circ h^{!} \circ p_{2}^{!}=0$, where

$$
\begin{aligned}
i_{0}: S^{j+n-s-t} R P_{n+k+s+t}^{n+k+s+t+8} & \approx S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 n+2 s, k+t+8} \\
& \subset S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}
\end{aligned}
$$

is an inclusion map and

$$
p_{2}: S^{j} D(q)_{2 n, k}^{2 m+1, l} \rightarrow S^{j} D(q)_{2 m+1, k}^{2 m+1, l} \approx S^{j+m} R P_{m+k+1}^{m+l+1}
$$

is an identification. Let

$$
\begin{aligned}
& i_{1}: S^{j+n-s-t} R P_{n+k+s+t}^{n+l+s+t} \rightarrow S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}, \\
& i_{2}: S^{j+n} R P_{n+k}^{n+1} \rightarrow S^{j} D(q) q_{2 n, k}^{2 m+1, l}, \\
& i_{3}: S^{j+2 n+k} \rightarrow S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}
\end{aligned}
$$

and $i_{4}: S^{j+2 n+k} \rightarrow S^{j} D(q)_{2 n, k}^{2 m+1, l}$ be inclusion maps, and

$$
p_{1}: S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t} \rightarrow S^{j+m-s-t} R P_{m+k+s+t+1}^{m+l+s+t+1}
$$

an identification. Suppose $v_{2}(j+n) \geqq \varphi(l-k)$. If $n+k \not \equiv 0(\bmod 4)$, then $J(h)$ induces an isomorphism

$$
\tilde{J}\left(S^{j+n} R P_{n+k}^{n+t}\right) \cong \widetilde{\rightrightarrows} \tilde{J}\left(S^{j+n-s-t} R P_{n+k+s+t}^{n+l+s+t}\right) .
$$

This implies that $v_{2}(j+n-s-t)+1 \geqq a_{2}(n+l, n+k-1)$ and $v \geqq a_{2}(n+l, n+k-1)-1$. If $n+k \equiv 0(\bmod 4)$, then $J(\bar{h})$ induces an isomorphism

$$
\tilde{J}\left(S^{j+n} R P_{n+k+1}^{n+l}\right) \cong \tilde{J}\left(S^{j+n-s-t} R P_{n+k+s+t+1}^{n+l+s+t}\right) .
$$

This implies that $v_{2}(j+n-s-t)+1 \geqq a_{2}(n+l, n+k)=a_{2}(n+l, n+k-1)$ and $v \geqq$ $a_{2}(n+l, n+k-1)-1$. If $n+k \equiv 0\left(\bmod 2^{\varphi(l-k)-1}\right)$, then

$$
\widetilde{K O}\left(S^{j+2 n+k}\right) \cong Z .
$$

Let x be an element of $\widetilde{K O}\left(S^{j} D(q)_{2 n, k}^{2 m+1, l}\right)$ with $\left(i_{4}\right)^{\prime}(x)$ generates the group $\widetilde{K O}\left(S^{j+2 n+k}\right)$. Then $\left(i_{3}\right)^{\prime}\left(h^{!}(x)\right)$ generates the group $\widetilde{K O}\left(S^{j+2 n+k}\right)$. It follows from [13] that

$$
\left(i_{1}\right)^{\prime}\left(\psi^{3}(y)\right)=3^{(j+2 n+k) / 2}\left(i_{1}\right)^{\prime}(y)+\left(\left(3^{(j+n-s-t) / 2}-3^{(j+2 n+k) / 2}\right) / 2\right) v
$$

and

$$
\left(i_{2}\right)^{\prime}\left(\psi^{3}(x)\right)=3^{(j+2 n+k) / 2}\left(i_{2}\right)^{\prime}(x)+\left(\left(3^{(j+n) / 2}-3^{(j+2 n+k) / 2}\right) / 2\right) u
$$

where $y=h^{\prime}(x), v$ is a generator of torsion subgroup of

$$
\widetilde{K O}\left(S^{j+n-s-t} R P_{n+k+s+t}^{n+t+s+1}\right)
$$

and u is a generator of torsion subgroup of $\widetilde{K O}\left(S^{j+n} R P_{n+k}^{n+l}\right)$. It follows from [15, Lemma 3.1] that

$$
\left(3^{(j+n) / 2}-3^{(j+2 n+k) / 2}\right) / 2 \equiv-(n+k) \quad\left(\bmod 2^{\varphi(l-k)}\right)
$$

and $\quad\left(3^{(j+n-s-t) / 2}-3^{(j+2 n+k) / 2}\right) / 2 \equiv-(s+t+n+k) \quad\left(\bmod 2^{\varphi(t-k)}\right) . \quad$ Since $J(\bar{h})$ induces an isomorphism

$$
\tilde{J}\left(S^{j+n} R P_{n+k+1}^{n+1}\right) \tilde{\leftrightharpoons} \tilde{J}\left(S^{j+n-s-t} R P_{n+k+s+t+1)}^{n+1+s+t}\right),
$$

this implies that $v \geqq \varphi(l-k)$. Suppose $v_{2}(j+m) \geqq \varphi(l-k)$. Then $J(h)$ induces an isomorphism

$$
\tilde{J}\left(S^{j+m} R P_{m+k+1}^{m+l+1}\right) \cong \tilde{\leftrightharpoons}\left(S^{j+m-s-t} R P_{m+k+s+t+1}^{m+l+s+t+1}\right) .
$$

This implies that $v+1 \geqq a_{2}(m+l+1, m+k)$. If $m+k+1 \equiv 0\left(\bmod 2^{\varphi(l-k)-1}\right)$, then $m+k+s+t+1 \equiv m+k+1\left(\bmod 2^{\varphi(l-k)}\right)$ and $v \geqq \varphi(l-k)$. Thus the parts ii) and iii) of (1) of Theorem 5 are obtained by using Lemma 3.13. This completes the proof of the part (1) of Theorem 5.

Let q be an odd prime. By the part i) of (1) of Theorem $5, s+t \equiv 0$ $(\bmod 2)$. Suppose $j+k \equiv 0\left(\bmod q^{[(m-n) /(q-1)]}\right)$ and $j+k \equiv 2(-2+k-2[(n+k) / 2])$ $(\bmod 2(q-1)) . \quad$ Then $j \equiv k(\bmod 4), j-2 s-t \equiv k+t(\bmod 4)$,

$$
\begin{gathered}
B(q, j-1, k+1)_{2 n+1}^{2 m} \cong \boldsymbol{Z} / q^{a_{q}(j+k+2 m, j+k+2 n)}, \\
B(q, j-2 s-t-1, k+t+1)_{2 n+2 s+1}^{2 m+2 s} \cong Z / q^{b_{q}(j+k-2 s, 2 m+2 s, 2 n+2 s)}, \\
b_{q}(j+k-2 s, 2 m+2 s, 2 n+2 s)=\min \left\{v_{q}(j+k-2 s)+1, a_{q}(j+k+2 m, j+k+2 n)\right\}
\end{gathered}
$$

and $a_{q}(j+k+2 m, j+k+2 n)=[(m+k-2[(n+k) / 2]-2) /(q-1)]+1$. Suppose $j+l$ $\equiv 0\left(\bmod q^{[(m-n) /(q-1)]}\right)$ and $j+l \equiv 2(-1+l-2[(n+l+1) / 2])(\bmod 2(q-1))$. Then $j \equiv l+2(\bmod 4), j-2 s-t \equiv l+t+2(\bmod 4)$,

$$
\begin{gathered}
B(q, j, l)_{2 n+1}^{2 m} \cong \boldsymbol{Z} / q^{a_{q}(j+l+2 m, j+l+2 n)}, \\
B(q, j-2 s-t, l+t)_{2 n+2 s+1}^{2 m+2 s} \cong \boldsymbol{Z} / q^{b_{q}(j+l-2 s, 2 m+2 s, 2 n+2 s)}, \\
b_{q}(j+l-2 s, 2 m+2 s, 2 n+2 s)=\min \left\{v_{q}(j+l-2 s)+1, a_{q}(j+l+2 m, j+l+2 n)\right\}
\end{gathered}
$$

and $a_{q}(j+l+2 m, j+l+2 n)=[(m+l-2[(n+l+1) / 2]-1) /(q-1)]+1$. This implies that

$$
v_{q}\left(s+q^{m}\right) \geqq[(m+k-2[(n+k) / 2]-2) /(q-1)]
$$

and $v_{q}\left(s+q^{m}\right) \geqq[(m+l-2[(n+l+1) / 2]-1) /(q-1)]$ except for the case $l \equiv k+2$
$(\bmod 4)$,

$$
\begin{aligned}
& d=[(m+k-2[(n+k) / 2]-2) /(q-1)]=[(m+l-2[(n+l+1) / 2]-1) /(q-1)]>0, \\
& l-k-2 s \equiv 0\left(\bmod q^{d}\right)
\end{aligned}
$$

and $l-k+2 s \equiv 0\left(\bmod q^{d}\right) . \quad$ If $l \equiv k+2(\bmod 4)$,

$$
\begin{aligned}
d=[(m+k-2[(n+k) / 2]-2) /(q-1)] & =[(m+l-2[(n+l+1) / 2]-1) /(q-1)]>0, \\
l-k-2 s & \equiv 0 \quad\left(\bmod q^{d}\right)
\end{aligned}
$$

and $l-k+2 s \equiv 0\left(\bmod q^{d}\right)$, then $l \equiv k\left(\bmod 2 q^{d}\right), l \geqq k+2 q^{d} \geqq k+2 q$,

$$
h\left(\bar{i}_{0}\left(S^{j+k-2 s}\left(L_{q}^{2 n+2 s+2 q-2} / L_{q}^{2 n+2 s-1}\right)\right)\right) \subset S^{j} D(q)_{2 n, k}^{2 m+1, l-1}
$$

and $\vec{\imath}_{0}^{1} \circ h^{\prime} \circ \bar{p}_{2}^{\prime}=0$, where

$$
\begin{aligned}
\bar{i}_{0}: S^{j+k-2 s}\left(L_{q}^{2 n+2 s+2 q-2} / L_{q}^{2 n+2 s-1}\right) & \approx S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 n+2 s+2 q-2, k+t} \\
& \subset S^{j-2 s-t} D(q)_{2 n+2 s, k+t}^{2 m+2 s+1, l+t}
\end{aligned}
$$

is an inclusion map and

$$
\bar{p}_{2}: S^{j} D(q)_{2 n, k}^{2 m+1, l} \rightarrow S^{j} D(q)_{2 n, l}^{2 m+1, l} \approx S^{j+l}\left(L_{q}^{2 m+1} / L_{q}^{2 n-1}\right)
$$

is an identification. This implies that h^{1} induces isomorphisms

$$
\tilde{J}\left(S^{j+k-2 s}\left(L_{q}^{2 m+2 s} / L_{q}^{2 n+2 s}\right)\right) \cong \tilde{J}\left(S^{j+k}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right)
$$

and $\tilde{J}\left(S^{j+l-2 s}\left(L_{q}^{2 m+2 s} / L_{q}^{2 n+2 s}\right)\right) \cong \tilde{J}\left(S^{j+l}\left(L_{q}^{2 m} / L_{q}^{2 n}\right)\right)$. Thus we obtain the part i) of (2) of Theorem 5. If $n \equiv 0\left(\bmod q^{((m-n) /(q-1)]}\right), \quad n+k \equiv 0(\bmod 2), j+k \equiv 0$ $\left(\bmod q^{[(m-n) /(q-1)]}\right)$ and $j+k \equiv-2 n(\bmod 2(q-1))$, then $j \equiv k(\bmod 4)$ and the isomorphism $J(h)$ implies

$$
n+s \equiv 0\left(\bmod q^{[(m-n) /(q-1)]}\right)
$$

and $s \equiv 0\left(\bmod q^{[(m-n) /(q-1)]}\right)$. If $n \equiv 0\left(\bmod q^{[(m-n) /(q-1)]}\right), n+l \equiv 1(\bmod 2), j+l \equiv 0$ $\left(\bmod q^{[(m-n) /(q-1)]}\right)$ and $j+l \equiv-2 n(\bmod 2(q-1))$, then $j \equiv l-2(\bmod 4)$ and the isomorphism $J(h)$ implies

$$
n+s \equiv 0 \quad\left(\bmod q^{[(m-n) /(q-1)]}\right)
$$

and $s \equiv 0\left(\bmod q^{[(m-n) /(q-1)]}\right)$. Thus the part ii) of (2) of Theorem 5 is obtained by using Lemma 3.13. This completes the proof of Theorem 5.

References

[1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] J.F. Adams: On the groups J(X)-I, Topology 2 (1963), 181-195.
[3] J.F. Adams: On the groups $J(X)$-II, -III, Topology 3 (1965), 137-171, 193-222.
[4] J.F. Adams and G. Walker: On complex Stiefel manifolds, Proc. Camb. Phil. Soc. 61 (1965), 81-103.
[5] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
[6] K. Fujii, T. Kobayashi and M. Sugawara: Stable homotopy types of stunted lens spaces, Mem. Fac. Sci. Kochi Univ. (Math.) 3 (1982), 21-27.
[7] M. Fujii and T. Yasui: K_{0}-groups of the stunted real projective spaces, Math. J. Okayama Univ. 16 (1973), 47-54.
[8] T. Fujino and M. Kamata: J-groups of orbit manifolds $D_{p}(4 m+3,8 n+7)$ of $S^{8 m+7} \times S^{8 n+7}$ by the dihedral group D_{p}, Math. Rep. Coll. Gen. Ed. Kyushu Univ. 11 (1978), 127-133.
[9] M. Imaoka and M. Sugawara: On the K-ring of the orbit manifold $\left(S^{2 m+1} \times S^{\prime}\right) / D_{n}$ by the dihedral group D_{n}, Hiroshima Math. J. 4 (1974), 53-70.
[10] M. Kamata and H. Minami: Bordism groups of dihedral groups, J. Math. Soc. Japan 25 (1973), 334-341.
[11] T. Kambe, H. Matsunaga and H. Toda: A note on stunted lens space, J. Math. Kyoto Univ. 5 (1966), 143-149.
[12] S. Kôno: Stable homotopy types of stunted lens spaces mod 4, Osaka J. Math. 29 (1992), 697-717.
[13] S. Kôno and A. Tamamura: On J-groups of $S^{l}(R P(t-l) / R P(n-l)$, Math. J. Okayama Univ. 24 (1982), 45-51.
[14] : J-groups of the suspensions of the stunted lens spaces mod p, Osaka J. Math. 24 (1987), 481-498.
[15] - J-groups of suspensions of stunted lens spaces mod 8, Osaka J. Math. 30 (1993), 203-234.
[16] S. Kôno, A. Tamamura and M. Fujii: J-groups of the orbit manifolds $\left(S^{2 m+1} \times S^{l}\right) / D_{n}$ by the dihedral group D_{n}, Math. J. Okayama Univ. 22 (1980), 205-221.
[17] D.G. Quillen: The Adams conjecture, Topology 10 (1971), 67-80.
[18] A. Tamamura: J-groups of the suspensions of the stunted lens spaces mod $2 p$, Osaka J. Math. 30 (1993), 581-610.
[19] A. Tamamura and S. Kôno: On the KO-cohomologies of the stunted lens spaces, Math. J. Okayama Univ. 29 (1987), 233-244.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560, Japan

