Kôno, S. Osaka J. Math. 33 (1996), 411-440

STABLE HOMOTOPY TYPES OF THOM SPACES OF BUNDLES OVER ORBIT MANIFOLDS $(S^{2m+1} \times S') / D_p$

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

Susumu KÔNO

(Received November 10, 1994)

1. Introduction

Let $q \ge 3$ be an integer, and D_q the dihedral group of order 2q generated by two elements a and b with relations $a^q = b^2 = abab = 1$. Let S^{2m+1} and S^l be the unit spheres in the complex (m+1)-space C^{m+1} and the real (l+1)-space R^{l+1} respectively. Then D_q operates on the product space $S^{2m+1} \times S^l$ by

$$\begin{cases} a \cdot (z, x) = (\exp(2\pi\sqrt{-1}/q) \cdot z, x) \\ b \cdot (z, x) = (\overline{z}, -x) \end{cases}$$

for $(z,x) \in S^{2m+1} \times S^l$, where \overline{z} is the conjugate of z. We set

$$\begin{cases} D(q)^{2m+1,l} = (S^{2m+1} \times S^l) / D_q, \\ D(q)^{2m,l} = \{ [(z_0, \dots, z_m, x)] \in D(q)^{2m+1,l} | z_m \text{ is real } \ge 0 \}, \\ D(q)^{m,l,i,j} = D(q)^{m,l} \cup D(q)^{i,l+1} \cup D(q)^{m+1,j}. \end{cases}$$

Then $D(q)^{m,0}$ is naturally identified with the space L_q^m defined in [6], and $D(q)^{m,l} \approx (L_q^m \times S^l) / (\mathbb{Z}/2)$, where the action of $\mathbb{Z}/2$ is given by $b \cdot ([z],x) = ([\bar{z}], -x)$. Complex K-rings $K(D(q)^{m,l})$ for odd q are studied in [9]. KO-groups $\widetilde{KO}(D(q)^{m,l})$ and J-groups $\widetilde{J}(D(q)^{m,l})$ for odd q are studied in [8] and [16]. Let m, n, l, k, i, j, c and d be integers with $m \ge n \ge 0$, $l \ge k \ge 0$, $m+1 \ge i \ge n-1$, $l+1 \ge j \ge k-1$, $m+1 \ge c \ge n$ and $l+1 \ge d \ge k$. We set

$$\begin{cases} D(q)_{m,k}^{m,l} = D(q)^{m,l} / (D(q)^{m,k-1} \cup D(q)^{n-1,l}), \\ D(q)_{m,k,c,d}^{m,l,i,j} = D(q)^{m,l,i,j} / (D(q)^{m,k-1,c-1,k-1} \cup D(q)^{n-1,l,n-1,d-1}). \end{cases}$$

Let q be an odd integer. Then the group $\widetilde{KO}(S^j D(q)_{n,k}^{m,l})$ is decomposed to a direct sum of \widetilde{KO} -groups of suspensions of stunted lens spaces mod q or mod 2 (Theorem 1). J-groups $\widetilde{J}(S^j D(q)_{n,k}^{m,l})$ of suspensions $S^j D(q)_{n,k}^{m,l}$ of the spaces $D(q)_{n,k}^{m,l}$ are determined for the case in which q is an odd prime (Theorems 2 and 3). Combining the results in [6] and [16], we obtain a sufficient condition for

the spaces $D(q)_{2n,k}^{m,l}$ and $D(q)_{2n+2s,k+t}^{m+2s,l+t}$ to have the same stable homotopy type for the case $q \equiv 1 \pmod{2}$ (Theorem 4). As an application of Theorems 1, 2 and 3, we obtain some necessary conditions for the spaces $D(q)_{2n,k}^{2m+1,l}$ and $D(q)_{2n+2s,k+t}^{2m+2s+1,l+t}$ to have the same stable homotopy type for the case in which q is an odd prime (Theorem 5).

The paper is organized as follows. In section 2 we state main theorems. In section 3 we prepare some lemmas and recall known results in [5], [10], [16] and [18]. The proofs of Theorems 1 and 2 are given in section 4. Theorem 3 is proved in section 5. We prove Theorems 4 and 5 in the final section.

I would like to express my gratitude to Professor Akie Tamamura and Professor Katsuo Kawakubo for helpful suggestions and constant encouragement.

2. Statement of results

In this section q denotes an odd integer with $q \ge 3$. In order to state theorems, we set

(2.1)
$$G_0(n) = \begin{cases} Z/2 \oplus Z/2 & (n \equiv 1 \pmod{8}) \\ Z/2 & (n \equiv 0 \text{ or } 2 \pmod{8}) \\ 0 & (\text{otherwise}). \end{cases}$$

(2.2)
$$A(q,j,k)_n^m = \begin{cases} \widetilde{KO}(S^{j+k}(L_q^m/L_q^{n-1})) & (j \equiv k+2 \pmod{4}) \\ 0 & (\text{otherwise}). \end{cases}$$

(2.3)
$$B(q,j,k)_n^m = \begin{cases} \tilde{J}(S^{j+k}(L_q^m/L_q^{n-1})) & (j \equiv k+2 \pmod{4}) \\ 0 & (\text{otherwise}). \end{cases}$$

(2.4)
$$RP_{k}^{l} = RP(l) / RP(k-1)$$

Theorem 1. Let m, n, l and k be integers with $m \ge n \ge 0$ and $l > k \ge 0$. Then

- (1) $\widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \cong A(q,j-1,k+1)_{2n+1}^{2m} \oplus A(q,j,l)_{2n+1}^{2m}$
- (2) $\widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m+1,l}) \cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+m}RP_{m+k+1}^{m+l+1}).$
- (3) $\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m+1,k}) \cong \widetilde{KO}(S^{j}D(q)_{2n,k}^{2m+1,k}) \oplus \widetilde{KO}(S^{j+m}RP_{m+k+1}^{m+l+1}).$ (4) $\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l}).$

REMARK. (1) If l=k, then

$$S^{j}D(q)_{n,k}^{m,l} \approx S^{j+k}(L_{a}^{m}/L_{a}^{n-1})$$

(Lemma 3.11), and groups $\widetilde{KO}(S^{j+k}(L_q^m/L_q^{n-1}))$ are studied in [19]. (2) The partial results for the case j=n=k=0 of this theorem have been obtained in [16] (Proposition 3.20 (1)).

(3) KO-groups of suspensions of stunted real projective spaces are determined completely in [7].

Let $v_p(s)$ denote the exponent of the prime p in the prime power decomposition of s, and m(s) the function defined on positive integers as follows (cf. [3]):

$$v_p(\mathbf{m}(s)) = \begin{cases} (1+v_p(s))([s/(p-1)] - [(s-1)/(p-1)]) & (p \neq 2) \\ (1+v_2(s))([s/2] - [(s-1)/2]) + 1 & (p=2) \end{cases}$$

Theorem 2. Let m, n, l and k be integers with $m \ge n \ge 0$ and $l > k \ge 0$. Then

(1) $\widetilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l}) \cong B(q,j-1,k+1)_{2n+1}^{2m} \oplus B(q,j,l)_{2n+1}^{2m}.$ (2) $\widetilde{J}(S^{j}D(q)_{2n+1,k}^{2m+1,l}) \cong \widetilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{J}(S^{j+m}RP_{m+k+1}^{m+l+1}).$

(3) $\widetilde{J}(S^{j}D(q)_{2n,k}^{2m+1,l}) \cong \widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) \oplus \widetilde{J}(S^{j+m}RP_{m+k+1}^{m+l+1}).$

(4) If $(k-j, j+2n+k) \not\equiv (0,0) \pmod{4}$ and $(l+2-j, j+2n+l) \not\equiv (0,0) \pmod{4}$, or (m-n)n=0, then

$$\widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{J}(S^{j+n}RP_{n+k}^{n+l}).$$

(5) Suppose m > n > 0 and $j - l + 2 \equiv j + 2n + l \equiv 0 \pmod{4}$. i) If $j+n \equiv 1 \pmod{4}$, then

 $\tilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) \cong B(q, j-1, k+1)_{2n+1}^{2m} \oplus B(q, j, l)_{2n}^{2m} \oplus G_{0}(j+2n+k).$

ii) If $j + n \equiv 3 \pmod{4}$, then

$$\widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) \cong B(q, j-1, k+1)_{2n+1}^{2m} \oplus B(q, j, l)_{2n}^{2m}.$$

(6) Suppose
$$m > n > 0$$
 and $j-k \equiv j+2n+k \equiv 0 \pmod{4}$

i) If $j+n \equiv 2 \pmod{4}$, then

$$\widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) \cong B(q, j-1, k+1)_{2n}^{2m} \oplus B(q, j, l)_{2n+1}^{2m} \oplus G_0(j+2n+l+0^{l-k-1}).$$

ii) If $j+n \equiv 0 \pmod{4}$, then

$$\widetilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l,2n-1,k-1}) \cong \widetilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{J}(S^{j+n}RP_{n+k+1}^{n+l}).$$

iii) If $j+n\equiv 0 \pmod{4}$ and $l\equiv j+2 \pmod{4}$, then

$$\widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{J}(S^{j}D(q)_{2n,k,2n,k}^{2m,l-1,2n,k-1}) \oplus B(q,j,l)_{2n+1}^{2m}$$

 $\widetilde{J}(S^{j}D(q)_{2n+k}^{2m,l-1}, 2n, k-1}) \cong B(q, j-1, k+1)_{2n+1}^{2m} \oplus \widetilde{J}(S^{j+n}RP_{n+k+1}^{n+l}).$ and

REMARK. The partial results for the case j=n=k=0 of this theorem have been obtained in [16] (Proposition 3.20 (2)).

Let p be an odd prime. In order to state next theorem, we set

(2.5)
$$\varphi(m) = [m/4] + [(m+7)/8] + [(m+6)/8].$$

(2.6)
$$a_2(m,n) = \varphi(m) - [(n+1)/4] - [(n+7)/8] - [(n+6)/8].$$

(2.7)
$$a_p(m,n) = [m/2(p-1)] - [(n+1)/2(p-1)].$$

(2.8)
$$b_2(j,m,n) = \begin{cases} a_2(m,n) & (j=0) \\ \min\{v_2(j)+1, a_2(m+j,n+j)\} & (j>0). \end{cases}$$

(2.9)
$$b_p(j,m,n) = \begin{cases} a_p(m,n) & (j=0) \\ \min\{v_p(j)+1, a_p(m+j,n+j)\} & (j>0). \end{cases}$$

Theorem 3. Let p be an odd prime. Suppose m > n > 0, $l > k \ge 0$, $j \equiv k \pmod{4}$ and $j+n \equiv 0 \pmod{4}$. Then

$$\widetilde{J}(S^{j}D(p)_{2n,k}^{2m,l}) \cong B(p,j,l)_{2n+1}^{2m} \oplus \mathbb{Z}/2^{b_{2}-i_{2}}p^{b_{p}-i_{p}}M \oplus \mathbb{Z}/2^{i_{2}} \oplus \mathbb{Z}/p^{i_{p}},$$

where M = m((j+2n+k)/2), $b_2 = b_2(j+n, n+l, n+k)$, $b_p = b_p(j+k, 2m, 2n)$, $i_2 = \min\{b_2, v_2(n+k)\}$ and $i_p = \min\{b_p, v_p(n), v_p(M)\}$.

REMARK. Combining Theorem 2, Theorem 3, [13] and [14], we obtain complete results of groups $\tilde{J}(S^{j}D(p)_{n,k}^{m,l})$.

Considering the (\mathbb{Z}/q) -action on $S^{2m+1} \times \mathbb{C}$ given by

$$\exp(2\pi\sqrt{-1}/q) \cdot (z,v) = (\exp(2\pi\sqrt{-1}/q) \cdot z, \exp(2\pi\sqrt{-1}/q)v)$$

for $(z,v) \in S^{2m+1} \times C$, we have a complex line bundle

$$\eta_a: (S^{2m+1} \times \mathbb{C})/(\mathbb{Z}/q) \to L_a^{2m+1}$$

We denote the restriction of η_q to L_q^n by η_q $(0 \le n \le 2m+1)$. Let h(q,k) denotes the order of $J(r(\eta_q)-2) \in \tilde{J}(L_q^k)$, which has been determined completely (cf. [6]). Spaces X and Y are said to have the same stable homotopy type $(X \simeq Y)$

if there exist non-negative integers c and d such that $S^c X$ and $S^d Y$ have the same homotopy type $(S^c X \simeq S^d Y)$.

Theorem 4. If $s \equiv 0 \pmod{h(q,m)}$ and $t \equiv -s \pmod{2^{\varphi(l)}}$, then $D(q)_{2n,k}^{2n+m,k+l}$ and $D(q)_{2n+2s,k+l}^{2n+2s,k+l+l}$ have the same stable homotopy type.

REMARK. (1) The partial results for the case in which q is an odd prime, and $m \equiv 1 \pmod{2}$, n=s=0 or k=t=0, $m \equiv l \equiv 7 \pmod{8}$ of this theorem have been obtained in [8].

(2) Let q be an odd prime. Then $h(q,m) = q^{[m/2(q-1)]}$ (cf. [11]).

In order to state the next theorem, we prepare functions β and γ defined by

(2.10) $\beta(k,n)$ is equal to the corresponding integer in the following table:

k (mod 8) n (mod 4)	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	0	1
2	1	0	0	0	0	0	1	1
3	0	0	0	1	0	1	1	1

(2.11) $\gamma(q,k,n) = [(n+k-2[n/2]-2)/(q-1)].$

Theorem 5. Suppose $D(q)_{2n,k}^{2m+1,l}$ and $D(q)_{2n+2s,k+t}^{2m+2s+1,l+t}$ have the same stable homotopy type, where m, n, l, k, s and t are integers with $m \ge n \ge 0, l > k \ge 0, s \ge 0$ and $k+t \ge 0$. Then

(1) Set $v = v_2(|s+t|+2^l)$ and $v_2 = v_2(n+k+2^l)$. Then

i) $v \ge [\log_2(l-k)] + 1$.

ii) $v \ge \varphi(l-k) - 1 + \max\{\beta(l-k, n+k), \beta(l-k, m+k+1)\}.$

iii) If $\max\{v_2, v_2(n+l+1), v_2(m+k+1), v_2(m+l+2)\} \ge \varphi(l-k) - 1$, then $v \ge \varphi(l-k)$.

(2) Let q be an odd prime. Set $v_q = v_q(n+q^m)$. Then

i) $v_a(s+q^m) \ge \max\{\gamma(q,m-n,n+k), \gamma(q,m-n,n+l+1)\}.$

ii) If $\max\{(-1)^{(n+k)(n+l+1)}v_q, (-1)^{(m+l)(m+k+1)}v_q(m+1)\} \ge [(m-n)/(q-1)],$ then $v_q(s+q^m) \ge [(m-n)/(q-1)].$

REMARK. Let q be an odd prime. It follows from Theorems 4 and 5 that we have obtained the necessary and sufficient condition for spaces $D(q)_{2n,k}^{2m+1,l}$ and $D(q)_{2n+2s,k+t}^{2m+2s+1,l+t}$ to have the same stable homotopy type if following conditions (1) and (2) are satisfied.

(1) One of the following conditions:

- i) $k < l \leq k+8$,
- ii) $\max\{\beta(l-k, n+k), \beta(l-k, m+k+1)\} = 1$,

iii)
$$\max\{v_2(n+k+2^l), v_2(n+l+1), v_2(m+k+1), v_2(m+l+2)\} \ge \varphi(l-k) - 1.$$

- (2) One of the following conditions:
 - i) $n \leq m < n+q-1$,
 - ii) $\max\{\gamma(q, m-n, n+k), \gamma(q, m-n, n+l+1)\} = [(m-n)/(q-1)],$
 - iii) $\max\{(-1)^{(n+k)(n+l+1)}v_q(n+q^m), (-1)^{(m+l)(m+k+1)}v_q(m+1)\}$

$$\geq [(m-n)/(q-1)].$$

3. Preliminaries

We begin by recalling some notation in [18]. Let $\alpha_i(u,v)$ $(1 \le i \le 8)$ be the integers defined by

(3.1)

$$\begin{pmatrix}
(1) & \alpha_{1}(u,v) = \binom{2u}{u-v}(-1)^{u-v}, \\
(2) & \alpha_{4}(u,v) = \binom{u+v-1}{u-v}, \\
(3) & \alpha_{6}(u,v) = \binom{2u-v-1}{u-v}(-1)^{u-v}, \\
(4) & \alpha_{7}(u,v) = \binom{v-1}{u-v}, \\
(5) & \alpha_{3}(u,v) = \alpha_{1}(u-1,v-1) - \alpha_{1}(u-1,v+1), \\
(6) & \alpha_{2}(u,v) = \alpha_{4}(u+1,v+1) - \alpha_{4}(u-1,v+1), \\
(7) & \alpha_{5}(u,v) = \alpha_{7}(u+1,v+1) + \alpha_{7}(u-1,v), \\
(8) & \alpha_{8}(u,v) = \alpha_{6}(u-1,v-1) + \alpha_{6}(u,v+1).
\end{cases}$$

We set elements $a_i^{2j,m}(q)$, $b_i^{2j,m}(q)$ and $c_i^{2j,m}(q)$ of $\widetilde{KO}(S^{2j}L_q^m)$ by

(3.2)
$$\begin{cases} a_i^{2j,m}(q) = r(I^j((\eta_q)^i - 1)) \\ b_i^{2j,m}(q) = \begin{cases} \sum_{u=1}^i \alpha_1(i,u) a_u^{2j,m}(q) & (j \equiv 0 \pmod{2}) \\ \sum_{u=1}^i \alpha_3(i,u) a_u^{2j,m}(q) & (j \equiv 1 \pmod{2}) \\ c_i^{2j,m}(q) = r(I^j((\eta_q - 1)^j)), \end{cases}$$

where $r: K \to KO$ denotes the real restriction and $I: \tilde{K}(X) \to \tilde{K}(S^2X)$ is the Bott periodicity isomorphism.

Lemma 3.3 (Tamamura [18]). The elements $a_i^{2j,m}(q)$, $b_i^{2j,m}(q)$ and $c_i^{2j,m}(q)$ satisfy following relations.

(1)
$$a_1^{2j,m}(q) = b_1^{2j,m}(q) = c_1^{2j,m}(q).$$

(2) $a_i^{2j,m}(q) = \begin{cases} \sum_{u=1}^{i} \alpha_2(i,u) b_u^{2j,m}(q) & (j \equiv 0 \pmod{2}) \\ \sum_{u=1}^{i} \alpha_4(i,u) b_u^{2j,m}(q) & (j \equiv 1 \pmod{2}). \end{cases}$

(3)
$$a_i^{2j,m}(q) = \sum_{u=1}^{i} {\binom{i}{u}} c_u^{2j,m}(q).$$

(4)
$$c_i^{2j,m}(q) = \sum_{u=1}^{i} {\binom{i}{u}} (-1)^{i-u} a_u^{2j,m}(q).$$

 $\sum_{u=1}^{i} {\binom{i}{u}} a_u^{2j,m}(q) \qquad (i \equiv 0 \pmod{2})$

$$\begin{array}{ll} \text{(5)} & c_i^{2j,m}(q) = \begin{cases} \Sigma_{u=1}^{i} \alpha_5(i,u) c_u^{-1}(q) & (j=0 \pmod{2}) \\ \Sigma_{u=1}^{i} \alpha_7(i,u) b_u^{2j,m}(q) & (j\equiv1 \pmod{2}) \end{cases} \\ \text{(6)} & b_i^{2j,m}(q) = \begin{cases} \Sigma_{u=1}^{i} \alpha_6(i,u) c_u^{2j,m}(q) & (j\equiv0 \pmod{2}) \\ \Sigma_{u=1}^{i} \alpha_8(i,u) c_u^{2j,m}(q) & (j\equiv1 \pmod{2}) \end{cases} \\ \end{array}$$

Lemma 3.4 (Tamamura [18]). Let $q \ge 3$ be an odd integer and d = (q-1)/2. Then

$$b_{d+1+u}^{2j,m}(q) = -\sum_{i=1}^{d} \alpha_5(q, d+i) b_{i+u}^{2j,m}(q),$$

where $u \ge 0$ is an integer.

By Lemmas 3.3 and 3.4, we obtain

Lemma 3.5. Let *p* be an odd prime, and d = (p-1)/2. Then $\widetilde{KO}(S^{2j}L_p^m) = \langle \{c_{2i-j+2[j/2]}^{2j,m}(p) | 1 \le i \le d\} \rangle.$

For each integer *n* with $0 \le n < m$, we denote the inclusion map of L_q^n into L_q^m by i_n^m , and the kernel of the homomorphism

$$(i_n^m)^!$$
: $\widetilde{KO}(S^{2j}L_q^m) \to \widetilde{KO}(S^{2j}L_q^n)$

by $VO_{m,n}^{2j}(q)$, and set

(3.6)
$$UO_{m,n}^{2j}(q) = \sum_{k} \left(\bigcap_{e} k^{e}(\psi^{k} - 1) VO_{m,n}^{2j}(q) \right).$$

Proposition 3.7 (Tamamura [18]). Let p be an odd prime, and d = (p-1)/2. Then the group $VO_{2m,2n}^{2j}(p)$ is isomorphic to the direct sum of cyclic groups of order

 $p^{a_p(2m-4i+2j-4[j/2], 2n-4i+2j-4[j/2])}$

generated by $p^{a_p(2n-4i+2j-4[j/2],0)+1}b_i^{2j,2m}(p)$ $(1 \le i \le d).$

Proposition 3.8 ([14]). Let p be an odd prime. Then

$$\widetilde{J}(S^{2j}(L_p^{2m}/L_p^{2n})) \cong VO_{2m,2n}^{2j}(p) / UO_{2m,2n}^{2j}(p) = \langle [p^{[(n-v)/(p-1)]+1}c_v^{2j,2m}(p)] \rangle \cong \mathbb{Z}/p^{b_p(2j,2m,2n)},$$

where v = p - 1 - j + (p - 1)[j/(p - 1)].

Considering the D_q -action on $S^{2m+1} \times S^l \times R$ and $S^{2m+1} \times S^l \times C$ given by

$$\begin{cases} a \cdot (z, x, y) = (\exp(2\pi\sqrt{-1}/q) \cdot z, x, y) \\ b \cdot (z, x, y) = (\overline{z}, -x, -y) \end{cases}$$

for $(z, x, y) \in S^{2m+1} \times S^{l} \times \mathbf{R}$ and

$$\begin{cases} a \cdot (z, x, w) = (\exp(2\pi\sqrt{-1}/q) \cdot z, x, \exp(2\pi\sqrt{-1}/q)w) \\ b \cdot (z, x, w) = (\bar{z}, -x, \bar{w}) \end{cases}$$

for $(z, x, w) \in S^{2m+1} \times S^l \times C$, we have a real line bundle

$$\xi(q): (S^{2m+1} \times S^l \times \mathbf{R}) / D_a \rightarrow D(q)^{2m+1,l}$$

and a real 2-plane bundle

$$\eta(q): (S^{2m+1} \times S^l \times C) / D_q \rightarrow D(q)^{2m+1,l}$$

We denote the restriction of $\xi(q)$ (resp. $\eta(q)$) to $D(q)^{n,k}$ $(0 \le n \le 2m+1, 0 \le k \le l)$ by $\xi(q)$ (resp. $\eta(q)$). Then we have following elements of $\widetilde{KO}(D(q)^{m,l})$:

(3.9)
$$\alpha(q) = \eta(q) - \xi(q) - 1.$$

We denote by X^{γ} the Thom complex of a vector bundle γ over a finite CW-complex X. Define a map

$$f: S^{2m+1} \times S^l \times D^{2n} \times D^k \to S^{2m+2n+1} \times S^{l+k}$$

by setting

$$f((z, x, v, w)) = ((v, (1 - ||v||^2)^{1/2}z), (w, (1 - ||w||^2)^{1/2}x)).$$

Then f induces homeomorphisms

$$\overline{f}: (D(q)^{2m+1,l})^{n\eta(q) \oplus k\xi(q)} \to D(q)^{2m+2n+1,l+k}_{2n,k}$$

and $\overline{f}|D(q)^{2m,l}:(D(q)^{2m,l})^{n\eta(q)\oplus k\xi(q)} \to D(q)^{2m+2n,l+k}_{2n,k}$. Thus we obtain

Lemma 3.10. $(D(q)^{m,l})^{n\eta(q) \oplus k\xi(q)}$ is homeomorphic to $D(q)^{2n+m,k+l}_{2n,k}$.

REMARK. The partial results for the case in which q is an odd prime and $m \equiv 1 \pmod{2}$ have been obtained in [8].

Lemma 3.11. There are following homeomorphisms:

- (1) $D(q)_{2m,k}^{2m,l} \approx S^m RP_{m+k}^{m+l}$, (2) $D(q)_{2m+1,k}^{2m+1,l} \approx S^m RP_{m+k+1}^{m+l+1}$, (3) $D(q)_{n,l}^{m,l} \approx S^l(L_q^m / L_q^{n-1})$.

Proof. By Lemma 3.10, we obtain

$$D(q)_{2m,k}^{2m+1,l} \approx (D(q)^{1,l-k})^{m\eta(q) \oplus k\xi(q)}.$$

Define a map

$$h: S^1 \times S^{l-k} \times C \to S^1 \times S^{l-k} \times C$$

by setting $h((z, x, v)) = (z, x, z^{q-1}v)$. Then h induces a bundle isomorphism $\overline{h}: \eta(q)$ $\rightarrow 1 \oplus \xi(q)$ over $D(q)^{1,l-k}$. This implies

$$D(q)_{2m,k}^{2m+1,l} \approx (D(q)^{1,l-k})^{m \oplus (m+k)\xi(q)} \approx S^m (D(q)^{1,l-k})^{(m+k)\xi(q)},$$

$$D(q)_{2m,k}^{2m,l} \approx S^m (D(q)^{0,l-k})^{(m+k)\xi(q)} \approx S^m RP(l-k)^{(m+k)\xi(q)} \approx S^m RP_{m+k}^{m+l}$$

and

$$D(q)_{2m+1,k}^{2m+1,l} \approx S^{m}(D(q)^{1,l-k})^{(m+k)\xi(q)} / S^{m}(D(q)^{0,l-k})^{(m+k)\xi(q)}$$

$$\approx S^{m}(((S^{l-k} \times D^{m+k+1}) / (S^{l-k} \times S^{m+k})) / (\mathbb{Z}/2))$$

$$\approx S^{m}RP(l-k)^{(m+k+1)\xi(q)} \approx S^{m}RP_{m+k+1}^{m+l+1}.$$

By the homemorphism $D(q)^{m,l} \approx (L_q^m \times S^l)/(\mathbb{Z}/2)$,

$$\begin{split} D(q)_{n,l}^{m,l} &\approx (L_q^m \times D_+^l) / ((L_q^m \times S^{l-1}) \cup (L_q^{n-1} \times D_+^l)) \\ &\approx (L_q^m \times S^l) / ((L_q^m \times *) \cup (L_q^{n-1} \times S^l))) \\ &\approx ((L_q^m / L_q^{n-1}) \times S^l) / (((L_q^m / L_q^{n-1}) \times *) \cup (* \times S^l))) \\ &\approx S^l (L_q^m / L_q^{n-1}). \end{split}$$
 q.e.d.

Let $\tau(q)^{2m+1,l}$: $TD(q)^{2m+1,l} \to D(q)^{2m+1,l}$ be the tangent bundle of $D(q)^{2m+1,l}$. Then we have

Lemma 3.12. $\tau(q)^{2m+1,l} \oplus 2$ is isomorphic to $(m+1)\eta(q) \oplus (l+1)\xi(q)$.

Proof. There exists an equivariant isomorphism

h:
$$T(S^{2m+1} \times S^l) \times \mathbb{R}^2 \to S^{2m+1} \times S^l \times \mathbb{C}^{m+1} \times \mathbb{R}^{l+1}$$
,

which induces a bundle isomorphism

$$\bar{h}: (T(S^{2m+1} \times S^l) / D_q) \times \mathbb{R}^2 \to (S^{2m+1} \times S^l \times \mathbb{C}^{m+1} \times \mathbb{R}^{l+1}) / D_q$$

$$q)^{2m+1,l} \oplus 2 \text{ to } (m+1)\eta(q) \oplus (l+1)\xi(q).$$
q.e.d.

from $\tau(q)^{2m+1,l} \oplus 2$ to $(m+1)\eta(q) \oplus (l+1)\xi(q)$.

Lemma 3.13. Let N and M be integers with $N \equiv 0 \pmod{h(q, 2m-2n+1)}$, $M \equiv 0$ $(\mod 2^{\varphi(l-k)})$, N > m+1 and M > N+l+2. Then the S-dual of $D(q)^{2m+1,l}_{2n,k}$ is

 $D(q)_{2N-2m-2,M-N-l-1}^{2N-2n-1,M-N-k-1}$

Proof. By Lemma 3.10, Lemma 3.12 and [5, Proposition (2.6) and Theorem (3.5)], the S-dual of

$$D(q)_{2n,k}^{2m+1,l} \approx (D(q)^{2m-2n+1,l-k})^{n\eta(q) \oplus k\xi(q)}$$

is

$$(D(q)^{2m-2n+1,l-k})^{(N-n)\eta(q)\oplus(M-N-k)\xi(q)-\tau(q)^{2m-2n+1,l-k}}$$

$$\approx (D(q)^{2m-2n+1,l-k})^{(N-n)\eta(q)\oplus(M-N-k)\xi(q)-((m-n+1)\eta(q)\oplus(l-k+1)\xi(q))}$$

$$\approx (D(q)^{2m-2n+1,l-k})^{(N-m-1)\eta(q)\oplus(M-N-l-1)\xi(q)}$$

$$\approx D(q)^{2m-2n-1,M-N-k-1}_{2N-2m-2,M-N-l-1}.$$

q.e.d.

According to [10], $D(q)^{m,l}$ has a cellular decomposition

$$\{(C_i, D_j) | 0 \leq i \leq m, 0 \leq j \leq l\},\$$

where dim $(C_i, D_j) = i + j$ and boundary operations are given by

(3.14)
$$\begin{cases} \partial(C_{2i}, D_j) = q(C_{2i-1}, D_j) + ((-1)^i + (-1)^j)(C_{2i}, D_{j-1}), \\ \partial(C_{2i+1}, D_j) = ((-1)^i + (-1)^{j+1})(C_{2i+1}, D_{j-1}). \end{cases}$$

We denote by (c^i, d^j) the dual cochain of (C_i, D_j) .

Lemma 3.15. Suppose $q \equiv 1 \pmod{2}$. (1) $\tilde{H}^*(D(q)_{2n+1,k}^{2m,l}) \cong (\bigoplus_{2n < 4i-2k \le 2m} (\mathbb{Z}/q)[(c^{4i-2k}, d^k)])$ $\oplus (\bigoplus_{2n < 4i-2l-2 \le 2m} (\mathbb{Z}/q)[(c^{4i-2l-2}, d^l)]).$

(2) $\tilde{H}^{*}(D(q)_{2n+1,k}^{2m,l}; \mathbb{Z}/2) \cong 0.$

Lemma 3.16. Suppose $q \equiv 1 \pmod{2}$ and l > k. Then there exists a split short exact sequence

$$(3.17) \quad 0 \to A(q, j, l)_{2n+1}^{2m} \to \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \to A(q, j-1, k+1)_{2n+1}^{2m} \to 0$$

of ψ -groups.

Proof. It follows from Lemma 3.15 and the Atiyah-Hirzebruch spectral sequence for KO-theory that the order of the group $\widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l})$ is a divisor of $q^{a(j,m,n,l,k)}$, where

STABLE HOMOTOPY TYPES OF THOM SPACES

$$a(j,m,n,l,k) = \begin{cases} [(m+k)/2] - [(n+k)/2]) + [(m+l+1)/2] - [(n+l+1)/2] \\ (j \equiv k \equiv l+2 \pmod{4}) \\ [(m+k)/2] - [(n+k)/2] \\ [(m+l+1)/2] - [(n+l+1)/2] \\ 0 \end{cases} (j \equiv k \neq l+2 \pmod{4}) \\ (j \equiv l+2 \neq k \pmod{4}) \\ (otherwise). \end{cases}$$

In the case $k \equiv l \pmod{2}$, the order of the group $\widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l})$ is equal to $q^{a(j,m,n,l,k)}$. By Lemma 3.11, we obtain a sequence

$$\widetilde{KO}(S^{j+l}(L_q^{2m}/L_q^{2n})) \xrightarrow{h_1} \widetilde{KO}(S^j D(q)_{2n+1,k}^{2m,l}) \xrightarrow{h_2} \widetilde{KO}(S^{j+k}(L_q^{2m}/L_q^{2n}))$$

of ψ -groups with $h_2 \circ h_1 = 0$. It follows from [19] that

$$\widetilde{KO}(S^{2j+1}(L_q^{2m}/L_q^{2n}))\cong 0$$

and the order of $\widetilde{KO}(S^{2j}(L_q^{2m}/L_q^{2n}))$ is equal to $q^{\lfloor (m+j)/2 \rfloor - \lfloor (n+j)/2 \rfloor}$. Inspect the commutative diagram

with exact rows. Suppose $j \equiv k \equiv l \pmod{4}$. Then $g_1 = 0$. This implies that $h_1 = 0$, h_2 is an isomorphism and g_2 is an isomorphism. Suppose $j-2 \equiv k \equiv l \pmod{4}$. Then $g_2 = 0$. This implies that $h_2 = 0$, h_1 is an isomorphism and g_1 is an isomorphism. Thus we obtain the lemma for the case $k \equiv l \pmod{4}$ and it is shown that the order of $\widetilde{KO}(S^j D(q)_{2n+1,k}^{2m,l})$ is equal to $q^{a(j,m,n,l,k)}$ if $k \equiv l-3 \pmod{4}$. Then $g_1 = h_1 = 0$. This implies that h_2 is an isomorphism and g_2 is a monomorphism. Suppose $j-1 \equiv k \equiv l-3 \pmod{4}$. Then $h_2 = g_2 = 0$. This implies that g_1 is an epimorphism and h_1 is an isomorphism. Thus we obtain the lemma for the case $k \equiv l-3 \pmod{4}$. Then $h_2 = g_2 = 0$. This implies that g_1 is an epimorphism and h_1 is an isomorphism. Thus we obtain the lemma for the case $k \equiv l-3 \pmod{4}$. Suppose $j \equiv k \equiv l-2 \pmod{4}$. Then h_1 is a monomorphism and h_2 is an epimorphism. This implies that $Im h_1 = \operatorname{Ker} h_2$. Using the isomorphism

$$\widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l+2}) \stackrel{\cong}{\to} \widetilde{KO}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n}))$$

we obtain a ψ -map

$$h_3: \widetilde{KO}(S^{j+k}(L_q^{2m}/L_q^{2n})) \rightarrow \widetilde{KO}(S^jD(q)_{2n+1,k}^{2m,l})$$

with $h_2 \circ h_3 = 1$. Thus we obtain the lemma for the case $k \equiv l-2 \pmod{4}$ and it is shown that the order of $\widetilde{KO}(S^j D(q)_{2n+1,k}^{2m,l})$ is equal to $q^{a(j,m,n,l,k)}$ if $k \equiv l-1 \pmod{4}$. Suppose $j \equiv k \equiv l-1 \pmod{4}$. Then $g_1 = h_1 = 0$. This implies that h_2 and

 g_2 are isomorphisms. Suppose $j+1 \equiv k \equiv l-1 \pmod{4}$. Then $h_2 = g_2 = 0$. This implies that g_1 and h_1 are isomorphisms. Thus we obtain the lemma for the case $k \equiv l-1 \pmod{4}$.

We consider the following maps

(3.18)
$$\begin{cases} i_1: L_q^{2m+1} \to D(q)^{2m+1,l}, \ i_2: RP(l) \to D(q)^{2m+1,l} \\ p_0: D(q)^{2m+1,l} \to RP(l), \ p_1: D(q)^{2m+1,l} \to S^l L_q^{2m+1}, \\ p_2: D(q)^{2m+1,l} \to S^m RP_{m+1}^{m+l+1}. \end{cases}$$

We set the following homomorphisms

(3.19)
$$\begin{cases} f_1: \widetilde{KO}(L_q^{2m}) \to \widetilde{KO}(D(q)^{2m+1,l}), \\ i_0: \widetilde{KO}(S^l L_q^{2m}) \to \widetilde{KO}(S^l L_q^{2m+1}), \\ f_2 = (p_1)^l \circ i_0: \widetilde{KO}(S^l L_q^{2m}) \to \widetilde{KO}(D(q)^{2m+1,l}), \end{cases}$$

where f_1 is defined by $f_1(r(\eta_q - 1)) = \alpha(q)$, and i_0 is a right inverse of the restriction homomorphism $\widetilde{KO}(S^l L_q^{2m+1}) \to \widetilde{KO}(S^l L_q^{2m})$.

Proposition 3.20 ([16]). Suppose $q \equiv 1 \pmod{2}$ and l > 0. (1) The homomorphism

$$f: \widetilde{KO}(L_q^{2m}) \oplus A(q,0,l)_1^{2m} \oplus \widetilde{KO}(RP(l)) \oplus \widetilde{KO}(S^m RP_{m+1}^{m+l+1}) \to \widetilde{KO}(D(q)^{2m+1,l})$$

defined by $f(x,y,z,w) = f_1(x) + f_2(y) + (p_0)!(z) + (p_2)!(w)$ is an isomorphism. (2) The homomorphism

$$g: \widetilde{J}(L_q^{2m}) \oplus B(q,0,l)_1^{2m} \oplus \widetilde{J}(RP(l)) \oplus \widetilde{J}(S^m RP_{m+1}^{m+l+1}) \to \widetilde{J}(D(q)^{2m+1,l})$$

defined by $g(J(x),J(y),J(z),J(w)) = J(f_1(x) + f_2(y) + (p_0)!(z) + (p_2)!(w))$ is an isomorphism.

4. Proof of Theorems 1 and 2

The part (1) of Theorems 1 and 2 is a direct consequence of Lemma 3.16. It follows from Lemma 3.11 that there exists a commutative diagram

with exact rows. Since $\widetilde{KO}(S^{j}D(q)_{2m+1,k}^{2m+2,l})$ has an odd order, $f_3 = 0$ and we obtain the following commutative diagram

STABLE HOMOTOPY TYPES OF THOM SPACES

in which the row is exact. Thus we obtain

$$\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m+1,l}) \cong \widetilde{KO}(S^{j+m}RP_{m+k+1}^{m+l+1}) \oplus \widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l})$$

and $\widetilde{J}(S^{j}D(q)_{2n,k}^{2m+1,l}) \cong \widetilde{J}(S^{j+m}RP_{m+k+1}^{m+l+1}) \oplus \widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l})$. Similarly we obtain

$$\widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m+1,l}) \cong \widetilde{KO}(S^{j+m}RP_{m+k+1}^{m+l+1}) \oplus \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l})$$

and $\tilde{J}(S^{j}D(q)_{2n+1,k}^{2m+1,l}) \cong \tilde{J}(S^{j+m}RP_{m+k+1}^{m+l+1}) \oplus \tilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l}).$

Since the short exact sequence

$$0 \to \widetilde{KO}(S^{j}D(q)_{1,k}^{2m,l}) \to \widetilde{KO}(S^{j}D(q)_{0,k}^{2m,l}) \to \widetilde{KO}(S^{j}RP_{k}^{l}) \to 0$$

of ψ -groups splits, we obtain

$$\widetilde{KO}(S^{j}D(q)_{0,k}^{2m,l}) \cong \widetilde{KO}(S^{j}D(q)_{1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j}RP_{k}^{l})$$

and $\widetilde{J}(S^{j}D(q)_{0,k}^{2m,l}) \cong \widetilde{J}(S^{j}D(q)_{1,k}^{2m,l}) \oplus \widetilde{J}(S^{j}RP_{k}^{l}).$

Suppose n > 0. There exists a commutative diagram

with exact rows. If $(j-l-2, j+2n+l) \not\equiv (0,0) \pmod{4}$ and $(j-k, j+2n+k) \not\equiv (0,0) \pmod{4}$, then $\widetilde{KO}(S^{j}D(q)_{2n-1,k}^{2n,l}) \cong 0$. Hence

$$\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l})$$

and $\widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{J}(S^{j+n}RP_{n+k}^{n+l}).$

Suppose m > n > 0 and $j-l-2 \equiv j+2n+l \equiv 0 \pmod{4}$. Then $j+n \equiv 1 \pmod{2}$ and we obtain a commutative diagram

of exact sequences. Since $j-l-1 \equiv 1 \neq 0 \pmod{4}$ and $j+n \equiv 1 \neq 0 \pmod{2}$, there exists a ψ -map

$$f_7: \widetilde{KO}(S^j D(q)_{2n,k}^{2m,l-1}) \to \widetilde{KO}(S^j D(q)_{2n+1,k}^{2m,l-1})$$

with $f_7 \circ f_5 = 1$. By Lemma 3.16, we obtain a ψ -map

$$h_4: \widetilde{KO}(S^j D(q)_{2n+1,k}^{2m,l-1}) \to \widetilde{KO}(S^j D(q)_{2n+1,k}^{2m,l})$$

with $h_1 \circ h_4 = 1$. If $\widetilde{KO}(S^{j+n}RP_{n+k}^{n+l-1}) \cong 0$, then $\widetilde{KO}(S^{j+n}RP_{n+k}^{n+l}) \cong \widetilde{KO}(S^{j+2n+l}) \cong \mathbb{Z}$,

 f_5 is an isomorphism,

$$\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l})$$

and

$$\begin{split} \widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) &\cong \widetilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l-1}) \oplus \widetilde{J}(S^{j+l}(L_{q}^{2m}/L_{q}^{2n-1})) \\ &\cong B(q, j-1, k+1)_{2n+1}^{2m} \oplus B(q, j, l)_{2n}^{2m}. \end{split}$$

Suppose m > n > 0, $j - l - 2 \equiv j + n - 3 \equiv 0 \pmod{4}$, $j + l + 2n \equiv 4 \pmod{8}$ and l > k + 1. Then

$$\widetilde{KO}(S^{j+n}RP_{n+k}^{n+l-1}) \cong \mathbb{Z}/2,$$
$$\widetilde{KO}(S^{j+n}RP_{n+k}^{n+l}) \cong \widetilde{KO}(S^{j+2n+l}) \cong \mathbb{Z}$$

and $\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l})$. Choose generators $\alpha \in \widetilde{KO}(S^{j+2n+l})$ and $\beta \in \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l})$ with $g_3(\alpha) = 2\beta$. Choose $z \in \widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l})$ with $f_4(z) = \beta$. Set

$$y = z - (f_3 \circ h_4 \circ f_7 \circ h_2)(z).$$

Since $f_6(h_2(2z)) = h_3(2f_4(z)) = h_3(2\beta) = 0$, there exists an element $u \in \widetilde{KO}(S^j D(q)_{2n+1,k}^{2m,l-1})$ with $f_5(u) = h_2(2z)$. Then

$$h_2(2y) = h_2(2z) - f_5(f_7(h_2(2z)))$$

= $f_5(u) - f_5(f_7(f_5(u)))$
= $f_5(u) - f_5(u) = 0.$

So, there exists an element $x \in \widetilde{KO}(S^{j+l}(L_q^{2m}/L_q^{2n-1}))$ with $g_2(x) = 2y$. Then $f_2(x) = \alpha$. Since $\widetilde{KO}(S^{j+l}(L_q^{2m}/L_q^{2n}))$ has an odd order, the homomorphism

$$i_0: \widetilde{KO}(S^{j+l}(L_q^{2m}/L_q^{2n})) \to \widetilde{KO}(S^{j+l}(L_q^{2m}/L_q^{2n}))$$

defined by $i_0(a) = 2a$ is an isomorphism. Let

$$f_8: \widetilde{KO}(S^{j+2n+l}) \to \widetilde{KO}(S^{j+l}(L_q^{2m}/L_q^{2n-1}))$$

be the homomorphism defined by $f_8(a\alpha) = ax$ for $a \in \mathbb{Z}$, and

$$f_9: \widetilde{KO}(S^{j+2n+l}) \to \widetilde{KO}(S^j D(q)_{2n,k}^{2m,l})$$

the homomorphism defined by $f_9(a\alpha) = ay$ for $a \in \mathbb{Z}$. Define the homomorphism

$$g_0: \widetilde{KO}(S^{j+l}(L_q^{2m}/L_q^{2n-1})) \to \widetilde{KO}(S^j D(q)_{2n,k}^{2m,l})$$

by setting

$$g_0(a) = f_3(g_1(i_0^{-1}(f_1^{-1}(a - f_8(f_2(a)))))) + f_9(f_2(a)))$$

Suppose $g_0(a) = 0$. Then $f_4(g_0(a)) = f_4(f_9(f_2(a))) = 0$. This implies that $f_2(a) = 0$. Hence $f_3(g_1(i_0^{-1}(f_1^{-1}(a)))) = 0$. Since f_3 and g_1 are monomorphisms, this implies that a=0. Thus g_0 is a monomorphism. Since g_2 is given by

$$g_{2}(a) = g_{2}(a - f_{8}(f_{2}(a))) + g_{2}(f_{8}(f_{2}(a)))$$

= $g_{2}(f_{1}(i_{0}^{-1}(2f_{1}^{-1}(a - f_{8}(f_{2}(a)))))) + 2f_{9}(f_{2}(a)))$
= $2f_{3}(g_{1}(i_{0}^{-1}(f_{1}^{-1}(a - f_{8}(f_{2}(a)))))) + 2f_{9}(f_{2}(a)))$
= $2g_{0}(a),$

 $g_2 = 2g_0$. This implies that the homomorphism g_0 is a ψ -map. Consider the sequence

$$(4.1) \quad 0 \to A(q, j, l)_{2n}^{2m} \xrightarrow{g_0} \widetilde{KO}(S^j D(q)_{2n,k}^{2m,l}) \xrightarrow{f_1 \circ h_2} \widetilde{KO}(S^j D(q)_{2n+1,k}^{2m,l-1}) \to 0.$$

Noting that $f_7 \circ h_2 \circ f_3 \circ h_4 = f_7 \circ f_5 = 1$, it is not difficult to see that (4.1) is a split exact sequence of ψ -groups. Thus we obtain

$$\begin{split} \tilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) &\cong \tilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l-1}) \oplus \tilde{J}(S^{j+l}(L_{q}^{2m}/L_{q}^{2n-1})) \\ &\cong B(q,j-1,k+1)_{2n+1}^{2m} \oplus B(q,j,l)_{2n}^{2m}. \end{split}$$

Suppose m > n > 0, $j-l-2 \equiv n+j-1 \equiv 0 \pmod{4}$ and l > k+1. In the commutative diagram

with exact rows, k_1 and k_3 are isomorphisms. This implies that k_2 is an isomorphism. Using k_2 , we obtain a ψ -map

$$h_5 \colon \widetilde{KO}(S^j D(q)_{2n,k}^{2m,l-1}) \to \widetilde{KO}(S^j D(q)_{2n,k}^{2m,l})$$

with $h_2 \circ h_5 = 1$. Thus we have

$$\begin{split} \widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l}) &\cong \widetilde{KO}(S^{j+l}(L_{q}^{2m}/L_{q}^{2n-1})) \oplus \widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l-1}) \\ &\cong A(q,j,l)_{2n+1}^{2m} \oplus \mathbb{Z} \oplus A(q,j-1,k+1)_{2n+1}^{2m} \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l-1}) \\ &\cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l}) \end{split}$$

and

$$\begin{split} \tilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) &\cong \tilde{J}(S^{j+l}(L_{q}^{2m}/L_{q}^{2n-1})) \oplus \tilde{J}(S^{j}D(q)_{2n,k}^{2m,l-1}) \\ &\cong B(q,j,l)_{2n}^{2m} \oplus B(q,j-1,k+1)_{2n+1}^{2m} \oplus G_{0}(j+2n+k) \end{split}$$

Suppose m > n > 0 and $j-k \equiv j+2n+k \equiv 0 \pmod{4}$. Then $j+n \equiv 0 \pmod{2}$. If $n+j \equiv 2 \pmod{4}$ and $j+2n+k \equiv 4 \pmod{8}$, then we obtain the following commutative diagram

of exact sequences. Choose $r \ge l$ with $r \ne j+2 \pmod{4}$ and $j+2n+r \equiv 3,4,5,6$ or 7 (mod 8). Then, in the commutative diagram

with exact rows, k_1 and k_3 are isomorphisms. This implies that k_2 is an isomorphism. Using k_2 , we obtain a ψ -map

$$h_5 \colon \widetilde{KO}(S^{j+k}(L_q^{2m}/L_q^{2n-1})) \to \widetilde{KO}(S^j D(q)_{2n,k}^{2m,l})$$

with $h_2 \circ h_5 = 1$. Since $j+n \equiv 0 \pmod{2}$ and $j-k-1 \equiv 3 \neq 0 \pmod{4}$, there exists a ψ -map

$$f_{7}: \widetilde{KO}(S^{j+n}RP^{n+l}_{n+k+1}) \to \widetilde{KO}(S^{j}D(q)^{2m,l}_{2n,k+1})$$

with $f_2 \circ f_7 = 1$. Thus we obtain

$$\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{KO}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n-1})) \oplus \widetilde{KO}(S^{j}D(q)_{2n,k+1}^{2m,l})$$
$$\cong A(q,j-1,k+1)_{2n+1}^{2m} \oplus \mathbb{Z} \oplus A(q,j,l)_{2n+1}^{2m} \oplus \widetilde{KO}(S^{j+n}RP_{n+k+1}^{n+l})$$
$$\cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l})$$

and

$$\begin{split} \tilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) &\cong \tilde{J}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n-1})) \oplus \tilde{J}(S^{j}D(q)_{2n,k+1}^{2m,l}) \\ &\cong B(q,j-1,k+1)_{2n}^{2m} \oplus B(q,j,l)_{2n+1}^{2m} \oplus G_{0}(j+2n+l) \end{split}$$

of exact sequences. If l=k+1, then $\widetilde{KO}(S^{j}D(q)^{2m,l}_{2n+1,k+1}) \cong 0$ and there exists a

homotopy equivalence

$$g: S^{j+n} RP_{n+k}^{n+l} \xrightarrow{\simeq} S^{j+2n+k+1} \vee S^{j+2n+k}.$$

Using g, we obtain a ψ -map

$$g_6: \widetilde{KO}(S^{j+n}RP_{n+k}^{n+k+1}) \to \widetilde{KO}(S^{j+2n+k+1})$$

with $g_6 \circ g_3 = 1$. Define a ψ -map

$$g_5 \colon \widetilde{KO}(S^j D(q)^{2m,k+1}_{2n,k}) \to \widetilde{KO}(S^j D(q)^{2m,k+1}_{2n,k+1})$$

by $g_5(a) = f_2^{-1}(g_6(f_4(a)))$ for $a \in \widetilde{KO}(S^j D(q)_{2n,k}^{2m,k+1})$. Then

$$g_5 \circ g_2 = f_2^{-1} \circ g_6 \circ f_4 \circ g_2 = f_2^{-1} \circ g_6 \circ g_3 \circ f_2 = f_2^{-1} \circ f_2 = 1.$$

Thus we obtain

$$\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,k+1}) \cong \widetilde{KO}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n-1})) \oplus \widetilde{KO}(S^{j+2n+k+1})$$
$$\cong \widetilde{KO}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n})) \oplus \mathbb{Z} \oplus \mathbb{Z}/2$$
$$\cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,k+1}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+k+1})$$

and

$$\begin{split} \widetilde{J}(S^{j}D(q)_{2n,k}^{2m,k+1}) &\cong \widetilde{J}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n-1})) \oplus \widetilde{J}(S^{j+2n+k+1}) \\ &\cong B(q,j-1,k+1)_{2n}^{2m} \oplus \mathbb{Z}/2. \end{split}$$

If $l > k+1$, then $\operatorname{Im} h_{3} = 2\widetilde{KO}(S^{j+2n+k})$, $\operatorname{Im} h_{2} = 2\widetilde{KO}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n-1}))$ and
 $\operatorname{Ker} g_{2} \cong \operatorname{Ker} g_{3} \cong \widetilde{KO}(S^{j+2n+k+1}) \cong \mathbb{Z}/2. \end{split}$

Thus we obtain the commutative diagram

of exact swquences. Since $j+n\equiv 0 \pmod{2}$ and $j-k-1\equiv 3 \neq 0 \pmod{4}$, there exists a ψ -map

$$f_7 \colon \widetilde{KO}(S^j D(q)^{2m,l}_{2n,k+1}) \to \widetilde{KO}(S^j D(q)^{2m,l}_{2n+1,k+1})$$

with $f_7 \circ f_1 = 1$. Since $\widetilde{KO}(S^j D(q)_{2n+1,k+1}^{2m,l})$ has an odd order, f_7 induces a ψ -map $\overline{f_7}$: Coker $h_4 \to \widetilde{KO}(S^j D(q)_{2n+1,k+1}^{2m,l})$

with $\overline{f}_7 \circ \overline{f}_1 = 1$. Choose an integer $r \ge l$ with $j + 2n + r \equiv 5 \pmod{8}$. Then $j \not\equiv r + 2 \pmod{4}$ and using the isomorphism

$$f_8: KO(S^j D(q)_{2n,k}^{2m,r}) \to \operatorname{Im} h_2,$$

we obtain a ψ -map

$$h_6: \operatorname{Im} h_2 \to \widetilde{KO}(S^j D(q)_{2n,k}^{2m,l})$$

with $\bar{h}_2 \circ h_6 = 1$. Thus we obtain

$$\begin{aligned} KO(S^{j}D(q)_{2n,k}^{2m,l}) &\cong \operatorname{Im} h_{2} \oplus \operatorname{Coker} h_{4} \\ &\cong \widetilde{KO}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n-1})) \oplus \widetilde{KO}(S^{j}D(q)_{2n+1,k+1}^{2m,l}) \oplus \operatorname{Coker} h_{5} \\ &\cong A(q,j-1,k+1)_{2n+1}^{2m} \oplus \mathbb{Z} \oplus A(q,j,l)_{2n+1}^{2m} \oplus G_{0}(j+2n+l) \\ &\cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l}) \end{aligned}$$

and

$$\begin{split} \widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) &\cong J''(\operatorname{Im} h_{2}) \oplus J''(\operatorname{Coker} h_{4}) \\ &\cong B(q,j-1,k+1)_{2n}^{2m} \oplus B(q,j,l)_{2n+1}^{2m} \oplus G_{0}(j+2n+l). \end{split}$$

Suppose $j-k\equiv j+n\equiv 0 \pmod{4}$. Then, there exists a commutative diagram

of exact sequences. Since $j+n\equiv 0 \pmod{4}$ and $j-k-1\equiv 3 \neq 0 \pmod{4}$, there exists a ψ -map

$$f_8 \colon \widetilde{KO}(S^{j+n}RP^{n+l}_{n+k+1}) \to \widetilde{KO}(S^jD(q)^{2m,l}_{2n,k+1})$$

with $f_2 \circ f_8 = 1$. Thus we obtain

$$\widetilde{KO}(S^{j}D(q)^{2m,l,2n-1,k-1}_{2n,k,2n+1,k}) \cong \widetilde{KO}(S^{j+n}RP^{n+l}_{n+k+1}) \oplus \widetilde{KO}(S^{j}D(q)^{2m,l}_{2n+1,k})$$

and $\widetilde{J}(S^{j}D(q)_{2n,k,2n+1,k}^{2m,l,2n-1,k-1}) \cong \widetilde{J}(S^{j+n}RP_{n+k+1}^{n+l}) \oplus \widetilde{J}(S^{j}D(q)_{2n+1,k}^{2m,l})$. There exists an exact sequence

$$0 \to \widetilde{KO}(S^{j}D(q)^{2m,l,2n-1,k-1}_{2n,k,2n+1,k}) \to \widetilde{KO}(S^{j}D(q)^{2m,l}_{2n,k}) \to \widetilde{KO}(S^{j+2n+k}) \to 0.$$

Since $\widetilde{KO}(S^{j+2n+k}) \cong \mathbb{Z}$, we obtain

$$\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{KO}(S^{j}D(q)_{2n,k,2n+1,k}^{2m,l,2n-1,k-1}) \oplus \mathbb{Z}$$
$$\cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k+1}^{n+l}) \oplus \mathbb{Z}$$
$$\cong \widetilde{KO}(S^{j}D(q)_{2n+1,k}^{2m,l}) \oplus \widetilde{KO}(S^{j+n}RP_{n+k}^{n+l}).$$

If $j+n\equiv 0 \pmod{4}$ and $l\equiv j+2 \pmod{4}$, then there exists an exact sequence

$$0 \to A(q,j,l)_{2n+1}^{2m} \xrightarrow{h_1} \widetilde{KO}(S^j D(q)_{2n,k}^{2m,l}) \xrightarrow{h_2} \widetilde{KO}(S^j D(q)_{2n,k,2n,k}^{2m,l-1,2n,k-1}) \to 0.$$

In the commutative diagram

with exact rows, k_1 and k_3 are isomorphisms. This implies that k_2 is an isomorphism. Using k_2 , we obtain a ψ -map

$$h_3: \widetilde{KO}(S^j D(q)^{2m,l-1,2n,k-1}_{2n,k,2n,k}) \to \widetilde{KO}(S^j D(q)^{2m,l}_{2n,k})$$

with $h_2 \circ h_3 = 1$. Thus we obtain

$$\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m,l}) \cong \widetilde{KO}(S^{j}D(q)_{2n,k,2n,k}^{2m,l-1,2n,k-1}) \oplus \widetilde{KO}(S^{j+l}(L_{q}^{2m}/L_{q}^{2n}))$$

and

$$\begin{split} \widetilde{J}(S^{j}D(q)_{2n,k}^{2m,l}) &\cong \widetilde{J}(S^{j}D(q)_{2n,k,2n,k}^{2m,l-1,2n,k-1}) \oplus \widetilde{J}(S^{j+l}(L_{q}^{2m}/L_{q}^{2n})) \\ &\cong \widetilde{J}(S^{j}D(q)_{2n,k,2n,k}^{2m,l-1,2n,k-1}) \oplus B(q,j,l)_{2n+1}^{2m}. \end{split}$$

There exists a commutative diagram

STABLE HOMOTOPY TYPES OF THOM SPACES

in which the row is exact. This implies that

$$\widetilde{KO}(S^{j}D(q)_{2n,k,2n+1,k}^{2m,l-1,2n,k-1}) \cong \widetilde{KO}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n})) \oplus \widetilde{KO}(S^{j+n}RP_{n+k+1}^{n+l})$$

and

$$\begin{split} \tilde{J}(S^{j}D(q)^{2m,l-1,2n,k-1}_{2n,k,2n+1,k}) &\cong \tilde{J}(S^{j+k}(L_{q}^{2m}/L_{q}^{2n})) \oplus \tilde{J}(S^{j+n}RP^{n+l}_{n+k+1}) \\ &\cong B(q,j-1,k+1)^{2m}_{2n+1} \oplus \tilde{J}(S^{j+n}RP^{n+l}_{n+k+1}). \end{split}$$

This completes the proof of Theorems 1 and 2.

5. Proof of Theorem 3

Suppose m > n > 0, $j-k \equiv j+n \equiv 0 \pmod{4}$ and p is an odd prime. We set

$$X = \begin{cases} S^{j}D(p)_{2n,k,2n,k}^{2m,l-1,2n,k-1} & (l \equiv j+2 \pmod{4}) \\ S^{j}D(p)_{2n,k}^{2m,l} & (\text{otherwise}) \end{cases}$$

and

$$Y = \begin{cases} S^{j}D(p)_{2n,k,2n+1,k}^{2m,l-1,2n,k-1} & (l \equiv j+2 \pmod{4}) \\ S^{j}D(p)_{2n,k,2n+1,k}^{2m,l,2n-1,k-1} & (otherwise). \end{cases}$$

There exists a commutative diagram

with exact rows. In the diagram, $h_{2,2}$ and $h_{p,2}$ are epimorphisms. There exist ψ -maps

$$g_2: VO_{n+l,n+k}^{j+n}(2) \to \widetilde{KO}(Y)$$

and $g_p: VO_{2m,2n}^{j+k}(p) \to \widetilde{KO}(Y)$ with $h_{2,1} \circ g_2 = 1$, $h_{p,1} \circ g_p = 1$, $\operatorname{Im} g_2 = \operatorname{Ker} h_{p,1}$ and $\operatorname{Im} g_p = \operatorname{Ker} h_{2,1}$. For each *i* prime to *p* (resp. 2), $N_p(i)$ (resp. $N_2(i)$) denote the integer chosen to satisfy the property

(5.1)
$$iN_{p}(i) \equiv 1 \pmod{p^{m}} \pmod{iN_{2}(i)} \equiv 1 \pmod{2^{l}}$$
.

In order to state the next lemma, we set

(5.2)
$$\begin{cases} (1) \quad v = (p-1)([(j+k)/2(p-1)]+1) - (j+k)/2. \\ (2) \quad s = [(n-v)/(p-1)]. \\ (3) \quad u_p = \begin{cases} N_p(2)p^{s+1}c_v^{j+k,2m}(p) & (j+2n+k \equiv 0 \pmod{8}) \\ p^{s+1}c_v^{j+k,2m}(p) & (j+2n+k \equiv 4 \pmod{8}). \end{cases} \\ (4) \quad UO = \sum_{\substack{i \in e \\ i \in e}} (\bigcap_{i \in e} (\psi^i - 1)\widetilde{KO}(Y)). \end{cases}$$

Lemma 5.3. There exists an element $x \in \widetilde{KO}(X)$ such that

(1) $f_2(x)$ generates the group $\widetilde{KO}(S^{j+2n+k}) \cong \mathbb{Z}$.

(2) The Adams operations are given by

$$\psi^{i}(x) \equiv i^{u}x + f_{1}(g_{p}(v_{p}) + g_{2}(v_{2})) \pmod{f_{1}(UO)},$$

where u = (j + 2n + k)/2,

$$v_2 = \begin{cases} -(i^u/2)u_2 & (i \equiv 0 \pmod{2}) \\ -((i^u-i^{(j+n)/2})/2)u_2 & (i \equiv 1 \pmod{2}), \end{cases}$$

$$v_p = \begin{cases} -(i^u/p)0^{u-t(p-1)}u_p & (i \equiv 0 \pmod{p}) \\ (i^u + 1 + (i^u + 1)/2)(i^{p-1} + 1) & (i^{p-1}) \\ (i^{p-1} + (i^{p-1})/2)(i^{p-1} + 1) & (i^{p-1}) \\ (i^{p-1} + (i^{p-1})/2)(i^{p-1} + 1) & (i^{p-1}) \\ (i^{p-1} + (i^{p-1})/2)(i^{p-1} + 1) & (i^{p-1})/2 \\ (i^{p-1} + (i^{p-1})/2)(i^{p-1} + 1) & (i^{p-1} + 1) \\ (i^{p-1} + (i^{p-1})/2)(i^{p-1} + 1) & (i^{p-1})/2 \\ (i^{p-1} + (i^{p-1})/2)(i^{p-1} + 1) \\ (i^{p-1} + (i^{p-1})/2)(i^{p-1} + 1) & (i^{p-1} + 1) \\ (i^{p-1} + (i^{p-1} + 1))(i^{p-1} + 1) \\ (i^{p-1} + (i^{p-1})/2)(i^{p-1} + 1) \\ (i^{p-1} + (i^{p-1})/2)(i^{p-1} + 1) \\ (i^{p-1} + (i^{p-1} + 1)/2)(i^{p-1} + 1) \\ (i^{p-1} +$$

$$\int_{a}^{b} \int_{a}^{b} \left(-\left(\left(i^{u}-1+\left(\left(j+k\right)/2\right)\left(i^{p-1}-1\right)\right)/p\right) 0^{u-t(p-1)} u_{p} \qquad (i \neq 0 \pmod{p}) \right)$$

t = [u/(p-1)] and u_2 is a generator of the group $VO_{n+l,n+k}^{j+n}(2)$.

Proof. According to [14], there exists an element

$$x_p \in \widetilde{KO}(S^{j+k}(L_p^{2m}/L_p^{2n-1}))$$

such that

- i) $f_{p,2}(x_p)$ generates the group $\widetilde{KO}(S^{j+2n+k}) \cong \mathbb{Z}$.
- ii) The Adams operations are given by

$$\psi^{i}(x_{p}) \equiv i^{(j+2n+k)/2} x_{p} + f_{p,1}(v_{p}) \pmod{f_{p,1}(UO_{2m,2n}^{j+k}(p))},$$

where

$$v_p = \begin{cases} -(i^u/p)0^{u-t(p-1)}u_p & (i \equiv 0 \pmod{p}) \\ -((i^u-1+((j+k)/2)(i^{p-1}-1))/p)0^{u-t(p-1)}u_p & (i \not\equiv 0 \pmod{p}), \end{cases}$$

u = (j + 2n + k)/2 and t = [u/(p-1)]. Choose an element $\tilde{x} \in \widetilde{KO}(X)$ with $f_2(\tilde{x})$

 $=f_{p,2}(x_p)$. Then, there exists an element $y_p \in VO_{2m,2n}^{j+k}(p)$ with $x_p - h_{p,2}(\tilde{x}) = f_{p,1}(y_p)$. Set $x = \tilde{x} + f_1(g_p(y_p))$ and $x_2 = h_{2,2}(x)$. Then, we have $h_{p,2}(x) = x_p$ and $f_{2,2}(x_2) = f_2(x)$ $= f_{p,2}(x_p)$. It follows from [13] that the Adams operations are given by

$$\psi'(x_2) = i^{u}x_2 + f_{2,1}(v_2),$$

where

$$v_2 = \begin{cases} -(i^u/2)u_2 & (i \equiv 0 \pmod{2}) \\ -((i^u-i^{(j+n)/2})/2)u_2 & (i \equiv 1 \pmod{2}) \end{cases}$$

and u_2 is a generator of the group $VO_{n+l,n+k}^{j+n}(2)$. We necessarily have

$$\psi^{i}(x) = ax + f_{1}(g_{2}(b) + g_{p}(c))$$

for some integer a and an element $g_2(b) + g_p(c) \in \widetilde{KO}(Y)$. By using the ψ -map f_2 , we see that $a = i^{\mu}$. Under $h_{2,2}$, $f_1(g_2(b) + g_p(c))$ maps into $f_{2,1}(b)$ and x maps into x_2 , and we see that

$$\psi^{i}(x_{2}) = i^{\mu}x_{2} + f_{2,1}(b)$$

This implies that $b = v_2$. Under $h_{p,2}$, $f_1(g_2(b) + g_p(c))$ maps into $f_{p,1}(c)$ and x maps into x_p , and we see that

$$\psi^{i}(x_{p}) = i^{u}x_{p} + f_{p,1}(c).$$

This implies that $c \equiv v_p \pmod{UO_{2m,2n}^{j+k}(p)}$. Since $g_p(UO_{2m,2n}^{j+k}(p))$ is contained in UO, we obtain

$$\psi^{i}(x) \equiv i^{u}x + f_{1}(g_{p}(v_{p}) + g_{2}(v_{2})) \pmod{f_{1}(UO)}$$

This completes the proof of the lemma.

We now recall some difinition in [3]. Let f be a function which assigns to each integer i a non-negative integer f(i). Given such a function f, we define $\widetilde{KO}(X)_f$ to be the subgroup of $\widetilde{KO}(X)$ generated by

$$\{i^{f(i)}(\psi^i-1)(y)|i\in \mathbb{Z}, y\in \widetilde{KO}(X)\};$$

that is, $\widetilde{KO}(X)_f = \langle \{i^{f(i)}(\psi^i - 1)(y) | i \in \mathbb{Z}, y \in \widetilde{KO}(X)\} \rangle$. According to [2], [3] and [17], the kernel of the homomorphism $J: \widetilde{KO}(X) \to \widetilde{J}(X)$ coincides with $\bigcap_f \widetilde{KO}(X)_f$, where the intersection runs over all functions f. Set $w_2 = f_1(g_2(u_2))$ and $w_p = f_1(g_p(u_p))$. Suppose that f satisfies

(5.4) $f(i) \ge m + l + \max\{v_r(m(u))|r \text{ is a prime divisor of } i\}$

for every $i \in \mathbb{Z}$. It follows from Lemma 5.3 that we have

$$\begin{split} &i^{f(i)}(\psi^{i}-1)(x) \\ &\equiv i^{f(i)}(i^{u}-1)x + (i^{f(i)}(i^{(j+n)/2}-i^{u})/2)w_{2} \\ &-(i^{f(i)}(i^{u}-1) + ((j+k)/2)(i^{p-1}-1))/p)0^{u-t(p-1)}w_{p} \pmod{f_{1}(UO)} \\ &= i^{f(i)}(i^{u}-1)x + (i^{f(i)}N_{2}(u/2^{v_{2}(u)})(u(i^{(j+n)/2}-1)-u(i^{u}-1))/2^{v_{2}(2u)})w_{2} \\ &-(i^{f(i)}N_{p}(u/p^{v_{p}(u)})(u(i^{u}-1)+u((j+k)/2)(i^{p-1}-1))/p^{v_{p}(pu)})0^{u-t(p-1)}w_{p} \\ &\equiv i^{f(i)}(i^{u}-1)x + (i^{f(i)}N_{2}(u/2^{v_{2}(u)})((j+n-2u)/2)(i^{u}-1)/2^{v_{2}(2u)})w_{2} \\ &-(i^{f(i)}N_{p}(u/p^{v_{p}(u)})((2u-j-k)/2)(i^{u}-1)/p^{v_{p}(pu)})0^{u-t(p-1)}w_{p} \pmod{f_{1}(UO)} \\ &= (i^{f(i)}(i^{u}-1)/(2^{v_{2}(2u)}p^{v_{p}(pu)}))(2^{v_{2}(2u)}p^{v_{p}(pu)}x) \\ &-p^{v_{p}(pu)}N_{2}(u/2^{v_{2}(u)})((n+k)/2)w_{2} - 2^{v_{2}(2u)}N_{p}(u/p^{v_{p}(u)})n0^{u-t(p-1)}w_{p}). \end{split}$$

By virtue of [3; II, Theorem (2.7) and Lemma (2.12)], we have

$$\langle f_1(UO) \cup \{ i^{f(i)}(\psi^i - 1)(x) | i \in \mathbb{Z} \} \rangle = f_1(UO) \cup \{ \mathfrak{m}(u)x - M_2w_2 - M_pw_p \} \rangle,$$

where $M_2 = (m(u) / 2^{\nu_2(4u)}) N_2(u / 2^{\nu_2(u)})(n+k)$ and

$$M_{p} = \begin{cases} (\mathfrak{m}(u) / p^{v_{p}(pu)}) N_{p}(u / p^{v_{p}(u)}) n & (u \equiv 0 \pmod{(p-1)}) \\ 0 & (\text{otherwise}). \end{cases}$$

Since this is true for every function f which satisfies (5.4), we obtain (5.5) $\widetilde{J}(X) \cong \widetilde{KO}(X) / \langle f_1(UO) \cup \{ \mathfrak{m}((j+2n+k)/2)x - M_2w_2 - M_pw_p \} \rangle,$ where $w_2 = f_1(g_2(u_2)), w_p = f_1(g_p(u_p)), v_2(M_2) = v_2(n+k)$ and $\begin{cases} v_p(M_p) = v_p(n) & (j+2n+k \equiv 0 \pmod{2(p-1)}) \\ M_p = 0 & (otherwise). \end{cases}$

It follows from [13], [14] and the proof of Theorem 2 that we have

$$\widetilde{J}(X) \cong F(z) / \langle \{B_0, B_2, B_p\} \rangle,$$

where F(z) is a free abelian group generated by $\{z_0, z_2, z_p\}$,

$$B_{2} = 2^{b_{2}(j+n,n+l,n+k)}z_{2},$$

$$B_{p} = p^{b_{p}(j+k,2m,2n)}z_{p},$$

$$B_{0} = M_{0}z_{0} - M_{2}z_{2} - M_{p}z_{p}$$

and $M_0 = m((j+2n+k)/2)$. Set

STABLE HOMOTOPY TYPES OF THOM SPACES

(5.6)
$$\begin{cases} i_2 = \min\{b_2(j+n, n+l, n+k), v_2(n+k)\}\\ i_p = \min\{b_p(j+k, 2m, 2n), v_p\}, \end{cases}$$

where

$$v_p = \begin{cases} v_p(n) & (M_p \neq 0) \\ m & (M_p = 0). \end{cases}$$

For the sake of simplicity, we put $b_2 = b_2(j+n, n+l, n+k)$ and $b_p = b_p(j+k, 2m, 2n)$ in the following calculation. Choose integers e_1 , e_2 , e_3 and e_4 with $e_1 2^{b_2} - e_2 p^{b_p - i_p} M_2 = 2^{i_2}$ and $e_3 p^{b_p} - e_4 2^{b_2 - i_2} M_p = p^{i_p}$. We assume $e_4 = 0$ if $M_p = 0$. Then we have

$$A\begin{pmatrix} B_{0}\\ B_{2}\\ B_{p} \end{pmatrix} = \begin{pmatrix} 2^{b_{2}-i_{2}}p^{b_{p}-i_{p}}M_{0}z_{0}\\ e_{2}p^{b_{p}-i_{p}}M_{0}z_{0}+2^{i_{2}}z_{2}\\ e_{4}2^{b_{2}-i_{2}}M_{0}z_{0}+p^{i_{p}}z_{p} \end{pmatrix},$$

where

$$A = \begin{pmatrix} 2^{b_2 - i_2} p^{b_p - i_p} & p^{b_p - i_p} M_2 / 2^{i_2} & 2^{b_2 - i_2} M_p / p^{i_p} \\ e_2 p^{b_p - i_p} & e_1 & e_2 M_p / p^{i_p} \\ e_4 2^{b_2 - i_2} & e_4 M_2 / 2^{i_2} & e_3 \end{pmatrix}$$

and det A = 1. This implies that

$$\widetilde{J}(X) \cong \mathbb{Z}/2^{b_2 - i_2} p^{b_p - i_p} M_0 \oplus \mathbb{Z}/2^{i_2} \oplus \mathbb{Z}/p^{i_p}.$$

This completes the proof of Theorem 3.

6. Proof of Theorems 4 and 5

By Proposition 3.20, $J(h(q,m)\alpha(q)) = J(2^{\varphi(l)}(\xi(q)-1)) = 0$. It follows from [5, Proposition (2.6)] that

$$(D(q)^{m,l})^{(n+s)\eta(q)\oplus(k-s+t+s)\xi(q)} \simeq (D(q)^{m,l})^{n\eta(q)\oplus(k-s+s)\xi(q)} \cdot S$$

Theorem 4 follows from Lemma 3.10.

Suppose $D(q)_{2n,k}^{2m+1,l}$ and $D(q)_{2n+2s,k+t}^{2m+1,l+t}$ are of the same stable homotopy type, $s \ge 0$ and $k+t \ge 0$. There exists an integer j > 2s+t and a cellular homotopy equivalence

$$h: S^{j-2s-t}D(q)_{2n+2s,k+t}^{2m+2s+1,l+t} \to S^{j}D(q)_{2n,k}^{2m+1,l},$$

which induces isomorphisms

$$h^*: \widetilde{H}^*(S^j D(q)_{2n,k}^{2m+1,l}; \mathbb{Z}/2) \to \widetilde{H}^*(S^{j-2s-t} D(q)_{2n+2s,k+t}^{2m+2s+1,l+t}; \mathbb{Z}/2),$$

$$h^!: \widetilde{KO}(S^j D(q)_{2n,k}^{2m+1,l}) \to \widetilde{KO}(S^{j-2s-t} D(q)_{2n+2s,k+t}^{2m+2s+1,l+t})$$

and $J(h): \tilde{J}(S^{j}D(q)_{2n,k}^{2m+1,l}) \to \tilde{J}(S^{j-2s-t}D(q)_{2n+2s,k+t}^{2m+2s+1,l+t})$. If $n+k \equiv 0 \pmod{2}$, then h induces a homotopy equivalence

$$\bar{h}: S^{j-2s-t} D(q)_{2n+2s,k+t,2n+2s+1,k+t}^{2m+2s-1,l+t,2n-1,k+t-1} \to S^{j} D(q)_{2n,k,2n+1,k}^{2m+1,l,2n-1,k-1}$$

By Lemma 3.11, we obtain

$$\operatorname{Sq}^{i}(\sigma^{j-2s-t}([(c^{2n+2s}, d^{k+t}])) = \binom{n+k+s+t}{i} \sigma^{j-2s-t}([(c^{2n+2s}, d^{k+t+i})])$$

and Sqⁱ($\sigma^{j}([(c^{2n},d^{k})])) = \binom{n+k}{i} \sigma^{j}([(c^{2n},d^{k+i})])$ for $1 \le i \le l-k$, where $\sigma: \tilde{H}^{*}(X; \mathbb{Z}/2)$ $\rightarrow \tilde{H}^{*+1}(SX; \mathbb{Z}/2)$ is the suspension isomorphism. Since $h^{*}(\sigma^{j}([(c^{2n},d^{k})]))$ $= \sigma^{j-2s-t}([(c^{2n+2s},d^{k+t})])$, we obtain

$$\binom{n+k}{i} \equiv \binom{n+k+s+t}{t} \pmod{2}$$

for $1 \le i \le l-k$. It follows from [12, Lemma 2.1] that $v \ge \lfloor \log_2(l-k) \rfloor + 1$, where $v = v_2(|s+t|+2^l)$. This completes the proof of the part i) of (1) of Theorem 5.

To prove the parts ii) and iii) of (1) of Theorem 5, we may assume $l \ge k+9$. So, assume $l \ge k+9$ and $v \ge 4$. If m=n, then

$$\widetilde{J}(S^{j-2s-t}D(q)_{2n+2s,k+t}^{2m+2s+1,l+t}) \cong \widetilde{J}(S^{j+n-s-t}RP_{n+k+s+t}^{n+l+s+t}) \\ \oplus \widetilde{J}(S^{j+n-s-t}RP_{n+k+s+t+1}^{n+l+s+t+1})$$

and $\tilde{J}(S^{j}D(q)_{2n,k}^{2m+1,l}) \cong \tilde{J}(S^{j+n}RP_{n+k}^{n+l}) \oplus \tilde{J}(S^{j+n}RP_{n+k+1}^{n+l+1})$. Suppose $v_2(j+n) > \varphi(l-k)$. By the isomorphism J(h), we see

$$v+1 \ge \max\{a_2(n+l,n+k-1), a_2(n+l+1,n+k)\}.$$

If $n+k \equiv 0 \pmod{2^{\varphi(l-k)-1}}$, then $a_2(n+l, n+k-1) = \varphi(l-k)$ and

$$n+k+s+t \equiv n+k \pmod{2^{\varphi(l-k)}}$$

This implies that $v \ge \varphi(l-k)$. If $n+k+1 \equiv 0 \pmod{2^{\varphi(l-k)-1}}$, then $a_2(n+l+1, n+k) = \varphi(l-k)$ and

$$n+k+1+s+t \equiv n+k+1 \pmod{2^{\varphi(l-k)}}$$

This implies that $v \ge \varphi(l-k)$. Thus the parts ii) and iii) of (1) of Theorem 5 for the case m=n are obtained by using Lemma 3.13.

Suppose m > n. If $m \equiv n \pmod{4}$, then

$$h(i_0(S^{j+n-s-t}RP_{n+k+s+t}^{n+k+s+t+8})) \subset S^j D(q)_{2n,k}^{2m,l}$$

and $i_0^! \circ h^! \circ p_2^! = 0$, where

$$i_0: S^{j+n-s-t} RP_{n+k+s+t}^{n+k+s+t+8} \approx S^{j-2s-t} D(q)_{2n+2s,k+t}^{2n+2s,k+t+8} \subset S^{j-2s-t} D(q)_{2n+2s,k+t}^{2m+2s+1,l+t}$$

is an inclusion map and

$$p_2: S^j D(q)_{2n,k}^{2m+1,l} \to S^j D(q)_{2m+1,k}^{2m+1,l} \approx S^{j+m} RP_{m+k+1}^{m+l+1}$$

is an identification. Let

$$\begin{split} &i_1: S^{j+n-s-t} RP_{n+k+s+t}^{n+l+s+t} \to S^{j-2s-t} D(q)_{2n+2s,k+t}^{2m+2s+1,l+t}, \\ &i_2: S^{j+n} RP_{n+k}^{n+l} \to S^j D(q)_{2n,k}^{2m+1,l}, \\ &i_3: S^{j+2n+k} \to S^{j-2s-t} D(q)_{2n+2s,k+t}^{2m+2s+1,l+t}. \end{split}$$

and $i_4: S^{j+2n+k} \to S^j D(q)_{2n,k}^{2m+1,l}$ be inclusion maps, and

$$p_1: S^{j-2s-t} D(q)_{2n+2s,k+t}^{2m+2s+1,l+t} \to S^{j+m-s-t} RP_{m+k+s+t+1}^{m+l+s+t+1}$$

an identification. Suppose $v_2(j+n) \ge \varphi(l-k)$. If $n+k \ne 0 \pmod{4}$, then J(h) induces an isomorphism

$$\widetilde{J}(S^{j+n}RP_{n+k}^{n+l}) \xrightarrow{\cong} \widetilde{J}(S^{j+n-s-t}RP_{n+k+s+t}^{n+l+s+t}).$$

This implies that $v_2(j+n-s-t)+1 \ge a_2(n+l,n+k-1)$ and $v \ge a_2(n+l,n+k-1)-1$. If $n+k \equiv 0 \pmod{4}$, then $J(\overline{h})$ induces an isomorphism

$$\widetilde{J}(S^{j+n}RP^{n+l}_{n+k+1}) \xrightarrow{\cong} \widetilde{J}(S^{j+n-s-t}RP^{n+l+s+t}_{n+k+s+t+1}).$$

This implies that $v_2(j+n-s-t)+1 \ge a_2(n+l,n+k) = a_2(n+l,n+k-1)$ and $v \ge a_2(n+l,n+k-1)-1$. If $n+k \equiv 0 \pmod{2^{\varphi(l-k)-1}}$, then

$$KO(S^{j+2n+k}) \cong \mathbb{Z}.$$

Let x be an element of $\widetilde{KO}(S^{j}D(q)_{2n,k}^{2m+1,l})$ with $(i_4)^{l}(x)$ generates the group $\widetilde{KO}(S^{j+2n+k})$. Then $(i_3)^{l}(h^{l}(x))$ generates the group $\widetilde{KO}(S^{j+2n+k})$. It follows from [13] that

$$(i_1)!(\psi^3(y)) = 3^{(j+2n+k)/2}(i_1)!(y) + ((3^{(j+n-s-t)/2} - 3^{(j+2n+k)/2})/2)v$$

and

$$(i_2)!(\psi^3(x)) = 3^{(j+2n+k)/2}(i_2)!(x) + \left((3^{(j+n)/2} - 3^{(j+2n+k)/2})/2\right)u,$$

where $y = h^{1}(x)$, v is a generator of torsion subgroup of

$$\widetilde{KO}(S^{j+n-s-t}RP^{n+l+s+t}_{n+k+s+t})$$

and u is a generator of torsion subgroup of $\widetilde{KO}(S^{j+n}RP_{n+k}^{n+1})$. It follows from [15, Lemma 3.1] that

$$(3^{(j+n)/2} - 3^{(j+2n+k)/2})/2 \equiv -(n+k) \pmod{2^{\varphi(l-k)}}$$

and $(3^{(j+n-s-t)/2}-3^{(j+2n+k)/2})/2 \equiv -(s+t+n+k) \pmod{2^{\varphi(l-k)}}$. Since $J(\bar{h})$ induces an isomorphism

$$\widetilde{J}(S^{j+n}RP_{n+k+1}^{n+l}) \xrightarrow{\cong} \widetilde{J}(S^{j+n-s-t}RP_{n+k+s+t+1}^{n+l+s+t}),$$

this implies that $v \ge \varphi(l-k)$. Suppose $v_2(j+m) \ge \varphi(l-k)$. Then J(h) induces an isomorphism

$$\widetilde{J}(S^{j+m}RP_{m+k+1}^{m+l+1}) \xrightarrow{\cong} \widetilde{J}(S^{j+m-s-t}RP_{m+k+s+t+1}^{m+l+s+t+1}).$$

This implies that $v+1 \ge a_2(m+l+1,m+k)$. If $m+k+1 \equiv 0 \pmod{2^{\varphi(l-k)-1}}$, then $m+k+s+t+1 \equiv m+k+1 \pmod{2^{\varphi(l-k)}}$ and $v \ge \varphi(l-k)$. Thus the parts ii) and iii) of (1) of Theorem 5 are obtained by using Lemma 3.13. This completes the proof of the part (1) of Theorem 5.

Let q be an odd prime. By the part i) of (1) of Theorem 5, $s+t\equiv 0 \pmod{2}$. (mod 2). Suppose $j+k\equiv 0 \pmod{q^{\lfloor (m-n)/(q-1) \rfloor}}$ and $j+k\equiv 2(-2+k-2\lfloor (n+k)/2 \rfloor) \pmod{2(q-1)}$. (mod 2(q-1)). Then $j\equiv k \pmod{4}$, $j-2s-t\equiv k+t \pmod{4}$,

$$B(q, j-1, k+1)_{2n+1}^{2m} \cong \mathbb{Z}/q^{a_q(j+k+2m, j+k+2n)},$$

$$B(q, j-2s-t-1, k+t+1)_{2n+2s+1}^{2m+2s} \cong \mathbb{Z}/q^{b_q(j+k-2s, 2m+2s, 2n+2s)},$$

$$b_q(j+k-2s, 2m+2s, 2n+2s) = \min\{v_q(j+k-2s)+1, a_q(j+k+2m, j+k+2n)\}$$

and $a_q(j+k+2m, j+k+2n) = [(m+k-2[(n+k)/2]-2)/(q-1)]+1$. Suppose $j+l \equiv 0 \pmod{q^{[(m-n)/(q-1)]}}$ and $j+l \equiv 2(-1+l-2[(n+l+1)/2]) \pmod{2(q-1)}$. Then $j \equiv l+2 \pmod{4}, j-2s-t \equiv l+t+2 \pmod{4}$,

$$B(q, j, l)_{2n+1}^{2m} \cong \mathbb{Z}/q^{a_q(j+l+2m, j+l+2n)},$$

$$B(q, j-2s-t, l+t)_{2n+2s+1}^{2m+2s} \cong \mathbb{Z}/q^{b_q(j+l-2s, 2m+2s, 2n+2s)},$$

$$b_q(j+l-2s, 2m+2s, 2n+2s) = \min\{v_q(j+l-2s)+1, a_q(j+l+2m, j+l+2n)\}$$

and $a_q(j+l+2m, j+l+2n) = [(m+l-2[(n+l+1)/2]-1)/(q-1)]+1$. This implies that

$$v_q(s+q^m) \ge [(m+k-2[(n+k)/2]-2)/(q-1)]$$

and $v_q(s+q^m) \ge [(m+l-2[(n+l+1)/2]-1)/(q-1)]$ except for the case l = k+2

(mod 4),

$$d = \left[\frac{(m+k-2[(n+k)/2]-2)}{(q-1)} \right] = \left[\frac{(m+l-2[(n+l+1)/2]-1)}{(q-1)} \right] > 0,$$

$$l-k-2s \equiv 0 \pmod{q^d}$$

and $l-k+2s \equiv 0 \pmod{q^d}$. If $l \equiv k+2 \pmod{4}$,

$$d = \left[\frac{(m+k-2[(n+k)/2]-2)}{(q-1)} \right] = \left[\frac{(m+l-2[(n+l+1)/2]-1)}{(q-1)} \right] > 0,$$

$$l-k-2s \equiv 0 \pmod{q^d}$$

and $l-k+2s\equiv 0 \pmod{q^d}$, then $l\equiv k \pmod{2q^d}$, $l\geq k+2q^d\geq k+2q$,

$$h(\bar{\iota}_0(S^{j+k-2s}(L_q^{2n+2s+2q-2}/L_q^{2n+2s-1}))) \subset S^j D(q)_{2n,k}^{2m+1,l-1}$$

and $\vec{i}_0^! \circ h^! \circ \vec{p}_2^! = 0$, where

$$\bar{\iota}_0: S^{j+k-2s}(L_q^{2n+2s+2q-2}/L_q^{2n+2s-1}) \approx S^{j-2s-t}D(q)_{2n+2s,k+t}^{2n+2s+2q-2,k+t} \subset S^{j-2s-t}D(q)_{2n+2s,k+t}^{2n+2s+1,l+t}$$

is an inclusion map and

$$\bar{p}_2: S^j D(q)_{2n,k}^{2m+1,l} \to S^j D(q)_{2n,l}^{2m+1,l} \approx S^{j+l} (L_q^{2m+1}/L_q^{2n-1})$$

is an identification. This implies that $h^{!}$ induces isomorphisms

$$\widetilde{J}(S^{j+k-2s}(L_q^{2m+2s}/L_q^{2n+2s})) \cong \widetilde{J}(S^{j+k}(L_q^{2m}/L_q^{2n}))$$

and $\tilde{J}(S^{j+l-2s}(L_q^{2m+2s}/L_q^{2n+2s})) \cong \tilde{J}(S^{j+l}(L_q^{2m}/L_q^{2n}))$. Thus we obtain the part i) of (2) of Theorem 5. If $n \equiv 0 \pmod{q^{\lfloor (m-n)/(q-1) \rfloor}}$, $n+k \equiv 0 \pmod{2}$, $j+k \equiv 0 \pmod{q^{\lfloor (m-n)/(q-1) \rfloor}}$ and $j+k \equiv -2n \pmod{2(q-1)}$, then $j \equiv k \pmod{4}$ and the isomorphism J(h) implies

$$n + s \equiv 0 \pmod{q^{[(m-n)/(q-1)]}}$$

and $s \equiv 0 \pmod{q^{[(m-n)/(q-1)]}}$. If $n \equiv 0 \pmod{q^{[(m-n)/(q-1)]}}$, $n+l \equiv 1 \pmod{2}$, $j+l \equiv 0 \pmod{q^{[(m-n)/(q-1)]}}$ and $j+l \equiv -2n \pmod{2(q-1)}$, then $j \equiv l-2 \pmod{4}$ and the isomorphism J(h) implies

$$n+s\equiv 0 \pmod{q^{[(m-n)/(q-1)]}}$$

and $s \equiv 0 \pmod{q^{\lfloor (m-n)/(q-1) \rfloor}}$. Thus the part ii) of (2) of Theorem 5 is obtained by using Lemma 3.13. This completes the proof of Theorem 5.

References

- [1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
- [2] J.F. Adams: On the groups J(X)-I, Topology 2 (1963), 181–195.
- [3] J.F. Adams: On the groups J(X)-II, -III, Topology 3 (1965), 137–171, 193–222.
- [4] J.F. Adams and G. Walker: On complex Stiefel manifolds, Proc. Camb. Phil. Soc. 61 (1965), 81-103.
- [5] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
- [6] K. Fujii, T. Kobayashi and M. Sugawara: Stable homotopy types of stunted lens spaces, Mem. Fac. Sci. Kochi Univ. (Math.) 3 (1982), 21–27.
- [7] M. Fujii and T. Yasui: K_0 -groups of the stunted real projective spaces, Math. J. Okayama Univ. 16 (1973), 47–54.
- [8] T. Fujino and M. Kamata: J-groups of orbit manifolds $D_p(4m+3, 8n+7)$ of $S^{8m+7} \times S^{8n+7}$ by the dihedral group D_p , Math. Rep. Coll. Gen. Ed. Kyushu Univ. 11 (1978), 127–133.
- [9] M. Imaoka and M. Sugawara: On the K-ring of the orbit manifold $(S^{2m+1} \times S^{1})/D_{n}$ by the dihedral group D_{m} . Hiroshima Math. J. 4 (1974), 53-70.
- [10] M. Kamata and H. Minami: Bordism groups of dihedral groups, J. Math. Soc. Japan 25 (1973), 334–341.
- [11] T. Kambe, H. Matsunaga and H. Toda: A note on stunted lens space, J. Math. Kyoto Univ. 5 (1966), 143-149.
- [12] S. Kôno: Stable homotopy types of stunted lens spaces mod 4, Osaka J. Math. 29 (1992), 697-717.
- [13] S. Kôno and A. Tamamura: On J-groups of $S^{l}(RP(t-l)/RP(n-l))$, Math. J. Okayama Univ. 24 (1982), 45-51.
- [14] _____: J-groups of the suspensions of the stunted lens spaces mod p, Osaka J. Math. 24 (1987), 481–498.
- [15] _____: J-groups of suspensions of stunted lens spaces mod 8, Osaka J. Math. 30 (1993), 203–234.
- [16] S. Kôno, A. Tamamura and M. Fujii: J-groups of the orbit manifolds (S^{2m+1}×S¹)/D_n by the dihedral group D_n, Math. J. Okayama Univ. 22 (1980), 205-221.
- [17] D.G. Quillen: The Adams conjecture, Topology 10 (1971), 67-80.
- [18] A. Tamamura: J-groups of the suspensions of the stunted lens spaces mod 2p, Osaka J. Math. 30 (1993), 581-610.
- [19] A. Tamamura and S. Kôno: On the KO-cohomologies of the stunted lens spaces, Math. J. Okayama Univ. 29 (1987), 233-244.

Department of Mathematics Osaka University Toyonaka, Osaka 560, Japan