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1. Introduction

Let q^3 be an integer, and Dq the dihedral group of order 2q generated by

two elements a and b with relations aq = b2 = abab=l. Let S2m+ί and Sl be
the unit spheres in the complex (ra + l)-space Cm + 1 and the real (Z-hl)-space Rl + 1

respectively. Then Dq operates on- the product space S2m+ί xSl by

) = (expβπ^/ - 1 / q) - z,*)

) = (z,-x)

for (z,x)eS2m+ί xSl, where z is the conjugate of z. We set

D(q}2^ = {l(z»,. ^xKεD(q)2>»+"\zm is real
(

Then D(q)m'° is naturally identified with the space L™ defined in [6], and

D(q)^l^(L^xSl)/(Z/2), where the action of Z/2 is given by 6-([z],x) = ([z],-x).

Complex brings K(D(q)mJ) for odd q are studied in [9]. ^O-groups KO(D(q)mtl)
and /-groups J(D(q)m'1) for odd q are studied in [8] and [16]. Let m, n, /, k,

i, j, c and d be integers with m^n^Q, /^A:^0, /w+l^/^/ι-1, /+

^c^n and l+l^d^k. We set

f Z
l > i f j I (D(qΓ'k ~ ' 'c " 1 '" " ' n - ' l " - J 'd " !

Let ^ be an odd integer. Then the group KO(SjD(q)™fy is decomposed to a
direct sum of KO-groups of suspensions of stunted lens spaces modq or mod 2

(Theorem 1). /-groups J(SjD(q)%l) of suspensions SjD(q)™£ of the spaces D(q%£
are determined for the case in which q is an odd prime (Theorems 2 and

3). Combining the results in [6] and [16], we obtain a sufficient condition for
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the spaces D(q)™£k and D(q)™*+2s,k+t to nave the same stable homotopy type for
the case q=\ (mod 2) (Theorem 4). As an application of Theorems 1, 2 and 3,

we obtain some necessary conditions for the spaces D(q)l™£1'1 and D(q)l™+2?,k + il + t

to have the same stable homotopy type for the case in which q is an odd prime

(Theorem 5).

The paper is organized as follows. In section 2 we state main theorems. In

section 3 we prepare some lemmas and recall known results in [5], [10], [16]

and [18]. The proofs of Theorems 1 and 2 are given in section 4. Theorem 3 is

proved in section 5. We prove Theorems 4 and 5 in the final section.

I would like to express my gratitude to Professor Akie Tamamura and Professor

Katsuo Kawakubo for helpful suggestions and constant encouragement.

2. Statement of results

In this section q denotes an odd integer with q^3. In order to state theorems,

we set

(Z/2ΘZ/2 (n = \ (mod 8))

(2.1) GO(Λ)= j Z / 2 (Λ = 0 or 2 (mod 8))
( 0 (otherwise).

(22) A<aikΓ- (m°d4))
\L.L] A(qj,K)n—\

(otherwise).

,2.3) ,
(0 (otherwise).

(2.4) RPl

k = RP(l) I RP(k - 1).

Theorem 1 . Let ra, «, / and k be integers with m^n^O and I > k ̂  0. Then

(1) WS*D(q)l^^

(2) * /̂%)l̂

(3) tWS*D(q)l^^O(S*^^^
(4) *<Xs'/>(ίM

REMARK. (1) If l=k, then

(Lemma 3.11), and groups KO(Sj+k(L™ / L'^1)) are studied in [19].

(2) The partial results for the casej=n=k = Q of this theorem have been obtained

in [16] (Proposition 3.20 (1)).
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(3) ΛΌ-groups of suspensions of stunted real projective spaces are determined
completely in [7].

Let vp(s) denote the exponent of the prime p in the prime power decomposition
of s, and m(s) the function defined on positive integers as follows (cf. [3]):

Theorem2. Let m,n, I and k be integers with m^n^.0 and l>k^.Q. Then

(1)

(2)

(3)

(4) // (k-j,j+2n+k)φ(Q,Q) (mod 4) and (l+2-jJ+2n + l)φ(0,Q) (mod 4), or
(m — n)n = Q, then

mjD^^^

(5) Suppose m>n>0 and j-l+2=j+2n + l=Q (mod4).

i) Ifj + n=\ (mod 4), then

^^ii) Ifj + n = 3 (mod 4), then

J(SjD(q)%:>) ^ B(q, j - \ 9k + 1 )̂ + 1 θ^fe j, /)L"

(6) Suppose m>n>Q and j—k=j+2n + k = Q (mod 4).
i) If j -\-n~2 (mod 4), then

(̂S'/%)̂

ii) 7/7 + w = 0 (mod 4), then

iii) Ifj + n = Q (mod 4) and l=j + 2 (mod 4), then

^
and J(SjD(q)%;>-2^ 1,

REMARK. The partial results for the case j=n = k = Q of this theorem have

been obtained in [16] (Proposition 3.20 (2)).

Let p be an odd prime. In order to state next theorem, we set
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(2.5) φ(m) = [m / 4] + [(m + 7) / 8] + [(m + 6) / 8].

(2.6) a2(m, n) = φ(m) - [(« + 1 ) / 4] - [(« + 7) / 8] - [(« + 6) / 8].

(2.7) αp(m,«) = [

(2.8) 6a(/,m,π) =
Itιύn{v2(j)+l,a2(m+j,n+j)}

(2.9)

Theorem 3. Let p be an odd prime. Suppose m>n>0, l>k^.Q,j=k (mod 4)
and y'+«Ξθ (mod 4). 77ιe«

Λf =
and ip = mm{bp,vp(n),vp(M)}.

REMARK. Combining Theorem 2, Theorem 3, [13] and [14], we obtain

complete results of groups J(SjD(p)™$

Considering the (Z/#)-action on S2m + l x C given by

exp(2πχ/^T / q) (z,v) = (exp(2πN/Γ^ϊ /q)-z9 exp(2πy^T / q)v)

for (z,f)e5'2m+1 x C, we have a complex line bundle

We denote the restriction of ηq to LJ by ηq (Og«^2m + l). Let Λ(g,/c) denotes
the order of J(r(ηq) — 2) e /(Lj), which has been determined completely (cf.

[6]). Spaces A" and 7 are said to have the same stable homotopy type (X~ Y)

if there exist non-negative integers c and d such that SCX and SdY have the same
homotopy type (ScX~SdY).

Theorem 4. Ifs = Q (mod%,m)) and t=-s (mod2φ(/)), then D(q)2

2"n+k

m>k + l and

n + 2Ss*k+tkS*k+t+l have the same stable homotopy type.

REMARK. (1) The partial results for the case in which q is an odd prime,
and m=\ (mod 2), n — s = 0 or k = t = Q, m = l=l (mod 8) of this theorem have been
obtained in [8].

(2) Let q be an odd prime. Then %,m) = ̂ m/2(ί~1)] (cf. [11]).
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In order to state the next theorem, we prepare functions β and γ defined by

(2.10) β(k,n) is equal to the corresponding integer in the following table:

^^\£ (mod 8)

n (mod 4) ̂ ^̂ ^̂

0

1

2

3

0

0

1

1

0

1

0

1

0

0

2

0

0

0

0

3

0

1

0

1

4

0

0

0

0

5

0

0

0

1

6

0

0

1

1

7

0

1

1

1

(2.11)

Theorem 5. Suppose D(q)l™£1'1 and

homotopy type, where m, n, /, k, s and t are integers with

k + t^Q. Then

(1) Set v = v2(\s + t\ + 2l) and v2 = v2(n + k + 2l). Then

have the same stable
^O, sΞ^O and

ii) v^φ(/-fc)-

iii) // max{v2, v2(/ι + /+l), v2(m + k + \),

(2) Let q be an odd prime. Set vq = vq(n 4- qm). Then

ii)

^φ(/-fc)-l, then

REMARK. Let q be an odd prime. It follows from Theorems 4 and 5 that

we have obtained the necessary and sufficient condition for spaces D(q)l"k*'1 and

£(#)2lΓ+22sS,fc+Y + r to have ^e same stable homotopy type if following conditions (1)
and (2) are satisfied.

(1) One of the following conditions:

ii)
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iii) max{v2(« + fc + 2'), v2(n + /+l), v2(m+k+l), v2

(2) One of the following conditions:

ii) max

iii)

3. Preliminaries

We begin by recalling some notation in [18]. Let αt(w,ι;) (l^/^8) be the
integers defined by

«,(«,»)=
u-v

(2) α4(M =
\ U — V

(3) α6(M = (2""t;~1

V u — v

(4) .̂ "
V

(5) α3(w,ι;) = α1(M-l,ι;-l)-α1(M-l,ι;4 l),
(6) α2(w,f ) = α4(w -f 1 , v -f 1 ) — α4(w — 1 , t; + 1 ),

(7) α5(w,t?) = α7(κ+l,ι;+l) + α7(w-l,f;),
(8) α8(iί,ϋ) = α6(w - 1, i; - 1 ) + α6(w, t; + 1).

We set elements afj'm(q), b2j'm(q) and cfj'm(q) of KO(S2jL™) by

(3.2) ι .2/.«/-Λ_;~»=ι-ιv » v-« ™ (7-0 (mod 2))

where r'.K^KO denotes the real restriction and I:K(X)-+K(S2X) is the Bott
periodicity isomorphism.

Lemma 3.3 (Tamamura [18]). The elements a?j'm(q\ bfj'm(q) and cfj'm(q)
satisfy following relations.

, = j a2(i>u)buj'm(q) (j=0 (mod 2))
(2)

1 v" '^' " x w < > i " ' x (/=! (mod2)).
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(3) 0? )̂ = Σ
\u

(4)
\u

2j ._fel

u=i<x5(i9u)bij'n(q) (y = 0 (mod 2))
(j) Ct ' \Qj — \

\ΪLl

u=lVLΊ(i,u)bl]'m(q) (j= 1 (mod 2)).

(6) ^^,)=ίΣUια6(/,ΦM

2^W (y = 0 (mod2))

lli=ia8(i,M)c^m(g) (/=! (mod 2)).

Lemma 3.4 (Tamamura [18]). L^ ^^3 be an odd integer and d=(q—\)/2.
Then

where w^O w fl« integer.

By Lemmas 3.3 and 3.4, we obtain

Lemma 3.5. Let p be an odd prime, and d = ( p — l ) / 2 . Then

KCXS^L-) = <{cf f_«,+ 2ljm(p)\ i ϊ i ϊ d } y .

For each integer n with 0^«<m, we denote the inclusion map of Ln

q into L™
by /JJ1, and the kernel of the homomorphism

(ζ1)1 :

by yθ%M and set

(3.6)
k e

Proposition 3.7 (Tamamura [18]). Let p be an odd prime, and d = ( p — i ) / 2 .
Then the group Vθym^n(p) is isomorphic to the direct sum of cyclic groups of order

<ϊp(2m - 4i + 2j - 4L//2], 2n - 4i + 2j - 4(j/

generated by jp«p(2»-4ί+2j-4ϋ/2].o)+ι f r2j i2w^)

Proposition 3.8 ([14]). Let p be an odd prime. Then

where v=p-l-j+(p-l)[j/(p-\)].



418 S. KONO

Considering the ^-action on S2m+ί xSlxR and S2m+1 x Sl x C given by

'a'(z9x9y) = (np(2π^Λ/q)'Z9x9y)

for (z9x9y)eS2m + lxSlxR and

(a - (z, x, w) = (exp(2πv/^Γ / j) z, x, exp(2πy^ϊ / q)w)

for (z,jc, w)e5'2m"H1 xSlxC9 we have a real line bundle

ξ(q): (S2m+ixSlxR)/Dq->D(q)2m+ί>1

and a real 2-plane bundle

): (S2m+ί xSlxC)/Dq-+ D(q)2m+ί>1.

We denote the restriction of ξ(q) (resp. η(q)) to /)(^)"'k (0^«^2w + l, O^A:^/) by
(resp. f/(ςr)). Then we have following elements of KO(D(q)m'1):

(3.9) κ(q) = η(q)-ξ(q)-\.

We denote by X* the Thorn complex of a vector bundle y over a finite CW-complex
Λf. Define a map

by setting

f((z9x,v9 w)) = ((ι;,(l - W2)1/2z), (w,(l - HwH2)1/^)).

Then / induces homeomorphisms

Jt

:ίf)ig\2m+l,l\nη(q)®kξ(q) ^ £W \2m + 2w+ l ,/ + fc

and /I /)(^)2m'/ : (D(q)2m>l)n»(q)®k^ -> /)fe)ljί 2n'/+k. Thus we obtain

Lemma 3.10. (D^Γ^)""^®^^ is homeomorphic to D(q)2n

n + m>k + l.

REMARK. The partial results for the case in which q is an odd prime and
m = l (mod 2) have been obtained in [8].

Lemma 3.11. There are following homeomorphisms:

(1)
(2)

(3)
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Proof. By Lemma 3.10, we obtain

1 *'

Define a map

A: S r l x 5 ' / ~ f c x C ^5 1 x5 / ~ f c xC

by setting h((z9x,v)) = (z,x9z
q~lv). Then A induces a bundle isomorphism £:

over £>(0)u~k. This implies

)1'1-^

i ~ Sm(D(q)°>1 ~ k)(m + k)ί(ί) w SmRP(l - k)(m

and

ί i i « 5 mP(^) 1 f f " *)(m + k)ί(ί) / Sm(D(q)°'1 - k)(m

*Sm(((Sl-kxDm+k+1)/(Sl-kxSm+k))/(Z/2))

πSmRP(l-k)(m+k+"ξ(q)πSmR

By the homemorphism D(q}m'lπ(L™xSl)/(Z '/2),

Wϊ x ^'+)/((^ x S f- ̂ uίLJ- 1

(Lj1 x sVίίi? x 'ML;-1 x sθ

^S'ίLJ/L;-1). q.e.d.

Let τ(q)2m+1 l: TD(q)2m+i>1 -+D(q)2m+l l be the tangent bundle of D(q)2m+u.
Then we have

Lemma 3.12. τ(q)2m+itlφ2 is isomorphic to (m + \)η(q)®(l+\)ξ(q).

Proof. There exists an equivariant isomorphism

A: T(S2m+ 1 x 50 x *2 -* S2m+ l^Slx Cm+1 x Rl+1,

which induces a bundle isomorphism

K: (T\S2m+ίxSl)/Dq)xR2-*(S2m+ίxSlxCm+1xRl+ί)/Dq

from τ(ϊ)2m+1 'Θ2 to (m + l)η(q)®(l+l)ξ(q). q.e.d.

Lemma 3.13. L ί̂ TV and M be integers with N= 0 (mod A(g, 2m — 2n + 1)), M= 0

(mod2φ(I"k)), 7V>m + l and Af>JV+/+2. ΓAe« /Ae 5-rfwα/ o/ Z)(?)^lfl is
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r\/~\2N-2n- ί,M-N-k-l
1J\(i)2N-2m-2,M-N-l-ί

Proof. By Lemma 3.10, Lemma 3.12 and [5, Proposition (2.6) and Theorem
(3.5)], the 5-dual of

D(9)lntk
 l ''

is

According to [10], D(q)m'1 has a cellular decomposition

{(C^)|0gι^w;θ^/g/},

where dim (Ci9Dj) = i+j and boundary operations are given by

We denote by (cl

9 d
j) the dual cochain of (Cf, Dj).

Lemma 3.15. Suppose q=ί (mod2).
(1)

(2)

Lemma 3.16. Suppose q=l (mod2) and l>k. Then there exists a split
short exact sequence

(3.17) 0->Λ(?,Λ/)i:+1 -»^5^?)|:;'lft)^^(?,y-l,* + l)i:+1 -»0

0/ {//-groups.

Proof. It follows from Lemma 3.15 and the Atiyah-Hirzebruch spectral
sequence for Λ^Mheory that the order of the group KO(SjD(q)2

i^1 k) is a divisor
of <fV m>» l k\ where
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a(j,m,nj,k) =
(j=k = l+2 (mod 4))

(mod 4))
(mod 4))

0 (otherwise).

In the case & = / (mod 2), the order of the group KO(SjD(q)l^ίk) is equal to
qa(j,m,n,ι,k) βy Lemma 3.11, we obtain a sequence

KO(Sj+l(L2

q

m/L2n)) * ̂ S'/MlftVJ * ̂ 0(5^fe(L^/Lf ))

of ^-groups with h2°hl=Q. It follows from [19] that

KO(S2j+i(L2

q

m/L2

q

n))^Q

and the order of KO(S2j(L2m / L2n )) is equal to ίκ»»+Λ/2]-[(.+/)/2]β Inspect the

commutative diagram

ΐ II T

KO(Si+l(Ll'"/LΪ")) ^ ̂ 0(5̂ )1̂  1§fc) (̂Ŝ ?)̂  Γj)

with exact rows. Suppose j= k = 1 (mod 4). Then gγ =0. This implies that Λ j =0,
Λ 2 is an isomorphism and g2 is an isomorphism. Suppose j—2 = k = l
(mod 4). Then g2=Q- This implies that h2 = Q, h± is an isomorphism and g^ is
an isomorphism. Thus we obtain the lemma for the case k = l (mod 4) and it is
shown that the order of KO(SjD(q)2

2^ίfk) is equal to qa^m^1^ if k = l-3
(mod 4). Suppose j=k = l— 3 (mod 4). Then g 1 =Λ 1 =0. This implies that h2 is
an isomorphism and g2 is a monomorphism. Suppose j— \=k = l— 3 (mod 4).

Then h2=g2 = Q' This implies that gί is an epimorphism and hv is an
isomorphism. Thus we obtain the lemma for the case k = l—3 (mod 4). Suppose
j=k = l—2 (mod 4). Then h^ is a monomorphism and h2 is an epimorphism. This

implies that Im/ί 1=KerΛ 2 . Using the isomorphism

we obtain a ψ-map

h3: KO(SJ+k(L2

q

m/L2

q»)) -

with H2°h3 = \. Thus we obtain the lemma for the case k = l—2 (mod 4) and it
is shown that the order of KO(SJD(q)2

2^ltk) is equal to ^-"-".'Λ if fc = /-l

(mod 4). Suppose y'= A: =1— 1 (mod 4). Then gt =A t =0. This implies that h2 and
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g2 are isomorphisms. Suppose y+ \=k = l-\ (mod4). Then h2=g2 = Q. This
implies that g1 and h± are isomorphisms. Thus we obtain the lemma for the case
k = l—\ (mod 4). q.e.d.

We consider the following maps

[ i, :L2m+1^ D(q)2m+ί>1, i2: RP(l) -> D(q)2m+u

(3.18) Po:D(q)2m+l l -» ΛP(/), p, :D(q)2m+i l

We set the following homomorphisms

l)-*KO(D(q)2m+ί>ll

ι0 :
Λ = ̂ ι)! ° ίo : KO(SlL2m) -+ KO(D(q)2m+ ̂

(3.19)

where/! is defined by fι(r(ηq— l)) = α(̂ ), and ι*0 is a right inverse of the restriction
homomorphism KO(SlL2m + ί)-^ KO(SlL2m).

Proposition 3.20 ([16]). Suppose q=l (mod 2) and />0.
(1) The homomorphism

f : jE^Ljηe^(?AOιmΘ^ΛΛ/))Θ«8(5mΛ/)!;ί ι+ !)

defined by f(x,y,z,w)=fi(x)+f2(y) + (p())
l(z) + (p2)\w) is an isomorphism.

(2) The homomorphism

g :

^ is OΛ isomorphism.

4. Proof of Theorems 1 and 2

The part (1) of Theorems 1 and 2 is a direct consequence of Lemma 3.16.
It follows from Lemma 3.11 that there exists a commutative diagram

0 -> S'/%)i;:?i) - (S'D(q)ί2 >) KO(SjD(q)2 -+ 0

_ / 3 I _ i _ II
o -> ΛΓOίs^-Λp;:!;1!) -> A:o(5^)i+1>/) ^^oίs ί̂iΓi1) -* o

with exact rows. Since £(SjD(q)l^l§ has an odd order, /3=0 and we obtain
the following commutative diagram
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Coker/i S KO(SiD(q)^:l)

in which the row is exact. Thus we obtain

and J(SJD(q)%+ '•') s ̂ +"Λ/ί ί iΐ^θΛS^ίlΓjD Similarly we obtain

and 7(5̂ )1̂ )̂ s J(Sj+mRP-+

+[+

+\)®J(SiD(q)2

2^l,k).

Since the short exact sequence

0 ->• AΌ(5^)? J') -» KO(SiD(q)lm

k

Λ) -+ KO(SjRPl

k) -+ 0

of i/ί-groups splits, we obtain

KO(SiD(q)lm

k

 1} s

and Λί^ίίgJ1)

Suppose n>0. There exists a commutative diagram

o -» KCK&iwfttt^ - o(5 )̂î ') - o(5^+"/?^:j;) -» o
_ II I I

o -» jsΓOίs^ l̂Γπίi.*) - ̂ 0(5̂ )1̂ 1,0 - £8(s'0te)t!: I1Jk) -» o

with exact rows^ If (j-l-2,j+2n + [)φ(0,0) (mod4) and (j-k,j
(mod 4), then ^O(S;Γ>(ήr) '̂i 1>/k) S 0. Hence

and

Suppose m>n>Q and j— I— 2=y-h2/2H-/=0 (mod4). Theny + «=l (mod2)
and we obtain a commutative diagram
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0 0 0

I I 4

0 -» κ6(Si+l(L\m/Lln)) -I KO(Si+\Llm/L2

q

n-1)) -ί J^(S^2" + I) -* 0

01 I 02 I 03 I

o -> ίδ(5 ĝ)|;;'1Jk) ί KOis'/Mla1) ί Aoos>+"/M»:i) -+ o

Λ i I Λ2 I Λ 3 I

o ->

I I !
0 0 0

of exact sequences. Sincey — /— 1 = 1 ̂ 0 (mod 4) andy'H-w = 1 ̂ 0 (mod 2), there exists
a i

/7 :

with /7 o/5 = l. By Lemma 3.16, we obtain a i/^-map

with h1 o A 4 = l . If JTO(S '+"Λ/>;ίi"1) ̂  0, then

jEσi(sf /+"Λp;ίi) ̂  ' JEθ(s^+2"+l) ̂  z,

/5 is an isomorphism,

and

Suppose w>/ι>09y-/-2=y'+Λ-3 = 0 (mod4),y+/4-2n = 4 (mod 8) and
Then

" + l) = Z

and (S^)i^)^(5JjD(^)i7+\>fc)e Choose generators αe

£θ(Sj+2n + l) and j5eAO(S^+"ΛP;ίi)f with g3(α) = 2jS. Choose z e
with/4(z) = )8. Set
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Since fβ(h2(2z)) = h3(2f4(z)) = h3(2β) = Q, there exists an element

with/5(f*) = A2(2z). Then

= h2(2z)-f5(fΊ(h2(2z)))

So, there exists an element xeKO(Sj+l(L2m/L2n ~γ)) with g2(x) = 2y. Then

/2(x) = α. Since KO(Sj+l(Llm/Lq")) has an odd order, the homomorphism

I0 : KO(Sj+l(L2

q

m/L2

q

n))

defined by iQ(ά) = 2a is an isomorphism. Let

/8 : fθ(^+2w + /)

be the homomorphism defined by /8(flα) = <zx for αeZ, and

/9 : KO(S^^1) -» K8(S>D(qfc$

the homomorphism defined by/9(flα) = 0y for αeZ. Define the homomorphism

go : £θ(S (̂Lf /I** - !)

by setting

Suppose g0(β)=0. Then f4(g0(a))=Uf9(f2(a)))=Q. This implies that /2(α)=0.

Hence /3(g1(/o1(/Γ1(fl))))=:0 Since /3 and !̂ are monomorphisms, this implies
that α=0. Thus g0 is a monomorphism. Since g2 is given by

=g2(fl(h H2/Γ l(a -/8(/2(α)))))) + 2/9(/2(α))

= 2/3(g1(i0- '(/Γ Hα -fΛ(f2(a)

^2 = 2^o This implies that the homomorphism g0 is a i/^-map. Consider the
sequence

(4.1) o -> ̂ (9,y,/)|r (^^)i^)o(5^)2^ -, o.

Noting that / 7 o/z 2 o/ 3 oA 4 =/ 7 o/ 5 =rl 5 it is not difficult to see that (4.1) is a split

exact sequence of ^-groups. Thus we obtain
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Suppose m > n > 0, j — I — 2 = n +j — 1 = 0 (mod 4) and / > k + 1 . In the commutative
diagram

0 -» KO(SJD(q)ttiti) -> θ(5^)IΓ,iί+1) - σ(^+"/?/^:ί+1) -> 0
fci I *2 I *3 I

0 -> A ϊ ' / J f o ί & ' Γ ΰ p'/)™- 1) TO(5^"Λ/«:ίi-1) -. 0

with exact rows, ki and A:3 are isomorphisms. This implies that k2 is an
isomorphism. Using k2, we obtain a i^-map

with Λ 2 ° Λ 5 = 1. Thus we have

and

S B(q, j, t)lΐ

Suppose m > n > 0 and j—k=j+2n+k=Q (mod 4). Then j + n = 0 (mod 2). If
n +j =2 (mod 4) andy'+2«+λ:=4 (mod 8), then we obtain the following commutative
diagram

0 0 0

I I 4

0 -* KO(SJD(q)2

2^l,k+l) KO(S'D(q)l^k+,) S^/^JUi) - 0

01 I 02 I 93 I

ΛZhi I

4 i I
0 0 0
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of exact sequences. Choose r>l with rφj+2 (mod 4) and j+2n + r== 3,4,5,6 or 7
(modS). Then, in the commutative diagram

0 -> Ks'DMg^j) -> KO(S*D(q)%$ -* KO(S>+*RI»+ru - 0

*' I "2 I *' I

0 ->• KO(SJ+k(L*m/L*")) -I KO(SJ+k(L*m/L*a-1)) -! ^O(5 '+2"+*) -» 0

with exact rows, A;, and A:3 are isomorphisms. This implies that k2 is an
isomorphism. Using k2, we obtain a i/'-map

Λ :

with A 2 o Λ 5 = l. Since y+« = 0 (mod2) and j—k — 1 = 3^0 (mod4), there exists a
φ-map

with /2 0/7 = 1. Thus we obtain

and

J(S*D(q)%;b s

Ifn+j= 2 (mod 4) andj + 2« + k =0 (mod 8), then we obtain a commutative diagram

0 -

KO(SJ+'RP:VJ -» 0

0 -> KO(S^\LmILj -t ^0(5J'+U27L""')) -* ^0(^J'+2"+k) -» 0

I
0

of exact sequences. If l=k + ί, then A:C>(5JI>(i)i"H.'1,/t+1)sO and there exists a
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homotopy equivalence

Using g, we obtain a i/^-map

g6:KO(Sj

with gβo g 3 = l. Define a i/^-map

S5 :KO(SjD(

by gs(a) =/2~ 'feβtAί*))) for α 6 KO(SjD(q)%;k+ *). Then

^50^2=/2" l o^60/40^2^/2" l o^60^3°/2

Thus we obtain

^ KO(Sj+k(L2m/L2n))@Z®Z/2

and

J(SjD(q)2

2ΐ;
k+l) * J(Sj+k(L2m/L2

q

n-l))φJ(Sj+2n+k + 1 )

If />*+!, then ImA3-2θ(S j + 2 M + k), lmh2 = 2KO(Sj+k(L2m/L2n ~1)) and

Kerg2 ^ Kerg3 ^ KO(Sj+2n+k+l) ^ Z/2.

Thus we obtain the commutative diagram
0 0 0

1 i I
^ /I /2

0 -> AΓO(SJ'/>(^)27+ι(k+ι) -> CokerΛ4 -> CokerΛ5

91 I ~β2 I ^3 I

o ->
Λ l I Λ~2 I

^, f s
0 -̂  KO(Sj+k(L2m/L2n)) -+ Imh2
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of exact swquences. Since j + n = 0 (mod 2) and j — k — 1 = 3 φ 0 (mod 4), there exists
a ι/f-map

/7 :

with /7°/ι = l. Since AΓί?(S'J£>(^)f™^ljk + 1) has an odd order, /7 induces a ι^-map

/7 : Coker Λ4

with /7 o/j = 1 . Choose an integer r ̂  / with j + In + r = 5 (mod 8). Then jφr + 2
(mod 4) and using the isomorphism

we obtain a

with K2°h6 = l. Thus we obtain

') s ImA2φCoker/z4

ίtk+ ,)φCoker A5

, >

and

'̂) s /"(Im/ι2)®/"(CokerΛ4)

Suppose y— A: =j+n = 0 (mod 4). Then, there exists a commutative diagram

0 0

1 1

-» 0

91 1 β2 4

*•

I I
0 0
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of exact sequences. Since j+n = Q (mod 4) and 7— k — 1 =3^0 (mod 4), there exists
a i

/8 :

with /2 °/8 = 1. Thus we obtain

and 7(S'/%)̂ ^ There exists an
exact sequence

o -» s'AdiΓj/ f ίjΓ ') - 0(sj0(<?)i;r,i,') - κo(sJ+2"+k) - o.

Since κd(Si+2n+k) S Z, we obtain

S KO(S^D(q)l^ , jJ

I fy+n=0 (mod 4) and l=j+2 (mod 4), then there exists an exact sequence

o -> ̂ (9l/Λ!:+ ! - ̂ ί̂)!1) - ̂ s îiS'iili2"1*' !) -» °

In the commutative diagram

0
fcl I *2 I *3 I

o -> ^δ(5 ?̂)i;;'r[) -» ^s^^ii2"'*'1) -* KO(sJ+°RPX'k) -+ o

with exact rows, fct and A:3 are isomorphisms. This implies that k2 is an
isomorphism. Using k2, we obtain a ι^-map

with A2%3 = 1. Thus we obtain

and

+ ,.
There exists a commutative diagram
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o

rjk.VΓΓ ') S J(SJ+k(L2

q

m/L2

q"))®J(SJ+"RPn

n:
l

k+l)

in which the row is exact. This implies that

and

This completes the proof of Theorems 1 and 2.

5. Proof of Theorem 3

Suppose w>κ>0, j—k=j+n=Q (mod 4) and p is an odd prime. We set

f 5^)lΓjk'.2ii2" * ~ ! (/Ξ>+ 2 (mod 4))

and

χ=

γ=

(otherwise)

(l=j+ 2 (mod 4))

(otherwise).

There exists a commutative diagram

0 -H

/I

»2.. I

KO(Y)

"'•Ί /""2 1

0 KO(Sj+k(L2

p

m/L2

p

n-1)) KO(Sj+2n+k) -+ 0

with exact rows. In the diagram, h2,2

 an(l hp2 are epimorphisms. There exist

^-maps

2 = KerΛp > 1 andand gp:VO{+

m

k

2n(p)->KO(Y) with A 2 > 1 og 2 = l, A,.,ogp = l,

Im gp = Ker h2, t . For each / prime to ̂  (resp. 2), Λ^p(ί) (resp. yV2(/)) denote the integer

chosen to satisfy the property
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(5.1) iNp(i)Ξl (modpm) (resp. ιW2(/)=l

In order to state the next lemma, we set

(1) v=(p-\)(i(j+k)l2(p-\)-\ + \)-(j+k)l2.

(2) ί = [(n-ι>)/(p-l)].

\Np(2)ps+*ci+k'2m(p) (j + 2n+k = Q (modδ))

:=4 (mod 8)).
™ K(3) «,={;,(5.2)

(4) UO = Σ(nf(^£ - l)KO( Y)).
i e

Lemma 5.3. There exists an element xeKO(X) such that

(1) AM generates the group KO(Sj+2n+k) £ Z.

(2) The Adams operations are given by

i/φ) = fx +A(gp(vp) +g2(v2)) (mod Λ( U0)\

where u =

-(ί "/2)M2 (i=0 (mod 2))

- ((/" - ί°'+π)/2) / 2)M2 (/ = 1 (mod 2)),

-1>Wp (i^O (mod/;)),

«2 ^ β generator of the group VOj

n

++n

Ln+k(2\

Proof. According to [14], there exists an element

such that

0 Λ.2(*P) generates the group KΌ(Sj+2n+k) ^ Z.

ii) The Adams operations are given by

where

(p-l}up (ι = 0 (mod/;))

u = (j+2n+k)/2 and ί = [w/fe>-l)]. Choose an element xeKO(X) with /2(je)
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=Λ,2(*p) τhen> there exists an element ype VO{+m

k

2n(p) with xp-hp%2(x)=fpΛ(yp).
Set * = x +fί(gp(yp)) and *2 = h2t2(x). Then, we have Λp>2(x) = Xp and /2t 2(x2) =/2(x)
=fp,2(xp) It follows from [13] that the Adams operations are given by

where

and w2 is a generator of the group KOU".M+fc(2) We necessarily have

-(f/2)u2 (ι = 0 (mod 2))

(ι=l (mod 2)),

for some integer a and an element g2(b)+gp(c)eKO(Y). By using the ^-map/2,
we see that fl = ιtl. Under A 2 f 2, fι(g2(b)+gp(c)) maps into/2 j l(£) and c maps into
x2, and we see that

This implies that b = v2 Under hp2, fι(g2(b)+gp(c)) maps into/pa(c) and x maps
into jcp, and we see that

This implies that c = t;p (mod UO{+

m

k

2n(p)\ Since gp(UOj

2^
k

2n(p)) is contained in £70,

we obtain

i/φ) = fx +f1(gp(υp)+g2(υ2)) (mod Λ( t/0)).

This completes the proof of the lemma. q.e.d.

We now recall some difinition in [3]. Let / be a function which assigns to
each integer / a non-negative integer /(/). Given such a funciton /, we define
KO(X)f to be the subgroup of KO(X) generated by

that is, KO(X)f = {{im(\l/i-\)(y)\ieZ, yεKO(X)}y. According to [2], [3] and

[17], the kernel of the homomorphism J : KO(X) -> J(X) coincides with r*KO(X)f9

where the intersection runs over all functions / Set w2=/1(g2(w2)) and

Wp=fι(gp(up)). Suppose that / satisfies

(5.4) f(i)^m + l+ma,x{vr(m(u))\r is a prime divisor of /}

for every ieZ. It follows from Lemma 5.3 that we have
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imN2(u / 2V2(u)Xw(/(-'+">/2 - 1) - u(f - 1)) / 2V2<2u

2)(zp- » - l))//7v*<pI")01'-'<''

- 2ιι) / 2)(i'
u - 1) / 2V2(2u V j

(mod /t

V2(U))((« + A) / 2)w2 - 2V2(2u WP(M //» V"("')«0U ~ t(p ~ » >wp).

By virtue of [3; II, Theorem (2.7) and Lemma (2.12)], we have

</i(C/0)u{ϊ« V- iX*)l' eZ}>

where M2 = (m(ι/) / 2V2(4u)yv2(M / 2V2<H))(« 4- k) and

(m(u) /pv^)Np(u /p^)n (u = 0 (mod (p - 1)))

θ (otherwise).

Since this is true for every function / which satisfies (5.4), we obtain

(5.5) J(X) ^ KO(X)/<fl(UO )u{m(<ίj+2n+k)l2)x-M2w2-MpWp}y,

where W2=f^(g2(u2)\ wp=fι(gp(up)), v2(M2) = v2(n + k) and

= 0 (mod2(p-l)))

p = Q (otherwise).

It follows from [13], [14] and the proof of Theorem 2 that we have

where F\z) is a free abelian group generated by {z0,z2,zp},

_.

BQ = M0z0 - M2z2 -

and A/0 = m((/+2Λ+Λ)/2). Set
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ι2 = mm{b2(i + n,n + l,n + k), v2(n + k)}

ip = mm{bp(j + k, 2m, 2n\ vp},

where

fv» ( A _
7 jm (Mp = 0).

For the sake of simplicity, we put b2=b2(j+n,n + l,n + k) and bp = bp(j+k,2m,2ri)
in the following calculation. Choose integers el9 e2, ez and e4 with ev2

b2

- e^ ~ ipM2 = 21'2 and e^pbp - e42
b2 ~ i2Mp =pίp. We assume e4 = 0 if Mp = 0. Then

we have

where

1

 2b2 ~ i2pbp ~ ip pbp ~ ipM2 I 2i2 2

b2 ~ ί2Mp /pip

2 e4M2/2i2

and det^ = l. This implies that

J(X) s Z/2b2-i2pbr-ir

This completes the proof of Theorem 3.

6. Proof of Theorems 4 and 5

By Proposition 3.20, J(h(q,m)a(q)) = J(2φ(l\ξ(q)-l)) = Q. It follows from [5,
Proposition (2.6)] that

Theorem 4 follows from Lemma 3.10.

Suppose IK?)!!!!*"1'' and D(q)2

2^^ιl+t are of the same stable homotopy type,
s^Q and k + t^Q. There exists an integer j>2s + t and a cellular homotopy

equivalence

n + 2s,k + t

which induces isomorphisms
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and /(/0:/(S'£(?)i^ If «+£ = 0 (mod 2), then h
induces a homotopy equivalence

Γ. 0./-2s-ίrwVΛ2 m + 2s + l,l + f ,2π+2s- l, fc + ί- 1 c<jr\(n\2m+l,L2n-l,k-l
H.b *Λ#J2n + 2s,fc + t,2ιι+2s+l,* + f ~* ^ JJ(9)2ntk,2n+ l.fc

By Lemma 3.11, we obtain

+Ί)) V

and SqV([(c2V)])) = j(Kc2V + ί)]) for l^/^/-Λ, where σ:ff*(X;Z/2)
\ i J

H*+ί(SX;Z/2) is the suspension isomorphism. Since
)>

 we obtain

I . 1 = 1 . I (mod2)t /
for l^i^l—k. It follows from [12, Lemma 2.1] that v^[log2(/—&)]4-1, where
v = v2(\s + t\ + 2l). This completes the proof of the part i) of (1) of Theorem 5.

To prove the parts ii) and iii) of (1) of Theorem 5, we may assume /^ k + 9. So,
assume l^k + 9 and v^4. If m = n, then

and 7(S^?)î  Suppose v2(/ + /ι)>φ(/-A:).
By the isomorphism J(h\ we see

v -M ̂  max {α2(« + /,

If n + k = Q (mod2^(/-fc)-1), then a2(n + l,n + k-l) = φ(l-k') and

W + A: (mod2φ(ί~k)).

This implies that v^φ(l-k). If Λ + Λ + 1=0 (mod2<p(Z~fc)~1), then a2(n + l+l,
n + k) = φ(l—k) and

/i + Λ + l + J + ίΞΛ + fc+l (mod2φ(l~k)).

This implies that v^φ(l—k). Thus the parts ii) and iii) of (1) of Theorem 5 for
the case m = n are obtained by using Lemma 3.13.

Suppose m > n. If m = n (mod 4), then
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and /o o Λ ! op-2 = 0, where

' c/+«-s-t nnn + k + s + t + 8 ^ o/- 2s -f fV^2n+ 2s,fc + ί + 8
ί 0 .0 Tί/^ + fc + s + f ~0 L'(<ϊ)2n+2s,k + t

is an inclusion map and
> k2m+ 1,/

+ 1 ,fc m + fc + 1

is an identification. Let

C j + n-s-ί ppw + t + s + ί oj-2s-ί r\(~\2m + 2s+ 1,1 + f
/ j . O Krπ + fc + s + ί ^ύ

i ' ?J + nRpn + l _> <?Jn(n\2m+

12 O Krn + k ̂  δ Lf\(l)2n,k

: , c<j+2n + k . aj-2s
ί . O -> O

and i4:S
j+2n+k-^ SjD(q)ln,k1J be inclusion maps, and

Pι'.S} s D(q)2™+2s,k+i ~

an identification. Suppose v2(j+n)^φ(l— k). If n + kφQ (mod 4), then J(h) induces
an isomorphism

This implies that v2(j + n-s-t) + l ^a2(n 4- l,n + k-l) and vΐ>a2(n + l9

If n + k = Q (mod 4), then J(fί) induces an isomorphism

This implies that v2(j + n — s — t)-\-\^1a2(n + l,n + k) = a2(n + l,n + k—\) and vg;

l,n + k-l)-l. If «-hA: = 0 (mod2φ(/"*)"1), then

Let c be an element of KO(SsD(q)2n9k
ίfl) with (i4)

l(x) generates the group
KO(Si+2n+k). Then (ij(h\x)) generates the group KO(Sj+2n+k). It follows from

[13] that

--'-

and

fe)!(^3W) = 3°'+2"+fc)/2(/2)
!(;c) + (P

where y = h\x\ v is a generator of torsion subgroup of
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lff\( C7 + n — s — tn nn + 1 + s + 1 \KU(bJ Klj

n+k+s+t)

and u is a generator of torsion subgroup of KO(Sj+nRPn

n+
l

k). It follows from [15,

Lemma 3.1] that

(3ϋ+«.)/2_3ϋ+2»+*)/2y 2= -(/i+fc)

and (3(j+n-s-t)/2-3(j+2n+k)l2)/2=-(s + ί + n+k) (mod2^-fc)). Since J(R) in-

duces an isomorphism

J(S^"RP"n:'k+ ,) 3. ̂ "-'-'/UttiV.:'.* iλ

this implies that v^.φ(l—k). Suppose v2(/4-w)^φ(/— •&). Then /(A) induces an
isomorphism

This implies that v+ 1 ̂ a2(m + l+l9m + k). If m + A:+l=0 (mod2<p(ί~k)~1), then
w + A: + ̂  + i+l^m + A:+l (mod 2φ(l ~ fc)) and v^φ(l- k). Thus the parts ii) and iii)
of (1) of Theorem 5 are obtained by using Lemma 3.13. This completes the proof
of the part (1) of Theorem 5.

Let q be an odd prime.. By the part i) of (1) of Theorem 5, ,s-K = 0

(modi). Suppose j+k = 0 (mod#[(m-w)/(*-1)]) and j+k = 2(-2 + k-2[(n+k)/2])
(mod 2(q - 1)). Then j=k (mod 4), j - 2s - 1 = k 4- 1 (mod 4),

and aq(j+k + 2mJ+k + 2n) = [(m + k-2[(n + k)/2]-2)/(q-\}] + l. Suppose j+l

= 0 (modq[(m-n»(q-1}]) and y' + /=l(-l+/-l[(/ι + /+ !)/!]) (modl(^-l)). Then

j=l+2 (mod4)9j-2s-t = l+t + 2 (mod 4),

-2s9 2m + 2s, IΛ + 2y) = min{vβ(/+ /- 2s) + 1, fl€(/ + /+ 2m J+ 1+ 2ri)}

and α^>/+lwJ+/+2Λ) = [(/ιι + /-2[(/ι + / fl)/2]-l)/(ϊ--l)] + l. This implies
that

and vβ(j + ίjrm)^[(w-l-/-2[(/ι + /+l)/l]-l)/(g-l)] except for the case l=k + 2
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(mod 4),

l-k-2s = Q (moάqd)

and l-k + 2s = 0 (mod qd\ If l=k + 2 (mod 4),

l-k-2s = Q (modqd)

and /-fc + 2,y = 0 (mod^), then l=k (mod2/), l^

s(L2n + 2s+2q-2/L2

l

n+2s-1))) c

and iJ jo/i 'o^zrzO, where

+2q-2 / r 2«+2s- 1\ ^ oj- 2s-t /V/1\2n + 2s+ 2q- 2,k + t
I L J ~ O M^;2M + 2sk + ί

is an inclusion map and

is an identification. This implies that /z! induces isomorphisms

J(Sj+k~2s(Llm+2s/L2n +2s)) *

and J(Sj+l-2^L2m+2s/L2n+2s))^J(Sj+l(L2m/L2n)). Thus we obtain the part i) of
(2) of Theorem 5. If /ι = 0 (mod^(m"n)/(«"1)]), « + A:-0 (mod 2), y + *: = 0
(modi[(m~n)/(«"1)]) and j+k=-2n (mod2(ςr-l)), then y=Jt (mod 4) and the
isomorphism /(A) implies

and s = 0 (moάq[(m-n)l(q-l)]). If n = 0 (mod^"1""^"1"), /ι + / = l (mod 2), y-f /=0
(mod^[(m-π)/(«-1)]) and j+l=-2n (mod 2(^-1)), then y = /-2 (mod 4) and the
isomorphism J(h) implies

and s = Q (modtf[(m~n)/(<*~1)]). Thus the part ii) of (2) of Theorem 5 is obtained by
using Lemma 3.13. This completes the proof of Theorem 5.
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