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BOUNDARY SLOPES FOR KNOTS
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Let T be a torus. By the slope of an essential simple closed curve on T we
mean its isotopy class. The distance Δ(r\, r^) between two slopes r\ and TΊ is
defined to be |/ι 72], where j\ and 72 are curves with slopes r\ and T2 and denotes
homological intersection number. (Note that this is independent of all orienta-
tions. Note also that Δ is not a metric on the set of slopes the triangle inequality
does not hold.)

Now let M be an irreducible, orientable 3-manifold and T a torus component
of dM. Let (F, dF)d(M, T) be an incompressible, boundary incompressible,
orientable, genus g surface. Then the components of dF all have the same slope
on T, and we call this the boundary slope of F. Let S(M)g denote the set of
boundary slopes of such genus g surfaces. When M is an exterior E(K) of a knot
K, we write S(E(K))g as S(K)g.

Gordon and Luecke gave estimations of 3-slopes in S(M)o and S(Λf)ι, and
showed that their estimations are the best possible (see [l], [3], [4]). So far,
however, there is no estimation of d-slopes in S(M)g for g>2.

In this paper, we give some estimation of d-slopes in S(M)g for arbitrary g
when M has a certain geometric restriction, and we give an example which
estimates the strength of the theorem.

Our main results are then the following.

Theorem 1. If M has no essential annulus, then for any g\, #2^1, r\^
S(M)σι, r2tΞS(M)92, we have Δ(n, r2)<36(2<7ι-l)(2#2-l).

Theorem 2. Suppose a knot K has an m-string d-ίrreducϊble tangle decom-
position.

(i) Let alb (^=0/1) be an element of S(K)09 where a and b are coprime
integers. Then \b\<g/m.

(ii) g(K)>(m + ϊ)/2, where g(K) is the genus of K.

Theorem 3. For any n non-trivial knots K\, •••, Kn and a/b^S(Kι# ~#
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Kn)0, we have \b\<g/(n — l}.

The organization is as follows. In sections 1 and 2 we prove above theorems.
In section 3 we give an example which concerns Theorem 2 and construct d-
irreducible tangles systematically.

1. Proof of Theorem 1

Let N( •) denote a tublar neighbourhood. Let G be a finite graph in a closed
surface 5. We take edges and faces of G to be open edges and faces, i.e., compo-
nents of G — {vertices} and S1 —G, respectively. Then an edge e belongs to a face
/ if £d c/(/), where cl(f} denotes the closure of/ in 5. A face is \-sided if it has
only one edge (and one vertex).

To prove Theorem 1 we need the following lemma ([2, Lemma 6.2]).

Lemma 1.1. Let Γ be a finite graph in a closed surface S, with V vertices
and no \-sided faces which are open discs. Suppose that, for some integer n^
2, every vertex of Γ has order greater than (max{[6(l — χ ( S ) / V ) ] , !})(« —1).
Then Γ has n mutually parallel edges.

Suppose, for a contradiction, Δ=Δ(r\, r2)>36(2#ι — I ) ( 2 g 2 — 1). Let Ft be an
incompressible, 3-incompressible, orientable, connected, genus <7, surface with
3-slope Yi (i=l, 2). After an isotopy of Ft we may assume that Fi and F2 intersect
transversely, and each component of 9F\ [resp. dF2] intersects that of dF2 [resp.
dF2] exactly Δ(r\, r2) times. Then FιΓ\F2=AUS, where A is a disjoint union of
properly embedded arcs and S is a disjoint union of simple closed curves. By a
standard disc swapping argument, using the incompressibility of F\ [resp. F2], we
may assume that no component of 5 bounds a disc on F2 [resp. Fi]. As in [2],
we form graphs GFI, GFZ as follows. Let Fi be the closed surface obtained by
capping off the boundary components of Fi by disc (/—I, 2). We obtain a graph
GFI in Fi by taking as the "fat" vertices of GFI the discs attached as above, and as
the edges of GFI, the arcs in A. Similarly we obtain the graph GFZ in F2. Since
Fi [resp. F2~] is d-incompressible, we may assume (again by a standard disc
swapping argument) that GFZ [resp. GFI] has no 1-sided faces. Let Hi denote the
number of boundary components of GF, (/=!, 2). Then GF, has Hi vertices, each
of order Δnj (i^j). By a homological argument, we may assume ^2^2. (If n\ =
1, then dFi is null-homologus in Hι(E(K)). Hence 3-slope of Fi is 0/1.) Then by
the assumption, Δn2 ̂  36(2#ι -1)(2#> -1)nz > 6(2& -1){6(2#2 -1) n2 -1} > [6(1 - (2
— 200/»ι)]{6(202 —1)»2 —1}. Hence by Lemma 1.1, GFI has 6(2g2-l)n2 mutually
parallel edges. Let Γ be the subgraph of GFZ arising from these edges. Then the
order of each vertex of Γ is 6(208-1). Since 6(2#2-l)>[6(l-(2-2#>)/^2)], by
Lemma 1.1 again, Γ has parallel edges. Let e\ and £2 be edges of -Γ which are
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parallel and adjacent in F2, and let B [resp. E~\ be the disc in Fi [resp. F2] cut off
by e\ and €2. Put A = B(JE, then A is either an annulus or a Mόbius band

properly embedded in M.
Case 1. A = B\JE is an annulus: Then dA is a union of two essential

simple loops on T.

CLAIM. A is not boundary parallel.

Proof. If A is boundary parallel, then e\ partially bounds a boundary
compression disc of Fi, a contradiction.

By Claim and the assumption of the theorem, A is compressible, and hence T
is compressible. Then it follows that M is a solid torus by the irreducibility of M.
This is a contradiction, since a solid torus has only one 3-slope.

Case 2. A = B\JE is a Mόbius band : If dA is an inessential loop on T,
then the disc on T bounded by dA and A make P2 in M therefore M = M'#P3,
for some 3-manifold ΛΓ, a contradiction. Hence, dA is an essential loop on T.
Since M is orientable, N(A) is a twisted /-bundle over A. Therefore A = FrN(A)
is an annulus properly embedded in M9 where FrN(A) is the frontier of N(A) in
M. By the assumption, A is compressible or boundary compressible. If A is
compressible, then by the argument in Case 1, we have a contradiction. Hence A
is boundary compressible. Thus we see A is boundary parallel by using the
irreducibility of M and the fact that A = FrN(A) is separating. Therefore M is a
union of N(A) and Axl along ΆxQ so M = N(A} = S1XD2, a contradiction.
This completes the proof of Theorem 1.

2. Proof of Theorem 2 and Theorem 3

Let K be a knot in S3. The exterior of K is E(K) = S*-intN(K). A ta«gfe
(J3, 0 is a pair that consists of a 3-ball B and a 1-dimensional manifold ί properly
embedded in B. A tangle (B, t) is an m-string tangle if t consists of m number
of arcs. A tangle (B, t) is called ^-irreducible if d(cl(B — N(t)}} is incompressible
in cl(B — N(t)). We say that K has an m-string 3-irreducible tangle decomposi-
tion if it can be expressed as a sum of two m-string 3-irreducible tangles, i.e., there
is a sphere S meeting K transversely in 2m points, such that each of the balls
bounded by S determines, with its intersection with K, an m-string 3-irreducible
tangle.

Proof of Theorem 2. Suppose K is expressed as the sum of two m-string
3-irreducible tangles (Bι, h) and (B2, fe). Let P denote ΘBιΓιE(K) ( = 3£2Π
E(K)), then P is incompressible and 3-incompressible by the definition of a
3-irreducible tangle and an argument in [6, Lemma 1.10]. Let F be an incompress-
ible, 3-incompressible, orientable, connected, genus g surface with 3-slope a/b. As
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in the proof of Theorem 1, we may assume that each component of dF [resp. dP]
intersects that of dP [resp. dF] exactly \b\ times, and we define F, P, GF, and Gp.
Again we may assume that GF and GP have no 1 -sided face.

Lemma 2.1. There is no disc face in GF.

Proof. Suppose there is a disc face D in GF, and D is contained in B\. Then
cl(D)nd(cl(Bι-N(tι))) is a simple loop in d(cl(Bι-N(tι))\ By the definition
of a 3-irreducible tangle, cl(D)Γid(cl(Bι-N(tι))) bounds a disc D' in d(cl(Bι
— N(tι))\ Let a be a component of dD'ΓidP which is outermost disc in Z7, and
let d be the (outermost) disc in D' cut off by a. Then d is contained in P and it
produces a 1 -sided face in Gp, a contradiction.

Let V and £*, respectively, be the numbers of the vertices and the edges of GF.
Note that E=m\b\V.

Lemma 2.2. g> V(m\b\-ϊ)/2 + l

Proof. Note that 2-2g=χ(F)=V-E + 'Σiχ(Fλ where K runs over all
faces of GF. Since χ(Fi)<0 by Lemma 2.1, we have 2~2g< V-E = (l-m\b\) V.

If F is a Seifert surface, then a/b = 0/l and F— 1. Therefore, by Lemma 2.
2,

If F is not a Seifert surface, then V>2. Therefore, again by Lemma 2.2, g>
m\b\.

This completes the proof of Theorem 2.

Proof of Theorem 3. Let A\, •••, An-\ denote the annuli in E(K) defining the
connected sum as illustrated in Figure 2.1, and put P=\JJi=\Ai.

An-1

Figure 2.1
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We define F, P, GF, Gp, E, and V as in the proof of Theorem 2. Then GF does
not have a disc face. To show this note that P cuts E(K) into the disjoint union
Π?=ι-E(ίQ. Suppose GF has a disc face Zλ Then D is a properly embedded disc
in some E(Kί), and we can see that 3D is essential in dE(Ki). This implies that
Ki is a trivial knot, a contradiction.

Next we remark E = (n — ί)\b\ V. Then as in the proof of Lemma 2.2, we see
2-2g< V-E= V-(n-ΐ)\b\ V. Hence, g> V{(n-ϊ)\b\-l}/2 + l.

If V>2, then we obtain g>(n~l}\b\. If V=l, then F is a Seifert surface, and
hence g(Kι# #Kn)^n>n — l.

This completes the proof of Theorem 3.

3. Constructing d-irreducible Tangles

In this section, we give a systematic construction of d-irreducible tangles. And
combining the results of [5] with this construction, we present examples of knots
which estimate the strength of Theorem 2.

A Montesίnos tangle T(r\, ••-, rn) (rz eQ U{1/0}) is a tangle illustrated in
Figure 3.1.

where is a rational tangle of slope r ι

Figure 3.1

First we study which Montesions tangle is 3-irreducible.

Theorem 4. Suppose n>2, rz ΦZU{l/0} (l<ί<n), and n, rn

Z}. Then T(r\, •••, rn) is a d-irreducible tangle.

REMARK.

(1) (S, 0=7X1/2, p / q ) is not a d-irreducible tangle, indeed, cl(B-N(t))
is a genus 2 handlebody.

(2) After having done this work, the author learned that Wu [?] had
proved that, except for trivial cases, a Montesinos tangle which is not d-irreducible
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is T(l/2, p/q).

Proof of Theorem 4. Put T(n, —, rn) = (B, t\ E(t) = cl(B-N(t))9 and let
Ai, •••, An-i be the surfaces in E(t) as illustrated in Figure 3.2.

Figure 3.2

Then U?=ίA decomposes £(ί) into ΐ[?=ιE(ti), where £(fc) is the exterior cl(Bi
— N(tί)) of a rational tangle (Bi, fc) of slope rz (l<z<^).

Suppose -E(ί) has a compressing disc Zλ Then we may assume D intersects U
Ai transversely. By using the assumption that n Φl/0 (l<i<n), we can isotope
D so that DΠ(UAί) consists of only arcs. In the following, we assume that \DΓ\
(\JAi)\ is minimized we see this number is not zero by using the same assump-
tion. Let a be a component of D Π ( U Ai) which is outermost in D, and let E be
the disc in D cut off by a, such that (int E) Π ( U Ai)=β. Then a lies in some Ai,
and (Ai, a) is of one of the six types illustrated in Figure 3.3.

type (i) type (ii) type (iii)

type (iv)
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Then one of the following three cases occurs.

(1) E is contained in E(t\) (or E(tn)) and JE(ίι) (or E(tn)) is of X-type.
(2) E is contained in E(tι) (or E(tn)) and E(h) (or £(/„)) is of F-type.
(3) E is contained in E(tj\ where 2<j<n — 1.
Here, we say that £(ίι) [resp. jE(£Λ)] is of X-type if each component of

FrN(tι) [resp. FrN(tn)~\ has one boundary component in Λi [resp. An-ι]9 F-type
otherwise. We show that we can find a contradiction in any case. We consider only
Case (2), because the arguments for Cases (1) and (3) are similar to that for Case

(2). It should be noted that (A\, a) is not of type (vi) since E(t\) is of F-type.
Without loss of generality we assume E is contained in E(tι). Put β = cl(dE

— α), and T\ and T£ the components of FrN(tι) we assume that Ti Π #^0 in case
a is of type (ii), (iii), (iv), or (vi). By elementary but careful arguments, we may

assume (E(tι\ Ai, E) is as illustrated in Figure 3.4 (i)-(v) according as the type of
(Aι, a). Here, in case (Ai, a} is of type (v), Figure 3.4 (v) illustrates (E(tι), Ai,
E) only modulo integral twists of E(tι).

type (i) type (ii) type(iii)

type (iv) type (v)

Figure 3.4

These figures imply that (1) if (Ai, a) is of type (i), (ii), (iii), or (iv), then r\ — \l
0 and (2) if (Ai, a) is of type (v), then n = #/2 with q an odd integer. This is a

contradiction.

This completes the proof of Theorem 4.D

From now, a thorough understanding of [5] is assumed, and we investigate the

genus of the surface realizing a 3-slope in the following proposition.
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Proposition 1 ([5, Proposition 2.2]). For each p/q^Q, there exists an
incompressible, d-incompressible, orientable surface in the complement of some
Montesinos knot, with d-slope p/q.

Concerning Theorem 2, we look for surfaces whose 3-slopes have denomina-
tors q. Then, following the first half of the proof of the above proposition, we
obtain the following theorem.

Theorem 5. For a natural number q, let Kq be the Montesinos knot M(2/
7, l/(80 + 13), -1/3, 5/18, l/(80 + 13), -1/3) or M(2/7, l/(80 + 13), -1/3, 2/7,
17(80 + 13), -1/3, 5/18, l/(80 + 13), -1/3) according as q is odd or even. Then
E(Kq) contains an incompressible, d-incompressίble, orientable surface Sq, such
that the denominator of the d-slope of Sq is q, and the genus of Sq is at most
cq where c is a constant independent of q.

REMARK. By Theorem 4, Kq has a 2-string d-ίrreducible tangle decomposi-
tion.

We give the proof only for the case where q is odd, because the proof for the
case where q is even is similar.

Proof of Theorem 5. We shall use notations of [5]. First we recall the
construction of the Kq (see [5, pp. 455-456]). Viewing S3 as the join of two circles
A and B, let the circle B be subdivided as a six-sided polygon. Then the join of
A with the ήh edge of B is a ball B{. Put Hί = BiΓiBί+ι = dBiΓ\dBi+ι, then dBi
= Hi-ι U Hi. The 6 balls Bi (1< z <6) cover S3. Recall that (S3, Kq) is constructed
as the union (Bi, ti) \J \J (Be, tβ), where (B\, ti), •••, (Be, U) are rational tangles
of slopes 2/7, •••, — 1/3 respectively. In the proof of Proposition 1, an incompress-
ible, d-incompressible, orientable, candidate surface Sq is constructed as follows.
For each rational tangle (Bi, ti), choose an edgepath 7* as follows.
-71 goes linearly from (1, 6, 2) to the point A = (40-3)(l, 2, 1) + 3(1, 6, 2).
-72 and 75 go linearly from (1, 80 + 12, 1) to the point 5 = (4<?-l)(l, 0, 0) + (1,

80 + 12, 1).
— 73 and 7e are constant, at the point C=(40, 80 + 12, —4—40).
— 74 first goes linearly from (1, 17, 5) to (1, 6, 2) and second goes linearly (1, 6, 2)

to the point A.
To each 7,, a surface Si in (Bi} ti) is associated so that SiΓiHi = Si+ιΓ\Hi.

Then S9 = U?=ιSz . The d-slope of Sq is given by τ(Sq)— r(S0), where r(S9) = 2/
0 — 2, and r(So) is a certain integer associated with a Seifert surface So. Hence the
denominator of the 3-slope of Sq is 0.

Finally we roughly estimate the genus of Sq.
(1) Through all Si the number of saddles is less than c\q, where c\ is a
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constant independent of q (l<z<6).
(2) The number of arcs in Hi Π Si is less than c2tf, where €2 is a constant

independent of q (l</<6).
Hence we can see that the genus of Sq is at most cq, where c is a constant

independent of q.
This completes the proof of Theorem 5.

REMARK. In Theorem 5 we can take c = 100.
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